EP2066406A2 - Kosmetische zubereitungen auf basis molekular geprägter polymere - Google Patents

Kosmetische zubereitungen auf basis molekular geprägter polymere

Info

Publication number
EP2066406A2
EP2066406A2 EP07803486A EP07803486A EP2066406A2 EP 2066406 A2 EP2066406 A2 EP 2066406A2 EP 07803486 A EP07803486 A EP 07803486A EP 07803486 A EP07803486 A EP 07803486A EP 2066406 A2 EP2066406 A2 EP 2066406A2
Authority
EP
European Patent Office
Prior art keywords
acid
oil
meth
polymer
esters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07803486A
Other languages
English (en)
French (fr)
Inventor
Volker Wendel
Oliver BRÜGGEMANN
Arne Ptock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP07803486A priority Critical patent/EP2066406A2/de
Publication of EP2066406A2 publication Critical patent/EP2066406A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8194Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8105Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • A61K8/8117Homopolymers or copolymers of aromatic olefines, e.g. polystyrene; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8164Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers, e.g. poly (methyl vinyl ether-co-maleic anhydride)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/817Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions or derivatives of such polymers, e.g. vinylimidazol, vinylcaprolactame, allylamines (Polyquaternium 6)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/18Antioxidants, e.g. antiradicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/004Aftersun preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/04Preparations for care of the skin for chemically tanning the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/54Polymers characterized by specific structures/properties

Definitions

  • the present invention relates to cosmetic or dermatological preparations containing at least one active ingredient, at least one in the presence of this active molecularly imprinted polymer and at least one fatty phase.
  • thermolabile, oxidation-sensitive or volatile cosmetic or dermatological agents it is desirable to protect them within the formulation.
  • controlled release the prolonged release of cosmetic or dermatological active substances, the so-called controlled release.
  • polymeric microencapsulations for example, have proved to be useful for some applications, which in addition can protect the active ingredients.
  • the active ingredients should not be released during storage of the preparation but only at the intended site of action.
  • the object of the present invention was to provide formulations with selective affinity for a particular active ingredient, from which this active ingredient is released gradually and gently only at the site of action. Furthermore, it was an object of the present invention to provide preparations from which the release of an active substance is stimulated by physiological influences, such as, for example, by contact with skin or other organs. In other words, an object of the present invention was to enable a targeted release of an active ingredient of a preparation, wherein the buffer capacity of the skin or the body as a selective Noxe after application of the preparation to release the active ingredient is sufficient.
  • cosmetic or dermatological preparations containing at least one active substance, at least one polymer which is molecularly embossed in the presence of this active substance and at least one fatty phase.
  • Preparations according to the invention enable a targeted release of hydrophilic, amphiphilic, lipophilic, oxidation-sensitive or hydrolysis-sensitive active substances. This applies to all customary cosmetic and dermatological applications and dosage forms.
  • cosmetic active ingredients are described explicitly and the dermatological equivalents are not expressly mentioned, at least dermatological active substances, preparations, acceptance and uses are also included.
  • molecular imprinting has been a technology that has been intensively studied for several years, above all in the fields of chromatography, solid phase extraction and wastewater treatment.
  • HPLC high pressure liquid chromatography
  • Kanekiyo et al. (Angew Chem .. Int, Ed., 2003, 42, 3014-16) describe molecularly imprinted polymers (MIPs) whose affinity for the guest molecules that were imprinted with is pH-dependent.
  • MIPs molecularly imprinted polymers
  • the MIP used was a polymer crosslinked with N, N-methylenebisacrylamide and based on acryloyl-amylose and carboxyl group-containing monomers.
  • As a guest molecule bisphenol-A was used. It has been demonstrated that for these COG-containing MIPs, the binding ability for bisphenol A decreases with increasing pH.
  • EP-A 925776 describes molecularly imprinted polymers with binding sites for at least one organoleptic substance. Cosmetic preparations which also contain a fatty phase are not described.
  • At least one active ingredient means that one, two or more of the following named cosmetic active ingredients can be used for the preparation of the molecularly imprinted polymer, preferably one or two, particularly preferably one.
  • the molecularly imprinted polymers comprise a) at least one compound having a free-radically polymerizable double bond and b) at least one compound having at least two unconjugated free-radically polymerizable double bonds.
  • compound a) is preferably selected from a1) anionic or anionic, radically polymerizable compounds a2) esters of ⁇ , ß-ethylenically unsaturated carboxylic acids a3) amides of ⁇ , ß-ethylenically unsaturated carboxylic acids a4) esters of vinyl alcohol or allyl alcohol with Ci-C3o Monocarboxylic acids, vinyl ethers, vinyllactams, vinylimidazoles, vinylaromatics, vinyl halides, vinylidene halides, vinylpyridines, C 2 -C 8 monoolefins, nonaromatic hydrocarbons having at least 2 conjugated double bonds and a5) mixtures thereof.
  • the anionic or anionogenic, free-radically polymerizable compounds a1) include monoethylenically unsaturated mono- and dicarboxylic acids having 3 to 25, preferably 3 to 6, carbon atoms, which can also be used in the form of their salts or anhydrides. Examples thereof are acrylic acid, methacrylic acid, ethacrylic acid, .alpha.-chloroacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, aconitic acid and fumaric acid.
  • the compounds a1) furthermore include the half-esters of monoethylenically unsaturated dicarboxylic acids having 4 to 10, preferably 4 to 6, carbon atoms, e.g. of maleic acid, such as monomethyl maleate.
  • the compounds a1) also include monoethylenically unsaturated sulfonic acids and phosphonic acids, for example vinylsulfonic acid, allylsulfonic acid, sulfoethyl acrylate, sulfoethyl methacrylate, sulfopropyl acrylate, sulfopropyl methacrylate, 2-hydroxy-3-acryloxypropylsulfonic acid, 2-hydroxy-3-methacryloxypropylsulfonic acid, styrenesulfonic acid, 2-acrylamido 2-methylpropanesulfonic acid, vinylphosphonic acid and allylphosphonic acid.
  • monoethylenically unsaturated sulfonic acids and phosphonic acids for example vinylsulfonic acid, allylsulfonic acid, sulfoethyl acrylate, sulfoethyl methacrylate, sulfopropyl acrylate, sulfo
  • the compounds a1) also include the salts of the abovementioned acids, in particular the sodium, potassium and ammonium salts, and the salts with the cosmetically acceptable amines.
  • the compounds a1) can be used as such or as mixtures with one another.
  • the compound a1) is preferably selected from acrylic acid, methacrylic acid, ethacrylic acid, ⁇ -chloroacrylic acid, crotonic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, aconitic acid and mixtures thereof, particularly preferably acrylic acid, methacrylic acid, mixtures thereof and in particular methacrylic acid ,
  • Compound a2) is for example selected from the group consisting of methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, tert Butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, 2-pentyl (meth) acrylate, 3-pentyl (meth) acrylate, isopentyl (meth) acrylate, Neopentyl (neth) acrylate, n-octyl (meth) acrylate, 1,1,3,3-tetramethylbutyl (meth) acrylate, ethylhexyl (meth) acrylate, n-nonyl (meth) acrylate, n-decyl (meth) acrylate
  • Compound a2) is preferably selected from the esters of (meth) acrylic acid.
  • Compound a2) is particularly preferably selected from methacrylates and acrylates.
  • Preferred (meth) acrylates are C 1 -C 10 -alkyl (meth) acrylates and in particular the abovementioned C 1 -C 4 -alkyl (meth) acrylates.
  • Suitable compounds a2) are also the esters of ⁇ , ß-ethylenically unsaturated mono- and dicarboxylic acids with amino alcohols.
  • Preferred amino alcohols are C 2 -C 2 -aminoalcohols which are mono- or -dialkylated on the amino nitrogen C 1 -C 8 .
  • esters As the acid component of these esters are z. Acrylic acid, methacrylic acid, fumaric acid, maleic acid, itaconic acid, crotonic acid, maleic anhydride, monobutyl maleate and mixtures thereof.
  • the acid component used is preferably acrylic acid, methacrylic acid and mixtures thereof.
  • Preferred monomers a3) are N-tert-butylaminoethyl (meth) acrylate, N, N-dimethylaminomethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N- Dimethylaminopropyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate and N, N-dimethylaminocyclohexyl (meth) acrylate.
  • Particularly preferred are N-tert-butylaminoethyl (meth) acrylate and N, N-dimethylaminoethyl (meth) acrylate.
  • Suitable compounds a3) are also esters of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids with diols, for example 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate,
  • the compounds a3) may preferably be selected from the group consisting of acrylamide, methacrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N- (n-butyl) (meth ) acrylamide, N- (tert-butyl) (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, piperidinyl (meth) acrylamide and morpholinyl (meth) acrylamide, N- (n-octyl) (meth) acrylamide, N- (1,1,3,3-tetramethylbutyl) (meth) acrylamide, N-ethylhexyl (meth) acrylamide, N- (n-nonyl) (meth) acrylamide, N- (n-decyl) (meth) acrylamide, N
  • Suitable monomers a3) are also the amides of the abovementioned ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids with diamines which have at least one primary or secondary amino group. Preferred are diamines having a tertiary and a primary or secondary amino group. Suitable as monomers a3) are z.
  • Suitable monomers a3) are also the hydroxyalkylamides of the abovementioned ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids, such as, for example, 2-hydroxyethylacrylamide, 2-hydroxyethylmethacrylamide, 2-hydroxyethylethacrylamide, 2-hydroxypropylacrylamide, 2-hydroxypropylmethacrylamide, 3-hydroxypropylacrylamide, 3-hydroxypropylmethacrylamide , 3-hydroxybutylacrylamide, 3-hydroxybutylmethacrylamide, 4-hydroxybutylacrylamide, 4-hydroxybutylmethacrylamide, 6-hydroxyhexylacrylamide, 6-hydroxyhexylmethacrylamide, 3-hydroxy-2-ethylhexylacrylamide and 3-hydroxy-2-ethylhexylmethacrylamide.
  • Suitable compounds a4) are, for example, N-vinyllactams and derivatives thereof which, for. B. one or more Ci-C 6 alkyl substituents, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, etc. may have. These include z.
  • N-vinylpyrrolidone N-vinylpiperidone, N-vinylcaprolactam
  • N-vinyl-5-methyl-2-pyrrolidone N-vinyl-5-ethyl-2-pyrrolidone
  • N-vinyl-6-methyl-2-piperidone N-vinyl-6-ethyl-2-piperidone
  • N-vinyl-7-methyl-2-caprolactam N-vinyl-7-ethyl-2-caprolactam.
  • Particular preference is given to using N-vinylpyrrolidone and / or N-vinylcaprolactam.
  • Suitable compounds a4) are, for example, also N-vinylimidazole compounds of the general formula (II)
  • R 5 to R 7 independently of one another represent hydrogen, C 1 -C 4 -alkyl or phenyl.
  • Compounds b) are compounds having at least two non-conjugated free-radically polymerizable double bonds. These compounds b) are usually and hereinafter also referred to as crosslinkers.
  • Suitable compounds b) are, for example, acrylic esters, methacrylic esters, allyl ethers or vinyl ethers of at least dihydric alcohols.
  • the OH groups of the underlying alcohols may be completely or partially etherified or esterified; however, the crosslinkers contain at least two ethylenically unsaturated groups.
  • Examples of the underlying alcohols are dihydric alcohols such as 1, 2-ethanediol, 1, 2-propanediol, 1, 3-propanediol, 1, 2-butanediol, 1, 3-butanediol, 2,3-butanediol, 1, 4-butanediol , But-2-ene-1, 4-diol, 1, 2-pentanediol, 1, 5-pentanediol,
  • ethylene oxide or propylene oxide Apart from the homopolymers of ethylene oxide or propylene oxide, it is also possible to use block copolymers of ethylene oxide or propylene oxide or copolymers which contain incorporated ethylene oxide and propylene oxide groups.
  • underlying alcohols having more than two OH groups are trimethylolpropane, glycerol, pentaerythritol, 1, 2,5-pentanetriol, 1, 2,6-hexanetriol, triethoxycyanuric acid, sorbitan, sugars such as sucrose, glucose, mannose.
  • the polyhydric alcohols can also be used after reaction with ethylene oxide or propylene oxide as the corresponding ethoxylates or propoxylates.
  • the polyhydric alcohols can also be first converted by reaction with epichlorohydrin in the corresponding glycidyl ether. Preference is given to ethylene glycol di (meth) acrylate and polyethylene glycol di (meth) acrylates.
  • Further suitable compounds b) are the vinyl esters or the esters of monohydric, unsaturated alcohols with ethylenically unsaturated C 3 -C 6 -carboxylic acids, for example acrylic acid, methacrylic acid, itaconic acid, maleic acid or fumaric acid.
  • examples of such alcohols are allyl alcohol, 1-buten-3-ol, 5-hexene-1-ol, 1-octen-3-ol, 9-decen-1-ol, dicyclopentenyl alcohol, 10-undecene-1-ol, cinnamyl alcohol Citronellol, crotyl alcohol or cis-9-octadecene-1-ol.
  • you can also the monohydric, unsaturated alcohols with polybasic carboxylic acids for example malonic acid, tartaric acid, trimellitic acid, phthalic acid, terephthalic acid, citric acid or succinic acid.
  • suitable compounds b) are esters of unsaturated carboxylic acids with the polyhydric alcohols described above, for example oleic acid, crotonic acid, cinnamic acid or 10-undecenoic acid.
  • Also suitable as compounds b) are straight-chain or branched, linear or cyclic, aliphatic or aromatic hydrocarbons which have at least two double bonds which may not be conjugated in aliphatic hydrocarbons, eg. B. divinylbenzene, divinyltoluene, 1, 7-octadiene, 1, 9-decadiene, A-vinyl-1-cyclohexene, trivinylcyclohexane or polybutadienes having molecular weights of 200 to 20,000.
  • Suitable compounds (b) are the acrylic acid amides, methacrylic acid amides and N-allylamines of at least divalent amines.
  • Such amines are, for example, 1,2-diaminomethane, 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane, 1,12-dodecanediamine, piperazine, diethylenetriamine or isophoronediamine.
  • amides of allylamine and unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, or at least dibasic carboxylic acids, as described above.
  • N-vinyl compounds of urea derivatives at least divalent amides, cyanurates or urethanes, for example of urea, ethylene urea, propylene urea or tartaramide, for. N, N'-divinylethyleneurea or N, N'-divinylpropyleneurea.
  • Further suitable compounds b) are divinyldioxane, tetraallylsilane or tetravinylsilane.
  • mixtures of the abovementioned compounds b) can also be used.
  • Very particularly preferred compounds b) are ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylates, pentaerythritol triallyl ether, methylenebisacrylamide, N, N'-divinylethyleneurea, triallylamine, trimethylolpropane tri (meth) acrylate and triallylmonoalkylammonium salts.
  • the molar ratio of compound a) to compound b) is generally in the range from 1: 2 to 1:10, preferably in the range from 1: 2 to 1: 4, very particularly preferably in the range from 1: 2.5 to 1: 3.5 and in particular in the range of 1: 2.8 to 1: 3.2.
  • the new polymers described herein are in the presence of the active ingredient (template) via a precipitation polymerization with a large solvent excess (weight ratio of solvent to active ingredient in the range of 100: 1 to 5: 1, preferably from 100: 1 to 50: 1, especially preferably 59: 1) in a batch or semi-batch process.
  • the recovered polymer particles are purified by Soxhlet extraction. After the active binding sites (the molecular imprints) have been re-loaded with the template (or if template extraction has been dispensed with after polymer synthesis), the polymer can be used to release the cosmetic drug in a controlled manner.
  • the preparations according to the invention are characterized in that the release rate for the active ingredient from the polymer / active substance complex at pH 5 is higher than at pH 7.
  • the polymer / active substance complex is obtained when the polymer has been embossed with the active ingredient and subsequently unbound drug was removed or previously embossed and released from bound drug polymer is loaded with drug again.
  • Release rate is understood to mean the amount of active substance which is released from the polymer / active substance complex per unit of time; the rate can be given in ⁇ g * min- 1 , for example.
  • the release rate is determined as follows: an ultrafiltration cell is filled with a dispersion of 100 mg of the molecularly imprinted polymer in 100 ml of water (with adjusted pH) and stirred for 15 minutes until homogenized.
  • the extractant also water with the same adjusted pH
  • the extract emerging from the cell is directed to the bottom of the cell in a collecting vessel.
  • Trial period 12 hours; Replacement of the collecting vessel: every 60 minutes; 12 fractions are collected over the trial period.
  • the volume, mass and withdrawal period of the individual fractions are determined and a 2 ml sample is taken from each fraction. These samples are filtered through a 0.45 ⁇ l filter, filled into injection bottles and used for tocopherol determination by HPLC.
  • the present invention also encompasses the process for preparing the molecularly imprinted polymers, which is characterized in that the polymer is prepared by precipitation polymerization in the presence of an active substance.
  • the basic principle of precipitation polymerization is known to those skilled in the art and is described, for example, in Guyot, A. (1989), in: Comprehensive Polymer Science, Vol. 4: Eastmond, G. C, Ledwith, A., Russo, S., Sigwalt, P. (Eds.). Oxford: Pergamon, pp. 261-273.
  • the molecularly imprinted polymer may be prepared by
  • the polymerization can be carried out in a radical, anionic, cationic or coordinative mechanism or according to the principle of a polycondensation or polyaddition. Preferably, it is polymerized via a free-radical mechanism.
  • Various initiators and / or catalysts can be used, if appropriate also in combination with heat supply.
  • cationic polymerizations for example, the following initiators can be used:
  • Protic acids Lewis acids with and without coinitiators, carbonium ions, iodonium ions and / or ionizing radiation
  • the following initiators can be used: bases, Lewis bases, organometallic compounds and / or electron transfer agents, e.g. Alkali metals, alkali metal-aromatic complexes, metal ketyls
  • the following initiators / catalysts can be used:
  • Zero-complexes with transition metals eg metallocenes and / or activated transition metal oxides
  • Initiators which are suitable for the preferred free-radical polymerization are, for example, peroxides or azo compounds, substituted ethanes (for example benzopinacols), redox systems with inorganic and organic components, heat, UV light and other high-energy radiation, hydroperoxides, peresters and persulfates, for example potassium peroxodisulfate. preferably azo compounds.
  • Suitable azo compounds are 2,2'-azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (4-methoxy-2,4 dimethylvaleronitrile), 1, 1'-azobis (1-cyclohexanecarbonitrile), 2,2'-azobis (isobutyramide) dihydrate, 2-phenylazo-2,4-dimethyl-4-methoxyvaleronitrile, dimethyl 2,2'-azobisisobutyrate, 2- (carbarmoylazo) isobutyronitrile, 2,2'-azobis (2,4,4-trimethylpentane), 2,2'-azobis (2-methylpropane), 2,2'-azobis (N, N'-dimethyleneisobutyramidine), as the free base or as the hydrochloride, 2,2'-azobis (2-amidinopropane), as the free base or as the hydro
  • Suitable peroxides are, for example, acetylcyclohexanesulphonic peroxide, diisopropyl peroxydicarbonate, t-amylperneodecanoate, t-butylperneodecanoate, t-butylperpivalate, tamylperpivalate, bis (2,4-dichlorobenzoic acid) peroxide, dionononanoic acid peroxide, di-decanoic acid peroxide, dioctanoic peroxide, dilaurylic acid - roxide, bis (2-methylbenzoic acid) peroxide, disuccinic acid peroxide, diacetyl peroxide, dibenzoic acid peroxide, t-butyl per-2-ethylhexanoate, bis (4-chlorobenzoic acid) peroxide, t-butyl perisobutyrate, t-butyl permaleinate, 1,1
  • the crosslinker may be added in solid, liquid form to the reaction mixture or dissolved or dispersed in a solvent (ie emulsified or suspended), preferably added dissolved.
  • a liquid crosslinker or a crosslinker dissolved (or dispersed / mixed) in a solvent is added to the reaction mixture, more preferably a crosslinker dissolved (or dispersed / mixed) in a solvent.
  • the crosslinker is dissolved in the same solvent as the functional monomer or crosslinker.
  • organic solvents may be used, for example, dimethylformamide, ethanol, methanol, isopropanol, chloroform, dichloromethane, toluene, dimethylsulfoxide, hexane and acetonitrile, preferably toluene and acetonitrile. It is also possible to use mixtures of the abovementioned solvents.
  • up to a proportion of 50% by weight of water may be added to the solvent or the solvent mixtures.
  • MIP All embodiments of the above-mentioned particles are hereinafter referred to as "MIP”.
  • the particles obtained during the polymerization can either be used directly in the formulations or mixed with formulation auxiliaries and formulated accordingly.
  • Another object of the present invention is the use of molecularly imprinted polymers in cosmetic preparations, in particular skin cosmetic preparations
  • Another object of the present invention is a method for the treatment of Keratinober romance, characterized in that the Keratinober Structure is brought into contact with a molecularly imprinted polymer.
  • the preparations according to the invention contain cosmetically acceptable active ingredients. These active substances are released in a controlled manner, in particular in the pH range from 5 to 7, from the combination with the polymer molecularly imprinted with this active substance.
  • the active ingredients can be advantageously selected from the group consisting of acetylsalicylic acid, atropine, azulene, hydrocortisone and its derivatives, for.
  • hydrocortisone 17-valerate vitamins of the B and D series, especially vitamin Bi, vitamin B12, vitamin D, vitamin A or its derivatives such as retinyl palmitate, vitamin E or its derivatives such as tocopheryl acetate, vitamin C.
  • vitamin F unsaturated fatty acids
  • ⁇ -linolenic acid eicosapentaenoic acid, docosahexaenoic acid and its derivatives
  • chloramphene nicol caffeine, prostaglandins, thymol, camphor, squalene, extracts or other products of plant and animal origin, eg evening primrose oil, borage oil or Johanisbeerkernöl, fish oils, cod liver oil but also ceramides and ceramide-like compounds
  • frankincense extract green tea extract, water-lily extract, licorice extract, mamelis
  • anti-dandruff active ingredients eg, selenium disulfide, zinc pyrithione, piroctone, o
  • the active substance (s) can also be selected from the group of NO synthase inhibitors, in particular when the compositions according to the invention are used for the treatment and prophylaxis of the symptoms of intrinsic and / or extrinsic skin aging and for the treatment and prophylaxis of the harmful effects of ultraviolet radiation on the skin and hair should serve.
  • Preferred NO synthase inhibitor is nitroarginine.
  • the active ingredient (s) are selected from the group comprising catechins and bile acid esters of catechins and aqueous or organic extracts from plants or plant parts which have a content of catechins or bile acid esters of catechins, such as the leaves of the plant family Theaceae, in particular of the species Camellia sinensis (green tea).
  • catechins and bile acid esters of catechins are selected from the group comprising catechins and bile acid esters of catechins and aqueous or organic extracts from plants or plant parts which have a content of catechins or bile acid esters of catechins, such as the leaves of the plant family Theaceae, in particular of the species Camellia sinensis (green tea).
  • Particularly advantageous are their typical ingredients (e.g., polyphenols or catechins, caffeine, vitamins, sugars, minerals, amino acids, lipids).
  • Catechins represent a group of compounds which are to be regarded as hydrogenated flavones or anthocyanidins and derivatives of "catechin” (catechol, 3, 3 ', 4', 5,7-flavanpentaol, 2- (3,4-dihydroxyphenyl) -chroman
  • epicatecine ((2R, 3R) -3,3 ', 4', 5,7-flavanpentaol) is an advantageous active ingredient in the context of the present invention.
  • herbal extracts containing catechins especially extracts of green tea, such as. B. extracts from leaves of the plants of the species Camellia spec, especially the teas Camellia sinenis, C. assamica, C. taliensis and C. inawadiensis and crosses of these with, for example, Camellia japonica.
  • active substances are polyphenols or catechins from the group (-) - catechin, (+) - catechin, (-) - catechin gallate, (-) - gallocatechin gallate, (+) - epicatechin, (-) - epicatechin, (-) Epicatechin gallate, (-) - epigallocatechin, (-) - epigallocatechin gallate.
  • flavone and its derivatives are advantageous active ingredients in the sense of the present invention and are characterized by the following basic structure (substitution positions indicated):
  • flavones usually occur in glycosidated form.
  • the flavonoids are preferably selected from the group of substances of the general formula
  • Zi to Z 7 independently of one another, are selected from the group consisting of H, OH, alkoxy and hydroxyalkoxy, where the alkoxy or hydroxyalkoxy groups can be branched and unbranched and can have 1 to 18 C atoms, and where GIy is selected is selected from the group of mono- and oligoglycoside radicals.
  • the flavonoids can also be chosen advantageously from the group of substances of the general formula
  • Zi to Z & independently selected from the group H, OH, alkoxy and hydroxyalkoxy, wherein the alkoxy or hydroxyalkoxy groups may be branched and unbranched and have 1 to 18 carbon atoms, and wherein GIy is selected from the Group of mono- and oligoglycoside residues.
  • such structures can be selected from the group of substances of the general formula
  • Gly2 and GIV3 independently represent monoglycoside residues or oligoglycoside residues.
  • Gly2 or Gly3 can also individually or together represent hydrogen saturation.
  • Gly-i, Gly2 and Gly3 are independently selected from the group of Hexosylreste, in particular the Rhamnosylreste and Glucosylreste.
  • Hexosylreste in particular the Rhamnosylreste and Glucosylreste.
  • other hexosyl radicals for example allosyl, altrosyl, galactosyl, gulosyl, idosyl, mannosyl and talosyl, may also be advantageous to use.
  • Zi to Z5 are independently selected from the group H, OH, methoxy, ethoxy and 2-hydroxyethoxy, and the flavone glycosides correspond to the general structural formula
  • the flavone glycosides are selected from the group represented by the following structure.
  • Glyi, Gly2 and Gly3 independently represent monoglycoside residues or oligoglycoside residues. Gly2 or Gly3 can also represent individually or jointly saturations by hydrogen atoms.
  • Glyi, Gly2 and Gly3 are independently selected from the group of Hexosylreste, in particular the Rhamnosylreste and Glucosylreste.
  • Hexosylreste in particular the Rhamnosylreste and Glucosylreste.
  • other hexosyl radicals for example allosyl, altrosyl, galactosyl, gulosyl, idosyl, mannosyl and talosyl, may also be advantageous to use.
  • the flavone glycoside (s) from the group ⁇ -glucosylrutin, ⁇ -glucosylmyricetin, ⁇ -glucosylisoquercitrin, ⁇ -glucosylisoquercetin and ⁇ -glucosylquercitrin.
  • beneficial agents are sericoside, pyridoxol, vitamin K, biotin and flavorings.
  • active compounds can also be chosen very advantageously from the group of hydrophilic active substances, in particular from the following group:
  • ⁇ -hydroxy acids such as lactic acid or salicylic acid or salts thereof such as e.g. N / A-
  • the active compounds can also be chosen very advantageously from the group of light filter active ingredients.
  • Suitable light filter active substances are substances which absorb UV rays in the UV-B and / or UV-A range. These are understood to mean organic substances which are able to absorb ultraviolet rays and to release the absorbed energy in the form of longer-wave radiation, eg heat.
  • the organic substances may be oil-soluble or water-soluble.
  • Suitable UV filters are, for example, 2,4,6-triaryl-1,3,5-triazines, in which the aryl groups can each carry at least one substituent, which is preferably selected from hydroxy, alkoxy, especially methoxy, alkoxycarbonyl, especially Methoxycarbonyl and ethoxycarbonyl.
  • p-aminobenzoic acid esters p-aminobenzoic acid esters, cinnamic acid esters, benzophenones, camphor derivatives and UV-blocking pigments, such as titanium dioxide, talc and zinc oxide. Particular preference is given to pigments based on titanium dioxide.
  • UV-B filters e.g. the following substances are used: 3-benzylidene camphor and its derivatives, e.g. 3- (4-methylbenzylidene) camphor;
  • 4-aminobenzoic acid derivatives preferably 2-ethylhexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and 4- (dimethylamino) benzoic acid ester;
  • esters of cinnamic acid preferably 2-ethylhexyl 4-methoxycinnamate, 4-propyl methoxy cinnamate, isoamyl 4-methoxycinnamate, 4-isoacetyl methoxycinnamate, 2-cyano-3-phenylcinnamic acid 2-ethylhexyl ester (octocrylene);
  • Esters of salicylic acid preferably 2-ethylhexyl salicylate, 4-isopropylbenzyl salicylate, homomenthyl salicylate;
  • benzophenone preferably 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone;
  • Esters of benzalmalonic acid preferably di-2-ethylhexyl 4-methoxybenzmalonate
  • Triazine derivatives such as 2,4,6-trianilino- (p-carbo-2'-ethyl-1 '-hexyloxy) -1, 3,5-triazine (octyl tyltriazone) and Dioctyl Butamido Triazone (Uvasorb HEB ®):
  • Propane-1,3-diones e.g. 1- (4-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione.
  • Suitable water-soluble substances are:
  • Sulfonic acid derivatives of the 3-benzylidene camphor e.g. 4- (2-Oxo-3-bornylidenemethyl) benzenesulfonic acid and 2-methyl-5- (2-oxo-3-bomylidene) -sulfonic acid and its salts.
  • esters of cinnamic acid preferably 4-methoxycinnamic acid 2-ethylhexyl ester, 4-methoxycinnamic acid isopentyl ester, 2-cyano-3-phenylcinnamic acid 2-ethylhexyl ester (octocrylene).
  • Typical UV-A filters are:
  • benzoylmethane such as 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione, 4-tert-butyl-4'-methoxydibenzoylmethane or 1-phenyl-3 - (4'-isopropylphenyl) -propane-1,3-dione;
  • Amino-hydroxy-substituted derivatives of benzophenones e.g. N, N-diethylamino-hydroxybenzoyl-n-hexylbenzoate.
  • UV-A and UV-B filters can also be used in mixtures.
  • secondary light stabilizers of the antioxidant type which interrupt the photochemical reaction chain which is triggered when UV radiation penetrates into the skin.
  • Typical examples are superoxide dismutase, catalase, tocopherols (vitamin E) and ascorbic acid (vitamin C).
  • anti-irritants which have an anti-inflammatory effect on UV-damaged skin.
  • anti-irritants which have an anti-inflammatory effect on UV-damaged skin.
  • Such substances are, for example, bisabolol, phytol and phytantriol.
  • compositions according to the invention should, of course, not be limiting.
  • active substances can be used individually or in any desired combinations with one another.
  • the amount of such active ingredients (one or more compounds) in the compositions according to the invention is preferably 0.001 to 30 wt .-%, more preferably 0.05 to 20 wt .-%, in particular 1 to 10 wt .-%, based on the total weight of the composition.
  • the weight ratio of molecular weight-embossed polymer to active ingredient is in the range from 1:10 to 100: 1, preferably from 1: 1 to 10: 1, more preferably from 4: 1 to 5: 1 and in particular 4: 1.
  • the preparations according to the invention comprise at least one fatty phase.
  • fat phase is meant all cosmetically acceptable oils, fats and / or waxes.
  • ingredients are preferably selected from the group of natural or synthetic polymers, pigments, humectants, oils, waxes, enzymes, minerals, vitamins, sunscreens, dyes, perfumes, antioxidants, preservatives and / or pharmaceutical agents.
  • auxiliaries and additives for the production of skin cosmetic preparations are familiar to the expert and can from manuals of cosmetics, such as Schrader, bases and formulations of cosmetics, Weghig Verlag, Heidberg, 1989, ISBN 3-7785-1491-1, or Limbach, cosmetics: development, production and application of ksometischer means, 2nd extended edition, 1995, Georg Thieme Verlag, ISBN 3 13 712 602 9 are removed.
  • the use of the active ingredient molecularly imprinted polymers according to the invention in dermocosmetics is carried out in combination with at least one different constituent selected from cosmetically active ingredients, emulsifiers, surfactants, preservatives, perfume oils, thickeners, hair polymers, hair and skin conditioners, graft polymers, water-soluble or dispersible silicone-containing polymers, light stabilizers, bleaching agents, gelling agents, care products, colorants, tinting agents, tanning agents, dyes, pigments, bodying agents, moisturizers, restoats, collagen, protein hydrolysates, lipids, antioxidants, defoamers, antistatic agents, emollients and plasticizers.
  • cosmetically active ingredients emulsifiers, surfactants, preservatives, perfume oils, thickeners, hair polymers, hair and skin conditioners, graft polymers, water-soluble or dispersible silicone-containing polymers, light stabilizers, bleaching agents, gelling agents, care products, colorants,
  • the antioxidants are selected from the group consisting of amino acids (eg glycine, histidine, tyrosine, tryptophan) and their derivatives, imidazolones (eg urocaninic acid) and derivatives thereof, peptides such as D, L-carnosine, D-carnosine, L-carnosine.
  • amino acids eg glycine, histidine, tyrosine, tryptophan
  • imidazolones eg urocaninic acid
  • peptides such as D, L-carnosine, D-carnosine, L-carnosine.
  • Carnosine and its derivatives eg anserine
  • carotenoids eg .beta.-carotene, lycopene
  • chlorogenic acid and its derivatives eg dihydrolipoic acid
  • lipoic acid and derivatives thereof eg dihydrolipoic acid
  • aurothioglucose propylthiouracil and other thiols
  • vitamins, provitamins or vitamin precursors of the vitamin B group or derivatives thereof which may preferably be used according to the invention and the derivatives of 2-furanone include, inter alia:
  • Vitamin Bi common name thiamine, chemical name 3 - [(4'-amino-2'-methyl-5'-pyrimidinyl) methyl] -5- (2-hydroxyethyl) -4-methylthiazolium chloride.
  • Vitamin B2 common name riboflavin, chemical name 7,8-dimethyl-10- (1-D-ribityl) -benzo [g] pteridine-2,4 (3H, 10H) -dione.
  • riboflavin z As in whey, other riboflavin derivatives can be isolated from bacteria and yeasts.
  • a stereoisomer of riboflavin which is likewise suitable according to the invention is the lyxoflavin which can be isolated from fish meal or liver and carries a D-arabityl residue instead of the D-ribityl residue.
  • Vitamin B3 the compounds nicotinic acid and nicotinamide (niacinamide) are often performed.
  • the nicotinic acid amide is preferred according to the invention.
  • Vitamin B5 pantothenic acid and panthenol
  • Panthenol is preferably used.
  • Derivatives of panthenol which can be used according to the invention are, in particular, the esters and ethers of panthenol and also cationically derivatized panthenols.
  • Particularly preferred derivatives are the commercially available substances dihydro-3-hydroxy-4,4- dimethyl-2 (3H) -furanone with the common name pantolactone (Merck), 4 hydroxymethyl- ⁇ -butyrolactone (Merck), 3,3-dimethyl-2-hydroxy- ⁇ -butyrolactone (Aldrich) and 2,5-dihydro-5 -methoxy-2-furanone (Merck), expressly including all stereoisomers.
  • these compounds impart moisturizing and soothing properties to the dermocosmetics of the invention.
  • Vitamin B 6 which is understood here not a single substance, but the known under the common names pyridoxine, pyridoxamine and pyridoxal derivatives of 5-hydroxymethyl-2-methylpyridin-3-ols.
  • Vitamin B 7 also known as vitamin H or "skin vitamin”.
  • Biotin is (3aS, 4S, 6aR) -2-oxohexahydrothienol [3,4-d] imidazole-4-valeric acid.
  • Panthenol, pantolactone, nicotinamide and biotin are very particularly preferred according to the invention.
  • Dyes Dyestuffs which may be used are the substances suitable and approved for cosmetic purposes, as compiled, for example, in the publication "Kosmetician Anlagenrbesch” of the Farbstoffkommission of the Irish Anlagenscade, published by Verlag Chemie, Weinheim, 1984. These dyes are usually used in concentrations of 0.001 to 0.1 wt .-%, based on the total mixture.
  • the compositions according to the invention contain at least one pigment.
  • the pigments are present in the product composition in undissolved form and may be present in an amount of from 0.01 to 25% by weight, more preferably from 5 to 15% by weight.
  • the preferred particle size is 1 to 200 .mu.m, in particular 3 to 150 .mu.m, particularly preferably 10 to 100 .mu.m.
  • the pigments are practically insoluble colorants in the application medium and may be inorganic or organic. Also inorganic-organic mixed pigments are possible. Preference is given to inorganic pigments.
  • the advantage of inorganic pigments is their excellent light, weather and temperature resistance.
  • the inorganic pigments may be of natural origin, for example made of chalk, ocher, umber, green soil, terraced terraza or graphite.
  • the pigments may be white pigments such as titanium dioxide or zinc oxide, black pigments such as iron oxide black, colored pigments such as ultramarine or iron oxide red, luster pigments, metallic effect pigments, pearlescent pigments, as well as fluorescence or phosphorescent pigments, wherein preferably at least one pigment is a colored, non-white pigment.
  • Suitable are metal oxides, hydroxides and oxide hydrates, mixed phase pigments, sulfur-containing silicates, metal sulfides, complex metal cyanides, metal sulfates, chromates and molybdate and the metals themselves (bronze pigments).
  • Titanium dioxide (Cl 77891), black iron oxide (Cl 77499), yellow iron oxide (Cl 77492), red and brown iron oxide (Cl 77491), manganese violet (Cl 77742), ultramarines (sodium aluminum sulfosilicates, Cl 77007, Pigment Blue 29 ), Chromium oxide hydrate (C177289), iron blue (Ferric Ferro-Cyanide, CI7751 0), Carmine (Cochineal).
  • pearlescent and color pigments based on mica or mica which are coated with a metal oxide or a metal oxychloride such as titanium dioxide or bismuth oxychloride and optionally further coloring substances such as iron oxides, iron blue, ultramarines, carmines, etc., and the color is determined by varying the layer thickness can be.
  • a metal oxide or a metal oxychloride such as titanium dioxide or bismuth oxychloride and optionally further coloring substances such as iron oxides, iron blue, ultramarines, carmines, etc.
  • Such pigments are sold, for example under the trade names Rona ®, Colorona ®, Dichrona and Timiron ® ® (Merck).
  • Organic pigments include, for example, the natural pigments sepia, cambogia, bone charcoal, Kasseler brown, indigo, chlorophyll and other plant pigments.
  • Synthetic organic pigments include azo pigments, anthraquinoids, indigoids, dioxazine, quinacridone, phthalocyanine, isoindolinone, perylene and perinone, metal complex, alkali blue and diketopyrrolopyrrole pigments.
  • the use of the active-molecular-embossed polymers according to the invention or prepared according to the inventive process with at least one particulate substance in the composition in a proportion of 0.01 to 10, preferably from 0.05 to 5 wt. % is present.
  • Suitable substances are e.g. Substances which are solid at room temperature (25 ° C) and in the form of particles. Suitable examples are silica, silicates, aluminates, clays, mica, salts, in particular inorganic metal salts, metal oxides, e.g. Titanium dioxide, minerals and polymer particles.
  • the particles are present in the agent undissolved, preferably stably dispersed form and can be deposited in solid form after application to the application surface and evaporation of the solvent.
  • Preferred particulates are silica (silica gel, silica) and metal salts, especially inorganic metal salts, with silica being particularly preferred.
  • Metal salts are e.g. Alkali or alkaline earth halides such as sodium chloride or potassium chloride; Alkali or alkaline earth sulfates such as sodium sulfate or magnesium sulfate.
  • suitable pearlescing agents are: alkylene glycol esters, special ethylene glycol disterate; Fatty acid alkanolamides, especially coconut fatty acid diethanoamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polyvalent, if hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; Fatty substances, such as fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which in total have at least 24 carbon atoms, especially lauron and distearyl ether; Fatty acids such as stearic acid, hydroxystearic acid or behenic acid, ring-opening products of olefin epoxides having 12 to 22 carbon atoms with fatty alcohols having 12 to 22 carbon atoms and / or polyols having 2 to 15 carbon atoms and 2 to 10 hydroxy
  • Typical thickeners in such formulations are crosslinked polyacrylic acids and their derivatives, polysaccharides and their derivatives, such as xanthan gum, agar-agar, alginates or tyloses, cellulose derivatives, e.g. Carboxymethylcellulose or hydroxycarboxymethylcellulose, fatty alcohols, monoglycerides and fatty acids, polyvinyl alcohol and polyvinylpyrrolidone.
  • Nonionic thickeners are preferably used.
  • Suitable cosmetically and / or dermocosmetically active agents are e.g. coloring agents, skin and hair pigmentation agents, tinting agents, suntanning agents, bleaching agents, keratin-hardening substances, antimicrobial agents, light-filtering active ingredients, repellent active ingredients, hyperemic substances, keratolytic and keratoplasmic substances, antiperspirants, antiphlogistics, keratinizing substances, antioxidant or radical scavengers active ingredients, skin moisturizing or moisturizing substances, moisturizing agents, antierythimatös or antiallergically active ingredients, branched fatty acids such as 18-Methyleicosanklare, and mixtures thereof.
  • coloring agents e.g. coloring agents, skin and hair pigmentation agents, tinting agents, suntanning agents, bleaching agents, keratin-hardening substances, antimicrobial agents, light-filtering active ingredients, repellent active ingredients, hyperemic substances, keratolytic and keratoplasmic substances
  • Artificial skin tanning agents which are suitable for tanning the skin without natural or artificial irradiation with UV rays are e.g. Dihydroxyacetone, alloxan and walnut shell extract.
  • Suitable keratin-hardening substances are, as a rule, active ingredients as are also used in antiperspirants, such as, for example, antiperspirants. Potassium aluminum sulfate, aluminum hydroxychloride, aluminum lactate, etc.
  • Antimicrobial agents are used to destroy microorganisms or to inhibit their growth and thus serve both as a preservative and as a deodorizing substance, which reduces the formation or intensity of body odor.
  • These include e.g. customary preservatives known to the person skilled in the art, such as p-hydroxybenzoic acid ester, imidazolidinyl urea, formaldehyde, sorbic acid, benzoic acid, salicylic acid, etc.
  • deodorizing substances are known, for example. Zinc ricinoleate, triclosan, undecylenic acid alkylolamides, citric acid triethyl ester, chlorhexidine etc.
  • Table 4 suitable preservatives.
  • the E numbers listed in the above table are the drawings used in Directive 95/2 / EEC.
  • preservative additives dibromodicyanobutane (2-bromo-2-bromomethylglutarodinitrile), 3-iodo-2-propynyl butylcarbamate, 2-bromo-2-nitropropane-1,3-diol, imidazo - lidinyl urea, 5-chloro-2-methyl-4-isothiazolin-3-one, 2-chloroacetamide, benzalkonium chloride and benzyl alcohol suitable.
  • phenylhydroxyalkyl ethers in particular the compounds known as phenoxyethanol, are suitable as preservatives because of their bactericidal and fungicidal effects on a number of microorganisms.
  • germ-inhibiting agents are also suitable for incorporation into the preparations according to the invention.
  • Advantageous substances are, for example, 2,4,4'-trichloro-2'-hydroxydiphenyl ether (Irgasan), 1, 6-di- (4-chlorphenylbiguanido) - hexane (chlorhexidine), 3,4,4'-trichlorocarbanilide, quaternary ammonium compounds , Clove oil, mint oil, thyme oil, triethyl citrate, farnesol (3,7,11-trimethyl-2,6,10- dodecat ⁇ en-1-ol) and in the patent publications DE-37 40 186, DE-39 38 140, DE-42 04 321, DE-42 29 707, DE-43 09 372, DE-44 11 664, DE-195 41 967, DE-195 43 695, DE-195 43 696, DE-195 47 160, DE-196 02 108, DE-196 02 110, DE-196 02 11 1, DE-196 31
  • the cosmetic compositions may contain perfume oils.
  • perfume oils for example, mixtures of natural and synthetic fragrances may be mentioned.
  • Natural fragrances are extracts of flowers (lily, lavender, rose, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (aniseed, coriander, caraway, juniper), fruit peel (bergamot, Lemon, orange), roots (macis, angelica, celery, cardamom, costus, iris, calmus), woods (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme ), Needles and twigs (spruce, fir, pine, pines), resins and balsams (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are ester type products, ethers, aldehydes, ketones, alcohols and hydrocarbons. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, 4-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzylformate, ethylmethylphenylglycinate, allylcyclohexylpropionate, styrene-propionate and benzylsalicylate.
  • the ethers include, for example, benzyl ether ethers, to the aldehydes, for example, the alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonate, to the ketones, for example the ionones, cc-isomethyl ions and methylatedrylketone,
  • the alcohols include anethole, citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terioneol; the hydrocarbons mainly include the terpenes and balsams.
  • fragrances are used, which together produce an attractive fragrance.
  • Lower volatile volatiles which are most commonly used as aroma components, are also suitable as perfume oils, eg sage oil, camomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, lime blossom oil, juniper berry oil, vetiver oil, oliban oil, galaban oil, labolanum oil and lavandin oil.
  • compositions of the invention contain at least one fatty phase.
  • fat phase is meant oils, fats and / or waxes.
  • Ingredients of the oil and / or fat phase of the compositions of the invention are advantageously selected from the group of lecithins and fatty acid triglycerides, namely the triglycerol esters of saturated and / or unsaturated, branched and / or unbranched alkanecarboxylic acids having a chain length of 8 to 24, in particular 12 to 18 C. -atoms.
  • the fatty acid triglycerides can be advantageously selected from the group of synthetic, semi-synthetic and natural oils, such as e.g.
  • Olive oil sunflower oil, soybean oil, peanut oil, rapeseed oil, almond oil, palm oil, coconut oil, castor oil, wheat germ oil, grapeseed oil, thistle oil, evening primrose oil, macadamia nut oil, and the like.
  • polar oil components can be selected from the group of esters of saturated and / or unsaturated, branched and / or unbranched alkanecarboxylic acids having a chain length of 3 to 30 carbon atoms and saturated and / or unsaturated, branched and / or unbranched alcohols having a chain length of 3 to 30 carbon atoms and from the group of esters of aromatic carboxylic acids and saturated and / or unsaturated, branched and / or unbranched alcohols having a chain length of 3 to 30 carbon atoms.
  • ester oils can then advantageously be selected from the group isopropyl myristate, isopropyl palmitate, isopropyl stearate, isopropyl oleate, n-butyl stearate, n-hexyl laurate, n-decyl oleate, isooctyl stearate, isononyl stearate, isononyl isononanoate, 2-ethylhexyl palmitate, 2-ethylhexyl laurate, 2
  • one or more oil components can be advantageously selected from the group of branched and unbranched hydrocarbons and waxes, the SiI konöle, the dialkyl ethers, the group of saturated or unsaturated, branched or unbranched alcohols. Any mixtures of such oil and wax components are also advantageous to use in the context of the present invention. It may also be advantageous, if appropriate, to use waxes, for example cetyl palmitate, as the sole lipid component of the oil phase.
  • the oil component is advantageously selected from the group 2-ethylhexyl isostearate, octyldodecanol, isotridecyl isononanoate, isoeicosane, 2-ethylhexyl cocoate, C12-15-alkyl benzoate, caprylic capric acid triglyceride, dicaprylyl ether.
  • Advantageous in accordance with the invention are mixtures of C 12-15 -alkyl benzoate and 2-ethylhexyl isostearate, mixtures of C 12-15 -alkylbenzoate and 2-ethylhexyl isostearate.
  • paraffin oil, squalane and squalene are to be used advantageously in the context of the present invention.
  • the oil phase can advantageously be chosen from the group of Guerbet alcohols.
  • Guerbet alcohols are named after Marcel Guerbet, who first described their production. They arise according to the reaction equation
  • Guerbet alcohols Catalyst by oxidation of an alcohol to an aldehyde, by aldol condensation of the aldehyde, elimination of water from the aldol and hydrogenation of allyl aldehyde.
  • Guerbet alcohols are fluid even at low temperatures and cause virtually no skin irritation.
  • they can be used as greasing, overfatting and also re-greasing ingredients in cosmetic compositions.
  • Ri and R2 are generally unbranched alkyl radicals.
  • the Guerbet alcohol or alcohols are selected from among
  • Ri propyl, butyl, pentyl, hexyl, heptyl or octyl and
  • R2 hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl or tetradecyl.
  • Guerbet alcohols are 2-butyl (for example as lsofol ® 12 (Condea) commercially available) and 2-hexyl decanol (for example as iso- fol ® 16 (Condea) commercially available).
  • mixtures of Guerbet alcohols are according to the invention may advantageously be used such as mixtures of 2-butyloctanol and 2-hexyl decanol (for example as lsofol ® 14 (Condea) commercially available).
  • the oil component may further comprise a content of cyclic or linear silicone oils or consist entirely of such oils, although it is preferred to use an additional content of other oil phase components in addition to the silicone oil or silicone oils.
  • Low molecular weight silicones or silicone oils are generally defined by the following general formula:
  • silicon atoms may be substituted by identical or different alkyl radicals and / or aryl radicals, which are here generalized by radicals R 1 to R 4 .
  • radicals R 1 to R 4 the number of different radicals is not necessarily limited to 4, m may assume values of 2 to 200,000.
  • silicon atoms can be substituted with identical or different alkyl radicals and / or aryl radicals, which are here generalized by the radicals Ri to R 4 .
  • the number of different residues is not necessarily limited to 4, and "n" may be 3/2 to 20. Broken values for n take into account that odd numbers of siloxyl groups may be present in the cycle.
  • phenyltrimethicone is chosen as the silicone oil.
  • Other silicone oils for example, dimethicone, hexamethylcyclotrisiloxane, phenyldimethicone, cyclomethicone (octamethylcyclotetrasiloxane), hexamethylcyclotrisiloxane, polydimethylsiloxane, polyoxyethylene ly (methylphenylsiloxane), cetyl dimethicone, behenoxydimethicone are to be used advantageously in the context of the present invention.
  • silicone oils of similar constitution as the compounds described above, whose organic side chains are derivatized, for example polyethoxylated and / or polypropoxylated.
  • silicone oils include, for example Polysiloxanpolyalkyl-polyether copolymers such as cetyl dimethicone copolyol.
  • Cyclomethicone octamethylcyclo-tetrasiloxane is advantageously used as the silicone oil to be used according to the invention.
  • Fat and / or wax components which can advantageously be used according to the invention can be selected from the group of vegetable waxes, animal waxes, mineral waxes and petrochemical waxes.
  • candelilla wax, carnauba wax, Japan wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, berry wax, ouricury wax, montan wax, jojoba wax, shea butter, beeswax, shellac wax, spermaceti, lanolin (wool wax), crepe fat, ceresin, ozokerite (earth wax) are advantageous ), Paraffin waxes and microwaxes.
  • fat and / or wax components are chemically modified waxes and synthetic waxes, such as Syncrowax ® (glyceryl tribehenate), and Syncrowax ® AW 1 C (C is-36- fatty acid) as well as Montanesterwachse, sasol waxes, hydrogenated jojoba , synthetic or modified beeswaxes (z. B. dimethicone copolyol beeswax and / or C3o-so-alkyl beeswax), cetyl ricinoleates leate such as Tegosoft ® CR, polyalkylene waxes, polyethylene glycol waxes, but also chemically modified fats such.
  • Syncrowax ® glycol waxes
  • Syncrowax ® AW 1 C C is-36- fatty acid
  • Montanesterwachse sasol waxes
  • sasol waxes hydrogenated jojoba
  • Hydrogenated castor oils for example hydrogenated castor oil and / or hydrogenated coconut fat glycerides
  • triglycerides such as, for example, hydrogenated soy glyceride, trihydroxystearin, fatty acids, fatty acid esters and glycol esters such as, for example, C2o-4-alkyl stearate, C2o-4-alkylhydroxy-stearyl stearate and / or glycol montanate.
  • Other advantageous compounds are certain organosilicon compounds which have similar physical properties to the abovementioned fatty and / or wax components, for example stearoxytrimethylsilane.
  • the fat and / or wax components can be used both individually and as a mixture in the compositions.
  • the oil phase is selected from the group consisting of 2-ethylhexyl isostearate, octyldodecanol, isotridecyl isononanoate, butylene glycol di-caprylate / dicaprate, 2-ethylhexyl cocoate, C 12 -is alkyl benzoate, caprylic capric acid triglyceride, dicaprylyl ether.
  • Particularly advantageous are mixtures of octyldodecanol, caprylic-capric triglyceride, dicaprylyl ether, dicaprylyl carbonate, cocoglycerides or mixtures of Ci2-is-alkyl benzoate and 2-Ethylhexylisostearat, mixtures of Ci 2 - 1 5-alkyl benzoate and butylene glycol dicaprylate / dicaprate and mixtures C12 - 1 5-benzoate, 2-ethylhexyl isostearate and isotridecyl isononanoate.
  • paraffin oil paraffin oil, cycloparaffin, squalane, squalene, hydrogenated polyisobutene or polydecene are to be used advantageously in the context of the present invention.
  • the oil component is also advantageously selected from the group of phospholipids.
  • the phospholipids are phosphoric acid esters of acylated glycerols.
  • the lecithins which are distinguished by the general structure
  • the active substance / molecular imprinted polymers according to the invention or produced according to the inventive process are used in cosmetic or dermatological preparations which are a solution or emulsion or dispersion, the following can be used as solvent:
  • Oils such as triglycerides of capric or capric acid, but preferably castor oil
  • Fats, waxes and other natural and synthetic fatty substances preferably esters of fatty acids with lower C-number alcohols, for example with isopropanol, propylene glycol or glycerol, or esters of fatty alcohols with lower C-number alkanoic acids or with fatty acids
  • mixtures of the abovementioned solvents are used.
  • water can be another ingredient.
  • compositions may also contain surfactants in addition to the active-molecular-embossed polymers according to the invention or produced according to the inventive method.
  • surfactants are, for example: phosphoric esters and salts, such as, for example, DEA-oleth-10-phosphate and dilaureth-4-phosphate,
  • Alkyl sulfonates for example sodium coconut monoglyceride sulfate, sodium C 12-14 olefin sulfonate, sodium lauryl sulfoacetate and magnesium PEG-3 cocamide sulfate,
  • Carboxylic acids and derivatives such as, for example, lauric acid, aluminum stearate, magnesium alkoxide and zinc undecylenate, ester carboxylic acids, for example calcium stearyl lactylate, laureth-6 citrate and sodium PEG-4 lauramide carboxylate,
  • Ethers for example ethoxylated alcohols, ethoxylated lanolin, ethoxylated polysiloxanes, propoxylated POE ethers and alkyl polyglycosides such as lauryl glucoside, decyl glycoside and cocoglycoside.
  • compositions may also contain polysorbates in addition to the inventive or according to the inventive method produced active molecular imprinted polymers.
  • advantageous polysorbates are the
  • the compositions also contain conditioning agents.
  • Conditioning agents preferred according to the invention
  • all of the compounds described in section 4 of the International Cosmetic Ingredient Dictionary and Handbook (Volume 4, ed. RC Pepe, JA Wenninger, GN McEwen, The Cosmetic, Toiletry, and Fragrance Association, 9th Edition, 2002) are cited under Hair Conditioning Agents, Humectants, Skin Conditioning Agents, Skin Conditioning Agents Emollient, Skin Conditioning Agents Humectant, Skin Conditioning Agents-Miscellaneous, Skin Conditioning Agents- Occlusive and Skin Protectants are listed as well as all in EP-A 934 956 (p.1 1-13) under "water-soluble conditioning agent” and "oil-soluble conditioning agent.”
  • Further advantageous conditioning agents are, for example, the compounds designated as polyquaternium according to INCI (in particular Polyquaternium-1 to Polyquaternium-56).
  • Suitable conditioning agents include, for example, polymeric quaternary ammonium compounds, cationic cellulose derivatives and polysaccharides. Conditioning agents which are advantageous according to the invention can be chosen from the compounds shown in the following table.
  • guar gum quali- Terni catalyzed derivatives in particular guar hydroxypropylammonium (eg Jaguar Excel ®, Jaguar C 162 ® (Rhodia), CAS 65497-29-2, CAS 39421-75-5).
  • guar hydroxypropylammonium eg Jaguar Excel ®, Jaguar C 162 ® (Rhodia), CAS 65497-29-2, CAS 39421-75-5.
  • non-ionic poly N-vinylpyrrolidone / polyvinyl acetate copolymers eg Lu viskol ® VA 64 (BASF Aktiengesellschaft)
  • anionic acrylate copolymers for example, Lu viflex ® soft (BASF Aktiengesellschaft)
  • amphoteric amide / acrylate / methacrylate copolymers for example Amphomer.RTM ® (National Starch)
  • An addition of powder raw materials can be generally advantageous. Particularly preferred is the use of talc.
  • the compositions may also contain ethoxylated oils selected from the group consisting of ethoxylated glycerol fatty acid esters, more preferably PEG-10 olive oil glycerides, PEG-1 1 avocado oil glycerides, PEG-1 1 cocoa butter glycerides, PEG-13 sunflower oil glycerides, PEG 15 Glyceryl Isostearate, PEG-9 Coconut Fatty Acid Glycerides, PEG-54 Hydrogenated Castor Oil, PEG-7 Hydrogenated Castor Oil, PEG-60 Hydrogenated Castor Oil, Jojoba Oil Ethoxylate (PEG-26 Jojoba Grease Acids, PEG-26 Jojoba Alcohol), Glycereth-5 Cocoate, PEG -9 Coconut fatty acid glycerides, PEG-7 glyceryl cocoate, PEG-45 palm oil glycerides, PEG-35 castor oil, Olive oil PEG-7 ester, PEG-10 olive oil glycerides, PEG-1 1 avocado oil g
  • Preferred ethoxylated oils are PEG-7 glyceryl cocoate, PEG-9 coconut glycerides, PEG-40 hydrogenated castor oil, PEG-200 hydrogenated glyceryl palmat.
  • Ethoxylated glycerol fatty acid esters are used in aqueous cleaning formulations for various purposes.
  • Low ethoxylated glycerol fatty acid esters (3-12 ethylene oxide units) usually serve as a moisturizer to improve the skin feel after drying, glycerol fatty acid esters with a degree of ethoxylation of about 30-50 serve as solubilizers for non-polar substances such as perfume oils.
  • Highly ethoxylated glycerol fatty acid esters are used as thickeners. All these substances have in common that they produce a special skin sensation on the skin when diluted with water.
  • the invention also relates to the use of the active-molecular-embossed polymers according to the invention or produced according to the inventive process in combination with light stabilizers in dermocosmetic preparations.
  • These cosmetic and / or dermatological sunscreen compositions are used for cosmetic and / or dermatological light protection, furthermore for the treatment and care of the skin and / or the hair and as a make-up product in decorative cosmetics.
  • These include, for example, sunscreens, lotions, milks, oils, baisams, gels, lip care and lipsticks, masking creams and sticks, moisturizers, lotions, emulsions, face, body and hand creams, hair conditioners and rinses.
  • Sun oils are usually mixtures of various oils with one or more sunscreen filters and perfume oils.
  • the oil components are selected according to different cosmetic properties. Oils that give good fat and soft feel, such as mineral oils (eg, paraffin oils) and fatty acid triglycerides (eg, peanut oil, sesame oil, avocado oil, medium chain triglycerides) are mixed with oils that promote dispersibility and retraction improve sun oils into the skin, reduce stickiness and make the oil film permeable to air and water vapor (perspiration). These include branched-chain fatty acid esters (eg isopropyl palmitate) and silicone oils (eg dimethylsilicone). When using oils based on unsaturated fatty acids antioxidants, eg.
  • Sun oils as anhydrous formulations usually contain no preservatives.
  • Sunmilk and creams are made as oil-in-water (O / W) emulsions and as water-in-oil (W / O) emulsions.
  • O / W emulsions are easily distributed on the skin, they are usually absorbed quickly and are almost always readily washable with water.
  • W / O emulsions are more difficult to rub in, they make the skin stronger and thus look a bit stickier, but on the other hand they better protect the skin from drying out.
  • W / O emulsions are mostly waterproof.
  • the emulsion base In the case of O / W emulsions, the emulsion base, the selection of suitable light stabilizers and, if appropriate, the use of auxiliaries (eg polymers) determine the degree of water resistance.
  • auxiliaries eg polymers
  • the basics of liquid and creamy O / W emulsions are similar in theirs Composition of other usual in skin care emulsions.
  • Sunmilk should sufficiently grease the skin dried up by sun, water and wind. They must not be sticky, as this is particularly uncomfortable in the heat and in contact with sand.
  • the light stabilizers are usually based on a carrier which contains at least one oil phase. However, compositions based on water are also possible.
  • oils, oil-in-water and water-in-oil emulsions, creams and pastes, lip balm sticks or fat-free gels are contemplated.
  • Suitable emulsions also include C7W macroemulsions, O / W microemulsions or O / W / O emulsions with surface-coated titanium dioxide particles present in dispersed form, the emulsions being obtainable by phase inversion technology, according to DE-A-197 26 121.
  • Usual cosmetic adjuncts which may be considered as additives are e.g. (Co) emulsifiers, fats and waxes, stabilizers, thickeners, biogenic agents, film formers, perfumes, dyes, pearlescers, preservatives, pigments, electrolytes (e.g., magnesium sulfate) and pH regulators.
  • As stabilizers metal salts of fatty acids, e.g. Magnesium, aluminum and / or zinc stea rat be used.
  • Biogenic active ingredients are, for example, plant extracts, protein hydrolysates and vitamin complexes.
  • Typical film formers are, for example, hydrocolloids such as chitosan, microcrystalline chitosan or quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone / vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives and similar compounds.
  • Suitable light filter active substances are substances which absorb UV rays in the UV-B and / or UV-A range. By this are meant organic substances capable of absorbing ultraviolet rays and absorbing the absorbed energy in the form of longer wavelength radiation, e.g. Heat, give it up again.
  • the organic substances may be oil-soluble or water-soluble.
  • Suitable UV filters are e.g. 2,4,6-triaryl-1, 3,5-triazines, in which the aryl groups can each carry at least one substituent, which is preferably selected from hydroxy, alkoxy, especially methoxy, alkoxycarbonyl, especially methoxycarbonyl and ethoxycarbonyl.
  • p-aminobenzoic acid esters p-aminobenzoic acid esters, cinnamic acid esters, benzophenones, camphor derivatives and UV-radiation-stopping pigments, such as titanium dioxide, talc and zinc oxide. Particular preference is given to pigments based on titanium dioxide.
  • UV-B filters e.g. the following substances are used: 3-benzylidene camphor and its derivatives, e.g. 3- (4-methylbenzylidene) camphor;
  • 4-aminobenzoic acid derivatives preferably 2-ethylhexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and 4- (dimethylamino) benzoic acid ester;
  • Esters of cinnamic acid preferably 2-ethylhexyl 4-methoxycinnamate, 4-propyl methoxy cinnamate, isoamyl 4-methoxycinnamate, 4-isoacetyl methoxycinnamate, 2-cyano-3-phenylcinnamic acid 2-ethylhexyl ester (octocrylene);
  • Esters of salicylic acid preferably 2-ethylhexyl salicylate, 4-isopropylbenzyl salicylate, homomenthyl salicylate;
  • benzophenone preferably 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone;
  • Esters of benzalmalonic acid preferably di-2-ethylhexyl 4-methoxybenzmalonate
  • Triazine derivatives such as 2,4,6-trianilino- (p-carbo-2'-ethyl-r-hexyloxy) -1, 3,5-triazine (octyl tyltriazone) and Dioctyl Butamido Triazone (Uvasorb HEB ®):
  • Propane-1,3-diones e.g. 1- (4-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione.
  • Suitable water-soluble substances are:
  • Sulfonic acid derivatives of benzophenones preferably 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid and its salts;
  • Sulfonic acid derivatives of the 3-benzylidene camphor e.g. 4- (2-Oxo-3-bornylidenemethyl) benzenesulfonic acid and 2-methyl-5- (2-oxo-3-bomylidene) -sulfonic acid and its salts.
  • esters of cinnamic acid preferably 4-methoxycinnamic acid 2-ethylhexyl ester, 4-methoxycinnamic acid isopentyl ester, 2-cyano-3-phenylcinnamic acid 2-ethylhexyl ester (octocrylene).
  • Typical UV-A filters are: Derivatives of benzoylmethane, such as 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione, 4-tert-butyl-4'-methoxydibenzoylmethane or 1-phenyl-3 - (4'-isopropylphenyl) -propane-1,3-dione;
  • Amino-hydroxy-substituted derivatives of benzophenones e.g. N, N-diethylamino-hydroxybenzoyl-n-hexylbenzoate.
  • UV-A and UV-B filters can also be used in mixtures.
  • UV filter substances are mentioned in the following table.
  • secondary light stabilizers of the antioxidant type which interrupt the photochemical reaction chain which is triggered when UV radiation is present penetrates the skin.
  • Typical examples are superoxide dismutase, catalase, tocopherols (vitamin E) and ascorbic acid (vitamin C).
  • anti-irritants which have an anti-inflammatory effect on UV-damaged skin.
  • anti-irritants which have an anti-inflammatory effect on UV-damaged skin.
  • Such substances are, for example, bisabolol, phytol and phytantriol.
  • the use of the active-molecular-embossed polymers according to the invention or produced according to the inventive method in combination with UV-blocking inorganic pigments in dermokosme- tica preparations Preference is given to pigments based on metal oxides and / or other sparingly water-soluble or insoluble metal compounds selected from the group of the oxides of zinc (ZnO), titanium (TiO.sub.2), iron (eg Fe.sub.2O.sub.3), zirconium (ZrO.sub.2), silicon (SiO.sub.2), Manganese (eg MnO), aluminum (Al2O3), Cers (eg Ce2 ⁇ 3), mixed oxides of the corresponding metals and mixtures of such O xiden.
  • ZnO zinc
  • TiO.sub.2 titanium
  • iron eg Fe.sub.2O.sub.3
  • zirconium ZrO.sub.2
  • silicon SiO.sub.2
  • Manganese eg MnO
  • the inorganic pigments may be present in coated form, i. that they are superficially treated.
  • This surface treatment can be, for example, that the pigments are provided in a manner known per se, as described in DE-A-33 14 742, with a thin hydrophobic layer.
  • Suitable repellent agents are compounds capable of preventing or repelling certain animals, particularly insects, from humans. This includes e.g. 2-ethyl-1,3-hexanediol, N, N-diethyl-m-toluamide, etc.
  • Suitable hyperemic substances which stimulate the perfusion of the skin are e.g. essential oils such as mountain pine extract, lavender extract, rosemary extra kt, juniper berry extract, horse chestnut extract, birch leaf extract, hay flower extract, ethyl acetate, camphor, menthol, peppermint oil, rosemary extract, eucalyptus oil, etc.
  • Suitable keratolytic and keratoplastic substances are e.g.
  • Salicylic acid calcium thioglycolate, thioglycolic acid and its salts, sulfur, etc.
  • Suitable anti-dandruff agents are e.g. Sulfur, sulfur polyethylene glycol sorbitan monooleate, sulfur ricinol polyethoxylate, zinc pyrithione, aluminum pyrithione, etc.
  • Suitable antiphlogistic agents which counteract skin irritation are e.g. Allantoin, bisabolol, dragosantol, chamomile extract, panthenol, etc.
  • Suitable polymers are, for example, cationic polymers with the designation polyquaternium according to INCI, for example copolymers of vinylpyrrolidone / N-vinylimidazolium salts (Luvit). quat FC, Luviquat HM, Luviquat MS, Luviquat & commat, Care), copolymers of N-vinylpyrrolidone / dimethylaminoethyl methacrylate, quaternized with diethyl sulfate (Luviquat PQ 11), copolymers of N-vinylcaprolactam / N-vinylpyrrolidone / N-vinylimidazolium salts (Luviquat E Hold ), cationic cellulose derivatives (Polyquaternium-4 and -10), acrylamidocopolymers (Polyquaternium-7) and chitosan.
  • polyquaternium with the designation polyquaternium according to INCI, for example cop
  • Suitable cationic (quaternized) polymers are also Merquat (polymer based on dimethyldiallylammonium chloride), gafquat (quaternary polymers which are formed by reaction of polyvinylpyrrolidone with quaternary ammonium compounds), polymer JR (hydroxyethylcellulose with cationic groups) and plant-based cationic polymers, eg Guarpolymers, such as the Jaguar brands of Rhodia.
  • polystyrene resins are also neutral polymers, such as polyvinylpyrrolidones, copolymers of N-vinylpyrrolidone and vinyl acetate and / or vinyl propionate, polysiloxanes, polyvinylcaprolactam and other copolymers with N-vinylpyrrolidone, polyethylenimines and their salts, polyvinylamines and their salts, cellulose derivatives, Polyasparaginic acid salts and derivatives.
  • neutral polymers such as polyvinylpyrrolidones, copolymers of N-vinylpyrrolidone and vinyl acetate and / or vinyl propionate, polysiloxanes, polyvinylcaprolactam and other copolymers with N-vinylpyrrolidone, polyethylenimines and their salts, polyvinylamines and their salts, cellulose derivatives, Polyasparaginic acid salts and derivatives.
  • Suitable polymers are also nonionic, water-soluble or water-dispersible polymers or oligomers, such as polyvinylcaprolactam, e.g. Luviskol 0 Plus (BASF), or polyvinylpyrrolidone and their copolymers, in particular with vinyl esters, such as vinyl acetate, e.g. Luviskol 0 VA 37 (BASF), polyamides, e.g. based on itaconic acid and aliphatic diamines, e.g. in DE-A-43 33 238 are described.
  • polyvinylcaprolactam e.g. Luviskol 0 Plus (BASF)
  • BASF Luviskol 0 VA 37
  • polyamides e.g. based on itaconic acid and aliphatic diamines, e.g. in DE-A-43 33 238 are described.
  • Suitable polymers are also amphoteric or zwitterionic polymers, such as those available under the names Amphomer (National Starch) octylacrylamide / methyl methacrylate / tert-butylaminoethyl methacrylate hydroxypropyl methacrylate copolymers and zwitterionic polymers, as described for example in German patent applications DE39 29 973, DE 21 50 557, DE 28 17 369 and DE 3708 451 are disclosed. Acrylamidopropyl trimethylammonium chloride / acrylic acid or. Methacrylic acid copolymers and their alkali metal and ammonium salts are preferred zwitterionic polymers.
  • zwitterionic polymers are methacroylethylbetaine / methacrylate copolymers, which are commercially available under the name Amersette (AMERCHOL), and copolymers of hydroxyethyl methacrylate, methyl methacrylate, N, N-dimethylaminoethyl methacrylate and acrylic acid (Jordapon (D)).
  • Suitable polymers are also nonionic, siloxane-containing, water-soluble or -dispersible polymers, for example polyether siloxanes, such as Tegopren 0 (Goldschmidt) or Besi & commat (Wacker).
  • polyether siloxanes such as Tegopren 0 (Goldschmidt) or Besi & commat (Wacker).
  • the use of the molecularly imprinted polymers in combination with the dermocosmetic active substances is also advantageously selected from the group consisting of acetylsalicylic acid, atropine, azulen len, hydrocortisone and its derivatives, for.
  • vitamins of the B and D series especially vitamin Bi, vitamin B12, vitamin D, vitamin A or its derivatives such as retinyl palmitate, vitamin E or its derivatives such as tocopheryl acetate, vitamin C and its Derivatives such as ascorbyl glucoside but also niacinamide, panthenol, bisabolol, polydocanol, unsaturated fatty acids, such as the essential fatty acids (commonly referred to as vitamin F), in particular the ⁇ -linolenic acid, oleic acid, eicosapentaenoic acid, docosahexaenoic acid and derivatives thereof, ChIo - ramphenicol, caffeine, prostaglandins, thymol, camphor, squalene, extracts or other products of plant and animal origin, e.g.
  • the active compound or agents are furthermore advantageously selected from the group of NO synthase inhibitors, in particular when the preparations according to the invention are used for the treatment and prophylaxis of the symptoms of intrinsic and / or extrinsic skin aging and for the treatment and prophylaxis of the harmful effects of ultraviolet radiation on the skin and the Hair should serve.
  • Preferred NO synthase inhibitor is nitroarginine.
  • the active ingredient (s) are selected from the group comprising catechins and bile acid esters of catechins and aqueous or organic extracts from plants or plant parts which have a content of catechins or bile acid esters of catechins, such as the leaves of the plant family Theaceae, in particular of the species Camellia sinsis (green tea).
  • catechins and bile acid esters of catechins are selected from the group comprising catechins and bile acid esters of catechins and aqueous or organic extracts from plants or plant parts which have a content of catechins or bile acid esters of catechins, such as the leaves of the plant family Theaceae, in particular of the species Camellia sinsis (green tea).
  • Particularly advantageous are their typical ingredients (eg polyphenols or catechins, caffeine, vitamins, sugars, minerals, amino acids, lipids).
  • Catechins represent a group of compounds which are to be regarded as hydrogenated flavones or anthocyanidins and derivatives of "catechin” (catechol, 3, 3 ', 4', 5,7-flavanpentaol, 2- (3,4-dihydroxyphenyl) -chroman
  • epicate-chin ((2R, 3R) -3,3 ', 4', 5,7-flavanpentaol) is an advantageous active ingredient in the context of the present invention
  • Extracts containing catechins in particular extracts of green tea, such as extracts from leaves of the plants of the species Camellia spec., In particular the teas Camellia sinensis, C. assamica, C. taliensis and C.
  • active substances are furthermore polyphenols or catechins from the group (-) - catechin, (+) - catechin, (-) - catechin gallate, (-) - Gallocatechin gallate, (+) - epicatechin, (-) - epicatechin, (-) - epicatechin gallate, (-) - epigallocatechin, (-) - epigallocatechin gallate.
  • flavone and its derivatives are advantageous active ingredients in the sense of the present invention and are characterized by the following basic structure (substitution positions indicated):
  • flavones usually occur in glycosidated form.
  • the flavonoids are preferably selected from the group of substances of the general formula
  • Zi to Z 7 independently of one another, are selected from the group consisting of H, OH, alkoxy and hydroxyalkoxy, where the alkoxy or hydroxyalkoxy groups can be branched and unbranched and can have 1 to 18 C atoms, and where GIy is selected is selected from the group of mono- and oligoglycoside radicals.
  • the active ingredients can also be chosen very advantageously from the group of hydrophilic active ingredients, in particular from the following group: ⁇ -hydroxy acids such as lactic acid or salicylic acid or salts thereof, such as. Na lactate, Ca lactate, TEA lactate, urea, allantoin, serine, sorbitol, glycerin, milk proteins, panthenol, chitosan.
  • ⁇ -hydroxy acids such as lactic acid or salicylic acid or salts thereof, such as. Na lactate, Ca lactate, TEA lactate, urea, allantoin, serine, sorbitol, glycerin, milk proteins, panthenol, chitosan.
  • the amount of such active ingredients (one or more compounds) in the preparations according to the invention is preferably 0.001 to 30 wt .-%, particularly preferably 0.05 to 20 wt .-%, in particular 1 to 10 wt .-%, based on the Total weight of the preparation.
  • the above-mentioned and other active substances which can be used in the preparations according to the invention are specified in DE 103 18 526 A1 on pages 12 to 17, to which reference is made at this point in its entirety.
  • the present invention relates to the use of the o.g. Preparations for the prevention of unwanted changes in the appearance of the skin, e.g. Acne or oily skin, keratoses, rosaceae, photosensitive, inflammatory, erythematous, allergic or autoimmune reactive reactions.
  • compositions according to the invention are preferably skin protection agents, skin care agents, skin cleansing agents, hair protection agents, hair care preparations, hair cleaners, hair dyes, mouthwashes and mouthwashes, or preparations for decorative cosmetics, preferably in the form of ointments, creams, emulsions, suspensions, depending on the field of application. Lotions, as milk, pastes, gels, foams or sprays are applied.
  • the dermocosmetics according to the invention may contain, in addition to the active-molecular-imprinted polymers according to the invention or prepared by the inventive process, all the polymers already mentioned above, pigments, humectants, oils, waxes, enzymes, minerals, vitamins, sunscreens, dyes, fragrances, Antioxidants, preservatives and / or pharmaceutical agents.
  • the formulation base of agents according to the invention preferably contains cosmetically or dermocosmetically / pharmaceutically acceptable excipients.
  • Pharmaceutically acceptable excipients which are known to be useful in the pharmaceutical, food technology and related fields, in particular those listed in relevant pharmacopoeias (eg DAB Ph. Eur. BP NF) and other excipients whose properties do not preclude physiological application.
  • Suitable auxiliaries may be: lubricants, wetting agents, emulsifying and suspending agents, preserving agents, antioxidants, anti-irritants, chelating agents, emulsion stabilizers, film formers, gelling agents, odor masking agents, resins, hydrocolloids, solvents, solubilizers, neutralizing agents, permeation accelerators, pigments, quaternary ammonium compounds, Refatting and overfatting agents, ointment, cream or oil bases, silicone derivatives, stabilizers, sterilants, blowing agents, drying agents, opacifiers, thickeners, waxes, softeners, white oil.
  • a related embodiment is based on expert knowledge, as shown for example in Fiedler, H. P. Lexicon of excipients for pharmacy, cosmetics and related fields, 4th ed., Aulendorf: ECV Editio-Kantor-Verlag, 1996.
  • the active substances can be mixed or diluted with a suitable excipient (excipient).
  • excipients may be solid, semi-solid or liquid materials which may serve as a vehicle, carrier or medium for the active ingredient.
  • the admixing of further auxiliaries takes place in the manner known to the person skilled in the art.
  • the polymers and dispersions are suitable as auxiliaries in pharmacy, preferably as or in coating agent (s) or binder (s) for solid dosage forms. They can also be used in creams and as tablet coatings and tablet binders.
  • the agents according to the invention are cosmetic agents for the care and protection of the skin and hair, nail care preparations or preparations for decorative cosmetics.
  • Suitable skin-cosmetic agents are, for example, face lotions, face masks, deodorizers and other cosmetic lotions.
  • Means for use in decorative cosmetics include, for example, masking pens, theatrical paints, mascara and eye shadows, lipsticks, kohl pencils, eyeliners, rouges, powders, and eyebrow pencils.
  • the molecularly imprinted polymers can be used in nasal strips for pore cleansing, anti-acne agents, repellents, shaving agents, after- and pre-shave care products, after-sun care products, hair-removing agents, hair dyes, personal hygiene products, foot care products and baby care.
  • the skin care agents according to the invention are in particular VWO or O / W skin creams, day and night creams, eye creams, face creams, anti-wrinkle creams, sunscreen creams, moisturizing creams, bleaching creams, self-tanning creams, vitamin creams, skin lotions, skin lotions and moisturizing lotions.
  • Skin-cosmetic and dermatological compositions according to the invention may further contain, as protection against oxidative processes and the associated aging processes or damage to the skin and / or hair, in addition to the active ingredient-molecular-imprinted polymers prepared according to the invention or according to the inventive process, a radical-decomposing active ingredient.
  • active substances are preferably the substances described in the patent applications WO / 0207698 and WO / 03059312, the contents of which are hereby incorporated by reference, preferably the boron-containing compounds described there, the peroxides or hydroperoxides to give the corresponding alcohols without formation reduce radical development.
  • sterically hindered amines according to the general formula can be used for this purpose,
  • radical Z has the following meaning: H, C1-C22 alkyl group, preferably C1-C12 alkyl group such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec. butyl, tert. Butyl, pentyl, isopentyl, neopentyl, tert.
  • alkoxy-pentyl alkoxy-isopentyl, alkoxy-neopentyl, alkoxy-tert.
  • Pentyl alkoxy-hexyl, alkoxy-heptyl, alkoxy-octyl, alkoxy-nonyl, alkoxy-decyl, alkoxy-undecyl, Al koxy-dodecyl, C6 to C10-aryl group such as phenyl and naphthyl, where the phenyl radical having C1 to C4 alkyl C6 to C10-O-aryl group which may be substituted by a C1-C22 alkyl or C1-C22 alkoxyl group, preferably with a C1-C12 alkyl or C1-C12 alkoxyl group as described above ,
  • sterically hindered amines 3-dodecyl-N- (2,2,6,6-tetramethyl-4-piperidinyl) succinimide, 3-dodecyl-N- (1, 2,2,6, 6-penta -methyl-4-piperidinyl) succinimide, 3-octyl-N- (2,2,6,6-tetramethyl-4-piperidinyl) succinimide, 3-octyl-N- (1, 2,2,6,6-pentamethyl 4-piperidinyl) succinimide, 3-octenyl-N- (2,2,6,6-tetramethyl-4-piperidinyl) succinimide, 3-octenyl-N- (1, 2,2,6,6-pentamethyl-4 -piperidinyl) succinimide and / or Uvinul®5050H, in a proportion of 0.001 to 1 weight percent (wt .-%), preferably 0.01 to 0.1 w
  • the skin cosmetic preparations may contain, in addition to the abovementioned compounds of the invention and suitable carriers, other active ingredients and adjuvants customary in skin cosmetics, as described above. These preferably include emulsifiers, preservatives, perfume oils, cosmetic active ingredients such as phytantriol, vitamins A, E and C, retinol, bisabolol, panthenol, light stabilizers, bleaching agents, colorants, tinting agents, tanning agents, collagen, protein hydrolysates, stabilizers, pH regulators , Dyes, salts, thickeners, gelling agents, bodying agents, silicones, humectants, moisturizers and / or other customary additives.
  • emulsifiers emulsifiers, preservatives, perfume oils, cosmetic active ingredients such as phytantriol, vitamins A, E and C, retinol, bisabolol, panthenol, light stabilizers, bleaching agents, colorants, tinting agents, tanning agents,
  • Preferred oil and fat components of the dermocosmetic and dermocosmetic agents are the aforementioned mineral and synthetic oils, such as paraffins, silicone oils and aliphatic hydrocarbons having more than 8 carbon atoms, animal and vegetable oils, such as sunflower oil, coconut oil, avocado oil, olive oil, lanolin, or waxes, fatty acids, fatty acid esters such as triglycerides of C6-C30 fatty acids, wax esters such as jojoba oil, fatty alcohols, petrolatum, hydrogenated lanolin and acetylated lanolin, and mixtures thereof.
  • mineral and synthetic oils such as paraffins, silicone oils and aliphatic hydrocarbons having more than 8 carbon atoms
  • animal and vegetable oils such as sunflower oil, coconut oil, avocado oil, olive oil, lanolin, or waxes
  • fatty acids such as triglycerides of C6-C30 fatty acids
  • wax esters such as jojoba oil
  • fatty alcohols such as petrolatum
  • the skin-cosmetic and dermocosmetic preparations may additionally also contain conditioning substances based on silicone compounds.
  • Suitable silicone compounds are, for example, polyalkylsiloxanes, polyarylsiloxanes, polyarylalkylsiloxanes, polyethersiloxanes or silicone resins.
  • the preparation of the cosmetic or dermocosmetic preparations is carried out by customary methods known to the person skilled in the art.
  • the cosmetic and dermocosmetic agents are preferably in the form of emulsions, in particular as water-in-oil (W / O) or oil-in-water (O / W) emulsions.
  • formulations for example, gels, oils, oleogels, multiple emulsions, for example in the form of W / O / W or O7W / O emulsions, anhydrous ointments or ointment bases, etc.
  • emulsifier-free formulations such as hydrodispersions, hydrogels or a Pickering emulsion are advantageous embodiments.
  • Emulsions are prepared by known methods.
  • the emulsions generally contain conventional constituents, such as fatty alcohols, fatty acid esters and especially fatty acid triglycerides, fatty acids, lanolin and derivatives thereof, natural or synthetic oils or waxes and emulsifiers in the presence of water.
  • a suitable emulsion as W / O emulsion e.g. for a skin cream, etc., generally contains an aqueous phase which is emulsified by means of a suitable emulsifier system in an oil or fat phase.
  • a polyelectrolyte complex can be used.
  • Preferred fat components which may be included in the fat phase of the emulsions are: hydrocarbon oils such as paraffin oil, purcellin oil, perhydrosqualene and solutions of microcrystalline waxes in these oils; animal or vegetable oils, such as sweet almond oil, avocado oil, calophilum oil, lanolin and derivatives thereof, castor oil, seed oil, olive oil, jojoba oil, karite oil, hoplostethus oil, mineral oils whose distillates Beginning under atmospheric pressure at about 250 0 C and its distillation end point at 410 0 C, such as Vaselineöl, esters of saturated or unsaturated fatty acids, such as alkyl myristates, for example i-propyl, butyl or Cetylmyristat, hexadecyl, ethyl or i-Propylpalmitat , Octanoic or Decankladriglyceride and Cetylricinoleat.
  • hydrocarbon oils such as paraffin oil, purcellin oil
  • the fat phase may also contain other oil-soluble silicone oils such as dimethylpolysiloxane, methylphenylpolysiloxane and the silicone glycol copolymer, fatty acids and fatty alcohols.
  • oil-soluble silicone oils such as dimethylpolysiloxane, methylphenylpolysiloxane and the silicone glycol copolymer, fatty acids and fatty alcohols.
  • the skin care agents may also contain waxes, e.g. Carnauba wax, candililla wax, beeswax, microcrystalline wax, ozokerite wax and Ca, Mg and Al oleates, myristates, linoleates and stearates.
  • waxes e.g. Carnauba wax, candililla wax, beeswax, microcrystalline wax, ozokerite wax and Ca, Mg and Al oleates, myristates, linoleates and stearates.
  • an emulsion of the invention may be present as O / W emulsion.
  • Such an emulsion usually contains an oil phase, emulsifiers that stabilize the oil phase in the water phase, and an aqueous phase that is usually thickened.
  • Suitable emulsifiers are preferably O / W emulsifiers, such as polyglycerol esters, sorbitan esters or partially esterified glycerides into consideration.
  • the agents according to the invention are a light stabilizer, a shower gel, a shampoo formulation or a bath preparation, sunscreen preparations being particularly preferred.
  • Such formulations comprise at least one of the present invention or produced according to the inventive process drug-molecularly imprinted polymers and usually anionic surfactants as base surfactants and amphoteric and / or nonionic surfactants as cosurfactants.
  • suitable active ingredients and / or adjuvants are generally selected from lipids, perfume oils, dyes, organic acids, preservatives and antioxidants and thickeners / gelling agents, skin conditioners and moisturizers.
  • formulations preferably contain from 2 to 50% by weight, preferably from 5 to 40% by weight, particularly preferably from 8 to 30% by weight, of surfactants, based on the total weight of the formulation.
  • Suitable anionic surfactants are, for example, alkyl sulfates, alkyl ether sulfates, alkyl sulfonates, alkylaryl sulfonates, alkyl succinates, alkyl sulfosuccinates, N-alkoyl sarcosyls. nate, acyl taurates, acyl isothionates, alkyl phosphates, alkyl ether phosphates, alkyl ether carboxylates, alpha olefin sulfonates, especially the alkali and alkaline earth metal salts, for example sodium, potassium, magnesium, calcium, and ammonium and triethanolamine salts.
  • the alkyl ether sulfates, alkyl ether phosphates and alkyl ether carboxylates can have between 1 to 10 ethylene oxide or propylene oxide units, preferably 1 to 3 ethylene oxide units in the molecule.
  • Suitable amphoteric surfactants are e.g. Alkylbetaines, alkylamidopropylbetaines, alkylsulfobetaines, alkylglycinates, alkylcarboxyglycinates, alkylamphoacetates or -propionates, alkylamphodiacetates or -dipropionates.
  • cocodimethylsulfopropyl betaine cocodimethylsulfopropyl betaine, lauryl betaine, cocamidopropyl betaine or sodium cocamphopropionate can be used.
  • Suitable nonionic surfactants are, for example, the reaction products of aliphatic alcohols or alkylphenols having 6 to 20 C atoms in the alkyl chain, which may be linear or branched, with ethylene oxide and / or propylene oxide.
  • the amount of alkylene oxide is about 6 to 60 moles per mole of alcohol.
  • alkylamine oxides, mono- or dialkylalkanolamides, fatty acid esters of polyethylene glycols, ethoxylated fatty acid amides, alkylpolyglycosides or sorbitan ether esters are also suitable.
  • washing, showering and bathing preparations may contain conventional cationic surfactants, e.g. quaternary ammonium compounds, for example cetyltrimethylammonium chloride.
  • conventional cationic surfactants e.g. quaternary ammonium compounds, for example cetyltrimethylammonium chloride.
  • shower gel / shampoo formulations may contain thickeners, e.g. Common salt, PEG-55, propylene glycol oleate, PEG-120 methyl glucose dioleate and others, as well as preservatives, other active ingredients and auxiliaries and water.
  • thickeners e.g. Common salt, PEG-55, propylene glycol oleate, PEG-120 methyl glucose dioleate and others, as well as preservatives, other active ingredients and auxiliaries and water.
  • the dermocosmetics according to the invention are hair treatment agents.
  • the hair treatment compositions according to the invention are in the form of a mousse, hair mousse, hair gel, shampoos, hair sprays, hair mousse, top fluids, leveling agents, hair dyeing and bleaching or "Hot oil treatments" before.
  • the hair cosmetic preparations can be applied as (aerosol) spray, (aerosol) foam, gel, gel spray, cream, lotion or wax.
  • Hairsprays include both aerosol sprays and pump sprays without propellant gas.
  • Hair foams include both aerosol foams and pump foams without propellant gas.
  • Hair sprays and hair foams preferably comprise predominantly or exclusively water-soluble or water-dispersible components.
  • the compounds used in the hair sprays and hair foams according to the invention are water-dispersible, they can be used in the form of aqueous microdispersions with particle diameters of usually from 1 to 350 nm, preferably from 1 to 250 nm.
  • the solids contents of these preparations are usually in a range of about 0.5 to 20 wt .-%.
  • these microdispersions do not require emulsifiers or surfactants for their stabilization.
  • ingredients are understood to include the additives customary in cosmetics, for example propellants, defoamers, surface-active compounds, i. Surfactants, emulsifiers, foaming agents and solubilizers.
  • the surface-active compounds used can be anionic, cationic, amphoteric or neutral.
  • Other common ingredients may also be e.g. Preservatives, perfume oils, opacifiers, active ingredients, UV filters, care ingredients such as panthenol, collagen, vitamins, protein hydrolysates, alpha and beta hydroxycarboxylic acids, stabilizers, pH regulators, dyes, viscosity regulators, gel formers, salts, humectants, moisturizers, complexing agents and other common additives.
  • this includes all known in cosmetics styling and conditioner polymers that can be used in combination with the molecularly imprinted polymers, if very special properties are to be set.
  • Suitable conventional hair cosmetic polymers are the abovementioned cationic, anionic, neutral, nonionic and amphoteric polymers, to which reference is hereby made.
  • the preparations may additionally contain conditioning substances based on silicone compounds.
  • Suitable silicone compounds are, for example, polyalkylsiloxanes, polyarylsiloxanes, polyarylalkylsiloxanes, polyethersiloxanes, silicone resins or dimethicone copolyols (CTFA) and amino-functional silicone compounds such as amodimethicones (CTFA).
  • Blowing agents are the blowing agents commonly used for hairsprays or aerosol foams. Preference is given to mixtures of propane / butane, pentane, dimethyl ether, 1,1-difluoroethane (HFC-152a), carbon dioxide, nitrogen or compressed air.
  • emulsifiers all emulsifiers commonly used in hair foams can be used. Suitable emulsifiers may be nonionic, cationic or anionic or amphoteric.
  • nonionic emulsifiers are Laurethe, for example Laureth-4; Cetethees, for example cetheth-1, polyethylene glycol cetyl ethers, cetearethes, for example cetheareth-25, polyglycol fatty acid glycerides, hydroxylated lecithin, lactyl esters of fatty acids, alkylpolyglycosides.
  • cationic emulsifiers are cetyldimethyl-2-hydroxyethylammonium dihydrogenphosphate, cetyltrimonium chloride, cetyltrimmonium bromide, cocotrimonium methylsulfate, quaternium-1 to x (INCI).
  • Anionic emulsifiers may, for example, be selected from the group of alkyl sulfates, alkyl ether sulfates, alkyl sulfonates, alkylaryl sulfonates, alkyl succinates, alkyl sulfosuccinates, N-alkoyl sarcosinates, acyl taurates, acyl isethionates, alkyl phosphates, alkyl ether phosphates, alkyl ether carboxylates, alpha olefin sulfonates, especially the alkali and alkaline earth metal salts, e.g.
  • alkyl ether sulfates, alkyl ether phosphates and alkyl ether carboxylates can have between 1 to 10 ethylene oxide or propylene oxide units, preferably 1 to 3 ethylene oxide units in the molecule.
  • gel formers all gel formers customary in cosmetics can be used. These include lightly crosslinked polyacrylic acid, for example carbomer (INCI), celulose derivatives, e.g. Hydroxypropyl cellulose, hydroxyethyl cellulose, cationic modified celluloses, polysaccharides, e.g.
  • Xanthan gum caprylic / capric triglyceride, sodium acrylate copolymers
  • Suitable anionic surfactants are, for example, alkyl sulfates, alkyl ether sulfates, alkyl sulfonates, alkylaryl sulfonates, alkyl succinates, alkyl sulfosuccinates, N-alkoxy sarcosinates, acyl taurates, acyl isothionates, alkyl phosphates, alkyl ether phosphates, alkyl ether carboxylates, alpha-olefin sulfonates, in particular the alkali and alkaline earth metal salts, for example sodium, potassium, magnesium, calcium , as well as ammonium and triethanolamine salts.
  • alkali and alkaline earth metal salts for example sodium, potassium, magnesium, calcium , as well as ammonium and triethanolamine salts.
  • the alkyl ether sulfates, alkyl ether phosphates and alkyl ether carboxylates can have between 1 to 10 ethylene oxide or propylene oxide units, preferably 1 to 3 ethylene oxide units in the molecule.
  • Suitable examples are sodium lauryl sulfate, ammonium lauryl sulfate, sodium lauryl sulfate, ammonium lauryl ether sulfate, sodium lauroyl sarcosinate, sodium oleyl succinate, ammonium lauryl sulfosuccinate, sodium dodecylbenzenesulfonate, triethanolamine dodecylbenzenesulfonate.
  • Suitable amphoteric surfactants are, for example, alkylbetaines, alkylamidopropylbetaines, alkylsulfobetaines, alkylglycinates, alkylcarboxyglycinates, alkylamphoacetates or -propionates, alkylamphodiacetates or -dipropionates.
  • cocodimethylsulfopropyl betaine cocodimethylsulfopropyl betaine, lauryl betaine, cocamidopropyl betaine or sodium cocamphopropionate can be used.
  • Suitable nonionic surfactants are, for example, the reaction products of aliphatic alcohols or alkylphenols having 6 to 20 C atoms in the alkyl chain, which may be linear or branched, with ethylene oxide and / or propylene oxide.
  • the amount of alkylene oxide is about 6 to 60 moles per mole of alcohol.
  • alkylamine oxides, mono- or dialkylalkanolamides, fatty acid esters of polyethylene glycols, alkylpolyglycosides or sorbitan ether esters are also suitable.
  • the shampoo formulations may contain conventional cationic surfactants, e.g. quaternary ammonium compounds, for example cetyltrimethylammonium chloride.
  • conventional cationic surfactants e.g. quaternary ammonium compounds, for example cetyltrimethylammonium chloride.
  • Conventional conditioning agents in combination with the molecularly imprinted polymer can be used in the shampoo formulations to achieve specific effects.
  • cationic polymers with the name Polyquaternium according to INCI, in particular copolymers of vinylpyrrolidone / N-vinylimidazolium salts (Luviquat FC, Luviquat & commat, HM, Luviquat MS, Luviquat Care), copolymers of N-vinylpyrrolidone / dimethylaminoethyl methacrylate, quaternized with diethyl sulfate ( Luviquat D PQ 1 1), copolymers of N-vinylcaprolactam / N-vinylpyrrolidone / N-vinylimidazolium salts (Luviquat D Hold), cationic cellulose derivatives (Polyquaternium-4 and -10), acrylamide copolymers (Polyquaternium-7).
  • protein hydrolysates can be used, as well as conditioning substances based on silicone compounds, for example polyalkylsiloxanes, polyarylsiloxanes, polyarylalkylsiloxanes, polyethersiloxanes or silicone resins.
  • silicone compounds for example polyalkylsiloxanes, polyarylsiloxanes, polyarylalkylsiloxanes, polyethersiloxanes or silicone resins.
  • suitable silicone compounds are dimethicone copolyols (CTFA) and amino-functional silicone compounds such as amodimethicones (CTFA).
  • CTFA dimethicone copolyols
  • amino-functional silicone compounds such as amodimethicones
  • cationic guar derivatives such as guar hydroxypropyltrimonium chloride (INCI) can be used.
  • this hair cosmetic or skin cosmetic preparation is for the care or protection of the skin or hair and is in the form of an emulsion, a dispersion, a suspension, an aqueous surfactant preparation, a milk, a lotion, a cream, a balm, an ointment, gel, granule, powder, stick preparation, such as a lipstick, foam, aerosol or spray.
  • emulsions are oil-in-water emulsions and water-in-oil emulsions or microemulsions.
  • the hair cosmetic or skin cosmetic preparation is used for application on the skin (topically) or hair.
  • Topical preparations are to be understood as meaning those preparations which are suitable for applying the active ingredients to the skin in fine distribution and preferably in a form absorbable by the skin.
  • aqueous and aqueous-alcoholic solutions sprays, foams, foam aerosols, ointments, aqueous gels, emulsions of the O7W or W / O type, microemulsions or cosmetic stick preparations.
  • the agent contains a carrier.
  • a carrier is water, a gas, a water-based liquid, an oil, a gel, an emulsion or microemulsion, a dispersion or a mixture thereof.
  • the mentioned carriers show good skin tolerance.
  • Particularly advantageous for topical preparations are aqueous gels, emulsions or microemulsions.
  • Nonionic surfactants, zwitterionic surfactants, ampholytic surfactants or anionic emulsifiers can be used as emulsifiers.
  • the emulsifiers may be present in the composition according to the invention in amounts of 0.1 to 10, preferably 1 to 5 wt .-%, based on the composition.
  • a surfactant of at least one of the following groups may be used:
  • Partial esters based on linear, branched, unsaturated or saturated C6 / 22 fatty acids, ricinoleic acid and 12-hydroxystearic acid and glycerol, polyglycerol, pentaerythritol, dipentaerythritol, sugar alcohols (eg sorbitol), alkyl glucosides (eg methyl glucoside, butyl glucoside , Lauryl glucoside) as well as polyglucosides (eg cellulose); Mono-, di- and trialkyl phosphates and mono-, di- and / or tri-PEG-alkyl phosphates and their salts;
  • Polysiloxane-polyalkyl-polyether copolymers or corresponding derivatives Polysiloxane-polyalkyl-polyether copolymers or corresponding derivatives; Mixed esters of pentaerythritol, fatty acids, citric acid and fatty alcohol according to DE PS 1165574 and / or mixed esters of fatty acids having 6 to 22 carbon atoms, methyl glucose and polyols, preferably glycerol or polyglycerol and polyalkylene glycols.
  • zwitterionic surfactants can be used as emulsifiers.
  • Zwitterionic surfactants are those surface-active compounds which carry at least one quaternary ammonium group and at least one carboxy or sulfonate group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines, such as N-alkyl-N, N-dimethylammonium glycinates, for example cocoalkyldimethylammonium glycinate, N-acylamino-propyl-N, N-dimethylammonium glycinates, for example cocoacylaminopropyldimethylammonium glycinate, and 2-alkylbenzenesulfonate.
  • 3-carboxymethyl-3-hydroxy-ethylimidazolines having in each case 8 to 18 C atoms in the alkyl or acyl group and the cocoacylaminoethylhydroxyethyl carboxymethylglycinate.
  • Particularly preferred is the fatty acid amide derivative known under the CTFA name Cocamidopropyl Betaine.
  • ampholytic surfactants are to be understood as meaning those surface-active compounds which, apart from a C 8, 18 alkyl or acyl group in the molecule, contain at least one free amino group and at least one -COOH or -SO 2 H group and are capable of forming internal salts.
  • ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylamino-butanoic acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamido-propylglycines, N-alkyltaurines, N alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids each having about 8 to 18 C atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are N-cocoalkylaminopropionate, cocoacylaminoethylaminopropionate and C 12/18 acylsarcosine.
  • Quaternary emulsifiers are also suitable in addition to the ampholytic ones, those of the esterquat type, preferably methyl-quaternized difatty acid triethanolamine ester salts, being particularly preferred. It is also possible to use, as anionic emulsifiers, alkyl ether sulfates, monoglyceride sulfates, fatty acid sulfates, sulfosuccinates and / or ether carboxylic acids.
  • Guerbet alcohols based on fatty alcohols having 6 to 18, preferably 8 to 10, carbon atoms, esters of linear C6-C22 fatty acids with linear C6-C22 fatty alcohols, esters of branched C6-C13 carboxylic acids with linear Ce- C22 Fatty alcohols, esters of C6-C22 linear fatty acids with branched alcohols, in particular 2-ethylhexanol, esters of linear and / or branched fatty acids with polyhydric alcohols (such as propylene glycol, dimerdiol or trimer triol) and / or Guerbet alcohols, triglycerides based on C6- Cio-fatty acids, liquid mono- / di-, Trigly- ceridmischept based on C ⁇ -Ci ⁇ -fatty acids, esters of C6-C22 fatty alcohols and / or Guerbet alcohols with aromatic carboxylic acids, in particular benzoic acid, esters of C2-Ci2-dica
  • oils bodies are silicone compounds, for example dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and also amino, fatty acid, alcohol, polyether, epoxy, fluorine, alkyl and / or glycoside-modified silicone compounds which may be both liquid and resinous at room temperature.
  • the oil bodies may be present in the compositions according to the invention in amounts of from 1 to 90, preferably from 5 to 80, and in particular from 10 to 50,% by weight, based on the composition.
  • a 2-liter HWS reactor was equipped with a condenser, a stirrer motor, an anchor stirrer, a glass fritted nitrogen inlet tube, a Julabo LC 3 laboratory controller with 2 PT-100 thermosensors, an oil bath with immersion heater and magnetic stirrer, and 2 HPLC Pumps (Bischoff) each equipped with a pump head (0-1 mL / min) for dosing initiator and monomers.
  • the apparatus was purged with nitrogen before the start of the experiment. During the entire experiment, nitrogen was passed through the solution at a flow rate of about 10 L / h.
  • the template in the reactor was heated with stirring to 75 0 C and again taken a sample 1 mL.
  • solution 2 Another solution (solution 2) was prepared by dissolving the remaining 3/4 of the initiator, corresponding to 1.594 g, in 250 ml of acetonitrile. The second half of solution 1 and solution 2 were added by means of the two HPLC pumps in the reactor over a period of 18 h. The metering rates for solution 1 were 0.153 ml / min, and for solution 2: 0.232 ml / min.
  • the subsequent post-reaction time was 6 hours, so the total reaction time thus 24 h.
  • a 1 mL sample was taken from the reaction mixture and, after filtration, subjected to HPLC analysis.
  • the polymer suspension was taken out of the reactor and filtered using a suction filter. The filter cake was washed three times with 100 ml of acetonitrile and dried at 50 0 C in a vacuum.
  • Example b A 2-liter HWS reactor was equipped with a condenser, a stirrer motor, an anchor stirrer, a glass fritted nitrogen inlet tube, a Julabo LC 3 laboratory controller with 2 PT-100 thermosensors, an oil bath with immersion heater and magnetic stirrer. The apparatus was purged with nitrogen before the start of the experiment. Nitrogen was used throughout the experiment with a volume flow of about 10 L / h passed through the solution. 1000 ml of solvent acetonitrile (AcN) were introduced into the reaction vessel and dissolved in this 17.25 g of ⁇ -tocopherol (template), 6.12 g of methacrylic acid and 76.32 g of trimethylolpropane trimethacrylate.
  • AcN solvent acetonitrile
  • a 500 mL round bottom flask was equipped with a Soxhlet apparatus, a condenser, a magnetic stirrer and a laboratory controller (Julabo LC 3 with 2 PT 100) and immersed in an oil bath.
  • 8 g of polymer were extracted with 400 ml of methanol / glacial acetic acid (7: 1, v / v) (EXTRACT 1) for 6-8 hours and then 6 hours with 400 ml of methanol (EXTRACT 2) in the Soxhlet apparatus.
  • the extracts were collected, their volume determined and each stored a 2 ml sample for ⁇ -tocopherol concentration determination by HPLC in the refrigerator at 4 0 C.
  • Example 3 Loading the polymer with a cosmetic active ingredient
  • a Millipore ultrafiltration cell (model 8400) was connected to a 5 liter plastic canister as a storage vessel (contents: water).
  • the cell was filled with a dispersion of 100 mg of polymer in 100 ml of water and stirred for 15 minutes until homogenization with the magnetic stirrer installed in the ultrafiltration cell.
  • the extractant (water) was passed via the inlet without overpressure from the storage vessel into the cell.
  • the extract emerging from the cell was at the bottom of the Cell is led into a collecting vessel.
  • the volume, mass and time of each fraction were determined and each sample was sampled 2 ml.
  • Several fractions were collected over the experimental period. These samples were filtered through a 0.45 ⁇ l filter and stored in the refrigerator at 4 ° C. for the ⁇ -tocopherol concentration determination by HPLC.
  • the dispersion was removed from the ultrafiltration vessel and bottled after the end of the experiment.
  • FIG. 1 Controlled release of DL-alpha-tocopherol from loaded trimethylolpropane trimethacrylate MIP particles - Continuous extraction of the DL-alpha-tocopherol from the polymers with water of different pH values in ultrafiltration cells - Plot of the absolute cumulative released DL-alpha Tocopherol masses against time.
  • FIG. 2 Controlled release of DL-alpha-tocopherol from loaded methacrylic acid-trimethylolpropane trimethacrylate MIP particles - Extraction of the DL-alpha-tocopherol from the polymers with water of different pH values in batch reactors - Application of DL-alpha-tocopherol Concentrations in the batch reactor against time.
  • FIG. 3 Controlled release of trichloroisocyanuric acid from methacrylic acid trimethylolpropane trimethacrylate MIP particles - Continuous extraction of the trichloroisocyanuric acid from the polymers with water of different pH values in ultrafiltration cells - Plot of the absolute cumulative liberated trichloroisocyanuric acid masses against time.
  • Desmocosmetic preparations according to the invention are described below, containing the molecularly imprinted polymer prepared according to Example 1 with ⁇ -tocopherol as template molecule.
  • Said molecularly imprinted polymer with ⁇ -tocopherol as a template molecule is referred to as MIP in the following examples.
  • the molecularly imprinted polymer with ⁇ -tocopherol as template molecule is mentioned in the following examples as representative of all other described molecularly imprinted polymers with active ingredient. It is obvious to the person skilled in the art that all other active substances mentioned can also be prepared according to Example 1 and used in the preparations mentioned below.
  • Example 8 Use of MIP in a Facial Cleansing Lotion - Type O / W WS 1%:
  • Example 9 Use of the MIP in a Daily Care Body Spray
  • Example 24 Styling foam WS 1%
  • Preparation Mix the components of phase A. Add the components of phase B one by one and dissolve. Phase C in the mixture of A and B dissolved then adjust the pH to 6-7. Fill with phase D.
  • Example 36 Liquid Make-up - Type O / W
  • Preparation Heat phases A and B separately to about 80 ° C. Stir phase B into phase A and homogenize. Cool with stirring to about 40 0 C, add phases C and D and thoroughly homogenize again. Allow to cool to room temperature while stirring.
  • Desmocosmetic preparations according to the invention are described below, containing the molecularly imprinted polymer prepared according to Example 1 with ⁇ -tocopherol as template molecule.
  • Said molecularly imprinted polymer with ⁇ -tocopherol as a template molecule is referred to as MIP in the following examples.
  • the molecularly imprinted polymer with ⁇ -tocopherol as template molecule is mentioned in the following examples as representative of all other described molecularly imprinted polymers with active ingredient. It is obvious to the person skilled in the art that all other active substances mentioned can also be prepared according to Example 1 and used in the preparations mentioned below.
  • the mentioned molecularly imprinted polymer with active ingredient is used as a solid.
  • the following information is parts by weight.
  • formulations are cosmetic sunscreen preparations containing a combination of at least one inorganic pigment, preferably zinc oxide and / or titanium dioxide and organic UV-A and UV-B filters and the molecularly imprinted polymer prepared according to Example 1 with ⁇ -tocopherol as template - described.
  • Said molecularly imprinted polymer with ⁇ -tocopherol as a template molecule is referred to as MIP in the following examples.
  • the molecularly imprinted polymer with ⁇ -tocopherol as template molecule is mentioned in the following examples as representative of all other described molecularly imprinted polymers with active ingredient. It goes without saying for the expert that all the others too mentioned active ingredients prepared according to Example 1 and can be used in the preparations mentioned below.
  • the template molecule in the molecularly imprinted polymers is an organic UV filter which is released via the described release mechanism on the skin.
  • the content of molecularly imprinted polymer with active ingredient refers to 100%.
  • the inventive molecularly imprinted polymer can be used both in pure form and as an aqueous solution. In the case of the aqueous solution, the content of water must be the. be adapted in the respective formulation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Nutrition Science (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Cosmetics (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Gegenstand der vorliegenden Erfindung sind kosmetische oder dermatologische Zubereitungen enthaltend wenigstens einen Wirkstoff, wenigstens ein in Gegenwart dieses Wirkstoffes molekular geprägtes Polymer und wenigstens eine Fettphase.

Description

Kosmetische Zubereitungen auf Basis molekular geprägter Polymere
Beschreibung
Gegenstand der vorliegenden Erfindung sind kosmetische oder dermatologische Zubereitungen enthaltend wenigstens einen Wirkstoff, wenigstens ein in Gegenwart dieses Wirkstoffes molekular geprägtes Polymer und wenigstens eine Fettphase.
Wenn es darum geht, besondere Wirkungen von Kosmetikprodukten zu erreichen, sind die Inhaltsstoffe von entscheidender Bedeutung. Das hohe Niveau der angebotenen Inhalts- und Rohstoffe in kosmetischen Formulierungen wird kontinuierlich erweitert, da Verbraucher an anspruchsvollen und wirksamen Produkten interessiert sind, welche beispielsweise den Effekten des Älterwerdens entgegenwirken können. Dabei richtet sich das Interesse der Kosmetikhersteller auch auf Wirkstoffe, die in der Lage sind die Haut zu revitalisieren oder vor den Folgen der Lichtalterung zu schützen. Dienten solche Stoffe in der Vergangenheit primär der Glättung und Feuchtigkeitsbildung der Haut, so werden sie heute durch eine Vielzahl unterschiedlicher Materialien mit physiologischer Wirkung ergänzt. Beispiele hierfür sind Vitamine, Fruchtsäuren oder auch Ce- ramide. Hierbei ist auch die Art und Weise wie solche Wirkstoffe stabilisiert werden von zunehmender Bedeutung. In der Kosmetik besteht ein hohes Interesse an Wirkstoffen, die in wässriger oder auch in wasserhaltigen Systemen stabil gelagert werden können. Zum Erhalt der Wirksamkeit von thermolabilen, oxidationsempfindlichen oder leichtflüchtigen kosmetischen oder dermatologischen Wirkstoffen ist es wünschenswert, diese innerhalb der Zubereitung zu schützen. Häufig ist die über einen längeren Zeitraum anhaltende Freisetzung von kosmetischen oder dermatologischen Wirkstoffen, die sog. Controlled release gewünscht. Für die controlled release von kosmetischen Wirkstoffen haben sich für einige Anwendungen beispielweise polymere Mikroverkapselungen als brauchbar erwiesen, die zudem die Wirkstoffe schützen können. Idealerweise sollen die Wirkstoffe aber nicht bereits beim Lagern der Zubereitung sondern erst am vorgesehenen Wirkort freigesetzt werden.
Die Freisetzung der Wirkstoffe aus solchen Mikrokapseln erfolgt häufiig während der Anwendung der sie enthaltenden Zubereitungen durch Zerstörung der Hülle infolge mechanischer, thermischer, chemischer oder enzymatischer Einwirkung. Diese Off- nungsvarianten bleiben meistens nicht ohne Auswirkung auf die gewünschte biologische Aktivität der verkapselten Wirkstoffe.
In kosmetischen Formulierungen zur Behandlung der Haut, insbesondere empfindlicher, irritierter und ganz besonders in der Babypflege ist es aus naheliegenden Gründen jedoch problematisch oder unmöglich derartige Freisetzungsmechanismen für die Wirkstoffe anzuwenden. Bei der Hautpflege muß weiterhin darauf geachtet werden, den Säureschutzmantel der Haut nicht durch ungeeignete Zusatzmittel zu schädigen sondern ihn zu erhalten und zu unterstützen, d.h. die "natürlichen" Umgebungsbedingungen weitgehend zu erhalten.
Aufgabe der vorliegenden Erfindung war es, Zubereitungen mit selektiver Affinität für einen bestimmten Wirkstoff bereitzustellen, aus denen dieser Wirkstoff erst am Wirkort allmählich und schonend freigesetzt wird. Weiterhin war es eine Aufgabe der vorliegenden Erfindung, Zubereitungen bereitzustel- len, aus denen die Freisetzung eines Wirkstoffes durch physiologische Einflüsse wie beispielsweise durch das Inkontaktbringen mit Haut oder anderen Organen stimuliert wird. Mit anderen Worten war eine Aufgabe der vorliegenden Erfindung, eine gezielte Freisetzung eines Wirkstoffes einer Zubereitung zu ermöglichen, wobei die Pufferkapazität der Haut bzw. des Körpers als selektive Noxe nach Anwendung der Zuberei- tung zur Freisetzung des Wirkstoffes ausreicht.
Gelöst werden die vorgenannten Aufgaben durch die Bereitstellung von kosmetischen oder dermatologischen Zubereitungen enthaltend wenigstens einen Wirkstoff, wenigstens ein in Gegenwart dieses Wirkstoffes molekular geprägtes Polymer und wenigstens eine Fettphase.
Erfindungsgemäße Zubereitungen ermöglichen eine gezielte Freisetzung von hydrophilen, amphiphilen, lipophilen, oxidationsempfindlichen oder hydrolyseempfindlichen Wirkstoffen. Dies gilt für alle üblichen kosmetischen und dermatologischen Applikati- ons- und Darreichungsformen.
Wenn im Rahmen dieser Erfindung explizit kosmetische Wirkstoffe, kosmetische Zubereitungen, kosmetische Akzeptanz oder kosmetische Verwendungen beschrieben sind und die dermatologischen Entsprechungen nicht ausdrücklich ebenfalls genannt sind , so sind jedenfalls dermatologische Wirkstoffe, Zubereitungen, Akzeptanz und Verwendungen ebenfalls umfasst.
Das molekulare Prägen (engl, „molecular imprinting") ist eine seit einigen Jahren vor allem auf den Gebieten Chromatographie, Festphasenextraktion und Abwasserbehand- lung intensiv bearbeitete Technologie.
Als übersichtgebende Literatur seien an dieser Stelle „Molecular Imprinting - From Fundamentals to Applications", Komiyama et al., Wiley-VCH, ISBN 3-527-30569-6 und ACS Symposium Series 703, „Molecular and lonic Recognition with imprinted poly- mers", Ed. R. A. Bartsch und M. Maeda, ISBN 0-8412-3574-0 genannt. Molekulares Prägen von Polymeren ist beispielsweise auch aus dem Bereich der Analytik von Agrowirkstoffen bekannt, z.Bsp. J. Agric. Food Chem. 1995, 43, 1424-1427, Journal of Physics: Confernece Series 10(2005) 281-284, J. Agric. Food Chem. 1996, 44, 141-145, Chemistry Letters 7 (1995), 491-612.
Molekular geprägte Polymere werden verbreitet als stationäre Phasen in der Hochdruck-Flüssigkeits-Chromatographie (HPLC) eingesetzt (siehe beispielsweise Molecu- lar and lonic Recognition with imprinted polymers, ACS Symposium Series 703, S.5)
Kanekiyo et al. (Angew. Chem. Int. Ed. 2003, 42, 3014-16) beschreiben molekular geprägte Polymere (MIPs), deren Affinität zu den Gastmolekülen, mit denen geprägt wurde, pH-abhängig ist. Als MIP diente ein mit N,N-Methylenbisacrylamid vernetztes Po- lymer auf Basis von Acryloyl-Amylose und Carboxylgruppen enthaltenden Monomeren. Als Gastmolekül wurde Bisphenol-A verwendet. Es wurde nachgewiesen, dass für diese COOH-Gruppen enthaltenden MIPs die Bindungsfähigkeit für Bisphenol A mit steigendem pH-Wert abnimmt.
Demirel et al. (Macromol. Biosci. 2005, 5, 1032-37) beschreiben die pH- und Temperaturabhängigkeit der Adsorption von Rinderserumalbumin (BSA) durch Hydrogele aus N-tert.-Butylacrylamid-Acrylamid-Maleinsäure-Copolymeren.
Byrne et al. (Advanced Drug Delivery Reviews 54 (2002) 149-161) beschreiben die Verwendung von molekular geprägten Hydrogelen als Controlled-release-Gele für Arzneimittel.
Cunliffe et al. (Advanced Drug Delivery Reviews 57 (2005) 1836-1853) beschreiben ebenfalls die Verwendung von molekular geprägten Hydrogelen für die Freisetzung von pharmazeutischen Wirkstoffen.
EP-A 925776 beschreibt molekular geprägte Polymere mit Bindungsstellen für wenigstens eine organoleptische Substanz. Kosmetische Zubereitungen, die außerdem eine Fettphase enthalten sind nicht beschrieben.
Der Ausdruck " wenigstens ein Wirkstoff' bedeutet, dass als ein, zwei oder mehrere nachfolgend benannte kosmetische Wirkstoffe für die Herstellung des molekular geprägten Polymers verwendet werden können, vorzugsweise einer oder zwei, besonders bevorzugt einer.
Die molekular geprägten Polymeren enthalten a) wenigstens eine Verbindung mit einer radikalisch polymerisierbaren Doppelbindung und b) wenigstens eine Verbindung mit wenigstens zwei nicht konjugierten radikalisch po- lymerisierbaren Doppelbindungen einpolymerisiert. Dabei ist Verbindung a) vorzugsweise ausgewählt aus a1) anionischen oder anionogenen, radikalisch polymerisierbaren Verbindungen a2) Estern von α,ß-ethylenisch ungesättigten Carbonsäuren a3) Amiden von α,ß-ethylenisch ungesättigten Carbonsäuren a4) Estern von Vinylalkohol oder Allylalkohol mit Ci-C3o-Monocarbonsäuren, Viny- lethern, Vinyllactamen, Vinylimidazolen, Vinylaromaten, Vinylhalogeniden, Vinylidenha- logeniden, Vinylpyridinen, C2-C8-Monoolefinen, nichtaromatischen Kohlenwasserstoffen mit mindestens 2 konjugierten Doppelbindungen und a5) Mischungen davon.
Verbindungen a1)
Zu den anionischen oder anionogenen, radikalisch polymerisierbaren Verbindungen a1 ) zählen monoethylenisch ungesättigte Mono- und Dicarbonsäuren mit 3 bis 25 vorzugsweise 3 bis 6 C-Atomen, die auch in Form ihrer Salze oder Anhydride eingesetzt werden können. Beispiele hierfür sind Acrylsäure, Methacrylsäure, Ethacrylsäure, α- Chloracrylsäure, Crotonsäure, Maleinsäure, Maleinsäureanhydrid, Itaconsäure, Citra- consäure, Mesaconsäure, Glutaconsäure, Aconitsäure und Fumarsäure. Zu den Verbindungen a1 ) zählen weiterhin die Halbester von monoethylenisch ungesättigten Dicarbonsäuren mit 4 bis 10 vorzugsweise 4 bis 6 C-Atomen, z.B. von Maleinsäure wie Maleinsäuremonomethylester.
Zu den Verbindungen a1 ) zählen auch monoethylenisch ungesättigte Sulfonsäuren und Phosphonsäuren, beispielsweise Vinylsulfonsäure, Allylsulfonsäure, Sulfoethylacrylat, Sulfoethylmethacrylat, Sulfopropylacrylat, Sulfopropylmethacrylat, 2-Hydroxy-3- acryloxypropylsulfonsäure, 2-Hydroxy-3-methacryloxypropylsulfonsäure, Styrolsulfon- säure, 2-Acrylamido-2-methylpropansulfonsäure, Vinylphosphonsäure und Al- lylphosphonsäure.
Zu den Verbindungen a1 ) zählen auch die Salze der zuvor genannten Säuren, insbesondere die Natrium-, Kalium- und Ammoniumsalze sowie die Salze mit den kosmetisch akzeptablen Aminen. Die Verbindungen a1 ) können als solche oder als Mischun- gen untereinander eingesetzt werden.
Vorzugsweise wird die Verbindung a1) ausgewählt unter Acrylsäure, Methacrylsäure, Ethacrylsäure, α-Chloracrylsäure, Crotonsäure, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, Itaconsäure, Citraconsäure, Mesaconsäure, Glutaconsäure, Aconitsäure und Mischungen davon, besonders bevorzugt Acrylsäure, Methacrylsäure, Mischungen davon und insbesondere Methacrylsäure.
Verbindungen a2)
Verbindung a2) ist beispielsweise ausgewählt aus der Gruppe bestehend aus Me- thyl(meth)acrylat, Ethyl(meth)acrylat, n-Propyl(meth)acrylat, i-Propyl(meth)acrylat, n- Butyl(meth)acrylat, tert.-Butyl(meth)acrylat, i-Butyl(meth)acrylat, sec- Bu- tyl(meth)acrylat, 2-Pentyl(meth)acrylat, 3-Pentyl(meth)acrylat, lsopentyl(meth)acrylat, Neopentyl(neth)acrylat, n-Octyl(meth)acrylat, 1 ,1 ,3,3-Tetramethylbutyl(meth)acrylat, Ethylhexyl(meth)acrylat, n-Nonyl(meth)acrylat, n-Decyl(meth)acrylat, n- Undecyl(meth)acrylat, Tridecyl(meth)acrylat, Myιϊstyl(meth)acrylat, Pentade- cyl(meth)acrylat, Palmityl(meth)acrylat, Heptadecyl(meth)acrylat, Nonade- cyl(meth)acrylat, Arrachinyl(meth)acrylat, Behenyl(meth)acrylat, Lignocere- nyl(meth)acrylat, Cerotinyl(meth)acrylat, Melissinyl(meth)acrylat, Palmitolei- nyl(meth)acrylat, Oleyl(meth)acrylat, Linolyl(meth)acrylat, Linolenyl(meth)acrylat, Stea- ryl(meth)acrylat, Lauryl(meth)acrylat, Phenoxyethylacrylat, 4-t-Butylcyclohexylacrylat, Cyclohexyl(meth)acrylat, Ureido(meth)acrylat, Tetrahydrofurfuryl(meth)acrylat und de- ren Mischungen.
Verbindung a2) ist bevorzugt ausgewählt aus den Estern der (Meth)acrylsäure. Verbindung a2) ist besonders bevorzugt ausgewählt aus Methacrylaten und Acrylaten. Bevorzugte (Meth)acrylate sind Ci-Cio-Alkyl(meth)acrylate und insbesondere die vorgenannten C1-C4- Alkyl(meth)acrylate. Geeignete Verbindungen a2) sind auch die Ester von α,ß-ethylenisch ungesättigten Mono- und Dicarbonsäuren mit Aminoalkoholen. Bevorzugte Aminoalkohole sind C2-Ci2-Aminoalkoholen, welche am Aminstickstoff Ci-C8-mono- oder -dialkyliert sind. Als Säurekomponente dieser Ester eignen sich z. B. Acrylsäure, Methacrylsäure, Fu- marsäure, Maleinsäure, Itaconsäure, Crotonsäure, Maleinsäureanhydrid, Monobutyl- maleat und Gemische davon. Bevorzugt werden als Säurekomponente Acrylsäure, Methacrylsäure und deren Gemische eingesetzt. Bevorzugte Monomere a3) sind N-tert.-Butylaminoethyl(meth)acrylat, N,N-Dimethylaminomethyl(meth)acrylat,N,N-Dimethylaminoethyl(meth)acrylat, N,N-Diethylaminoethyl(meth)acrylat, N,N-Dimethylaminopropyl(meth)acrylat, N,N-Diethylaminopropyl(meth)acrylat und N,N-Dimethylaminocyclohexyl(meth)acrylat. Besonders bevorzugt sind N-tert.-Butylaminoethyl(meth)acrylat und N, N- Dimethylaminoethyl(meth)acrylat.
Geeignete Verbindungen a3) sind auch Ester von α,ß-ethylenisch ungesättigten Mono- und Dicarbonsäuren mit Diolen wie beispielsweise 2-Hydroxyethylacrylat, 2-Hydroxyethylmethacrylat, 2-Hydroxyethylethacrylat, 2-Hydroxypropylacrylat,
2-Hydroxypropylmethacrylat, 3-Hydroxypropylacrylat, 3-Hydroxypropylmethacrylat, 3-Hydroxybutylacrylat, 3-Hydroxybutylmethacrylat, 4-Hydroxybutylacrylat, 4-Hydroxybutylmethacrylat, 6-Hydroxyhexylacrylat, 6-Hydroxyhexylmethacrylat, 3-Hydroxy-2-ethylhexylacrylat und 3-Hydroxy-2-ethylhexylmethacrylat.
Verbindungen a3)
Die Verbindungen a3) können bevorzugt ausgewählt werden aus der Gruppe bestehend aus Acrylsäureamid, Methacrylsäureamid, N-Methyl(meth)acrylamid, N- Ethyl(meth)acrylamid, N-Propyl(meth)acrylamid, N-(n-Butyl)(meth)acrylamid, N-(tert.- Butyl)(meth)acrylamid, N,N-Dimethyl(meth)acrylamid, N,N-Diethyl(meth)acrylamid, Piperidinyl(meth)acrylamid und Morpholinyl(meth)acrylamid, N-(n-Octyl)(meth)- acrylamid, N-(1 ,1 ,3,3-Tetramethylbutyl)(meth)acrylamid, N-Ethylhexyl(meth)acrylamid, N-(n-Nonyl)(meth)acrylamid, N-(n-Decyl)(meth)acrylamid, N-(n-Undecyl)(meth)- acrylamid, N-Tridecyl(meth)acrylamid, N-Myristyl(meth)acrylamid, N-Pentadecyl(meth)- acrylamid, N-Palmityl(meth)acrylamid, N-Heptadecyl(meth)acrylamid, N-Nonadecyl- (meth)acrylamid, N-Arrachinyl(meth)acrylamid, N-Behenyl(meth)acrylamid, N- Lignocerenyl(meth)acrylamid, N-Cerotinyl(meth)acrylamid, N-Melissinyl(meth)- acrylamid, N-Palmitoleinyl(meth)acrylamid, N-Oleyl(meth)acrylamid, N-Linolyl(meth)- acrylamid, N-Linolenyl(meth)acrylamid, N-Stearyl(meth)acrylamid und N-Lauryl(meth)- acrylamid.
Geeignete Monomere a3) sind auch die Amide der zuvor genannten α,ß-ethylenisch ungesättigten Mono- und Dicarbonsäuren mit Diaminen, welche mindestens eine primäre oder sekundäre Aminogruppe aufweisen. Bevorzugt sind Diamine, die eine tertiäre und eine primäre oder sekundäre Aminogruppe aufweisen. Geeignet als Monomere a3) sind z. B. N-tert.-Butylaminoethyl(meth)acrylamid, N-[2-(dimethylamino)ethyl]acrylamid, N-[2-(dimethylamino)ethyl]methacrylamid, N-[3-(dimethylamino)propyl]acrylamid, N-[3-(dimethylamino)propyl]methacrylamid, N-[4-(dimethylamino)butyl]acrylamid, N-[4-(dimethylamino)- butyl]methacrylamid, N-[2-(diethylamino)ethyl]acrylamid, N-[4-(dimethylamino)cyclohexyl]acrylamid und N-[4-(dimethylamino)cyclohexyl]methacrylamid.
Geeignete Monomere a3) sind auch die Hydroxyalkylamide der zuvor genannten α,ß- ethylenisch ungesättigten Mono- und Dicarbonsäuren wie beispielsweise 2- Hydroxyethylacrylamid, 2-Hydroxyethylmethacrylamid, 2-Hydroxyethylethacrylamid, 2- Hydroxypropylacrylamid, 2-Hydroxypropylmethacrylamid, 3-Hydroxypropylacrylamid, 3-Hydroxypropylmethacrylamid, 3-Hydroxybutylacrylamid, 3- Hydroxybutylmethacrylamid, 4-Hydroxybutylacrylamid, 4-Hydroxybutylmethacrylamid, 6-Hydroxyhexylacrylamid, 6-Hydroxyhexylmethacrylamid, 3-Hydroxy-2- ethylhexylacrylamid und 3-Hydroxy-2-ethylhexylmethacrylamid.
Verbindungen a4) Geeignete Verbindungen a4) sind beispielsweise N-Vinyllactame und deren Derivate, die z. B. einen oder mehrere Ci-C6-Alkylsubstituenten, wie Methyl, Ethyl, n-Propyl, I- sopropyl, n-Butyl, sec.-Butyl, tert.-Butyl etc. aufweisen können. Dazu zählen z. B. N- Vinylpyrrolidon, N-Vinylpiperidon, N-Vinylcaprolactam, N-Vinyl-5-methyl-2-pyrrolidon, N-Vinyl-5-ethyl-2-pyrrolidon, N-Vinyl-6-methyl-2-piperidon, N-Vinyl-6-ethyl-2-piperidon, N-Vinyl-7-methyl-2-caprolactam, N-Vinyl-7-ethyl-2-caprolactam. Besonders bevorzugt werden N-Vinylpyrrolidon und/oder N-Vinylcaprolactam eingesetzt.
Geeignete Verbindungen a4) sind beispielsweise auch N-Vinylimidazol-Verbindungen der allgemeinen Formel (II)
(H)
worin R5 bis R7 unabhängig voneinander für Wasserstoff, CrC4-Alkyl oder Phenyl stehen.
Beispiele für Verbindungen der allgemeinen Formel (II) sind folgender Tabelle 1 zu entnehmen:
Tabelle 1
Me = Methyl Ph = Phenyl Bevorzugt als Monomer b) ist 1 -Vinylimidazol (N-Vinylimidazol).
Verbindungen b)
Verbindungen b) sind Verbindungen mit wenigstens zwei nicht konjugierten radikalisch polymerisierbaren Doppelbindungen. Diese Verbindungen b) werden üblicherweise und im Folgenden auch als Vernetzer bezeichnet.
Geeignete Verbindungen b) sind zum Beispiel Acrylester, Methacrylester, Allylether oder Vinylether von mindestens zweiwertigen Alkoholen. Die OH-Gruppen der zugrun- deliegenden Alkohole können dabei ganz oder teilweise verethert oder verestert sein; die Vernetzer enthalten aber mindestens zwei ethylenisch ungesättigte Gruppen.
Beispiele für die zugrundeliegenden Alkohole sind zweiwertige Alkohole wie 1 ,2-Ethandiol, 1 ,2-Propandiol, 1 ,3-Propandiol, 1 ,2-Butandiol, 1 ,3-Butandiol, 2,3-Butandiol, 1 ,4-Butandiol, But-2-en-1 ,4-diol, 1 ,2-Pentandiol, 1 ,5-Pentandiol,
1 ,2-Hexandiol, 1 ,6-Hexandiol, 1 ,10-Decandiol, 1 ,2-Dodecandiol, 1 ,12-Dodecandiol, Neopentylglykol, 3-Methylpentan-1 ,5-diol, 2,5-Dimethyl-1 ,3-hexandiol, 2,2,4-Trimethyl-1 ,3-pentandiol, 1 ,2-Cyclohexandiol, 1 ,4-Cyclohexandiol, 1 ,4-Bis(hydroxymethyl)cyclohexan, Hydroxypivalinsäure-neopentylglykolmonoester, 2,2-Bis(4-hydroxyphenyl)-propan, 2,2-Bis[4-(2-hydroxypropyl)phenyl]propan, Diethy- lenglykol, Triethylenglykol, Tetraethylenglykol, Dipropylenglykol, Tripropylenglykol, Tetrapropylenglykol, 3-Thio-pentan-1 ,5-diol, sowie Polyethylenglykole, Polypropy- lenglykole und Polytetrahydrofurane mit Molekulargewichten von jeweils 200 bis 10000. Außer den Homopolymerisaten des Ethylenoxids bzw. Propylenoxids können auch Blockcopolymerisate aus Ethylenoxid oder Propylenoxid oder Copolymerisate, die Ethylenoxid- und Propylenoxid-Gruppen eingebaut enthalten, eingesetzt werden. Beispiele für zugrundeliegende Alkohole mit mehr als zwei OH-Gruppen sind Trimethy- lolpropan, Glycerin, Pentaerythrit, 1 ,2,5-Pentantriol, 1 ,2,6-Hexantriol, Triethoxycyanur- säure, Sorbitan, Zucker wie Saccharose, Glucose, Mannose. Selbstverständlich kön- nen die mehrwertigen Alkohole auch nach Umsetzung mit Ethylenoxid oder Propylenoxid als die entsprechenden Ethoxylate bzw. Propoxylate eingesetzt werden. Die mehrwertigen Alkohole können auch zunächst durch Umsetzung mit Epichlorhydrin in die entsprechenden Glycidylether überführt werden. Bevorzugt sind Ethylenglykol- di(meth)acrylat und Polyethylenglykoldi(meth)acrylate.
Weitere geeignete Verbindungen b) sind die Vinylester oder die Ester einwertiger, ungesättigter Alkohole mit ethylenisch ungesättigten C3-C6-Carbonsäuren, beispielsweise Acrylsäure, Methacrylsäure, Itaconsäure, Maleinsäure oder Fumarsäure. Beispiele für solche Alkohole sind Allylalkohol, 1 -Buten-3-ol, 5-Hexen-1 -ol, 1 -Octen-3-ol, 9-Decen-1 - ol, Dicyclopentenylalkohol, 10-Undecen-1 -ol, Zimtalkohol, Citronellol, Crotylalkohol o- der cis-9-Octadecen-1 -ol. Man kann aber auch die einwertigen, ungesättigten Alkohole mit mehrwertigen Carbonsäuren verestern, beispielsweise Malonsäure, Weinsäure, Trimellithsäure, Phthalsäure, Terephthalsäure, Zitronensäure oder Bernsteinsäure.
Weitere geeignete Verbindungen b) sind Ester ungesättigter Carbonsäuren mit den oben beschriebenen mehrwertigen Alkoholen, beispielsweise der Ölsäure, Crotonsäu- re, Zimtsäure oder 10-Undecensäure.
Geeignet als Verbindungen b) sind außerdem geradkettige oder verzweigte, lineare oder cyclische, aliphatische oder aromatische Kohlenwasserstoffe, die über mindes- tens zwei Doppelbindungen verfügen, die bei aliphatischen Kohlenwasserstoffen nicht konjugiert sein dürfen, z. B. Divinylbenzol, Divinyltoluol, 1 ,7-Octadien, 1 ,9-Decadien, A- Vinyl-1 -cyclohexen, Trivinylcyclohexan oder Polybutadiene mit Molekulargewichten von 200 bis 20000.
Als Verbindungen b) sind ferner geeignet die Acrylsäureamide, Methacrylsäureamide und N-Allylamine von mindestens zweiwertigen Aminen. Solche Amine sind zum Beispiel 1 ,2-Diaminomethan, 1 ,2-Diaminoethan, 1 ,3-Diaminopropan, 1 ,4-Diaminobutan, 1 ,6-Diaminohexan, 1 ,12-Dodecandiamin, Piperazin, Diethylentriamin oder Isophoron- diamin. Ebenfalls geeignet sind die Amide aus Allylamin und ungesättigten Carbonsäu- ren, wie Acrylsäure, Methacrylsäure, Itaconsäure, Maleinsäure, oder mindestens zweiwertigen Carbonsäuren, wie sie oben beschrieben wurden.
Ferner sind Triallylamin und Triallylmonoalkylammoniumsalze, z. B. Triallylmethylam- moniumchlorid oder -methylsulfat, als Verbindungen b) geeignet.
Geeignet sind auch N-Vinyl-Verbindungen von Harnstoffderivaten, mindestens zweiwertigen Amiden, Cyanuraten oder Urethanen, beispielsweise von Harnstoff, Ethylen- harnstoff, Propylenharnstoff oder Weinsäurediamid, z. B. N,N'-Divinylethylenharnstoff oder N,N'-Divinylpropylenharnstoff.
Weitere geeignete Verbindungen b) sind Divinyldioxan, Tetraallylsilan oder Tetravinyl- silan.
Selbstverständlich können auch Mischungen der vorgenannten Verbindungen b) ein- gesetzt werden.
Ganz besonders bevorzugt als Verbindungen b) sind Ethylenglykoldi(meth)acrylat, Po- lyethylenglykoldi(meth)acrylate, Pentaerythrittriallylether, Methylenbisacrylamid, N, N'- Divinylethylenharnstoff, Triallylamin, Tπmethylolpropantri(meth)acrylat und Triallylmo- noalkylammoniumsalze. Das molare Verhältnis von Verbindung a) zu Verbindung b) beträgt in der Regel im Bereich von 1 :2 bis 1 :10, vorzugsweise im Bereich von 1 :2 bis 1 :4 , ganz besonders bevorzugt im Bereich von 1 :2,5 bis 1 :3,5 und insbesondere im Bereich von 1 :2,8 bis 1 :3,2.
Die hier beschriebenen neuen Polymere werden in Gegenwart des Wirkstoffes (Templat) über eine Fällungspolymerisation mit einem grossen Lösungsmittel- Überschuss (Gewichtsverhältnis von Lösungsmittel zu Wirkstoff im Bereich von 100:1 bis 5: 1 , bevorzugt von 100:1 bis 50: 1 , besonders bevorzugt 59: 1.) in einem Batch oder Semi-Batch-Verfahren hergestellt. Die gewonnenen Polymerpartikel werden durch eine Soxhlet-Extraktion gereinigt. Nachdem die aktiven Bindungsstellen (die molekularen Abdrücke) erneut mit dem Templat beladen worden sind (oder wenn nach der Polymer- Synthese auf eine Templat-Extraktion verzichtet worden ist), kann das Polymer eingesetzt werden, um den kosmetischen Wirkstoff kontrolliert bzw. retardiert freizusetzen.
Die erfindungsgemäßen Zubereitungen zeichnen sich dadurch aus, dass die Freisetzungsrate für den Wirkstoff aus dem Polymer-Wirkstoff-Komplex bei pH 5 höher ist als bei pH 7. Der Polymer-Wirkstoff-Komplex wird erhalten, wenn das Polymer mit dem Wirkstoff geprägt wurde und anschließend nicht gebundener Wirkstoff entfernt wurde bzw. zuvor geprägtes und von gebundenem Wirkstoff befreites Polymer wieder mit Wirkstoff beladen wird.
Unter Freisetzungsrate wird diejenige Wirkstoff menge verstanden, die pro Zeiteinheit aus dem Polymer-Wirkstoff-Komplex freigesetzt wird; die Rate kann beispielsweise in μg*min-1 angegeben werden.
Die Freisetzungsrate wird wie folgt bestimmt: eine Ultrafiltrationszelle wird mit einer Dispersion von 100 mg des molekular geprägten Polymers in 100 ml Wasser (mit eingestelltem pH-Wert) gefüllt und 15 Minuten bis zur Homogenisierung gerührt. Das Extraktionsmittel (ebenfalls Wasser mit gleichem eingestellten pH-Wert) wird über den Zulauf mittels Schlauchpumpe aus dem Vorratsgefäß in die Zelle geleitet. Der aus der Zelle austretende Extrakt wird an der Unterseite der Zelle in ein Auffanggefäß geleitet. Versuchslaufzeit: 12 Stunden; Wechsel des Auffanggefäßes: alle 60 Minuten; 12 Fraktionen werden so über die Versuchszeit gesammelt. Es werden Volumen, Masse und Entnahmezeitraum der einzelnen Fraktionen bestimmt und jeder Fraktion eine Probe von 2 ml entnommen. Diese Proben werden über einen 0,45 μl Filter filtriert, in Injektionsflaschen abgefüllt und für die Tocopherolbestimmung mittels HPLC eingesetzt.
Die vorliegende Erfindung umfasst auch das Verfahren zur Herstellung der molekular geprägten Polymere, welches dadurch gekennzeichnet ist, dass man das Polymer durch Fällungspolymerisation in Gegenwart eines Wirkstoffes herstellt. Das grundlegende Prinzip der Fällungspolymerisation ist dem Fachmann geläufig und beispielsweise in Guyot, A. (1989), in: Comprehensive Polymer Science, Vol. 4: Eastmond, G. C, Ledwith, A., Russo, S., Sigwalt, P. (Eds.). Oxford: Pergamon, pp. 261-273 beschrieben.
In einer bevorzugten Ausführungsform kann das molekular geprägte Polymer dadurch hergestellt werden, dass
(a) mindestens eine Verbindung a) mit mindestens einem Wirkstoff in einem geeig- neten Lösungsmittel vermischt, mindestens eine Verbindung b) hinzugefügt und die Polymerisation gestartet wird, wobei die Verbindung b) vorzugsweise vorher in einem Lösungsmittel gelöst wurde, welches in einer ganz besonders bevorzugten Ausführungsform dem Lösungsmittel, in welchem Verbindung a) gelöst ist, entspricht oder
(b) mindestens eine Verbindung a) mit mindestens einem Wirkstoff und mindestens einer Verbindung b) in einem geeigneten Lösungsmittel vermischt und anschließend die Polymerisation gestartet wird.
Die Polymerisation kann in einem radikalischen, anionischen, kationischen oder koor- dinativen Mechanismus oder nach dem Prinzip einer Polykondensation oder Polyaddi- tion erfolgen. Vorzugsweise wird über einen radikalischen Mechanismus polymerisiert. Dabei können verschiedene Initiatoren und/oder Katalysatoren zum Einsatz kommen, ggf. auch in Kombination mit Wärmezufuhr.
Für kationische Polymerisationen können beispielsweise folgende Initiatoren verwendet werden:
Protonensäuren, Lewis-Säuren mit und ohne Coinitiatoren, Carboniumionen, lodoniu- mionen und/oder ionisierende Strahlung
Für anionische Polymerisationen können folgende Initiatoren verwendet werden: Basen, Lewis-Basen, Metallorganische Verbindungen und/oder Elektronenüberträger, z.B. Alkalimetalle, Alkalimetall-Aromaten-Komplexe, Metallketyle
Für koordinative Polymerisationen können folgende Initiatoren/Katalysatoren eingesetzt werden:
Metallorganische Mischkatalysatoren (Ziegler-Natta-Katalysatoren), π-Komplexe mit Übergangsmetallen, z.B. Metallocene und/oder Aktivierte Übergangsmetalloxide Für die bevorzugte radikalische Polymerisation geeignete Initiatoren sind beispielsweise Peroxide oder Azoverbindungen, substituierte Ethane (z.B. Benzpinakole), Redox- Systeme mit anorganischen und organischen Komponenten, Wärme, UV-Licht und andere energiereiche Strahlung , Hydroperoxide, Perester und Persulfate, wie z.B. das Kaliumperoxodisulfat, vorzugsweise Azoverbindungen.
Geeignete Azoverbindungen sind 2,2'-Azobisisobutyronitril, 2,2'-Azobis(2- methylbutyronitril), 2,2'-Azobis(2,4-dimethylvaleronitril), 2,2'-Azobis(4-methoxy-2,4- dimethylvaleronitril), 1 ,1'-Azobis(1 -cyclohexancarbonitril), 2,2'-Azobis(isobutyramid) dihydrat, 2-Phenylazo-2,4-dimethyl-4-methoxyvaleronitril, Dimethyl-2,2'- azobisisobutyrat, 2-(Carbarmoylazo)isobutyronitril, 2,2'-Azobis(2,4,4-trimethylpentan), 2,2'-Azobis(2-methylpropan), 2,2'-Azobis(N,N'-dimethylenisobutyramidin), als freie Base oder als Hydrochlorid, 2,2'-Azobis(2-amidinopropan), als freie Base oder als Hydro- chlorid, 2,2'-Azobis(2-methyl-N-[1 ,1 bis(hydroxymethyl)ethyl]propionamid oder 2,2'- Azobis(2-methyl-N-[1 ,1 -bis(hydroxymethyl)-2- hydroxyethyl]propionamid;
Geeignete Peroxide sind zum Beispiel Acetylcyclohexansulphonsäureperoxid, Dii- sopropylperoxydicarbonat, t-Amylperneodecanoat, t-Butylperneodecanoat, t- Butylperpivalat, Tamylperpivalat, Bis(2,4-dichlorbenzoesäure)peroxid, Di- isononansäure-peroxid, Di-decansäureperoxid, Dioctansäure-peroxid, Dilaurylsäurepe- roxid, Bis(2-methylbenzoesäure)-peroxid, Dibernsteinsäureperoxid , Diacetylperoxid, Dibenzoesäureperoxid, t-Butylper-2-ethylhexanoat, Bis-(4-chlorbenzoesäure)-peroxid, t-Butylperisobutyrat, t-Butylpermaleinat, 1 , 1 -Bis(t-butylperoxy)-3,5,5- trimethylcyclohexan, 1 ,1-Bis(t-butylperoxy)cyclohexan, t-Butylperoxyisopropylcarbonat, t-Butylperisononanoat,, t-Butylperacetat, t-Amylperbenzoat, t-Butylperbenzoat, 2,2- Bis(t-butylperoxy) butan, 2,2 bis-10-(t-butylperoxy)propan, Dicumylperoxid, 2,5- Dimethylhexan-2,5-di-t-butylperoxid, 3-t-Butylperoxy-3-phenylphthalid, Di-t- amylperoxid, α, α'-Bis(t-butylperoxyisopropyl)-benzol , 3,5-Bis(t-butylperoxy)3,5- dimethyl-1 ,2-dioxolan, di-t-Butylperoxid, 2,5-Dimethylhexin-2,5-di-t-butylperoxid, 3,3,6,6,9,9-Hexamethyl-1 ,2,4,5-tetraoxacyclononan, p-Menthanhydroperoxid, Pinan- hydroperoxid, Diisopropylbenzol-monohydroperoxid, Cumenhydroperoxid oder t- Butylhydroperoxid.
Der Vernetzer kann je nach Aggregatzustand in fester, flüssiger Form der Reaktions- mischung hinzugefügt werden oder in einem Lösungsmittel gelöst oder dispergiert (d.h. emulgiert oder suspendiert), vorzugsweise gelöst hinzugefügt werden. Vorzugsweise wird ein flüssiger Vernetzer oder ein in einem Lösungsmittel gelöster (oder dispergier- ter / vermischter) Vernetzer der Reaktionsmischung beigefügt, besonders bevorzugt ein in einem Lösungsmittel gelöster (oder dispergierter/vermischter) Vernetzer. In einer ganz besonders bevorzugten Ausführungsform ist der Vernetzer in dem gleichen Lösungsmittel wie das funktionelle Monomer oder der Vernetzer gelöst. Als Lösungsmittel können organische Lösungsmittel verwendet werden, zum Beispiel Dimethylformamid, Ethanol, Methanol, Isopropanol, Chloroform, Dichlormethan, Toluol, Dimethylsulfoxid, Hexan und Acetonitril, bevorzugt Toluol und Acetonitril. Es können auch Gemische der vorstehend genannten Lösungsmittel verwendet werden.
In einer weiteren Ausführungsform kann dem Lösungsmittel oder den Lösungsmittelgemischen bis zu einem Anteil von 50 Gew.-% Wasser zugesetzt werden.
In der Regel wird, abhängig vom Lösungsmittel, bei Tempraturen von 40-1200C poly- merisiert.
Sämtliche Ausführungsformen der oben genannten Partikel werden nachfolgend als "MIP" bezeichnet.
Die während der Polymerisation anfallenden Partikel können entweder direkt in den Zubereitungen eingesetzt oder mit Formulierungshilfsmitteln versetzt werden und entsprechend formuliert werden.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von molekular geprägten Polymeren in kosmetischen Zubereitungen, insbesondere hautkosmetischen Zubereitungen
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Behandlung von Keratinoberflächen, dadurch gekennzeichnet, dass die Keratinoberfläche mit ei- nem molekular geprägten Polymer in Kontakt gebracht wird.
Wirkstoffe
Die erfindungsgemäßen Zubereitungen enthalten kosmetisch akzeptable Wirkstoffe. Diese Wirkstoffe werden insbesondere im pH-Wert-Bereich von 5 bis 7 aus der Kombination mit dem mit diesem Wirkstoff molekular geprägten Polymer kontrolliert freigesetzt.
Erfindungsgemäß können die Wirkstoffe (eine oder mehrere Verbindungen) vorteilhaft gewählt werden aus der Gruppe bestehend aus Acetylsalicylsäure, Atropin, Azulen, Hydrocortison und dessen Derivaten, z. B. Hydrocortison-17-valerat, Vitamine der B- und D-Reihe, insbesondere Vitamin Bi, Vitamin B12, Vitamin D, Vitamin A bzw. dessen Derivate wie Retinylpalmitat, Vitamin E oder dessen Derivate wie z.B. Tocopheryl Ace- tat, Vitamin C und dessen Derivate wie z.B. Ascorbylglucusid aber auch Niacinamid, Panthenol, Bisabolol, Polydocanol, ungesättigte Fettsäuren, wie z.B. die essentiellen Fettsäuren (üblicherweise als Vitamin F bezeichnet), insbesondere die γ-Linolensäure, Ölsäure, Eicosapentaensäure, Docosahexaensäure und deren Derivate, Chloramphe- nicol, Coffein, Prostaglandine, Thymol, Campher, Squalen, Extrakte oder andere Produkte pflanzlicher und tierischer Herkunft, z.B. Nachtkerzenöl, Borretschöl oder Johan- nisbeerkernöl, Fischöle, Lebertran aber auch Ceramide und ceramidähnliche Verbindungen, Weihrauchextrakt, Grünteeextrakt, Wasserlilienextrakt, Süßholzextrakt, Ha- mamelis, Antischuppenwirkstoffe (z.B. Selendisulfid, Zinkpyrithion, Pirocton, Olamin, Climbazol, Octopirox, Polydocanol und deren Kombinatinen), Komplexwirkstoffen wie z.B. jenen aus γ-Oryzanol und Calciumsalzen wie Calciumpanthotenat, Calciumchlorid, Calciumacetat.
Der oder die Wirkstoffe können auch aus der Gruppe der NO-Synthasehemmer gewählt werden, insbesondere wenn die erfindungsgemäßen Zusammensetzungen zur Behandlung und Prophylaxe der Symptome der intrinsischen und/oder extrinsischen Hautalterung sowie zur Behandlung und Prophylaxe der schädlichen Auswirkungen ultravioletter Strahlung auf die Haut und die Haare dienen sollen. Bevorzugter NO- Synthasehemmer ist Nitroarginin.
Weiter vorteilhaft werden der oder die Wirkstoffe gewählt aus der Gruppe umfassend Catechine und Gallensäureester von Catechinen und wässrige bzw. organische Extrakte aus Pflanzen oder Pflanzenteilen, die einen Gehalt an Catechinen oder Gallen- säureestern von Catechinen aufweisen, wie beispielsweise den Blättern der Pflanzenfamilie Theaceae, insbesondere der Spezies Camellia sinensis (grüner Tee). Besonders vorteilhaft sind deren typische Inhaltsstoffe (z.B. Polyphenole bzw. Catechine, Coffein, Vitamine, Zucker, Mineralien, Aminosäuren, Lipide).
Catechine stellen eine Gruppe von Verbindungen dar, die als hydrierte Flavone oder Anthocyanidine aufzufassen sind und Derivate des „Catechins" (Catechol, 3, 3', 4', 5,7- Flavanpentaol, 2-(3,4-Dihydroxyphenyl)-chroman-3,5,7-triol) darstellen. Auch Epicate- chin ((2R,3R)-3,3',4',5,7-Flavanpentaol) ist ein vorteilhafter Wirkstoff im Sinne der vorliegenden Erfindung.
Vorteilhaft sind ferner pflanzliche Auszüge mit einem Gehalt an Catechinen, insbesondere Extrakte des grünen Tees, wie z. B. Extrakte aus Blättern der Pflanzen der Spezies Camellia spec, ganz besonders der Teesorten Camellia sinenis, C. assamica, C. taliensis bzw. C. inawadiensis und Kreuzungen aus diesen mit beispielsweise Camellia japonica.
Bevorzugte Wirkstoffe sind ferner Polyphenole bzw. Catechine aus der Gruppe (-)- Catechin, (+)-Catechin, (-)-Catechingallat, (-)-Gallocatechingallat, (+)-Epicatechin, (-)- Epicatechin, (-)-Epicatechin Gallat, (-)-Epigallocatechin, (-)-Epigallocatechingallat. Auch Flavon und seine Derivate (oft auch kollektiv „Flavone" genannt) sind vorteilhafte Wirkstoffe im Sinne der vorliegenden Erfindung. Sie sind durch folgende Grundstruktur gekennzeichnet (Substitutionspositionen angegeben):
Einige der wichtigeren Flavone, welche auch bevorzugt in erfindungsgemäßen Zusammensetzungen eingesetzt werden können, sind in der nachstehenden Tabelle 2 aufgeführt.
Tabelle 2: Flavone
In der Natur kommen Flavone in der Regel in glycosidierter Form vor. Erfindungsgemäß werden die Flavonoide bevorzugt gewählt gewählt aus der Gruppe der Substanzen der allgemeinen Formel
wobei Zi bis Z7, unabhängig voneinander gewählt werden aus der Gruppe H, OH, Al- koxy- sowie Hydroxyalkoxy-, wobei die Alkoxy- bzw. Hydroxyalkoxygruppen verzweigt und unverzweigt sein und 1 bis 18 C-Atome aufweisen können, und wobei GIy gewählt wird aus der Gruppe der Mono- und Oligoglycosidreste.
Erfindungsgemäß können die Flavonoide aber auch vorteilhaft gewählt werden aus der Gruppe der Substanzen der allgemeinen Formel
wobei Zi bis Z& unabhängig voneinander gewählt werden aus der Gruppe H, OH, Alkoxy- sowie Hydroxyalkoxy-, wobei die Alkoxy- bzw. Hydroxyalkoxygruppen verzweigt und unverzweigt sein und 1 bis 18 C-Atome auf weisen können, und wobei GIy gewählt wird aus der Gruppe der Mono- und Oligoglycosidreste.
Bevorzugt können solche Strukturen gewählt werden aus der Gruppe der Substanzen der allgemeinen Formel
wobei Zi bis Z& unabhängig voneinander wie vorgenannt und Gly-i, Gly2 und GIV3 unabhängig voneinander Monoglycosidreste oder Oligoglycosidreste darstellen. Gly2 bzw. Gly3 können auch einzeln oder gemeinsam Absättigungen durch Wasserstoffatome darstellen.
Bevorzugt werden Gly-i, Gly2 und Gly3 unabhängig voneinander gewählt aus der Gruppe der Hexosylreste, insbesondere der Rhamnosylreste und Glucosylreste. Aber auch andere Hexosylreste, beispielsweise Allosyl, Altrosyl, Galactosyl, Gulosyl, Idosyl, Man- nosyl und Talosyl sind gegebenenfalls vorteilhaft zu verwenden.
Es kann auch erfindungsgemäß vorteilhaft sein, Pentosylreste zu verwenden.
Vorteilhaft werden Zi bis Z5 unabhängig voneinander gewählt aus der Gruppe H, OH, Methoxy-, Ethoxy- sowie 2-Hydroxyethoxy-, und die Flavonglycoside entsprechen der allgemeinen Strukturformel
Besonders vorteilhaft werden die Flavonglycoside aus der Gruppe gewählt, welche durch die folgende Struktur wiedergegeben werden,
wobei Glyi, Gly2 und Gly3 unabhängig voneinander Monoglycosidreste oder Oligogly- cosidreste darstellen. Gly2 bzw. Gly3 können auch einzeln oder gemeinsam Absätti- gungen durch Wasserstoffatome darstellen.
Bevorzugt werden Glyi, Gly2 und Gly3 unabhängig voneinander gewählt aus der Gruppe der Hexosylreste, insbesondere der Rhamnosylreste und Glucosylreste. Aber auch andere Hexosylreste, beispielsweise Allosyl, Altrosyl, Galactosyl, Gulosyl, Idosyl, Man- nosyl und Talosyl sind gegebenenfalls vorteilhaft zu verwenden.
Es kann auch erfindungsgemäß vorteilhaft sein, Pentosylreste zu verwenden.
Besonders vorteilhaft im Sinne der vorliegenden Erfindung ist, das oder die Flavongly- coside zu wählen aus der Gruppe α-Glucosylrutin, α-Glucosylmyricetin, α- Glucosylisoquercitrin, α-Glucosylisoquercetin und α-Glucosylquercitrin.
Weitere vorteilhafte Wirkstoffe sind Sericosid, Pyridoxol, Vitamin K, Biotin und Aromastoffe.
Außerdem können die Wirkstoffe (eine oder mehrere Verbindungen) auch sehr vorteilhaft gewählt werden aus der Gruppe der hydrophilen Wirkstoffe, insbesondere aus folgender Gruppe:
α-Hydroxysäuren wie Milchsäure oder Salicylsäure bzw. deren Salze wie z.B. Na-
Lactat, Ca-Lactat, TEA-Lactat, Harnstoff, Allantoin, Serin, Sorbitol, Glycerin, Milchproteine, Panthenol, Chitosan.
Außerdem können die Wirkstoffe (eine oder mehrere Verbindungen) auch sehr vorteilhaft gewählt werden aus der Gruppe der Lichtfilterwirkstoffe. Geeignete Lichtfilterwirkstoffe sind Stoffe, die UV-Strahlen im UV-B- und/oder UV-A- Bereich absorbieren. Darunter sind organische Substanzen zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme, wieder abzugeben. Die organischen Sub- stanzen können öllöslich oder wasserlöslich sein. Geeignete UV-Filter sind z.B. 2,4,6- Triaryl-1 ,3,5- triazine, bei denen die Arylgruppen jeweils wenigstens einen Substituen- ten tragen können, der vorzugsweise ausgewählt ist unter Hydroxy, Alkoxy, speziell Methoxy, Alkoxycarbonyl, speziell Methoxycarbonyl und Ethoxycarbonyl. Geeignet sind weiterhin p-Aminobenzoesäureester, Zimtsäureester, Benzophenone, Campherderiva- te sowie UV-Strahlen abhaltende Pigmente, wie Titandioxid, Talkum und Zinkoxid. Besonders bevorzugt handelt es sich um Pigmente auf der Basis von Titandioxid.
Als öllösliche UV-B-Filter können z.B. folgende Substanzen verwendet werden: 3-Benzylidencampher und dessen Derivate, z.B. 3-(4-Methylbenzyliden)campher;
4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2- ethylhexylester, 4-( Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)- benzoesäureamylester;
Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4 Methoxy- zimtsäurepropylester, 4-Methoxyzimtsäureisoamylester, 4 Methoxyzimtsäureisopenty- lester, 2-Cyano-3-phenyl-zimtsäure-2-ethylhexylester (Octocrylene);
Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4 i- sopropylbenzylester, Salicylsäurehomomenthylester;
Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2- Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;
Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2- ethylhexylester;
Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1 '-hexyloxy)-1 ,3,5-triazin (Oc- tyltriazone) und Dioctyl Butamido Triazon (Uvasorb® HEB):
Propan-1 ,3-dione, wie z.B. 1 -(4-tert. Butylphenyl)-3-(4'-methoxyphenyl)propan-1 ,3- dion.
Als wasserlösliche Substanzen kommen in Frage:
2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alky- lammonium-, Alkanolammonium- und Glucammoniumsalze; Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzo- phenon-5-sulfonsäure und ihre Salze;
Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3- bornylidenmethyl)benzolsulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.
Besonders bevorzugt ist die Verwendung von Estern der Zimtsäure, vorzugsweise 4- Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäureisopentylester, 2-Cyano-3- phenyl-zimtsäure-2-ethylhexylester (Octocrylene).
Des weiteren ist die Verwendung von Derivaten des Benzophenons, insbesondere 2- Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'- Dihydroxy-4-methoxybenzophenon sowie der Einsatz von Propan-1 ,3-dionen, wie z.B. 1-(4-tert. Butylphenyl)-3-(4-'methoxyphenyl)propan-1 ,3-dion bevorzugt.
Als typische UV-A-Filter kommen in Frage:
Derivate des Benzoylmethans, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'- methoxyphenyl) propan-1 ,3-dion, 4-tert.-Butyl-4'-methoxydibenzoylmethan oder 1- Phenyl-3-(4'-isopropylphenyl)-propan-1 ,3-dion;
Amino-hydroxy-substituierte Derivate von Benzophenonen wie z.B. N,N-Diethylamino- hydroxybenzoyl-n-hexylbenzoat.
Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden.
Weitere geeignete UV-Filtersubstanzen sind in der folgenden Tabelle 3 genannt.
Tabelle 3: geeignete Lichtschutzmittel
Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die pho- tochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Superoxid-Dismutase, Katalase, Tocopherole (Vitamin E) und Ascorbinsäure (Vitamin C).
Eine weitere Gruppe sind Antiirritantien, die eine entzündungshemmende Wirkung auf durch UV-Licht geschädigte Haut besitzen. Solche Stoffe sind beispielsweise Bisabolol, Phytol und Phytantriol.
Die Liste der genannten Wirkstoffe bzw. Wirkstoffkombinationen, die in den erfindungsgemäßen Zusammensetzungen verwendet werden können, soll selbstverständ- lieh nicht limitierend sein. Die Wirkstoffe können einzelnen oder in beliebigen Kombinationen miteinander verwendet werden.
Die Menge solcher Wirkstoffe (eine oder mehrere Verbindungen) in den Zusammensetzungen gemäß der Erfindung beträgt vorzugsweise 0,001 bis 30 Gew.-%, beson- ders bevorzugt 0,05 bis 20 Gew.-%, insbesondere 1 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Zusammensetzung.
Die genannten und weitere Wirkstoffe, die in den erfindungsgemäßen Zusammensetzungen verwendet werden können, sind in der DE 103 18 526 A1 auf den Seiten 12 bis 17 angegeben, worauf an dieser Stelle in vollem Umfang Bezug genommen wird.
In den erfindungsgemäßen Zubereitungen liegt das Gewichtsverhältnis von mit dem Wirkstoff molekular geprägtem Polymer zu Wirkstoff im Bereich von 1 :10 bis 100:1 , be- vorzugt von 1 :1 bis 10:1 , besonders bevorzugt von 4:1 bis 5:1 und insbesondere bei 4:1.
Fettphase
Die erfindungsgemäßen Zubereitungen umfassen wenigstens ein Fettphase. Unter Fettphase werden alle kosmetisch akzeptablen Öle, Fette und/oder Wachse verstanden.
Inhaltsstoffe für erfindungsgemäße kosmetische Zusammensetzungen
Diese Inhaltsstoffe sind vorzugsweise ausgewählt der Gruppe der natürlichen oder synthetischen Polymere, Pigmente, Feuchthaltemittel, Öle, Wachse, Enzyme, Mineralien, Vitamine, Sonnenschutzmittel, Farbstoffe, Duftstoffe, Antioxidantien, Konservie- rungsmittel und/oder pharmazeutische Wirkstoffe.
Geeignete Hilfs- und Zusatzstoffe für die Herstellung von hautkosmetischen Zubereitungen sind dem Fachmann geläufig und können aus Handbüchern der Kosmetik, beispielsweise Schrader, Grundlagen und Rezepturen der Kosmetika, Hüthig Verlag, Hei- delberg, 1989, ISBN 3-7785-1491-1 , oder Limbach, Kosmetik: Entwicklung, Herstellung und Anwendung ksometischer Mittel, 2. erweiterte Auflage, 1995, Georg Thieme Verlag, ISBN 3 13 712602 9 entnommen werden.
Vorzugsweise erfolgt die Verwendung der erfindungsgemäßen Wirkstoff-molekular- geprägten Polymere in Dermokosmetika in Kombination mit wenigstens einem davon verschiedenen Bestandteil, der ausgewählt ist unter kosmetisch aktiven Wirkstoffen, Emulgatoren, Tensiden, Konservierungsmitteln, Parfümölen, Verdickern, Haarpolymeren, Haar-und Hautconditionern, Pfropfpolymeren, wasserlöslichen oder dispergierba- ren silikonhaltigen Polymeren, Lichtschutzmitteln, Bleichmitteln, Gelbildnern, Pflegemit- teln, Färbemitteln, Tönungsmitteln, Bräunungsmitteln, Farbstoffen, Pigmenten, Konsistenzgebern, Feuchthaltemitteln, Rückfettern, Collagen, Eiweißhydrolysaten, Lipiden, Antioxidantien, Entschäumern, Antistatika, Emollienzien und Weichmachern.
Vorteilhafterweise werden die Antioxidantien gewählt aus der Gruppe bestehend aus Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazo- Ie (z.B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L- Carnosin und deren Derivate (z.B. Anserin), Carotinoide, Carotine (z.B. ß-Carotin, Ly- copin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Aurothioglucose, Propylthiouracil und andere Thiole (z.B. Thiorodoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl- , Methyl-, Ethyl-, Propyl-, Amyl-, Butyl-, und Lauryl-, Palmitoyl-, Oleyl-, γ-Linoleyl-, Cho- lesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthio- dipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfo- ximine, Homocysteinsulfoximine, Buthioninsulfone, Penta-, Hexa-, Heptathioninsulfo- ximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μmol/kg), ferner (Me- tall)-Chelatoren (z.B. α-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α- Hydroxysäuren (z.B. Citronensäure, Milchsäure, Apfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. γ-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und deren De- rivate (z.B. Natriumascorbat, Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherol und Derivate (z.B. Vitamin-E-Acetat, Tocotrienol), Vitamin A und Derivate (Vitamin-A-Palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Carnosin, Butylhydroxyto- luol, Butylhydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Tri- hydroxybutyrophenon, Harnsäure und deren Derivate, Mannose und deren Derivate, Zink und dessen Derivate (z.B. ZnO, ZnSO4), Selen und dessen Derivate (z.B. Se- lenmethionin), Stilbene und deren Derivate (z.B. Stilbenoxid, Trans-Stilbenoxid).
Zu den erfindungsgemäß bevorzugt einzusetzenden Vitaminen, Provitaminen oder Vi- taminvorstufen der Vitamin B-Gruppe oder deren Derivaten sowie den Derivaten von 2- Furanon gehören unter anderem:
Vitamin Bi, Trivialname Thiamin, chemische Bezeichnung 3-[(4'-Amino-2'-methyl-5'- pyrimidinyl) methyl]-5-(2-hydroxyethyl)-4-methylthiazoliumchlorid.
Vitamin B2, Trivialname Riboflavin, chemische Bezeichung 7,8-Dimethyl-10-(1-D- ribityl)-benzo[g]pteridin-2,4(3H,10H)-dion. In freier Form kommt Riboflavin z. B. in Molke vor, andere Riboflavin-Derivate lassen sich aus Bakterien und Hefen isolieren. Ein erfindungsgemäß ebenfalls geeignetes Stereoisomer des Riboflavin ist das aus Fisch- mehl oder Leber isolierbare Lyxoflavin, das statt des D-Ribityl-Restes einen D-Arabityl- Rest trägt.
Vitamin B3. Unter dieser Bezeichnung werden häufig die Verbindungen Nicotinsäure und Nicotinsäureamid (Niacinamid) geführt. Erfindungsgemäß bevorzugt ist das Nico- tinsäureamid.
Vitamin B5 (Pantothensäure und Panthenol). Bevorzugt wird Panthenol eingesetzt. Erfindungsgemäß einsetzbare Derivate des Panthenols sind insbesondere die Ester und Ether des Panthenols sowie kationisch derivatisierte Panthenole. In einer weiteren be- vorzugten Ausführungsform der Erfindung können zusätzlich zu Pantothensäure oder Panthenol auch Derivate des 2-Furanon eingesetzt werden. Besonders bevorzugte Derivate sind die auch im Handel erhältlichen Substanzen Dihydro-3 hydroxy-4,4- dimethyl-2(3H)-furanon mit dem Trivialnamen Pantolacton (Merck), 4 Hydroxymethyl-γ- butyrolacton (Merck), 3,3-Dimethyl-2-hydroxy-γ-butyrolacton (Aldrich) und 2,5- Dihydro- 5-methoxy-2-furanon (Merck), wobei ausdrücklich alle Stereoisomeren eingeschlossen sind.
Vorteilhafterweise verleihen diese Verbindungen den erfindungsgemässen Dermokos- metika feuchtigkeitsspendende sowie hautberuhigende Eigenschaften.
Vitamin B6, wobei man hierunter keine einheitliche Substanz, sondern die unter den Trivialnamen Pyridoxin, Pyridoxamin und Pyridoxal bekannten Derivate des 5 Hydro- xymethyl-2-methylpyridin-3-ols versteht.
Vitamin B7 (Biotin), auch als Vitamin H oder "Hautvitamin" bezeichnet. Bei Biotin handelt es sich um (3aS,4S, 6aR)-2-Oxohexahydrothienol[3,4-d]imidazol-4-valeriansäure.
Panthenol, Pantolacton, Nicotinsäureamid sowie Biotin sind erfindungsgemäß ganz besonders bevorzugt.
Farbstoffe Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, veröffentlicht im Verlag Chemie, Weinheim, 1984, zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentration von 0,001 bis 0,1 Gew.-%, bezogen auf die ge- samte Mischung, eingesetzt.
Pigmente
In einer bevorzugten Ausführungsform enthalten die erfindungsgemäßen Zusammensetzungen mindestens ein Pigment. Die Pigmente liegen in der Produktmasse in unge- löster Form vor und können in einer Menge von 0,01 bis 25 Gew.%, besonders bevorzugt von 5 bis 15 Gew.% enthalten sein. Die bevorzugte Teilchengröße beträgt 1 bis 200 μm, insbesondere 3 bis 150 μm, besonders bevorzugt 10 bis 100 μm. Die Pigmente sind im Anwendungsmedium praktisch unlösliche Farbmittel und können anorganisch oder organisch sein. Auch anorganisch-organische Mischpigmente sind möglich. Bevorzugt sind anorganische Pigmente. Der Vorteil der anorganischen Pigmente ist deren ausgezeichnete Licht-, Wetter- und Temperaturbeständigkeit. Die anorganischen Pigmente können natürlichen Ursprungs sein, beispielsweise hergestellt aus Kreide, Ocker, Umbra, Grünerde, gebranntem Terra di Siena oder Graphit. Bei den Pigmenten kann es sich um Weißpigmente wie z.B. Titandioxid oder Zinkoxid, um Schwarzpig- mente wie z.B. Eisenoxidschwarz, Buntpigmente wie z.B. Ultramarin oder Eisenoxid rot, um Glanzpigmente, Metalleffekt-Pigmente, Perlglanzpigmente sowie um Fluoreszenz- oder Phosphoreszenzpigmente handeln, wobei vorzugsweise mindestens ein Pigment ein farbiges, nicht-weißes Pigment ist. Geeignet sind Metalloxide, -hydroxide und -oxidhydrate, Mischphasenpigmente, schwefelhaltige Silicate, Metallsulfide, kom- plexe Metallcyanide, Metallsulfate, -Chromate und -molybdate sowie die Metalle selbst (Bronze-Pigmente). Geeignet sind insbesondere Titandioxid (Cl 77891 ), schwarzes Eisenoxid (Cl 77499), gelbes Eisenoxid (Cl 77492), rotes und braunes Eisenoxid (Cl 77491 ), Manganviolett (Cl 77742), Ultramarine (Natrium-Aluminiumsulfosilikate, Cl 77007, Pigment Blue 29), Chromoxidhydrat (C177289), Eisenblau (Ferric Ferro- Cyanide, CI7751 0), Carmine (Cochineal). Besonders bevorzugt sind Perlglanz- und Farbpigmente auf Mica- bzw. Glimmerbasis welche mit einem Metalloxid oder einem Metalloxychlorid wie Titandioxid oder Wismutoxychlorid sowie gegebenenfalls weiteren farbgebenden Stoffen wie Eisenoxiden, Eisenblau, Ultramarine, Carmine etc. beschichtet sind und wobei die Farbe durch Variation der Schichtdicke bestimmt sein kann. Derartige Pigmente werden beispielsweise unter den Handelsbezeichnungen Rona®, Colorona®, Dichrona® und Timiron® (Merck) vertrieben. Organische Pigmente sind beispielsweise die natürlichen Pigmente Sepia, Gummigutt, Knochenkohle, Kasseler Braun, Indigo, Chlorophyll und andere Pflanzenpigmente. Synthetische organische Pigmente sind beispielsweise Azo-Pigmente, Anthrachinoide, Indigoide, Dioxazin-, Chinacridon-, Phtalocyanin-, Isoindolinon-, Perylen- und Perinon-, Metallkomplex-, Alkaliblau- und Diketopyrrolopyrrol-Pigmente.
In einer Ausführungsform erfolgt die Verwendung der erfindungsgemäßen bzw. gemäß dem erfinderischen Verfahren hergestellten Wirkstoff-molekular-geprägten Polymere mit mindestens einem partikelförmigen Stoff, der in der Zusammensetzung in einem Anteil von 0,01 bis 10, bevorzugt von 0,05 bis 5 Gew.% vorliegt. Geeignete Stoffe sind z.B. Stoffe, die bei Raumtemperatur (25°C) fest sind und in Form von Partikeln vorliegen. Geeignet sind etwa Silica, Silikate, Aluminate, Tonerden, Mica, Salze, insbesondere anorganische Metallsalze, Metalloxide, z.B. Titandioxid, Minerale und Polymerpar- tikel. Die Partikel liegen in dem Mittel ungelöster, vorzugsweise stabil dispergierter Form vor und können sich nach Aufbringen auf die Anwendungsoberfläche und Verdampfen des Lösungsmittels in fester Form abscheiden. Bevorzugte partikelförmige Stoffe sind Silica (Kieselgel, Siliciumdioxid) und Metallsalze, insbesondere anorganische Metallsalze, wobei Silica besonders bevorzugt ist. Metallsalze sind z.B. Alkali- oder Erdalkalihalogenide wie Natriumchlorid oder Kaliumchlorid; Alkali- oder Erdalkalisulfate wie Natriumsulfat oder Magnesiumsulfat.
Perlglanzmittel
Als Perlglanzmittel kommen beispielsweise in Frage: Alkylenglycolester, spezielle E- thylenglycoldisterat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanoamid; Par- tialglyceride, speziell Stearinsäuremonoglycerid; Ester von mehrwertigen, gegebenen- falls hydroxysubstituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen
Übliche Verdickungsmittel in derartigen Formulierungen sind vernetzte Polyacrylsäu- ren und deren Derivate, Polysaccharide und deren Derivate, wie Xanthangum, Agar- Agar, Alginate oder Tylosen, Cellulosederivate, z.B. Carboxymethylcellulose oder Hydroxycarboxymethylcellulose, Fettalkohole, Monoglyceride und Fettsäuren, Polyvi- nylalkohol und Polyvinylpyrrolidon. Bevorzugt werden nichtionische Verdicker einge- setzt.
Geeignete kosmetisch und/oder dermokosmetisch aktive Wirkstoffe sind z.B. färbende Wirkstoffe, Haut-und Haarpigmentierungsmittel, Tönungsmittel, Bräunungsmittel, Bleichmittel, Keratin-härtende Stoffe, antimikrobielle Wirkstoffe, Lichtfilterwirkstoffe, Repellent-wirkstoffe, hyperemisierend wirkende Stoffe, keratolytisch und kera- toplastisch wirkende Stoffe, Antisch uppen Wirkstoffe, Antiphlogistika, keratinisierend wirkende Stoffe, antioxidativ bzw. als Radikalfänger aktive Wirkstoffe, hautbefeuchtende oder -feuchthaltende Stoffe, rückfettende Wirkstoffe, antierythimatös oder antiallergisch aktive Wirkstoffe, verzweigte Fettsäuren wie 18-Methyleicosansäure, und Mi- schungen davon.
Künstlich hautbräunende Wirkstoffe, die geeignet sind, die Haut ohne natürliche oder künstliche Bestrahlung mit UV-Strahlen zu bräunen, sind z.B. Dihydroxyaceton, AIIo- xan und Walnussschalenextrakt. Geeignete Keratin-härtende Stoffe sind in der Regel Wirkstoffe, wie sie auch in Antitranspirantien eingesetzt werden, wie z.B. Kaliumaluminiumsulfat, Aluminiumhydroxychlorid, Aluminiumlactat, etc.
Antimikrobielle Wirkstoffe werden eingesetzt, um Mikroorganismen zu zerstören bzw. ihr Wachstum zu hemmen und dienen somit sowohl als Konservierungsmittel als auch als desodorierend wirkender Stoff, welcher die Entstehung oder die Intensität von Körpergeruch vermindert. Dazu zählen z.B. übliche, dem Fachmann bekannte Konservierungsmittel, wie p-Hydroxybenzoesäureester, Imidazolidinyl-Harnstoff, Formaldehyd, Sorbinsäure, Benzoesäure, Salicylsäure, etc. Derartige desodorierend wirkende Stoffe sind z.B. Zinkricinoleat, Triclosan, Undecylensäurealkylolamide, Citronensäuretriethy- lester, Chlorhexidin etc.
Als geeignete Konservierungsmittel sind erfindungsgemäß vorteilhaft zu verwenden:
Tabelle 4: geeignete Konservierungsmittel. Bei den in der obigen Tabelle aufgeführten E-Nummern handelt es sich um die im der Richtlinie 95/2/EWG gebräuchlichen Be- Zeichnungen.
Ferner sind erfindungsgemäß in der Kosmetik gebräuchliche Konservierungsmittel o- der Konservierungshilfsstoffe Dibromdicyanobutan (2-Brom-2-brommethyl- glutarodinitril), 3-lod-2-propinylbutylcarbamat, 2-Brom-2-nitro-propan-1 ,3-diol, Imidazo- lidinylharnstoff, 5-Chlor-2-methyl-4-isothiazolin-3-on, 2-Chloracetamid, Benzalkonium- chlorid und Benzylalkohol geeignet. Ferner sind Phenylhydroxyalkylether, insbesonde- re die unter der Bezeichnung Phenoxyethanol bekannte Verbindung aufgrund ihrer bakteriziden und fungiziden Wirkungen auf eine Anzahl von Mikroorganismen als Konservierungsmittel geeignet.
Auch andere keimhemmende Mittel sind ebenfalls geeignet, in die erfindungsgemäßen Zubereitungen eingearbeitet zu werden. Vorteilhafte Substanzen sind zum Beispiel 2,4,4'-Trichlor-2'-hydroxydiphenylether (Irgasan), 1 ,6-Di-(4-chlorphenylbiguanido)- hexan (Chlorhexidin), 3,4,4'-Trichlorcarbanilid, quaternäre Ammoniumverbindungen, Nelkenöl, Minzöl, Thymianöl, Triethylcitrat, Farnesol (3,7,11-Trimethyl-2,6,10- dodecatιϊen-1-ol) sowie die in den Patentoffenlegungsschriften DE-37 40 186, DE-39 38 140, DE-42 04 321 , DE-42 29 707, DE-43 09 372, DE-44 11 664, DE-195 41 967, DE-195 43 695, DE-195 43 696, DE-195 47 160, DE-196 02 108, DE-196 02 110, DE- 196 02 11 1 , DE-196 31 003, DE-196 31 004 und DE-196 34 019 und den Patentschrif- ten DE-42 29 737, DE-42 37 081 , DE-43 24 219, DE-44 29 467, DE-44 23 410 und DE-195 16 705 beschriebenen Wirkstoffe bzw. Wirkstoffkombinationen. Auch Natrium- hydrogencarbonat ist vorteilhaft zu verwenden. Ebenso können auch mikrobielle Polypeptide eingesetzt werden.
Parfümöle
Gegebenenfalls können die kosmetischen Zusammensetzungen Parfümöle enthalten. Als Parfümöle seien beispielsweise Gemische aus natürlichen und synthetischen Riechstoffen genannt. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rose, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Pe- titgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orange), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opopo- nax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, 4-tert.- Butylcyclo-hexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Sty- rallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethy- lether, zu den Aldehyden z.B. die Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonat, zu den Ketonen z.B. die Jonone, cc-lsomethylionen und Methylcedrylke- ton, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terioneol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzeöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galba- numöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydro- myrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene®Forte, Ambroxan, Indol, He- dione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsali- cylat, Vertofix®Coeur, Iso-E-Super®, Fixolide®NP, Evernyl, Iraldein gamma, Phenyles- sigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romillat, Irotyl und Floramat allein oder in Mischungen eingesetzt.
Öle, Fette und Wachse
Die erfindungsgemäßen Zusammensetzungen enthalten wenigstens eine Fettphase. Unter Fettphase werden Öle, Fette und/oder Wachse verstanden. Bestandteile der Öl- und/oder Fettphase der erfindungsgemäßen Zusammensetzungen werden vorteilhaft gewählt aus der Gruppe der Lecithine und der Fettsäuretriglyceride, namentlich der Triglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12 bis 18 C-Atomen. Die Fettsäuretriglyceride können beispielsweise vorteilhaft gewählt werden aus der Gruppe der synthetischen, halbsynthetischen und natürlichen Öle, wie z.B. Olivenöl, Sonnenblumenöl, Sojaöl, Erdnußöl, Rapsöl, Mandelöl, Palmöl, Kokosöl, Rizinusöl, Weizenkeimöl, Traubenkernöl, Distelöl, Nachtkerzenöl, Macadamianußöl und dergleichen mehr. Weitere polare Ölkomponenten können gewählt werden aus der Gruppe der Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkancarbonsäuren einer Kettenlänge von 3 bis 30 C-Atomen und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen sowie aus der Gruppe der Ester aus aromatischen Carbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen. Solche Esteröle können dann vorteilhaft gewählt werden aus der Gruppe Isopropylmyristat, Isopropylpalmitat, Isopropylstearat, I- sopropyloleat, n-Butylstearat, n-Hexyllaurat, n-Decyloleat, Isooctylstearat, Isono- nylstearat, Isononylisononanoat, 2-Ethylhexyl-palmitat, 2-Ethylhexyllaurat, 2-
Hexyldecylstearat, 2-Octyl-dodecylpalmitat, Oleyloleat, Oleylerucat, Erucyloleat, Erucy- lerucat Dicaprylyl Carbonat (Cetiol CC) und Cocoglyceride (Myritol 331 ), Butylen Glycol Dicaprylat/Dicaprat und Dibutyl Adipat sowie synthetische, halbsynthetische und natürliche Gemische solcher Ester, wie z.B. Jojobaöl. Ferner können eine oder mehrere Ölkomponenten vorteilhaft gewählt werden aus der Gruppe der verzweigten und unverzweigten Kohlenwasserstoffe und -wachse, der SiI- konöle, der Dialkylether, der Gruppe der gesättigten oder ungesättigten, verzweigten oder unverzweigten Alkohole. Auch beliebige Abmischungen solcher Öl- und Wachskomponenten sind vorteilhaft im Sinne der vorliegenden Erfindung einzusetzen. Es kann auch gegebenenfalls vorteilhaft sein, Wachse, beispielsweise Cetylpalmitat, als alleinige Lipidkomponente der Ölphase einzusetzen. Erfindungsgemäß vorteilhaft wird die Ölkomponente gewählt aus der Gruppe 2-Ethylhexylisostearat, Octyldodecanol, Isotridecylisononanoat, Isoeicosan, 2-Ethylhexylcocoat, C12-15-Alkylbenzoat, Capryl- Caprinsäure-triglycerid, Dicaprylylether. Erfindungsgemäß vorteilhaft sind Mischungen aus C12-15-Alkylbenzoat und 2-Ethylhexylisostearat, Mischungen aus C12-15-
Alkylbenzoat und Isotridecylisononanoat sowie Mischungen aus C12-15-Alkylbenzoat, 2-Ethylhexylisostearat und Isotridecylisononanoat. Erfindungsgemäß besonders bevorzugt werden als Öle mit einer Polarität von 5 bis 50 mN/m Fettsäuretriglyceride, insbesondere Sojaöl und/oder Mandelöl eingesetzt. Von den Kohlenwasserstoffen sind Pa- raffinöl, Squalan und Squalen vorteilhaft im Sinne der vorliegenden Erfindung zu ver- wenden.
Ferner kann die Ölphase vorteilhaft gewählt werden aus der Gruppe der Guerbetalko- hole. Guerbetalkohole sind benannt nach Marcel Guerbet, der ihre Herstellung erstmalig beschrieb. Sie entstehen nach der Reaktionsgleichung
R
& \
R-CHr-CH2-OH _ *,. R — CH-CH2-OH
Katalysator durch Oxidation eines Alkohols zu einem Aldehyd, durch Aldol-Kondensation des Aldehyds, Abspaltung von Wasser aus dem Aldol- und Hydrierung des Allylaldehyds. Guerbetalkohole sind selbst bei niederen Temperaturen flüssig und bewirken praktisch keine Hautreizungen. Vorteilhaft können sie als fettende, überfettende und auch rück- fettend wirkende Bestandteile in kosmetischen Zusammensetzungen eingesetzt werden.
Die Verwendung von Guerbet-Alkoholen in Kosmetika ist an sich bekannt. Solche Spe- cies zeichnen sich dann meistens durch die Struktur
aus. Dabei bedeuten Ri und R2 in der Regel unverzweigte Alkylreste.
Erfindungsgemäß vorteilhaft werden der oder die Guerbet-Alkohole gewählt aus der
Gruppe, wobei
Ri = Propyl, Butyl, Pentyl, Hexyl, Heptyl oder Octyl und
R2 = Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tridecyl oder Tetradecyl.
Erfindungsgemäß bevorzugte Guerbet-Alkohole sind 2-Butyloctanol (beispielsweise als lsofol®12 (Condea) kommerziell erhältlich) und 2-Hexyldecanol (beispielsweise als Iso- fol®16 (Condea) kommerziell erhältlich). Auch Mischungen von erfindungsgemäßen Guerbet-Alkoholen sind erfindungsgemäß vorteilhaft zu verwenden wie beispielsweise Mischungen aus 2-Butyloctanol und 2-Hexyldecanol (beispielsweise als lsofol®14 (Condea) kommerziell erhältlich).
Auch beliebige Abmischungen solcher Öl- und Wachskomponenten sind vorteilhaft im Sinne der vorliegenden Erfindung einzusetzen. Unter den Polyolefinen sind Polydece- ne die bevorzugten Substanzen. Vorteilhaft kann die Ölkomponente ferner einen Gehalt an cyclischen oder linearen Silikonölen aufweisen oder vollständig aus solchen Ölen bestehen, wobei allerdings bevorzugt wird, außer dem Silikonöl oder den Silikonölen einen zusätzlichen Gehalt an anderen Ölphasenkomponenten zu verwenden. Niedermolekulare Silicone oder Siliconöle sind in der Regel durch folgende allgemeine Formel definiert:
Rj- O— S. — O -R3
Höhermolekulare Silicone oder Siliconöle sind in der Regel durch folgende allgemeine Formel definiert,
wobei die Siliciumatome mit gleichen oder unterschiedlichen Alkylresten und/oder Aryl- resten substituiert sein können, welche hier verallgemeinernd durch die Reste Ri bis R4 dargestellt sind. Die Anzahl der unterschiedlichen Reste ist aber nicht notwendigerweise auf bis zu 4 beschränkt, m kann dabei Werte von 2 bis 200.000 annehmen.
Erfindungsgemäß vorteilhaft einzusetzende cyclische Silicone sind in der Regel durch folgende allgemeine Formel definiert
wobei die Siliciumatome mit gleichen oder unterschiedlichen Alkylresten und/oder Aryl- resten substituiert werden können, welche hier verallgemeinernd durch die Reste Ri bis R4 dargestellt sind. Die Anzahl der unterschiedlichen Reste ist aber nicht notwendigerweise auf bis zu 4 beschränkt, "n" kann dabei Werte von 3/2 bis 20 annehmen. Gebrochene Werte für n berücksichtigen, daß ungeradzahlige Anzahlen von Siloxylgrup- pen im Zyklus vorhanden sein können.
Vorteilhaft wird Phenyltrimethicon als Siliconöl gewählt. Auch andere Silikonöle, beispielsweise Dimethicon, Hexamethylcyclotrisiloxan, Phenyldimethicon, Cyclomethicon (Octamethylcyclotetrasiloxan), Hexamethylcyclotrisiloxan, Polydimethylsiloxan, Po- ly(methylphenylsiloxan), Cetyldimethicon, Behenoxydimethicon sind vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden. Vorteilhaft sind ferner Mischungen aus Cyclomethicon und Isotridecylisononanoat, sowie solche aus Cyclomethicon und 2- Ethylhexylisostearat. Es ist aber auch vorteilhaft, Silikonöle ähnlicher Konstitution wie der vorstehend bezeichneten Verbindungen zu wählen, deren organische Seitenketten derivatisiert, beispielsweise polyethoxyliert und/oder polypropoxyliert sind. Dazu zählen beispielsweise Polysiloxanpolyalkyl-Polyether-copolymere wie z.B. Cetyl-Dimethicon- Copolyol. Vorteilhaft wird Cyclomethicon (Octamethylcyclo-tetrasiloxan) als erfindungsgemäß zu verwendendes Silikonöl eingesetzt. Erfindungsgemäß vorteilhaft zu verwendende Fett- und/oder Wachskomponenten können aus der Gruppe der pflanzlichen Wachse, tierischen Wachse, Mineralwachse und petrochemischen Wachse gewählt werden. Vorteilhaft sind beispielsweise Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Beerenwachs, Ouricurywachs, Montanwachs, Jojobawachs, Shea Butter, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozo- kerit (Erdwachs), Paraffinwachse und Mikrowachse.
Weitere vorteilhafte Fett- und/oder Wachskomponenten sind chemisch modifzierte Wachse und synthetische Wachse, wie beispielsweise Syncrowax®HRC (Glyceryltribe- henat), und Syncrowax®AW 1 C (C is-36- Fettsäure) sowie Montanesterwachse, Sasol- wachse, hydrierte Jojobawachse, synthetische oder modifizierte Bienenwachse (z. B. Dimethicon Copolyol Bienenwachs und/oder C3o-so-Alkyl Bienenwachs), Cetyl Ricino- leate wie beispielsweise Tegosoft®CR, Polyalkylenwachse, Polyethylenglykolwachse, aber auch chemisch modifzierte Fette, wie z. B. hydrierte Pflanzenöle (beispielsweise hydriertes Ricinusöl und/oder hydrierte Cocosfettglyceride), Triglyceride wie beispiels- weise Hydriertes Soy Glycerid, Trihydroxystearin, Fettsäuren, Fettsäureester und GIy- kolester wie beispielsweise C2o-4o-Alkylstearat, C2o-4o-Alkylhydroxy-stearoylstearat und/oder Glykolmontanat. Weiter vorteilhaft sind auch bestimmte Organosiliciumver- bindungen, die ähnliche physikalische Eigenschaften aufweisen wie die genannten Fett- und/oder Wachskomponenten, wie beispielsweise Stearoxytrimethylsilan. Erfindungsgemäß können die Fett- und/oder Wachskomponenten sowohl einzeln als auch als Gemisch in den Zusammensetzungen verwendet werden. Auch beliebige Abmischungen solcher Öl- und Wachskomponenten sind vorteilhaft im Sinne der vorliegenden Erfindung einzusetzen. Vorteilhaft wird die Ölphase gewählt aus der Gruppe 2-Ethylhexylisostearat, Octyldodecanol, Isotridecylisononanoat, Butylen Glycol Di- caprylat/Dicaprat, 2-Ethyl-hexylcocoat, Ci2-is-Alkylbenzoat, Capryl-Caprin-säure- triglycerid, Dicaprylylether. Besonders vorteilhaft sind Mischungen aus Octyldodecanol, Capryl-Caprinsäure-triglycerid, Dicaprylylether, Dicaprylyl Carbonat, Cocoglyceriden oder Mischungen aus Ci2-is-Alkylbenzoat und 2-Ethylhexylisostearat, Mischungen aus Ci2-15-Alkylbenzoat und Butylen Glycol Dicaprylat/Dicaprat sowie Mischungen aus C12- 15-Alkylbenzoat, 2-Ethylhexylisostearat und Isotridecylisononanoat. Von den Kohlenwasserstoffen sind Paraffinöl, Cycloparaffin, Squalan, Squalen, hydriertes Polyisobuten bzw. Polydecen vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden. Die Ölkomponente wird ferner vorteilhaft aus der Gruppe der Phospholipide gewählt. Die Phospholipide sind Phosphorsäureester acylierter Glycerine. Von größter Bedeutung unter den Phosphatidylcholinen sind beispielsweise die Lecithine, welche sich durch die allgemeine Struktur
auszeichnen, wobei R' und R" typischerweise unverzweigte aliphatische Reste mit 15 oder 17 Kohlenstoffatomen und bis zu 4 cis-Doppelbindungen darstellen.
Als erfindungsgemäß vorteilhaftes Paraffinöl kann erfindungsgemäß Merkur Weissoel Pharma 40 von Merkur Vaseline, Shell Ondina® 917, Shell Ondina® 927, Shell OiI 4222, Shell Ondina®933 von Shell & DEA OiI, Pionier® 6301 S, Pionier® 2071 (Hansen & Rosenthal) eingesetzt werden. Geeignete kosmetisch verträgliche Öl- und Fettkomponenten sind in Karl-Heinz Schrader, Grundlagen und Rezepturen der Kosmetika, 2. Auflage, Verlag Hüthig, Heidelberg, S. 319 - 355, beschrieben, worauf hier in vollem Umfang Bezug genommen wird.
Lösungsmittel
Sofern die erfindungsgemäßen bzw. gemäß dem erfinderischen Verfahren hergestellten Wirkstoff-molekular-geprägten Polymere in kosmetischen oder dermatologischen Zubereitungen verwendet werden, die eine Lösung oder Emulsion oder Dispersion darstellen, können als Lösungsmittel verwendet werden:
Wasser oder wäßrige Lösungen; Öle, wie Triglyceride der Caprin- oder der Caprylsäu- re, vorzugsweise aber Rizinusöl; Fette, Wachse und andere natürliche und synthetische Fettkörper, vorzugsweise Ester von Fettsäuren mit Alkoholen niedriger C-Zahl, z.B. mit Isopropanol, Propylenglykol oder Glycerin, oder Ester von Fettalkoholen mit Alkansäuren niedriger C-Zahl oder mit Fettsäuren; Alkohole, Diole oder Polyole niedriger C-Zahl, sowie deren Ether, vorzugsweise Ethanol, Isopropanol, Propylenglykol, Glycerin, Ethylenglykol, Ethylenglykolmonoethyl- oder -monobutylether, Propylenglykolmo- nomethyl, -monoethyl- oder -monobutylether, Diethylenglykolmonomethyl- oder - monoethylether und analoge Produkte. Insbesondere werden Gemische der vorstehend genannten Lösungsmittel verwendet. Bei alkoholischen Lösungsmitteln kann Wasser ein weiterer Bestandteil sein. Tenside
Erfindungsgemäß können Zusammensetzungen neben den erfindungsgemäßen bzw. gemäß dem erfinderischen Verfahren hergestellten Wirkstoff-molekular-geprägten Polymere auch Tenside enthalten. Solche Tenside sind beispielsweise: - Phosphorsäureester und Salze, wie beispielsweise DEA-Oleth-10 Phosphat und Di- laureth-4 Phosphat,
- Alkylsulfonate, beispielsweise Natriumcocosmonoglyceridsulfat, Natrium C12-14 Olefin- sulfonat, Natriumlaurylsulfoacetat und Magnesium PEG-3 Cocamidsulfat,
- Carbonsäuren und Derivate, wie beispielsweise Laurinsäure, Aluminiumstearat, Magnesiumalkanolat und Zinkundecylenat, Ester-Carbonsäuren, beispielsweise Calci- umstearoyllactylat, Laureth-6 Citrat und Natrium PEG-4 Lauramidcarboxylat,
- Ester, die durch Veresterung von Carbonsäuren mit Ethylenoxid, Glycerin, Sorbitan oder anderen Alkoholen entstehen,
- Ether, beispielsweise ethoxylierte Alkohole, ethoxyliertes Lanolin, ethoxylierte Polysi- loxane, propoxylierte POE Ether und Alkylpolyglycoside wie Laurylglucosid, Decylgly- cosid und Cocoglycosid.
Polysorbate
Erfindungsgemäß können die Zusammensetzungen neben den erfindungsgemäßen bzw. gemäß nach dem erfinderischen Verfahren hergestellten Wirkstoff-molekular- geprägten Polymere auch Polysorbate enthalten. Im Sinne der Erfindung vorteilhafte Polysorbate sind dabei das
- Polyoxyethylen(20)sorbitanmonolaurat (Tween 20, CAS-Nr. 9005-64-5)
- Polyoxyethylen(4)sorbitanmonolaurat (Tween 21 , CAS-Nr. 9005-64-5) - Polyoxyethylen(4)sorbitanmonostearat (Tween 61 , CAS-Nr. 9005-67-8)
- Polyoxyethylen(20)sorbitantristearat (Tween 65, CAS-Nr. 9005-71 -4)
- Polyoxyethylen(20)sorbitanmonooleat (Tween 80, CAS-Nr. 9005-65-6)
- Polyoxyethylen(5)sorbitanmonooleat (Tween 81 , CAS-Nr. 9005-65-5)
- Polyoxyethylen(20)sorbitantrioleat (Tween 85, CAS-Nr. 9005-70-3). Besonders vorteilhaft sind insbesondere
- Polyoxyethylen(20)sorbitanmonopalmitat (Tween 40, CAS-Nr. 9005-66-7)
- Polyoxyethylen(20)sorbitanmonostearat (Tween 60, CAS-Nr. 9005-67-8).
Diese werden erfindungsgemäß vorteilhaft in einer Konzentration von 0,1 bis 5 Ge- wichts-% und insbesondere in einer Konzentration von 1 ,5 bis 2,5 Gewichts-%, bezogen auf das Gesamtgewicht der Zusammensetzung einzeln oder als Mischung mehrer Polysorbate, eingesetzt.
Konditionierungsmittel In einer bevorzugten Ausführungsform der Erfindung enthalten die Zusammensetzungen auch Konditionierungsmittel. Erfindungsgemäß bevorzugte Konditionierungsmittel sind beispielsweise alle Verbindungen, welche im International Cosmetic Ingredient Dictionary and Handbook (Volume 4, Herausgeber: R. C. Pepe, J.A. Wenninger, G. N. McEwen, The Cosmetic, Toiletry, and Fragrance Association, 9. Auflage, 2002) unter Section 4 unter den Stichworten Hair Conditioning Agents, Humectants, Skin- Conditioning Agents, Skin-Conditioning Agents-Emollient, Skin-Conditioning Agents- Humectant, Skin-Conditioning Agents-Miscellaneous, Skin-Conditioning Agents- Occlusive und Skin Protectans aufgeführt sind sowie alle in der EP-A 934 956 (S.1 1- 13) unter "water soluble conditioning agent" und „oil soluble conditioning agent" aufgeführten Verbindungen. Weitere vorteilhafte Konditionierungsmittel stellen beispielsweise die nach INCI als Polyquaternium bezeichneten Verbindungen dar (insbesondere Polyquaternium-1 bis Polyquaternium-56).
Zu den geeigneten Konditionierungsmitteln zählen beispielsweise auch polymere qua- ternäre Ammoniumverbindungen, kationische Cellulosederivate und Polysaccharide. Erfindungsgemäß vorteilhafte Konditionierungsmittel können dabei unter den in der folgenden Tabelle dargestellten Verbindungen gewählt werden.
Tabelle 5: Vorteilhaft zu verwendende Konditioniermittel
Weitere erfindungsgemäß vorteilhafte Konditionierer stellen Cellulosederivate und qua- ternisierte Guargum Derivate, insbesondere Guar Hydroxypropylammoniumchlorid (z.B. Jaguar Excel®, Jaguar C 162® (Rhodia), CAS 65497-29-2, CAS 39421-75-5) dar. Auch nichtionische Poly-N-vinylpyrrolidon/Polyvinylacetat-Copolymere (z.B. Lu- viskol®VA 64 (BASF Aktiengesellschaft )), anionische Acrylat-Copolymere (z.B. Lu- viflex®Soft (BASF Aktiengesellschaft )), und/oder amphotere Amid/Acrylat/Methacrylat Copolymere (z.B. Amphomer® (National Starch)) können erfindungsgemäß vorteilhaft als Konditionierer eingesetzt werden.
Puderrohstoffe
Ein Zusatz von Puderrohstoffen kann allgemein vorteilhaft sein. Besonders bevorzugt wird der Einsatz von Talkum.
Ethoxylierte Glycerin-Fettsäureester
Erfindungsgemäß können die Zusammensetzungen neben den molekular geprägten Polymeren auch ethoxylierte Öle ausgewählt aus der Gruppe der ethoxylierten Glycerin-Fettsäureester, insbesondere bevorzugt PEG-10 Olivenölglyceride, PEG-1 1 Avoca- doölglyceride, PEG-1 1 Kakaobutterglyceride, PEG-13 Sonnenblumenölglyceride, PEG- 15 Glycerylisostearat, PEG-9 Kokosfettsäureglyceride, PEG-54 Hydriertes Ricinusöl, PEG-7 Hydriertes Ricinusöl, PEG-60 Hydriertes Ricinusöl, Jojobaöl Ethoxylat (PEG-26 Jojoba-Fett-Säuren, PEG-26 Jojobaalkohol), Glycereth-5 Cocoat, PEG-9 Kokosfettsäureglyceride, PEG-7 Glycerylcocoat, PEG-45 Palmkemölglyceride, PEG-35 Ricinusöl, Olivenöl-PEG-7 Ester, PEG-6 Caprylisäure/ Caprinsäureglyceride, PEG-10 Olivenölglyceride, PEG-13 Sonnenblumenölglyceride, PEG-7 Hydriertes Ricinusöl, Hydrierte Palmkernölglycerid-PEG-6 Ester, PEG-20 Maisölglyceride, PEG- 18 Glycerylolead- cocoat, PEG-40 Hydriertes Ricinusöl, PEG-40 Ricinusöl, PEG-60 Hydriertes Ricinusöl, PEG-60 Maisölglyceride, PEG-54 Hydriertes Ricinusöl, PEG-45 Palmkemölglyceride, PEG-35 Ricinusöl, PEG-80 Glycerylcocoat, PEG-60 Mandelölglyceride, PEG-60 "Eve- ning Primrose" Glyceride, PEG-200, Hydriertes Glycerylpalmat und PEG-90 Glycerylisostearat enthalten.
Bevorzugte ethoxylierte Öle sind PEG-7 Glycerylcocoat, PEG-9 Kokosglyceride, PEG- 40 Hydriertes Rizinusöl, PEG-200 hydriertes Glycerylpalmat. Ethoxylierte Glycerin- Fettsäureester werden in wässrigen Reinigungsrezepturen zu verschiedenen Zwecken eingesetzt. Niedrig ethoxylierte Glycerin-Fettsäureester (3-12 Ethylenoxideinheiten) dienen üblicherweise als Rückfetter zur Verbesserung des Hautgefühls nach dem Abtrocknen, Glycerin-Fettsäureester mit einem Ethoxylierungsgrad von ca. 30-50 dienen als Lösungsvermittler für unpolare Substanzen wie Parfumöle. Hochethoxylierte Glycerin-Fettsäureester werden als Verdicker eingesetzt. Allen diesen Substanzen ist ge- meinsam, dass sie auf der Haut bei der Anwendung bei der Verdünnung mit Wasser ein besonderes Hautgefühl erzeugen.
Lichtschutzmittel
Erfindungsgemäß ist ebenfalls die Verwendung der erfindungsgemäßen bzw. gemäß dem erfinderischen Verfahren hergestellten Wirkstoff-molekular-geprägten Polymere in Kombination mit Lichtschutzmittel in dermokosmetischen Zubereitungen. Diese kosmetischen und/oder dermatologischen Lichtschutzzusammensetzungen dienen dem kosmetischen und/oder dermatologischen Lichtschutz, ferner zur Behandlung und Pflege der Haut und/oder der Haare und als Schminkprodukt in der dekorativen Kos- metik. Dazu zählen beispielsweise Sonnencremes, -lotionen, -milche, -öle, -baisame, - gele, Lippenpflegen und Lippenstifte, Abdeckcremes und -stifte, Feuchtigkeitscremes, -lotionen, -emulsionen, Gesichts-, Körper- und Handcremes, Haarkuren und - Spülungen, Haarfestiger, Styling-Gele, Haarsprays, Deoroller oder Augenfältchencre- mes, Tropicals, Sunblocker, Aftersun-Präparate. Alle Präparate enthalten wenigstens ein Wirkstoff-molekular-geprägten Polymere und eine der genannten UV- Filtersubstanzen.
Sonnenöle sind meist Mischungen verschiedener Öle mit einem oder mehreren Lichtschutzfiltern und Parfümölen. Die Ölkomponenten werden nach unterschiedlichen kosmetischen Eigenschaften ausgewählt. Öle, die gut fetten und ein weiches Hautgefühl vermitteln, wie Mineralöle (z. B. Paraffinöle) und Fettsäuretriglyceride (z. B. Erd- nussöl, Sesamöl, Avocadoöl, mittelkettige Triglyceride), werden mit Ölen gemischt, die die Verteilbarkeit und das Einziehen der Sonnenöle in die Haut verbessern, die Klebrigkeit verringern und den Ölfilm für Luft und Wasserdampf (Schweiß) durchlässig ma- chen. Hierzu zählen verzweigtkettige Fettsäureester (z. B. Isopropylpalmitat) und Siliconöle (z. B. Dimethylsilicon). Bei Verwendung von Ölen auf Basis ungesättigter Fettsäuren werden Antioxidantien, z. B. Tocopherol, zugesetzt, um das Ranzigwerden zu verhindern. Sonnenöle enthalten als wasserfreie Formulierungen in der Regel keine Konservierungsmittel. Sonnenmilch und -Cremes werden als Öl-in-wasser- (O/W) E- mulsionen und als Wasser-in-ÖI-(W/O-)Emulsionen hergestellt. Je nach Emulsionstyp sind die Eigenschaften der Präparate sehr unterschiedlich: O/W-Emulsionen sind auf der Haut leicht verteilbar, sie ziehen meist schnell ein und sind fast immer mit Wasser leicht abwaschbar. W/O-Emulsionen sind schwerer einzureiben, sie fetten die Haut stärker und wirken dadurch etwas klebriger, bewahren aber andererseits die Haut bes- ser vor dem Austrocknen. W/O-Emulsionen sind meist wasserfest. Bei O/W- Emulsionen entscheiden die Emulsionsbasis, die Auswahl geeigneter Lichtschutzstoffe und ggf. der Einsatz von Hilfsstoffen (z. B. Polymere) über den Grad der Wasserfestigkeit. Die Grundlagen von flüssigen und cremeförmigen O/W-Ernulsionen ähneln in ihrer Zusammensetzung den sonstigen in der Hautpflege üblichen Emulsionen. Sonnenmilch sollen die durch Sonne, Wasser und Wind ausgetrocknete Haut ausreichend fetten. Sie dürfen nicht klebrig sein, da dies in der Hitze und bei Kontakt mit Sand als besonders unangenehm empfunden wird. Die Lichtschutzmittel sind in der Regel auf der Basis eines Trägers, der mindestens eine Ölphase enthält. Es sind aber auch Zusammensetzungen allein auf wässriger Basis möglich. Demgemäss kommen Öle, Öl-inWasser- und Wasser-in-ÖI-Emulsionen, Cremes und Pasten, Lippenschutzstiftmassen oder fettfreie Gele in Betracht. Als Emulsionen kommen u.a. auch C7W- Makroemulsionen, O/W-Mikroemulsionen oder O/W/O-Emulsionen mit in dispergierter Form vorliegenden oberflächenbeschichteten Titandioxidpartikeln in Frage, wobei die Emulsionen durch Phaseninversionstechnologie, gemäß DE-A-197 26 121 erhältlich sind.
Übliche kosmetische Hilfsstoffe, die als Zusätze in Betracht kommen können, sind z.B. (Co-)Emulgatoren, Fette und Wachse, Stabilisatoren, Verdickungsmittel, biogene Wirk- Stoffe, Filmbildner, Duftstoffe, Farbstoffe, Perlglanzmittel, Konservierungsmittel, Pigmente, Elektrolyt^ (z.B. Magnesiumsulfat) und pH-Regulatoren. Als Stabilisatoren können Metallsalze von Fettsäuren wie z.B. Magnesium-, Aluminium- und/oder Zi nkstea rat eingesetzt werden. Unter biogenen Wirkstoffen sind beispielsweise Pflanzenextrakte, Eiweißhydrolysate und Vitaminkomplexe zu verstehen. Gebräuchliche Filmbildner sind beispielsweise Hydrocolloide wie Chitosan, mikrokristallines Chitosan oder quaternier- tes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäurereihe, quaternäre Cellulose-Derivate und ähnliche Verbindungen.
Geeignete Lichtfilterwirkstoffe sind Stoffe, die UV-Strahlen im UV-B- und/oder UV-A- Bereich absorbieren. Darunter sind organische Substanzen zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme, wieder abzugeben. Die organischen Substanzen können öllöslich oder wasserlöslich sein. Geeignete UV-Filter sind z.B. 2,4,6- Triaryl-1 ,3,5- triazine, bei denen die Arylgruppen jeweils wenigstens einen Substituen- ten tragen können, der vorzugsweise ausgewählt ist unter Hydroxy, Alkoxy, speziell Methoxy, Alkoxycarbonyl, speziell Methoxycarbonyl und Ethoxycarbonyl. Geeignet sind weiterhin p-Aminobenzoesäureester, Zimtsäureester, Benzophenone, Campherderivate sowie UV-Strahlen abhaltende Pigmente, wie Titandioxid, Talkum und Zinkoxid. Besonders bevorzugt handelt es sich um Pigmente auf der Basis von Titandioxid.
Als öllösliche UV-B-Filter können z.B. folgende Substanzen verwendet werden: 3-Benzylidencampher und dessen Derivate, z.B. 3-(4-Methylbenzyliden)campher;
4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2- ethylhexylester, 4-( Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)- benzoesäureamylester; Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4 Methoxy- zimtsäurepropylester, 4-Methoxyzimtsäureisoamylester, 4 Methoxyzimtsäureisopenty- lester, 2-Cyano-3-phenyl-zimtsäure-2-ethylhexylester (Octocrylene);
Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4 i- sopropylbenzylester, Salicylsäurehomomenthylester;
Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2- Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;
Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2- ethylhexylester;
Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-r-hexyloxy)-1 ,3,5-triazin (Oc- tyltriazone) und Dioctyl Butamido Triazon (Uvasorb® HEB):
Propan-1 ,3-dione, wie z.B. 1 -(4-tert. Butylphenyl)-3-(4'-methoxyphenyl)propan-1 ,3- dion.
Als wasserlösliche Substanzen kommen in Frage:
2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alky- lammonium-, Alkanolammonium- und Glucammoniumsalze;
Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzo- phenon-5-sulfonsäure und ihre Salze;
Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3- bornylidenmethyl)benzolsulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.
Besonders bevorzugt ist die Verwendung von Estern der Zimtsäure, vorzugsweise 4- Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäureisopentylester, 2-Cyano-3- phenyl-zimtsäure-2-ethylhexylester (Octocrylene).
Des weiteren ist die Verwendung von Derivaten des Benzophenons, insbesondere 2- Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'- Dihydroxy-4-methoxybenzophenon sowie der Einsatz von Propan-1 ,3-dionen, wie z.B. 1 -(4-tert. Butylphenyl)-3-(4-'methoxyphenyl)propan-1 ,3-dion bevorzugt.
Als typische UV-A-Filter kommen in Frage: Derivate des Benzoylmethans, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'- methoxyphenyl) propan-1 ,3-dion, 4-tert.-Butyl-4'-methoxydibenzoylmethan oder 1- Phenyl-3-(4'-isopropylphenyl)-propan-1 ,3-dion;
Amino-hydroxy-substituierte Derivate von Benzophenonen wie z.B. N,N-Diethylamino- hydroxybenzoyl-n-hexylbenzoat.
Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden.
Weitere geeignete UV-Filtersubstanzen sind in der folgenden Tabelle genannt.
Tabelle 6: geeignete Lichtschutzmittel
Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die pho- tochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Superoxid-Dismutase, Katalase, Tocopherole (Vitamin E) und Ascorbinsäure (Vitamin C).
Eine weitere Gruppe sind Antiirritantien, die eine entzündungshemmende Wirkung auf durch UV-Licht geschädigte Haut besitzen. Solche Stoffe sind beispielsweise Bisabolol, Phytol und Phytantriol.
Erfindungsgemäß ist ebenfalls die Verwendung der erfindungsgemäßen bzw. gemäß dem erfinderischen Verfahren hergestellten Wirkstoff-molekular-geprägten Polymere in Kombination mit UV-Strahlen abhaltenden anorganischen Pigmenten in dermokosme- tischen Zubereitungen. Bevorzugt sind Pigmente auf Basis von Metalloxiden und/oder anderen in Wasser schwerlöslichen oder unlöslichen Metallverbindungen ausgewählt aus der Gruppe der Oxide des Zinks (ZnO), Titan (TiÜ2), Eisens (z.B. Fe2θ3), Zirkoniums (ZrÜ2), Siliciums (Siθ2), Mangans (z.B. MnO), Aluminiums (AI2O3), Cers (z.B. Ce2θ3), Mischoxiden der entsprechenden Metalle und Abmischungen aus solchen O- xiden enthalten.
Die anorganischen Pigmente können dabei in gecoateter Form vorliegen, d.h. dass sie oberflächlich behandelt sind. Diese Oberflächenbehandlung kann beispielsweise darin bestehen, dass die Pigmente nach an sich bekannter Weise, wie in DE-A-33 14 742 beschrieben, mit einer dünnen hydrophoben Schicht versehen sind.
Geeignete Repellentwirkstoffe sind Verbindungen, die in der Lage sind, bestimmte Tiere, insbesondere Insekten, vom Menschen abzuhalten oder zu vertreiben. Dazu gehört z.B. 2-Ethyl-1 , 3-hexandiol, N, N-Diethyl-m-toluamid etc. Geeignete hyperemisierend wirkende Stoffe, welche die Durchblutung der Haut anregen, sind z.B. ätherische Öle, wie Latschenkieferextrakt, Lavendelextrakt, Rosmari n extra kt, Wacholderbeerextrakt, Rosskastanienextrakt, Birkenblätterextrakt, Heublumenextrakt, Ethylacetat, Campher, Menthol, Pfefferminzöl, Rosmarinextrakt, Eukalyptusöl, etc. Geeignete keratolytisch und keratoplastisch wirkende Stoffe sind z.B. Salicylsäure, Kalziumthioglykolat, Thi- oglykolsäure und ihre Salze, Schwefel, etc. Geeignete Antischuppen-Wirkstoffe sind z.B. Schwefel, Schwefelpolyethylenglykolsorbitanmonooleat, Schwefelricinolpolyetho- xylat, Zinkpyrithion, Aluminiumpyrithion, etc. Geeignete Antiphlogistika, die Hautreizungen entgegenwirken, sind z.B. Allantoin, Bisabolol, Dragosantol, Kamillenextrakt, Panthenol, etc.
Erfindungsgemäß ist ebenfalls die Verwendung der erfindungsgemäßen bzw. gemäß dem erfinderischen Verfahren hergestellten Wirkstoff-molekular-geprägten Polymere in Kombination mit wenigstens einem kosmetisch oder pharmazeutisch akzeptablen Po- lymer.
Geeignete Polymere sind z.B. kationische Polymere mit der Bezeichnung Polyquater- nium nach INCI, z.B. Copolymere aus Vinylpyrrolidon/N-Vinylimidazoliumsalzen (Luvi- quat FC, Luviquat HM, Luviquat MS, Luviquat&commat, Care), Copolymere aus N-Vinylpyrrolidon/Dimethylaminoethylmethacrylat, quaternisiert mit Diethylsulfat (Luviquat PQ 11 ), Copolymere aus N-Vinylcaprolactam/N-Vinylpyrrolidon/N-Vinyl- imidazoliumsalzen (Luviquat E Hold), kationische Cellulosederivate (Polyquaternium-4 und -10), Acrylamidocopolymere (Polyquaternium-7) und Chitosan.
Geeignete kationische (quaternisierte) Polymere sind auch Merquat (Polymer auf Basis von Dimethyldiallylammoniumchlorid), Gafquat (quaternäre Polymere, die durch Reaktion von Polyvinylpyrrolidon mit quaternären Ammoniumverbindungen entstehen), Po- lymer JR (Hydroxyethylcellulose mit kationischen Gruppen) und kationische Polymere auf pflanzlicher Basis, z.B. Guarpolymere, wie die Jaguar-Marken der Firma Rhodia.
Weitere geeignete Polymere sind auch neutrale Polymere, wie Polyvinylpyrrolidone, Copolymere aus N-Vinylpyrrolidon und Vinylacetat und/oder Vinylpropionat, Polysilo- xane, Polyvinylcaprolactam und andere Copolymere mit N-Vinylpyrrolidon, Polyethyle- nimine und deren Salze, Polyvinylamine und deren Salze, Cellulosederivate, Polyaspa- raginsäuresalze und Derivate. Dazu zählt beispielsweise Luviflex 0 Swing (teilverseiftes Copolymerisat von Polyvinylacetat und Polyethylenglykol, Firma BASF Aktiengesellschaft).
Geeignete Polymere sind auch nichtionische, wasserlösliche bzw. wasserdispergierba- re Polymere oder Oligomere, wie Polyvinylcaprolactam, z.B. Luviskol 0 Plus (BASF), oder Polyvinylpyrrolidon und deren Copolymere, insbesondere mit Vinylestern, wie Vinylacetat, z.B. Luviskol 0 VA 37 (BASF), Polyamide, z.B. auf Basis von Itaconsäure und aliphatischen Diaminen, wie sie z.B. in der DE-A-43 33 238 beschrieben sind.
Geeignete Polymere sind auch amphotere oder zwitterionische Polymere, wie die unter den Bezeichnungen Amphomer (National Starch) erhältlichen Octylacrylamid / Methyl- methacrylat / tert.-Butylaminoethylmethacrylat-Hydroxypropylmethacrylat-Copolymere sowie zwitterionische Polymere, wie sie beispielsweise in den deutschen Patentanmeldungen DE39 29 973, DE 21 50 557, DE28 17 369 und DE 3708 451 offenbart sind. Acrylamidopropyltrimethylammoniumchlorid/Acrylsäure-bzw. -Methacrylsäure- Copolymerisate und deren Alkali-und Ammoniumsalze sind bevorzugte zwitterionische Polymere. Weiterhin geeignete zwitterionische Polymere sind Methacroylethylbe- tain/Methacrylat-Copolymere, die unter der Bezeichnung Amersette (AMERCHOL) im Handel erhältlich sind, und Copolymere aus Hydroxyethylmethacrylat, Methylmethacry- lat, N, N-Dimethylaminoethylmethacrylat und Acrylsäure (Jordapon (D)).
Geeignete Polymere sind auch nichtionische, siloxanhaltige, wasserlösliche oder - dispergierbare Polymere, z.B. Polyethersiloxane, wie Tegopren 0 (Firma Goldschmidt) oder Besi&commat (Firma Wacker). Erfindungsgemäß ist ebenfalls die Verwendung der molekular geprägten Polymere in Kombination mit dermokosmetischen Wirkstoffen (eine oder mehrere Verbindungen) vorteilhaft ausgewählt aus der Gruppe bestehend aus Acetylsalicylsäure, Atropin, Azu- len, Hydrocortison und dessen Derivaten, z. B. Hydrocortison-17-valerat, Vitamine der B- und D-Reihe, insbesondere Vitamin Bi, Vitamin B12, Vitamin D, Vitamin A bzw. dessen Derivate wie Retinylpalmitat, Vitamin E oder dessen Derivate wie z.B. Tocopheryl Acetat, Vitamin C und dessen Derivate wie z.B. Ascorbylglucusid aber auch Niacina- mid, Panthenol, Bisabolol, Polydocanol, ungesättigte Fettsäuren, wie z.B. die essentiellen Fettsäuren (üblicherweise als Vitamin F bezeichnet), insbesondere die γ-Linolen- säure, Ölsäure, Eicosapentaensäure, Docosahexaensäure und deren Derivate, ChIo- ramphenicol, Coffein, Prostaglandine, Thymol, Campher, Squalen, Extrakte oder andere Produkte pflanzlicher und tierischer Herkunft, z . B. Nachtkerzenöl, Borretschöl oder Johannisbeerkernöl, Fischöle, Lebertran aber auch Ceramide und ceramidähnliche Verbindungen, Weihrauchextrakt, Grünteeextrakt, Wasserlilienextrakt, Süßholzextrakt, Hamamelis, Antischuppenwirkstoffe (z.B. Selendisulfid, Zinkpyrithion, Pirocton, Olamin, Climbazol, Octopirox, Polydocanol und deren Kombinatinen), Komplexwirkstoffen wie z.B. jenen aus γ-Oryzanol und Calciumsalzen wie Calciumpanthotenat, Calciumchlorid, Calciumacetat. Vorteilhaft ist es auch, die Wirkstoffe aus der Gruppe der rückfettenden Substanzen zu wählen, beispielsweise Purcellinöl, Eucerit® und Neocerit®. Besonders vorteilhaft werden der oder die Wirkstoffe ferner gewählt aus der Gruppe der NO- Synthasehemmer, insbesondere wenn die erfindungsgemäßen Zubereitungen zur Behandlung und Prophylaxe der Symptome der intrinsischen und/oder extrinsischen Hautalterung sowie zur Behandlung und Prophylaxe der schädlichen Auswirkungen ultravioletter Strahlung auf die Haut und die Haare dienen sollen. Bevorzugter NO- Synthasehemmer ist Nitroarginin. Weiter vorteilhaft werden der oder die Wirkstoffe gewählt aus der Gruppe umfassend Catechine und Gallensäureester von Catechinen und wässrige bzw. organische Extrakte aus Pflanzen oder Pflanzenteilen, die einen Gehalt an Catechinen oder Gallensäureestern von Catechinen aufweisen, wie beispielsweise den Blättern der Pflanzenfamilie Theaceae, insbesondere der Spezies Camellia sinen- sis (grüner Tee). Besonders vorteilhaft sind deren typische Inhaltsstoffe (z.B. Polyphe- nole bzw. Catechine, Coffein, Vitamine, Zucker, Mineralien, Aminosäuren, Lipide). Catechine stellen eine Gruppe von Verbindungen dar, die als hydrierte Flavone oder Anthocyanidine aufzufassen sind und Derivate des „Catechins" (Catechol, 3, 3', 4', 5,7- Flavanpentaol, 2-(3,4-Dihydroxyphenyl)-chroman-3,5,7-triol) darstellen. Auch Epicate- chin ((2R,3R)-3,3',4',5,7-Flavanpentaol) ist ein vorteilhafter Wirkstoff im Sinne der vorliegenden Erfindung. Vorteilhaft sind ferner pflanzliche Auszüge mit einem Gehalt an Catechinen, insbesondere Extrakte des grünen Tees, wie z. B. Extrakte aus Blättern der Pflanzen der Spezies Camellia spec, ganz besonders der Teesorten Camellia si- nenis, C. assamica, C. taliensis bzw. C. inawadiensis und Kreuzungen aus diesen mit beispielsweise Camellia japonica. Bevorzugte Wirkstoffe sind ferner Polyphenole bzw. Catechine aus der Gruppe (-)-Catechin, (+)-Catechin, (-)-Catechingallat, (-)- Gallocatechingallat, (+)-Epicatechin, (-)-Epicatechin, (-)-Epicatechin Gallat, (-)- Epigallocatechin, (-)-Epigallocatechingallat.
Auch Flavon und seine Derivate (oft auch kollektiv „Flavone" genannt) sind vorteilhafte Wirkstoffe im Sinne der vorliegenden Erfindung. Sie sind durch folgende Grundstruktur gekennzeichnet (Substitutionspositionen angegeben):
Einige der wichtigeren Flavone, welche auch bevorzugt in erfindungsgemäßen Zube- reitungen eingesetzt werden können, sind in der nachstehenden Tabelle 8 aufgeführt.
Tabelle 7: Flavone
In der Natur kommen Flavone in der Regel in glycosidierter Form vor. Erfindungsgemäß werden die Flavonoide bevorzugt gewählt gewählt aus der Gruppe der Substanzen der allgemeinen Formel,
wobei Zi bis Z7, unabhängig voneinander gewählt werden aus der Gruppe H, OH, Al- koxy- sowie Hydroxyalkoxy-, wobei die Alkoxy- bzw. Hydroxyalkoxygruppen verzweigt und unverzweigt sein und 1 bis 18 C-Atome aufweisen können, und wobei GIy gewählt wird aus der Gruppe der Mono- und Oligoglycosidreste.
Außerdem können die Wirkstoffe (eine oder mehrere Verbindungen) auch sehr vorteilhaft gewählt werden aus der Gruppe der hydrophilen Wirkstoffe, insbesondere aus folgender Gruppe: α-Hydroxysäuren wie Milchsäure oder Salicylsäure bzw. deren Salze wie z.B. Na- Lactat, Ca-Lactat, TEA-Lactat, Harnstoff, Allantoin, Serin, Sorbitol, Glycerin, Milchproteine, Panthenol, Chitosan.
Die Menge solcher Wirkstoffe (eine oder mehrere Verbindungen) in den Zubereitungen gemäß der Erfindung beträgt vorzugsweise 0,001 bis 30 Gew.-%, besonders bevorzugt 0,05 bis 20 Gew.-%, insbesondere 1 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung. Die genannten und weitere Wirkstoffe, die in den erfindungsgemäßen Zubereitungen verwendet werden können, sind in der DE 103 18 526 A1 auf den Seiten 12 bis 17 angegeben, worauf an dieser Stelle in vollem Umfang Bezug genommen wird.
Weiterhin betrifft die vorliegende Erfindung die Verwendung der o.g. Zubereitungen zur Vorbeugung unerwünschter Veränderungen des Hautbildes, wie z.B. Akne oder fettige Haut, Keratosen, Rosaceae, lichtempfindliche, entzündliche, erythematöse, allergische oder autoimmunreaktive Reaktionen.
Bei den erfindungsgemäßen Mitteln handelt es sich vorzugsweise um Hautschutzmittel, Hautpflegemittel, Hautreinigungsmittel, Haarschutzmittel, Haarpflegemittel, Haarreinigungsmittel, Haarfärbemittel, Mundwasser und Mundspülungen, oder Zubereitung für die dekorative Kosmetik, die je nach Anwendungsgebiet vorzugsweise in Form von Salben, Cremes, Emulsionen, Suspensionen, Lotionen, als Milch, Pasten, Gelen, Schäumen oder Sprays angewendet werden.
Die erfindungsgemäßen Dermokosmetika können neben den erfindungsgemäßen bzw. gemäß dem erfinderischen Verfahren hergestellten Wirkstoff-molekular-geprägten Polymere, alle bereits oben aufgeführten Polymere, Pigmente, Feuchthaltemittel, Öle, Wachse, Enzyme, Mineralien, Vitamine, Sonnenschutzmittel, Farbstoffe, Duftstoffe, Antioxidantien, Konservierungsmittel und/oder pharmazeutischen Wirkstoffen enthalten.
Zudem gilt für die erfindungsgemäßen Dermokosmetika das folgende: Die Formulierungsgrundlage erfindungsgemäßer Mittel enthält bevorzugt kosmetisch oder dermokosmetisch/pharmazeutisch akzeptable Hilfsstoffe. Pharmazeutisch akzeptabel sind die im Bereich der Pharmazie, der Lebensmitteltechnologie und angrenzenden Gebieten bekanntermaßen verwendbaren Hilfsstoffe, insbesondere die in einschlägigen Arzneibüchern (z.B. DAB Ph. Eur. BP NF) gelisteten sowie andere Hilfsstof- fe, deren Eigenschaften einer physiologischen Anwendung nicht entgegenstehen.
Geeignete Hilfsstoffe können sein: Gleitmittel, Netzmittel, emulgierende und suspendierende Mittel, konservierende Mittel, Antioxidantien, Antireizstoffe, Chelatbildner, Emulsionsstabilisatoren, Filmbildner, Gelbildner, Geruchsmaskierungsmittel, Harze, Hydrokolloide, Lösemittel, Lösungsvermittler, Neutralisierungsmittel, Permeations- beschleuniger, Pigmente, quaternäre Ammoniumverbindungen, Rückfettungs- und Ü- berfettungsmittel, Salben-, Creme- oder Öl-Grundstoffe, Siliconderivate, Stabilisatoren, Sterilantien, Treibmittel, Trocknungsmittel, Trübungsmittel, Verdickungsmittel, Wachse, Weichmacher, Weissöl. Eine diesbezügliche Ausgestaltung beruht auf fachmänni- schem Wissen, wie sie beispielsweise in Fiedler, H. P. Lexikon der Hilfsstoffe für Pharmazie, Kosmetik und angrenzende Gebiete, 4. Aufl., Aulendorf: ECV-Editio- Kantor-Verlag, 1996, dargestellt sind.
Zur Herstellung der erfindungsgemäßen dermokosmetischen Mittel können die Wirk- Stoffe mit einem geeigneten Hilfsstoff (Exzipient) vermischt oder verdünnt werden. Ex- zipienten können feste, halb feste oder flüssige Materialien sein, die als Vehikel, Träger oder Medium für den Wirkstoff dienen können. Die Zumischung weiterer Hilfsstoffe erfolgt gewünschtenfalls in der dem Fachmann bekannten Weise. Weiterhin sind die Polymere und Dispersionen geeignet als Hilfsmittel in der Pharmazie, bevorzugt als oder in Beschichtungsmittel(n) oder Bindemittel(n) für feste Arzneiformen. Sie können auch in Cremes und als Tablettenüberzugsmittel und Tablettenbindemittel verwendet werden.
Nach einer weiteren bevorzugten Ausführungsform handelt es sich bei den erfindungs- gemäßen Mitteln um kosmetische Mittel zur Pflege und zum Schutz der Haut und Haar, Nagelpflegemittel oder Zubereitungen für die dekorative Kosmetik.
Geeignete hautkosmetische Mittel sind z.B. Gesichtswässer, Gesichtsmasken, Deodo- rantien und andere kosmetische Lotionen. Mittel für die Verwendung in der dekorativen Kosmetik umfassen beispielsweise Abdeckstifte, Theaterfarben, Mascara und Lidschatten, Lippenstifte, Kajalstifte, Eyeliner, Rouges, Puder und Augenbrauenstifte. Ausserdem können die molekular geprägten Polymere verwendet werden in Nose- Strips zur Porenreinigung, in Antiaknemitteln, Repellents, Rasiermitteln, After- und Pre Shave Pflegemittel, After Sun Pflegemittel, Haarentfernungsmitteln, Haarfärbemitteln, Intimpflegemitteln, Fusspflegemitteln sowie in der Babypflege.
Bei den erfindungsgemäßen Hautpflegemitteln handelt es sich insbesondere um VWO- oder O/W-Hautcremes, Tag- und Nachtcremes, Augencremes, Gesichtscremes, Anti- faltencremes, Sonnenschutzcremes, Feuchthaltecremes, Bleichcremes, Selbstbräunungscremes, Vitamincremes, Hautlotionen, Pflegelotionen und Feuchthaltelotionen.
Erfindungsgemäße hautkosmetische und dermatologische Mittel können ferner als Schutz vor oxidativen Prozessen und den damit verbundenen Alterungsprozessen oder Schädigungen von Haut und/oder Haar, neben den erfindungsgemäßes bzw. gemäß dem erfinderischen Verfahren hergestelltes Wirkstoff-molekular-geprägten Polymere, einen Radikale zersetzenden Wirkstoff enthalten. Bei diesen Wirkstoffen handelt es sich bevorzugt um die in den Patentanmeldungen WO/0207698 und WO/03059312, auf deren Inhalt hiermit ausdrücklich bezuggenommen wird, beschriebenen Substanzen, bevorzugt die dort beschriebenen Bor-enthaltenden Verbindungen, die Peroxide oder Hydroperoxide zu den entsprechenden Alkoholen ohne Bildung radikalischer FoI- gestufen reduzieren können. Ferner können für diesen Zweck sterisch gehinderte Amine gemäß der allgemeinen Formel verwendet werden,
wobei der Rest Z folgende Bedeutung hat: H, C1-C22 Alkylgruppe, bevorzugt C1-C12 Alkylgruppe wie Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec. Butyl, tert. Butyl, Pentyl, Isopentyl, Neopentyl, tert. Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl, Unde- cyl,Dodecyl, C1-C22-Alkoxylgruppe, bevorzugt C1-C12-Alkoxylgruppe wie Alkoxy- Methyl, Alkoxy-Ethyl, Alkoxy-Propyl, Alkoxy-Isopropyl, Alkoxy-Butyl, Alkoxy-Isobutyl, Alkoxy-sec. Butyl, Alkoxy-tert. Butyl, Alkoxy-Pentyl, Alkoxy-Isopentyl, Alkoxy- Neopentyl, Alkoxy-tert. Pentyl, Alkoxy-Hexyl, AI koxy- Heptyl, Alkoxy-Octyl, Alkoxy- Nonyl, Alkoxy-Decyl, Alkoxy-Undecyl, Alkoxy-Dodecyl, C6 bis C10-Arylgruppe wie Phenyl und Naphtyl, wobei der Phenylrest mit C1 bis C4 Alkylresten substituiert sein kann, C6 bis C10-O-Arylgruppe, welche mit einer C1-C22 Alkyl- oder C1-C22- Alkoxylgruppe, bevorzugt mit mit einer C1-C12 Alkyl- oder C1-C12-Alkoxylgruppe wie oben beschrieben, substituiert sein kann, und die Reste R1 bis R6 unabhängig voneinander folgende Bedeutung haben: H, OH, O, C1-C22 Alkylgruppe, bevorzugt C1-C12 Alkylgruppe wie Methyl, Ethyl, Propyl, Isopro- pyl, Butyl, Isobutyl, sec. Butyl, tert. Butyl, Pentyl, Isopentyl, Neopentyl, tert. Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, C1-C22-Alkoxylgruppe, bevorzugt C1-C12-Alkoxylgruppe wie Alkoxy-Methyl, Alkoxy-Ethyl, Alkoxy-Propyl, Alkoxy- Isopropyl, Alkoxy-Butyl, Alkoxy-Isobutyl, Alkoxy-sec. Butyl, Alkoxy-tert. Butyl, Alkoxy- Pentyl, Alkoxy-Isopentyl, Alkoxy-Neopentyl, Alkoxy-tert. Pentyl, Alkoxy-Hexyl, Alkoxy- Heptyl, Alkoxy-Octyl, Alkoxy-Nonyl, Alkoxy-Decyl, Alkoxy-Undecyl, AI koxy- Dodecyl, C6 bis C10-Arylgruppe wie Phenyl und Naphtyl, wobei der Phenylrest mit C1 bis C4 Alkyl- resten substituiert sein kann, C6 bis C10-O-Arylgruppe, welche mit einer C1-C22 Alkyl- oder C1-C22-Alkoxylgruppe, bevorzugt mit mit einer C1-C12 Alkyl- oder C1-C12- Alkoxylgruppe wie oben beschrieben, substituiert sein kann.
Besonders bevorzugt ist die Verwendung der sterisch gehindernten Amine 3-Dodecyl- N-(2,2,6,6-tetramethyl-4-piperidinyl)succinimid, 3-Dodecyl-N-(1 , 2,2,6, 6-penta-methyl-4- piperidinyl) succinimid, 3-Octyl-N-(2,2,6,6-tetramethyl-4-piperidinyl) succinimid, 3-Octyl- N-(1 ,2,2,6,6-pentamethyl-4-piperidinyl) succinimid, 3-Octenyl-N-(2,2,6,6-tetramethyl-4- piperidinyl) succinimid, 3-Octenyl-N-(1 ,2,2,6,6-pentamethyl-4-piperidinyl)succinimid und/oder Uvinul®5050H, in einem Anteil von 0,001 bis 1 Gewichtsprozent (Gew.-%), vorzugsweise 0,01 bis 0,1 Gew.-%, 0,1 bis 1 Gew.-% bezogen auf das Gesamtgewicht des Mittels.
Die hautkosmetischen Zubereitungen können neben den erfindungsgemäßen oben genannten Verbindungen und geeigneten Trägern noch weitere in der Hautkosmetik übliche Wirkstoffe und Hilfsstoffe, wie zuvor beschrieben, enthalten. Dazu zählen vorzugsweise Emulgatoren, Konservierungsmittel, Parfümöle, kosmetische Wirkstoffe wie Phytantriol, Vitamin A, E und C, Retinol, Bisabolol, Panthenol, Lichtschutzmittel, Bleichmittel, Färbemittel, Tönungsmittel, Bräunungsmittel, Collagen, Eiweisshydrolysa- te, Stabilisatoren, pH-Wert-Regulatoren, Farbstoffe, Salze, Verdicker, Gelbildner, Konsistenzgeber, Silicone, Feuchthaltemittel, Rückfetter und/oder weitere übliche Additive.
Bevorzugte Öl- und Fettkomponenten der hautkosmetischen und dermokosmetischen Mittel sind die zuvor genannten mineralischen und synthetischen Öle, wie z.B. Paraffine, Siliconöle und aliphatische Kohlenwasserstoffe mit mehr als 8 Kohlenstoffatomen, tierische und pflanzliche Öle, wie z.B. Sonnenblumenöl, Kokosöl, Avocadoöl, Olivenöl, Lanolin, oder Wachse, Fettsäuren, Fettsäureester, wie z.B. Triglyceride von C6-C30- Fettsäuren, Wachsester, wie z.B. Jojobaöl, Fettalkohole, Vaseline, hydriertes Lanolin und acetyliertes Lanolin sowie Mischungen davon. Zur Einstellung bestimmter Eigenschaften wie z.B. Verbesserung des Anfassgefühls, des Spreitverhaltens, der Wasserresistenz und/oder der Bindung von Wirk- und Hilfs- stoffen, wie Pigmenten, können die hautkosmetischen und dermokosmetischen Zubereitungen zusätzlich auch konditionierende Substanzen auf Basis von Siliconverbin- düngen enthalten.
Geeignete Siliconverbindungen sind beispielsweise Polyalkylsiloxane, Polyarylsiloxa- ne, Polyarylalkylsiloxane, Polyethersiloxane oder Siliconharze.
Die Herstellung der kosmetischen oder dermokosmetischen Zubereitungen erfolgt nach üblichen, dem Fachmann bekannten Verfahren.
Bevorzugt liegen die kosmetischen und dermokosmetischen Mittel in Form von Emulsionen insbesondere als Wasser-in-ÖI (W/O)- oder Öl-in-Wasser (O/W)-Emulsionen vor.
Es ist aber auch möglich, andere Formulierungsarten zu wählen, beispielsweise, Gele, Öle, Oleogele, multiple Emulsionen, beispielsweise in Form von W/O/W- oder O7W/O- Emulsionen, wasserfreie Salben bzw. Salbengrundlagen, usw. Auch emulgatorfreie Formulierungen wie Hydrodispersionen, Hydrogele oder eine Pickering-Emulsion sind vorteilhafte Ausführungsformen.
Die Herstellung von Emulsionen erfolgt nach bekannten Methoden. Die Emulsionen enthalten neben wenigstens einem molekular geprägten Polymer in der Regel übliche Bestandteile, wie Fettalkohole, Fettsäureester und insbesondere Fettsäuretriglyceride, Fettsäuren, Lanolin und Derivate davon, natürliche oder synthetische Öle oder Wachse und Emulgatoren in Anwesenheit von Wasser. Die Auswahl der Emulsionstyp- spezifischen Zusätze und die Herstellung geeigneter Emulsionen ist beispielsweise beschrieben in Schrader, Grundlagen und Rezepturen der Kosmetika, Hüthig Buch Ver- lag, Heidelberg, 2. Auflage, 1989, dritter Teil, oder Limbach, Kosmetik: Entwicklung, Herstellung und Anwendung ksometischer Mittel, 2. erweiterte Auflage, 1995, Georg Thieme Verlag, ISBN 3 13 712602 9, Seiten 122 ff., worauf hiermit ausdrücklich Bezug genommen wird. Eine geeignete Emulsion als W/O-Emulsion, z.B. für eine Hautcreme etc., enthält im Allgemeinen eine wässrige Phase, die mittels eines geeigneten Emulgatorsystems in einer Öl- oder Fettphase emulgiert ist. Zur Bereitstellung der wässrigen Phase kann ein Polyelektrolytkomplex eingesetzt werden.
Bevorzugte Fettkomponenten, welche in der Fettphase der Emulsionen enthalten sein können, sind: Kohlenwasserstofföle, wie Paraffinöl, Purcellinöl, Perhydrosqualen und Lösungen mikrokristalliner Wachse in diesen Ölen; tierische oder pflanzliche Öle, wie Süssmandelöl, Avocadoöl, Calophylumöl, Lanolin und Derivate davon, Ricinusöl, Se- samöl, Olivenöl, Jojobaöl, Karite-Öl, Hoplostethus-Öl, mineralische Öle, deren Destilla- tionsbeginn unter Atmosphärendruck bei ca. 2500C und deren Destillationsendpunkt bei 4100C liegt, wie z.B. Vaselinöl, Ester gesättigter oder ungesättigter Fettsäuren, wie Alkylmyristate, z.B. i-Propyl-, Butyl- oder Cetylmyristat, Hexadecylstearat, Ethyl- oder i- Propylpalmitat, Octan- oder Decansäuretriglyceride und Cetylricinoleat.
Die Fettphase kann auch in anderen Ölen lösliche Siliconöle, wie Dimethylpolysiloxan, Methylphenylpolysiloxan und das Siliconglykol-Copolymer, Fettsäuren und Fettalkohole enthalten.
Neben den erfindungsgemäßen oben beschriebenen Verbindungen können die Hautpflegemittel auch Wachse enthalten, wie z.B. Carnaubawachs, Candilillawachs, Bienenwachs, mikrokristallines Wachs, Ozokeritwachs und Ca-, Mg- und Al-Oleate, - Myristate, -Linoleate und -Stearate.
Weiterhin kann eine erfindungsgemäße Emulsion als O/W-Emulsion vorliegen. Eine derartige Emulsion enthält üblicherweise eine Ölphase, Emulgatoren, die die Ölphase in der Wasserphase stabilisieren, und eine wässrige Phase, die üblicherweise verdickt vorliegt. Als Emulgatoren kommen vorzugsweise O/W-Emulgatoren, wie Polyglycerin- ester, Sorbitanester oder teilveresterte Glyceride, in Betracht.
Nach einer weiteren bevorzugten Ausführungsform handelt es sich bei den erfindungsgemäßen Mitteln um ein Lichtschutzmittel, ein Duschgel, eine Shampoo-Formulierung oder ein Badepräparat, wobei Lichtschutzpräparate besonders bevorzugt sind.
Solche Formulierungen enthalten wenigstens ein erfindungsgemäßes bzw. gemäß dem erfinderischen Verfahren hergestelltes Wirkstoff-molekular-geprägten Polymere sowie üblicherweise anionische Tenside als Basistenside und amphotere und/oder nichtionische Tenside als Cotenside. Weitere geeignete Wirkstoffe und/oder Hilfsstoffe sind im allgemeinen ausgewählt unter Lipiden, Parfümölen, Farbstoffen, organischen Säuren, Konservierungsstoffen und Antioxidantien sowie Verdickern/Gelbildnern, Hautkonditioniermitteln und Feuchthaltemitteln.
Diese Formulierungen enthalten vorzugsweise 2 bis 50 Gew.-%, bevorzugt 5 bis 40 Gew.-%, besonders bevorzugt 8 bis 30 Gew.-% Tenside, bezogen auf das Gesamt- gewicht der Formulierung.
In den Wasch-, Dusch- und Badepräparaten können alle in Körperreinigungsmitteln üblicherweise eingesetzten anionischen, neutralen, amphoteren oder kationischen Tenside verwendet werden.
Geeignete anionische Tenside sind beispielsweise Alkylsulfate, Alkylethersulfate, Al- kylsulfonate, Alkylarylsulfonate, Alkylsuccinate, Alkylsulfosuccinate, N-Alkoylsarkosi- nate, Acyltaurate, Acylisothionate, Alkylphosphate, Alkyletherphosphate, Alkylethercar- boxylate, Alpha-Olefinsulfonate, insbesondere die Alkali- und Erdalkalimetallsalze, z.B. Natrium, Kalium, Magnesium, Calcium, sowie Ammonium- und Triethanolamin-Salze. Die Alkylethersulfate, Alkyletherphosphate und Alkylethercarboxylate können zwischen 1 bis 10 Ethylenoxid- oder Propylenoxideinheiten, bevorzugt 1 bis 3 Ethylenoxideinhei- ten im Molekül aufweisen.
Dazu zählen z.B. Natriumlaurylsulfat, Ammoniumtaurytsulfat, Natriumlaurylethersulfat, Ammoniumlaurylethersulfat, Natriumlaurylsarkosinat, Natriumoleylsuccinat, Ammoni- umlauryl-sulfosuccinat, Natriumdodecylbenzolsulfonat, Triethanolamindodecylbenzol- sulfonat.
Geeignete amphotere Tenside sind z.B. Alkylbetaine, Alkylamidopropylbetaine, Alkyl- sulfobetaine, Alkylglycinate, Alkylcarboxyglycinate, Alkylamphoacetate oder - propionate, Alkylamphodiacetate oder -dipropionate.
Beispielsweise können Cocodimethylsulfopropylbetain, Laurylbetain, Cocamidopropyl- betain oder Natriumcocamphopropionat eingesetzt werden.
Als nichtionische Tenside sind beispielsweise geeignet die Umsetzungsprodukte von aliphatischen Alkoholen oder Alkylphenolen mit 6 bis 20 C-Atomen in der Alkylkette, die linear oder verzweigt sein kann, mit Ethylenoxid und/oder Propylenoxid. Die Menge Alkylenoxid beträgt ca. 6 bis 60 Mole auf ein Mol Alkohol. Ferner sind Alkylaminoxide, Mono-oder Dialkylalkanolamide, Fettsäureester von Polyethylenglykolen, ethoxylierte Fettsäureamide, Alkylpolyglycoside oder Sorbitanetherester geeignet.
Ausserdem können die Wasch-, Dusch- und Badepräparate übliche kationische Tenside enthalten, wie z.B. quaternäre Ammoniumverbindungen, beispielsweise Cetyltri- methylammoniumchlorid.
Weiterhin können die Duschgel-/Shampoo-Formulierungen Verdicker, wie z.B. Kochsalz, PEG-55, Propylenglykol-Oleat, PEG-120-Methylglucosedioleat und andere, sowie Konservierungsmittel, weitere Wirk- und Hilfsstoffe und Wasser enthalten.
Haarbehandlungsmittel
Nach einer weiteren bevorzugten Ausführungsform handelt es sich bei den erfindungsgemäßen Dermokosmetika um Haarbehandlungsmittel.
Vorzugsweise liegen die erfindungsgemäßen Haarbehandlungsmittel in Form eines Schaumfestigers, Haarmousses, Haargels, Shampoos, Haarsprays, Haarschaums, Spitzenfluids, Egalisierungsmittels für Dauerwellen, Haarfärbe- und -bleichmittels oder "Hot-Oil-Treatments" vor. Je nach Anwendungsgebiet können die haarkosmetischen Zubereitungen als (Aerosol-) Spray, (Aerosol-) Schaum, Gel, Gelspray, Creme, Lotion oder Wachs appliziert werden. Haarsprays umfassen dabei sowohl Aerosolsprays als auch Pumpsprays ohne Treibgas. Haarschäume umfassen sowohl Aerosolschäume wie auch Pumpschäume ohne Treibgas. Haarsprays und Haarschäume umfassen vorzugsweise überwiegend oder ausschließlich wasserlösliche oder wasserdispergierbare Komponenten. Sind die in den erfindungsgemäßen Haarsprays und Haarschäumen eingesetzten Verbindungen wasserdispergierbar, können sie in Form von wässrigen Mikrodispersionen mit Teilchendurchmessern von üblicherweise 1 bis 350 nm, bevor- zugt 1 bis 250 nm, zur Anwendung gebracht werden. Die Feststoffgehalte dieser Präparate liegen dabei üblicherweise in einem Bereich von etwa 0,5 bis 20 Gew.-%. Diese Mikrodispersionen benötigen in der Regel keine Emulgatoren oder Tenside zu ihrer Stabilisierung.
Unter weiteren Bestandteilen sind die in der Kosmetik üblichen Zusätze zu verstehen, beispielsweise Treibmittel, Entschäumer, grenzflächenaktive Verbindungen, d.h. Tenside, Emulgatoren, Schaumbildner und Solubilisatoren. Die eingesetzten grenzflächenaktiven Verbindungen können anionisch, kationisch, amphoter oder neutral sein. Weitere übliche Bestandteile können ferner sein z.B. Konservierungsmittel, Parfümöle, Trübungsmittel, Wirkstoffe, UV-Filter, Pflegestoffe wie Panthenol, Collagen, Vitamine, Eiweisshydrolysate, Alpha- und Beta-Hydroxycarbonsäuren, Stabilisatoren, pH-Wert- Regulatoren, Farbstoffe, Viskositätsregulierer, Gelbildner, Salze, Feuchthaltemittel, Rückfetter, Komplexbildner und weitere übliche Additive.
Weiterhin zählen hierzu alle in der Kosmetik bekannten Styling- und Conditioner- Polymere, die in Kombination mit den molekular geprägten Polymeren eingesetzt werden können, falls ganz spezielle Eigenschaften eingestellt werden sollen.
Als herkömmliche Haarkosmetik-Polymere eignen sich beispielsweise die zuvor ge- nannten kationischen, anionischen, neutralen, nichtionischen und amphoteren Polymere, auf die hier Bezug genommen wird.
Zur Einstellung bestimmter Eigenschaften können die Zubereitungen zusätzlich auch konditionierende Substanzen auf Basis von Silikonverbindungen enthalten. Geeignete Silikonverbindungen sind beispielsweise Polyalkylsiloxane, Polyarylsiloxane, Polyary- lalkylsiloxane, Polyethersiloxane, Silikonharze oder Dimethicon Copolyole (CTFA) und aminofunktionelle Silikonverbindungen wie Amodimethicone (CTFA).
Treibmittel sind die für Haarsprays oder Aerosolschäume üblich verwendeten Treibmit- tel. Bevorzugt sind Gemische aus Propan/Butan, Pentan, Dimethylether, 1 ,1- Difluorethan (HFC-152 a), Kohlendioxid, Stickstoff oder Druckluft. Als Emulgatoren können alle in Haarschäumen üblicherweise eingesetzten Emulgato- ren verwendet werden. Geeignete Emulgatoren können nichtionisch, kationisch bzw. anionisch oder amphoter sein. Beispiele für nichtionische Emulgatoren (INCI- Nomenklatur) sind Laurethe, z.B. Lau- reth-4 ; Cetethe, z.B. Cetheth-1 , Polyethylengly- colcetylether, Cetearethe, z.B. Cetheareth-25, Polyglycolfettsäureglyceride, hydroxy- liertes Lecithin, Lactylester von Fettsäuren, Alkylpolyglycoside.
Beispiele für kationische Emulgatoren sind Cetyldimethyl-2-hydroxyethylammonium- dihydrogenphosphat, Cetyltrimoniumchlorid, Cetyltrimmoniumbromid, Cocotrimonium- methylsulfat, Quaternium-1 bis x (INCI).
Anionische Emulgatoren können beispielsweise ausgewählt werden aus der Gruppe der Alkylsulfate, Alkylethersulfate, Alkylsulfonate, Alkylarylsulfonate, Alkylsuccinate, Al- kylsulfosuccinate, N-Alkoylsarkosinate, Acyltaurate, Acylisethionate, Alkylphosphate, Alkyletherphosphate, Alkylethercarboxylate, Alpha-Olefinsulfonate, insbesondere die Alkali- und Erdalkalimetallsalze, z.B. Natrium, Kalium, Magnesium, Calcium, sowie Ammonium- und Triethanolamin-Salze. Die Alkylethersulfate, Alkyletherphosphate und Alkylethercarboxylate können zwischen 1 bis 10 Ethylenoxid oder Propylenoxid- Einheiten, bevorzugt 1 bis 3 Ethylenoxid-Einheiten im Molekül aufweisen.
Als Gelbildner können alle in der Kosmetik üblichen Gelbildner eingesetzt werden. Hierzu zählen leicht vernetzte Polyacrylsäure, beispielsweise Carbomer (INCI), CeIIu- losederivate, z.B. Hydroxypropylcellulose, Hydroxyethylcellulose, kationisch modifizierte Cellulosen, Polysaccharide, z.B. Xanthangummi, Capryl/Caprin-Triglycerid, Natriu- macrylat-Copolymere, Polyquaternium-32 (und) Paraffinum Liquidum (INCI), Natriu- macrylat-Copolymere (und) Paraffinum Liquidum (und) PPG-1 Trideceth-6, Acrylami- dopropyltrimoniumchlorid / Acrylamid-Copolymere, Steareth-10-Allylether, Acrylat- Copolymere, Polyquaternium-37 (und) Paraffinum Liquidum (und) PPG-1 Trideceth-6, Polyquaternium 37 (und) Propylenglycoldicapratdicaprylat (und) PPG-1 Trideceth-6, Polyquaternium-7, Polyquaternium-44.
In den Shampooformulierungen können alle in Shampoos üblicherweise eingesetzten anionischen, neutralen, amphoteren oder kationischen Tenside verwendet werden.
Geeignete anionische Tenside sind beispielsweise Alkylsulfate, Alkylethersulfate, Alkylsulfonate, Alkylarylsulfonate, Alkylsuccinate, Alkylsulfosuccinate, N- Alkoylsarkosinate, Acyltaurate, Acylisothionate, Alkylphosphate, Alkyletherphosphate, Alkylethercarboxylate, Alpha-Olefinsulfonate, insbesondere die Alkali- und Erdalkalimetallsalze, z.B. Natrium, Kalium, Magnesium, Calcium, sowie Ammonium- und Trietha- nolamin-Salze. Die Alkylethersulfate, Alkyletherphosphate und Alkylethercarboxylate können zwischen 1 bis 10 Ethylenoxid- oder Propylenoxid-Einheiten, bevorzugt 1 bis 3 Ethylenoxid-Einheiten im Molekül aufweisen. Geeignet sind zum Beispiel Natriumlaurylsulfat, Ammoniumlaurysulfat, Natriumlaury- lethersulfat, Ammoniumlaurylethersulfat, Natriumlauroylsarkosinat, Natriumoleylsucci- nat, Ammoniumlaurylsulfosuccinat, Natriumdodecylbenzolsulfonat, Triethanolamindo- decylbenzolsulfonat.
Geeignete amphotere Tenside sind zum Beispiel Alkylbetaine, Alkylamidopropylbetai- ne, Alkylsulfobetaine, Alkylglycinate, Alkylcarboxyglycinate, Alkylamphoacetate oder - propionate, Alkylamphodiacetate oder -dipropionate.
Beispielsweise können Cocodimethylsulfopropylbetain, Laurylbetain, Cocamidopropyl- betain oder Natriumcocamphopropionat eingesetzt werden.
Als nichtionische Tenside sind beispielsweise geeignet die Umsetzungsprodukte von aliphatischen Alkoholen oder Alkylphenolen mit 6 bis 20 C-Atomen in der Alkylkette, die linear oder verzweigt sein kann, mit Ethylenoxid und/oder Propylenoxid. Die Menge Alkylenoxid beträgt ca. 6 bis 60 Mole auf ein Mol Alkohol. Ferner sind Alkylaminoxide, Mono- oder Dialkylalkanolamide, Fettsäureester von Polyethylenglykolen, Alkylpolygly- koside oder Sorbitanetherester geeignet.
Ausserdem können die Shampooformulierungen übliche kationische Tenside enthalten, wie z.B. quaternäre Ammoniumverbindungen, beispielsweise Cetyltrimethylammo- niumchlorid.
In den Shampooformulierungen können zur Erzielung bestimmter Effekte übliche Kon- ditioniermittel in Kombination mit den molekular geprägten Polymer eingesetzt werden.
Hierzu zählen beispielsweise die zuvor genannten kationischen Polymere mit der Bezeichnung Polyquaternium nach INCI, insbesondere Copolymere aus Vinylpyrrolidon/ N-Vinylimidazoliumsalzen (Luviquat FC, Luviquat&commat, HM, Luviquat MS, Luviquat Care), Copolymere aus N-Vinylpyrrolidon/Dimethylaminoethylmethacrylat, quaternisiert mit Diethylsulfat (Luviquat D PQ 1 1), Copolymere aus N-Vinylcaprolactam/N- Vinylpyrrolidon/N-Vinylimidazoliumsalzen (Luviquat D Hold), kationische Cellulosederi- vate (Polyquaternium-4 und -10), Acrylamidcopolymere (Polyquaternium-7). Ferner können Eiweißhydrolysate verwendet werden, sowie konditionierende Substanzen auf Basis von Silikonverbindungen, beispielsweise Polyalkylsiloxane, Polyarylsiloxane, Po- lyarylalkylsiloxane, Polyethersiloxane oder Silikonharze. Weitere geeignete Silikonverbindungen sind Dimethicon Copolyole (CTFA) und aminofunktionelle Silikonverbindungen wie Amodimethicone (CTFA). Ferner können kationische Guarderivate wie Guarhydroxypropyltrimoniumchlorid (INCI) verwendet werden. Nach einer weiteren Ausführungsform dient diese haarkosmetische oder hautkosmetische Zubereitung der Pflege oder dem Schutz der Haut oder Haars und liegt in Form einer Emulsion, einer Dispersion, einer Suspension, einer wässrigen Tensidzube- reitung, einer Milch, einer Lotion, einer Creme, eines Balsams, einer Salbe, eines Gels, eines Granulats, eines Puders, eines Stiftpräparates, wie z.B. eines Lippenstifts, eines Schaums, eines Aerosols oder eines Sprays vor. Solche Formulierungen sind gut geeignet für topische Zubereitungen. Als Emulsionen kommen ÖI-in-Wasser-Emulsionen und Wasser-in-ÖI-Emulsionen oder Mikroemulsionen in Frage.
Im Regelfall wird die haarkosmetische oder hautkosmetische Zubereitung zur Applikation auf der Haut (topisch) oder Haar verwendet. Unter topischen Zubereitungen sind dabei solche Zubereitungen zu verstehen, die dazu geeignet sind, die Wirkstoffe in feiner Verteilung und bevorzugt in einer durch die Haut resorbierbaren Form auf die Haut aufzubringen. Hierfür eignen sich z.B. wässrige und wässrig-alkoholische Lösungen, Sprays, Schäume, Schaumaerosole, Salben, wässrige Gele, Emulsionen vom O7W- oder W/O-Typ, Mikroemulsionen oder kosmetische Stiftpräparate.
Nach einer bevorzugten Ausführungsform des erfindungsgemäßen kosmetischen Mittels enthält das Mittel einen Träger. Bevorzugt als Träger ist Wasser, ein Gas, eine Wasser-basierte Flüssigkeit, ein Öl, ein Gel, eine Emulsion oder Mikroemulsion, eine Dispersion oder eine Mischung davon. Die genannten Träger zeigen eine gute Hautverträglichkeit. Besonders vorteilhaft für topische Zubereitungen sind wässrige Gele, Emulsionen oder Mikroemulsionen.
Als Emulgatoren können nichtionogene Tenside, zwitterionische Tenside, ampholyti- sche Tenside oder anionische Emulgatoren verwendet werden. Die Emulgatoren können in der erfindungsgemäßen Zusammensetzung in Mengen von 0,1 bis 10, vorzugsweise 1 bis 5 Gew.-%, bezogen auf die Zusammensetzung, enthalten sein.
Als nichtionogenes Tensid kann beispielsweise ein Tensid aus mindestens einer der folgenden Gruppen verwendet werden:
Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe;
Ci2/18-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin; Glycerinmono- und -diester und Sorbitanmono- und -diester von gesättigten und ungesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen und deren Ethylenoxidanlagerungsprodukte; Alkylmono- und -oligoglycoside mit 8 bis 22 Kohlenstoffatomen im Alkylrest und deren ethoxylierte Analoga; Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl; Polyol- und insbe- sondere Polyglycerinester, wie z.B. Polyglycerinpolyricinoleat, Polygl ycerinpoly-12- hydroxystearat oder Polyglycerindimerat. Ebenfalls geeignet sind Gemische von Verbindungen aus mehreren dieser Substanzklassen;
Anlagerungsprodukte von 2 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
Partialester auf Basis linearer, verzweigter, ungesättigter bzw. gesättigter C6/22 - Fettsäuren, Ricinolsäure sowie 12-Hydroxystearinsäure und Glycerin, Polyglycerin, Pentaerythrit, Dipenta-erythrit, Zuckeralkohole (z. B. Sorbit), Alkylglucoside (z.B. Me- thylglucosid, Butylglucosid, Lauryl-glucosid) sowie Polyglucoside (z.B. Cellulose); Mo- no-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze;
Wollwachsalkohole;
Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate; Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE PS 1165574 und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methyl- glucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin sowie Polyalkylengly- cole.
Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Car- boxylat- oder eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosalkyldimethyl-ammoniumglycinat, N-Acylamino-propyl-N,N dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyldimethylam- monium-glycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxy-ethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydro- xyethyl-carboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA Bezeich- nung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat.
Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktive Verbindungen verstanden, die außer einer C8,i8-Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und min- destens eine -COOH- oder -SOsH-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N- Alkylpropionsäuren , N-Alkylamino-buttersäuren , N Alkyliminodipropionsäuren, N- Hydroxyethyl-N-alkylamido-propylglycine, N-Alkyltaurine, N Alkylsarcosine, 2- Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C- Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, Kokosacylaminoethylaminopropionat und das Ci2/18-Acylsarcosin. Neben den ampholy- tischen kommen auch quartäre Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methyl-quaternierte Difettsäuretriethanolaminester-Salze, besonders bevorzugt sind. Des weiteren können als anionische Emulgatoren Alky- lethersulfate, Monoglyceridsulfate, Fettsäuresulfate, Sulfosuccinate und/oder Ethercar- bonsäuren eingesetzt werden.
Als Ölkörper kommen Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vor- zugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22-Fettsäuren mit linearen C6-C22-Fettaikohoien, Ester von verzweigten C6-Ci3-Carbonsäuren mit linearen Ce- C22-Fettalkoholen, Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis C6-Cio-Fettsäuren, flüssige Mono-/Di-, Trigly- ceridmischungen auf Basis von Cβ-Ciβ-Fettsäuren, Ester von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-Ci2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohe- xane, lineare C6-C22-Fettalkoholcarbonate, Guerbetcarbonate, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen (z.B. Finsolv® TN), Dialkylether, Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe in Betracht. Als Ölkör- per können ferner auch Siliconverbindungen eingesetzt werden, beispielsweise Di- methylpolysiloxane, Methylphenylpolysiloxane, cyclische Silicone sowie amino-, fett- säure-, alkohol-, polyether-, epoxy-, fluor-, alkyl- und/oder glykosidmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Die Ölkörper können in den erfindungsgemäßen Mitteln in Mengen von 1 bis 90, vorzugsweise 5 bis 80, und insbesondere 10 bis 50 Gew.-%, bezogen auf die Zusammensetzung enthalten sein.
Die Liste der genannten Inhaltstoffe, soll selbstverständlich nicht als abschließend oder limitierend betrachtet werden. Die Inhaltsstoffe können einzelnen oder in beliebigen Kombinationen miteinander verwendet werden. Beispiele
Beispiel 1
Synthese von molekular geprägten Polymeren mit α-Tocopherol als Templatmolekül
Ein 2-Liter-HWS-Reaktor wurde mit einem Kühler, einem Rührmotor, einem Ankerrüh- rer, einem Stickstoffeinleitungsrohr mit Glasfritte, einem Laborregler Julabo LC 3 mit 2- PT-100-Thermosensoren, einem Ölbad mit Tauchsieder und Magnetrührer, sowie 2 HPLC-Pumpen (Fa. Bischoff) mit je einem Pumpenkopf (0-1 mL/min) zum Dosieren von Initiator und Monomeren ausgestattet. Die Apparatur wurde vor Versuchsbeginn mit Stickstoff gespült. Während des gesamten Versuchs wurde Stickstoff mit einem Volumenstrom von ca. 10 L/h durch die Lösung geleitet. 800 mL Lösungsmittel Acetonitril (AcN) wurden in das Reaktionsgefäß vorgelegt und in diesem 17,25 g α-Tocopherol (Templat) gelöst. Es wurde eine zusätzliche Lösung (Lösung 1) von 6,12 g Methacrylsäure und 73,51 g Trimethylolpropantrimethacrylat (TRIM) in 250 mL Acetonitril hergestellt. 1 mL wurde aus der Lösung 1 für die spätere HPLC-Analyse entnommen. Eine Hälfte der restlichen Lösung 1 wurde zur Vorlage in den Reaktor gegeben und mit dieser unter Rühren (100 min-1) vermischt. Anschließend wurde aus dem Reaktor eine Probe von 1 mL für die HPLC-Analyse entnommen.
Ein Viertel der Initiatormenge, d.h. 0,532 g, wurden in den Reaktor gegeben und nach dem, durch starkes Rühren beschleunigten Auflösen des Initiators eine Probe von 1 mL für die spätere HPLC-Analyse entnommen. Die Vorlage im Reaktor wurde unter Rühren auf 75 0C erwärmt und erneut eine Probe 1 mL genommen.
Es wurde eine weitere Lösung (Lösung 2) hergestellt, und zwar durch Auflösen der restlichen 3/4 des Initiators, entsprechend 1 ,594 g, in 250 ml Acetonitril. Die zweite Hälfte der Lösung 1 sowie Lösung 2 wurden mittels der beiden HPLC- Pumpen in den Reaktor über einen Zeitraum von 18 h zudosiert. Die Dosierraten be- trugen für Lösung 1 : 0,153 ml/min, und für Lösung 2 : 0,232 ml/min.
Die anschließende Nachreaktionszeit betrug 6 Stunden, die Gesamtreaktionszeit somit also 24 h. Nach jeder vollen Stunde wurde eine Probe von 1 mL dem Reaktionsgemisch entnommen und nach Filtration einer HPLC-Analyse unterzogen. Nach Beendigung der Polymerisation wurde die Polymersuspension dem Reaktor ent- nommen und unter Verwendung einer Nutsche filtriert. Der Filterkuchen wurde drei mal mit je 100 ml Acetonitril gewaschen und bei 50 0C im Vakuum getrocknet.
Beispiel b) Ein 2-Liter-HWS-Reaktor wurde mit einem Kühler, einem Rührmotor, einem Ankerrührer, einem Stickstoffeinleitungsrohr mit Glasfritte, einem Laborregler Julabo LC 3 mit 2-PT-100-Thermosensoren, einem Ölbad mit Tauchsieder und Magnetrührer ausgestattet. Die Apparatur wurde vor Versuchsbeginn mit Stickstoff gespült. Während des gesamten Versuchs wurde Stickstoff mit einem Volumenstrom von ca. 10 L/h durch die Lösung geleitet. 1000 ml_ Lösungsmittel Acetonitril (AcN) wurden in das Reaktionsgefäß vorgelegt und in diesem 17,25 g α-Tocopherol (Templat), 6,12 g Methac- rylsäure und 76,32 g Trimethylolpropantrimethacrylat gelöst. Unter Rühren (100 min-1) wurde die Mischung auf 65 0C erwärmt und eine Probe für die HPLC-Analyse entnom- men. 0,564 g 2,2'-Azobis(2-methylbutyronitril) (Initiator) wurden schließlich in 5 ml Acetonitril gelöst. Diese Lösung wurde langsam in den Reaktorhinhalt eingespritzt. Nach jeder vollen Stunde wurde eine Probe von 10 mL dem Reaktionsgemisch entnommen und nach Filtration einer HPLC-Analyse unterzogen. Die Gesamtreaktionszeit betrug 5 Stunden. Nach Beendigung der Polymerisation wurde die Polymersuspension dem Reaktor entnommen und unter Verwendung einer Nutsche filtriert. Der Filterkuchen wurde drei mal mit je 100 ml Acetonitril gewaschen und bei 50 0C im Vakuum getrocknet.
Beispiel 2: Extraktion des Wirkstoffes aus dem Polymer
Ein 500 mL Rundkolben wurde mit einer Soxhlet-Apparatur, einem Kühler, einem Magnetrührer und einem Laborregler (Julabo LC 3 mit 2 PT 100) bestückt und in ein Ölbad eingetaucht. 8 g Polymer wurden mit 400 ml Methanol/Eisessig (7:1 , v/v) (EXTRAKT 1 ) 6-8 Stunden und danach 6 Stunden mit 400 ml Methanol (EXTRAKT 2) in der Soxhlet-Apparatur extrahiert. Die Extrakte wurden aufgefangen, deren Volumen bestimmt und jeweils eine 2 ml Probe für die α-Tocopherol-Konzentrationsbestimmung mittels HPLC im Kühlschrank bei 4 0C aufbewahrt.
Beispiel 3: Beladen des Polymers mit einem kosmetischen Wirkstoff
Nach dem Trocknen des aus der Soxhlet-Extraktion stammenden Polymers wurde 1 g Polymer mit 10 ml einer 0,14 mol/L Fipronil-Lösung vermischt. (Herstellung der 0,14 mol/L α-Tocopherol -Lösung: 3 g α-Tocopherol in 50 ml Acetonitril auflösen). Nach ei- ner Einwirkzeit von 3 Stunden wurde die Flüssigkeit durch Zentrifugieren (15 Minuten bei 3800 U/min) und Abdekantieren vom Polymer getrennt. Das Polymer wurde bei 50 0C im Vakuum getrocknet.
Beispiel 4: Controlled Release von kosmetischen Wirkstoffen aus molekular geprägten Polymeren
Eine Millipore Ultrafiltrationszelle (Modell 8400) wurde mit einem 5 Liter Kunststoffkanister als Vorratsgefäß (Inhalt: Wasser) verbunden. Die Zelle wurde mit einer Dispersion von 100 mg Polymer in 100 ml Wasser gefüllt und 15 Minuten bis zur Homogenisie- rung mit dem in die Ultrafiltrationszelle eingebauten Magnetrührer gerührt. Das Extraktionsmittel (Wasser) wurde über den Zulauf ohne Überdruck aus dem Vorratsgefäß in die Zelle geleitet. Der aus der Zelle austretende Extrakt wurde an der Unterseite der Zelle in ein Auffanggefäß geleitet. Zum Schluss wurde das Volumen, die Masse und die Zeit der einzelnen Fraktionen bestimmt und jeder Fraktion eine Probe von 2 ml entnommen. Mehrere Fraktionen wurden über die Versuchszeit gesammelt. Diese Proben wurden über einen 0,45 μl Filter filtriert und für die α-Tocopherol - Konzentrationsbestimmung mittels HPLC im Kühlschrank bei 4 0C aufbewahrt. Die Dispersion wurde nach Versuchsende dem Ultrafiltrationsgefäß entnommen und abgefüllt.
Beispiel 5: Controlled Release von kosmetischen Wirkstoffen aus molekular geprägten Polymeren
100 mg des molekular geprägten Polymers werden in einem 250 ml Erlenmeyerkolben vorgelegt. Anschließend werden 100 ml des Extraktionsmittels (Wasser mit eingestellten pH-Wert) zugegeben, der Kolben verschlossen und die Suspension 6 Stunden bei Raumtemperatur gerührt. Probenahme: alle 30 Minuten; Probenvolumen: je 1 ml. Abschließend wird das Produkt abgesaugt und aus dem Filtrat eine 1-ml-Probe für die HPLC entnommen. 13 Proben werden so über die Versuchszeit gesammelt (inklusive Probe zum Zeitpunkt t=0). Diese Proben werden über einen 0,45 μl Filter filtriert, in Injektionsflaschen abgefüllt und für die Tocopherolbestimmung mittels HPLC eingesetzt
Figur 1 : Kontrollierte Freisetzung von DL-alpha-Tocopherol aus beladenen Trimethy- lolpropantrimethacrylat-MIP-Partikeln - Kontinuierliche Extraktion des DL-alpha- Tocopherols aus den Polymeren mit Wasser verschiedener pH-Werte in Ultrafiltrationszellen - Auftragung der absoluten kumulativen freigesetzten DL-alpha-Tocopherol- Massen gegen die Zeit.
0 6 8 10 12 Zeit / h Figur 2: Kontrollierte Freisetzung von DL-alpha-Tocopherol aus beladenen Methacryl- säure-Trimethylolpropantrimethacrylat-MIP-Partikeln - Extraktion des DL-alpha- Tocopherols aus den Polymeren mit Wasser verschiedener pH-Werte in Satzreaktoren - Auftragung der DL-alpha-Tocopherol-Konzentrationen im Satzreaktor gegen die Zeit.
0 100 200 300 400 Zeit / min
Figur 3: Kontrollierte Freisetzung von Trichlorisocyanursäure aus Methacrylsäure- Trimethylolpropantrimethacrylat-MIP-Partikeln - Kontinuierliche Extraktion der Trichlori- socyanursäure aus den Polymeren mit Wasser verschiedener pH-Werte in Ultrafiltrationszellen - Auftragung der absoluten kumulativen freigesetzten Trichlorisocyanursäu- re-Massen gegen die Zeit.
Beispiele für dermokosmetische Zubereitungen
Im Folgenden sind erfindungsgemäße dermokosmetische Zubereitungen beschrieben, enthaltend das gemäß Beispiel 1 hergestellte molekular geprägte Polymer mit α- Tocopherol als Templatmolekül. Besagtes molekular geprägte Polymere mit α- Tocopherol als Templatmolekül wird in den folgenden Beispielen als MIP bezeichnet. Das molekular geprägte Polymer mit α-Tocopherol als Templatmolekül wird in den folgenden Beispielen stellvertretend für alle anderen beschriebenen molekular geprägten Polymere mit Wirkstoff genannt. Es ist für den Fachmann selbstverständlich, dass auch alle anderen genannten Wirkstoffe gemäß Beispiel 1 hergestellt und in den unten genannten Zubereitungen verwendet werden können.
Beispiel 8: Verwendung der MIP in einer Gesichtsreinigungslotion - Typ O/W WS 1 %:
% Inhaltsstoff (INCI)
A 10,0 Cetearyl Ethylhexanoate
10,0 Caprylic/Capric Triglyceride 1 ,5 Cyclopentasiloxane, Cyclohexasilosane
2,0 PEG-40 Hydrogenated Castor OiI
B 3,5 Caprylic/Capric Triglyceride, Sodium Acrylates Copolymer
C 1 ,0 Tocopheryl Acetate
0,2 Bisabolol q.s. Konservierungsmittel q.s. Parfümöl
D 3,0 Polyquaternium-44
0,5 Cocotrimonium Methosulfate
0,5 Ceteareth-25 2,0 Panthenol, Propylene Glycol
4,0 Propylene Glycol
0,1 Disodium EDTA
1 ,0 wässrige Lösung mit ca. 5% MIP
60,7 Aqua dem.
WS 5%:
% Inhaltsstoff (INCI)
A 10,0 Cetearyl Ethylhexanoate
10,0 Caprylic/Capric Triglyceride 1 ,5 Cyclopentasiloxane, Cyclohexasilosane
2,0 PEG-40 Hydrogenated Castor OiI
B 3,5 Caprylic/Capric Triglyceride, Sodium Acrylates Copolymer C 1 ,0 Tocopheryl Acetate
0,2 Bisabolol q.s. Konservierungsmittel q.s. Parfümöl
D 3,0 Polyquaternium-44
0,5 Cocotrimonium Methosulfate
0,5 Ceteareth-25
2,0 Panthenol, Propylene Glycol
4,0 Propylene Glycol
0,1 Disodium EDTA
5,0 wässrige Lösung mit ca. 5 % MIP
56,7 Aqua dem.
Herstellung: Phase A lösen. Phase B in Phase A einrühren, Phase C in die kombinier- ten Phasen A und B einarbeiten. Phase D lösen, in die kombinierten Phasen A, B und C einrühren und homogenisieren. 15min nachrühren.
Beispiel 9: Verwendung der MIP in einem Daily Care Body Spray
WS 1 %:
% Inhaltsstoff (INCI) A 3,0 Ethylhexyl Methoxycinnamate
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
1 ,0 Polyquaternium-44
3,0 Propylene Glycol
2,0 Panthenol, Propylene Glycol 1 ,0 Cyclopentasiloxane, Cyclohexasiloxane
10,0 Octyldodecanol
0,5 PVP
10,0 Caprylic/Capric Triglyceride
3,0 C12-15 Alkyl Benzoate 3,0 Glycerin
1 ,0 Tocopheryl Acetate
0,3 Bisabolol
1 ,0 wässrige Lösung mit ca. 5% MIP
59,2 Alcohol
WS 5%:
% Inhaltsstoff (INCI)
A 3,0 Ethylhexyl Methoxycinnamate
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate 1 ,0 Polyquaternium-44
3,0 Propylene Glycol
2,0 Panthenol, Propylene Glycol
1 ,0 Cyclopentasiloxane, Cyclohexasiloxane
10,0 Octyldodecanol 0,5 PVP
10,0 Caprylic/Capric Triglyceride
3,0 C12-15 Alkyl Benzoate
3,0 Glycerin
1 ,0 Tocopheryl Acetate 0,3 Bisabolol
5,0 wässrige Lösung mit ca. 5% MIP
55,2 Alcohol
Herstellung: Die Komponenten der Phase A einwiegen und klar lösen. Beispiel 17: Verwendung der MIP in einer W/O Emulsion mit Bisabolol
WS 1 %:
% Inhaltsstoff (INCI)
A 6,0 PEG-7 Hydrogenated Castor OiI
8,0 Cetearyl Ethylhexanoate
5,0 Isopropyl Myristate
15,0 Mineral OiI
0,3 Magnesium Stearate
0,3 Aluminum Stearate
2,0 PEG-45/Dodecyl Glycol Copolymer
B 5,0 Glycerin
0,7 Magnesium Sulfate
55,6 Aqua dem.
C 1 ,0 wässrige Lösung mit ca. 5% MIP
0,5 Tocopheryl Acetate
0,6 Bisabolol
WS 5%:
% Inhaltsstoff (INCI)
A 6,0 PEG-7 Hydrogenated Castor OiI
8,0 Cetearyl Ethylhexanoate
5,0 Isopropyl Myristate
15,0 Mineral OiI
0,3 Magnesium Stearate
0,3 Aluminum Stearate
2,0 PEG-45/Dodecyl Glycol Copolymer
B 5,0 Glycerin
0,7 Magnesium Sulfate
51 ,6 Aqua dem.
C 5,0 wässrige Lösung mit ca. 5% MIP
0,5 Tocopheryl Acetate
Herstellung: Die Phasen A und B getrennt voneinander auf ca. 85°C erwärmen. Phase B in Phase A einrühren und homogenisieren. Unter Rühren auf ca. 400C abkühlen, Phase C hinzugeben und nochmals kurz homogenisieren. Unter Rühren auf Raumtemperatur abkühlen.
Beispiel 24: Styling Schaum WS 1 %
% Inhaltsstoff (INCI)
A 2,00 Cocotrimonium Methosulfate q.s. Parfümöl
B 72,32 Aqua dem.
2,00 VP/Acrylates/Lauryl Methacrylate Copolymer
0,53 AMP
1 ,00 wässrige Lösung mit ca. 5% MIP
0,20 Ceteareth-25
0,50 Panthenol
0,05 Benzophenone-4
0,20 Amodimethicone, Cetrimonium Chloride, Trideceth-12
15,00 Alcohol
C 0,20 Hydroxyethylcellulose
D 6,00 Propane/Butane
WS 5%
% Inhaltsstoff (INCI)
A 2,00 Cocotrimonium Methosulfate q.s. Parfümöl
B 68,32 Aqua dem.
2,00 VP/Acrylates/Lauryl Methacrylate Copolymer
0,53 AMP 5,00 wässrige Lösung mit ca. 5% MIP
0,20 Ceteareth-25
0,50 Panthenol
0,05 Benzophenone-4
0,20 Amodimethicone, Cetrimonium Chloride, Trideceth-12 15,00 Alcohol
C 0,20 Hydroxyethylcellulose
D 6,00 Propane/Butane
Herstellung: Die Komponenten der Phase A mischen. Die Komponenten der Phase B eine nach der anderen zugeben und lösen. Phase C in der Mischung aus A und B lö- sen, dann den pH-Wert auf 6-7 einstellen. Mit Phase D abfüllen
Beispiel 36: Flüssiges Make-up - Typ O/W
WS 1 %
% Inhaltsstoff (INCI)
A 2,0 Ceteareth-6, Stearyl Alcohol
2,0 Ceteareth-25
6,0 Glyceryl Stearate
1 ,0 Cetyl Alcohol
8,0 Mineral OiI
7,0 Cetearyl Ethylhexanoate
0,2 Dimethicone
B 3,0 Propylene Glycol
1 ,0 Panthenol q.s. Konservierungsmittel
61 ,9 Aqua dem.
C 0,1 Bisabolol
1 ,0 wässrige Lösung mit ca. 5% MIP q.s. Parfümöl
D 5,7 C. I. 77 891 , Titanium Dioxide
1 ,1 Iron Oxides
WS 5%
% Inhaltsstoff (INCI)
A 2,0 Ceteareth-6, Stearyl Alcohol
2,0 Ceteareth-25
6,0 Glyceryl Stearate
1 ,0 Cetyl Alcohol
8,0 Mineral OiI
7,0 Cetearyl Ethylhexanoate
0,2 Dimethicone
B 3,0 Propylene Glycol
1 ,0 Panthenol q.s. Konservierungsmittel 57,9 Aqua dem.
C 0,1 Bisabolol
5.0 wässrige Lösung mit ca. 5% MIP q.s. Parfümöl
D 5,7 C. I. 77 891 , Titanium Dioxide
1.1 I ron Oxides
Herstellung: Die Phasen A und B getrennt auf ca. 800C erwärmen. Phase B in Phase A einrühren und homogenisieren. Unter Rühren auf ca. 400C abkühlen, Phasen C und D zugeben und nochmals gründlich homogenisieren. Unter Rühren auf Raumtemperatur abkühlen lassen.
Beispiel 37:
Im Folgenden sind erfindungsgemäße dermokosmetische Zubereitungen beschrieben, enthaltend das gemäß Beispiel 1 hergestellte molekular geprägte Polymer mit α- Tocopherol als Templatmolekül. Besagtes molekular geprägte Polymere mit α- Tocopherol als Templatmolekül wird in den folgenden Beispielen als MIP bezeichnet. Das molekular geprägte Polymer mit α-Tocopherol als Templatmolekül wird in den folgenden Beispielen stellvertretend für alle anderen beschriebenen molekular geprägten Polymere mit Wirkstoff genannt. Es ist für den Fachmann selbstverständlich, dass auch alle anderen genannten Wirkstoffe gemäß Beispiel 1 hergestellt und in den unten genannten Zubereitungen verwendet werden können.
Das genannte molekular geprägte Polymer mit Wirkstoff wird als Feststoff eingesetzt. Die folgenden Angaben sind Gewichtsteile.
Klares Shampoo
Klares Conditioner Shampoo
Conditioner Shampoo mit Perlglanz pH einstellen auf 6,0
Klares Conditioner Shampoo mit Volumen Effekt
pH einstellen auf 6,0
Gelcreme
OW Sunscreenformulation
Hydrodispersion
Sticks
PIT-Emulsion
Gelcreme
OW Formulations
Selbstbräuner
OW Make Up
Hydrodispersion Selbstbräuner
Ölgel
Beispiel 38:
In den folgenden Rezepturen werden kosmetische Sonnenschutzzubereitungen, enthaltend eine Kombination aus mindestens einem anorganischen Pigment, bevorzugt Zinkoxid und/oder Titandioxid und organische UV-A- und UV-B-Filter und das gemäß Beispiel 1 hergestellte molekular geprägte Polymer mit α-Tocopherol als Templatmole- kül beschrieben. Besagtes molekular geprägte Polymere mit α-Tocopherol als Templatmolekül wird in den folgenden Beispielen als MIP bezeichnet. Das molekular geprägte Polymer mit α-Tocopherol als Templatmolekül wird in den folgenden Beispielen stellvertretend für alle anderen beschriebenen molekular geprägten Polymere mit Wirkstoff genannt. Es ist für den Fachmann selbstverständlich, dass auch alle anderen genannten Wirkstoffe gemäß Beispiel 1 hergestellt und in den unten genannten Zubereitungen verwendet werden können.
Bevorzugt ist das Templatmolekül in den molekular geprägten Polymeren ein organischer UV Filter, der über den beschriebenen Freisetzungsmechanismus auf der Haut freigesetzt wird.
Die Herstellung der nachfolgend genanntenen Formulierungen erfolgt auf übliche, dem Fachmann bekannte Art und Weise.
Der Gehalt an molekular geprägte Polymer mit Wirkstoff bezieht sich auf 100%. Das erfindungsgemäße molekular geprägte Polymer mit Wirkstoff kann sowohl in reiner Form als auch als wässerige Lösung eingesetzt werden. Im Falle der wässerigen Lösung muss der Gehalt an Wasser dem. in der jeweiligen Formulierung angepasst werden.

Claims

Patentansprüche
1. Kosmetische oder dermatologische Zubereitung enthaltend
- wenigstens einen Wirkstoff, - wenigstens ein in Gegenwart dieses Wirkstoffes molekular geprägtes Polymer und
- wenigstens eine Fettphase.
2. Zubereitung nach Anspruch 1 , wobei die Freisetzungsrate für den Wirkstoff aus dem Polymer-Wirkstoff-Komplex bei pH 5 höher ist als bei pH 7.
3. Zubereitung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Polymer a) wenigstens eine Verbindung mit einer radikalisch polymerisierbaren Doppelbindung und b) wenigstens eine Verbindung mit wenigstens zwei nicht konjugierten, radikalisch polymerisierbaren Doppelbindungen einpolymerisiert enthält.
4. Zubereitung nach einem der Ansprüche 1 bis 3, wobei Verbindung a) ausge- wählt ist aus der Gruppe bestehend aus a1 ) anionischen oder anionogenen, radikalisch polymerisierbaren Verbindungen a2) Estern von α,ß-ethylenisch ungesättigten Carbonsäuren a3) Amiden von α,ß-ethylenisch ungesättigten Carbonsäuren a4) Estern von Vinylalkohol oder Allylalkohol mit C1-C30-
Monocarbonsäuren, Vinylethern, Vinylaromaten, Vinyllactamen, Viny- limidazolen, Vinylhalogeniden, Vinylidenhalogeniden, C2-C8- Monoolefinen, nichtaromatischen Kohlenwasserstoffen mit mindestens 2 konjugierten Doppelbindungen und a5) Mischungen davon.
5. Zubereitung nach einem der Ansprüche 1 bis 4, wobei Verbindung a1) ausgewählt ist unter gegebenenfalls deprotonierten COOH-Gruppen enthaltenden radikalisch polymerisierbaren Verbindungen.
6. Zubereitung nach einem der Ansprüche 1 bis 5, wobei das Gewichtsverhältnis von Polymer zu Wirkstoff 1 :10 bis 100:1 beträgt.
7. Zubereitung nach einem der Ansprüche 1 bis 6 in Form von Creme, Schaum, Spray, Gel, Gelspray, Lotion, Öl, Ölgel oder Mousse.
8. Verwendung von molekular geprägten Polymeren in kosmetischen oder dermatologischen Zubereitungen.
9. Verwendung nach Anspruch 8, wobei es es sich bei den Zubereitungen um hautkosmetische Zubereitungen handelt.
10. Verfahren zur Herstellung eines molekular geprägten Polymers wie in einem der Ansprüche 1 bis 7 definiert, dadurch gekennzeichnet, dass das Polymer durch Fällungspolymerisation in Gegenwart des Wirkstoffes hergestellt wird.
1 1. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass man
1) mindestens eine Verbindung a) mit mindestens einem Wirkstoff in einem geeigneten Lösungsmittel vermischt, mindestens eine Verbindung b) hinzufügt und die Polymerisation startet oder
2) mindestens eine Verbindung a) mit mindestens einem Wirkstoff und mindestens einer Verbindung b) in einem geeigneten Lösungsmittel vermischt und anschließend die Polymerisation startet.
12. Verfahren zur Behandlung von Keratinoberflächen, dadurch gekennzeichnet, dass die Keratinoberfläche mit einem molekular geprägten Polymer in Kontakt gebracht wird.
EP07803486A 2006-09-19 2007-09-14 Kosmetische zubereitungen auf basis molekular geprägter polymere Withdrawn EP2066406A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07803486A EP2066406A2 (de) 2006-09-19 2007-09-14 Kosmetische zubereitungen auf basis molekular geprägter polymere

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06120922 2006-09-19
EP07803486A EP2066406A2 (de) 2006-09-19 2007-09-14 Kosmetische zubereitungen auf basis molekular geprägter polymere
PCT/EP2007/059683 WO2008034764A2 (de) 2006-09-19 2007-09-14 Kosmetische zubereitungen auf basis molekular geprägter polymere

Publications (1)

Publication Number Publication Date
EP2066406A2 true EP2066406A2 (de) 2009-06-10

Family

ID=38996210

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07803486A Withdrawn EP2066406A2 (de) 2006-09-19 2007-09-14 Kosmetische zubereitungen auf basis molekular geprägter polymere

Country Status (8)

Country Link
US (2) US20100048737A1 (de)
EP (1) EP2066406A2 (de)
JP (1) JP2010503715A (de)
KR (1) KR20090073170A (de)
CN (1) CN101516448B (de)
CA (1) CA2662911A1 (de)
RU (1) RU2499607C2 (de)
WO (1) WO2008034764A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102336871A (zh) * 2010-07-16 2012-02-01 中国科学院过程工程研究所 一种尺寸均一的氯霉素分子印迹聚合物微球及制备方法和应用

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ594298A (en) * 2009-01-29 2014-01-31 Commw Scient Ind Res Org Molecularly imprinted polymers
FR2952936B1 (fr) * 2009-11-26 2011-11-25 Flamel Tech Polymere de type acrylique ou methacrylique comprenant des greffons alpha-tocopherol
US8747817B1 (en) 2010-12-02 2014-06-10 William Scott Prendergast System and method of complementary day/night children's skin cream compositions
CN102380353B (zh) * 2011-09-19 2013-08-21 江苏大学 一种磁性氧化镁表面分子印迹固相萃取剂的制备方法
DE102011085497A1 (de) * 2011-10-31 2013-05-02 Evonik Industries Ag Kosmetische Formulierung
CN104039299A (zh) * 2011-11-23 2014-09-10 巴斯夫欧洲公司 油凝胶在uv吸收剂组合物中的用途
FR2997848B1 (fr) * 2012-11-09 2015-01-16 Oreal Composition comprenant un derive dicarbonyle et procede de lissage des cheveux a partir de cette composition
FR3000074B1 (fr) 2012-12-26 2015-01-16 Oreal Polymeres a empreinte moleculaire et leur utilisation comme agent antipelliculaire
FR2999917B1 (fr) * 2012-12-26 2017-06-23 Oreal Polymere a empreinte moleculaire pour pieger selectivement les molecules odorantes
FR2999920B1 (fr) * 2012-12-26 2015-07-17 Oreal Polymeres a empreinte moleculaire de type solgel et leur utilisation comme agent antipelliculaire
FR2999918B1 (fr) 2012-12-26 2015-06-19 Oreal Polymere de type sol-gel a empreinte moleculaire pour pieger selectivement les molecules odorantes
CN103265665B (zh) * 2013-03-11 2016-03-09 新疆维吾尔自治区产品质量监督检验研究院 一种樟脑分子印迹聚合物及其整体柱和填充色谱柱的制备方法与应用
DE102013213170A1 (de) 2013-07-04 2015-01-08 Beiersdorf Ag Octocrylenfreies, geruchsstabiles Sonnenschutzmittel
DE102013018573A1 (de) * 2013-10-31 2015-05-21 Stephan Teichmann Oxidationsstabile Zubereitung
EP3113722A4 (de) * 2014-03-07 2017-12-06 Endologix, Inc. Herstellung von hydrogelen und materialien dafür
US9731151B2 (en) 2014-04-08 2017-08-15 Honeywell International Inc. Sprayable sunscreen compositions and methods
EP2957600A1 (de) * 2014-06-17 2015-12-23 Geneticlab S.r.l. Chemikaliengemisch für die Stabilisierung und Erhaltung der organisches Material als nucleinsäuren und zellen, und Stabilisierungsverfahren
CN104017126A (zh) * 2014-06-19 2014-09-03 天津科技大学 一种生育酚分子印迹荧光聚合物及制备方法和应用
DE102014213314A1 (de) 2014-07-09 2016-01-14 Henkel Ag & Co. Kgaa Neuartiges Waschverfahren
DE102014216602A1 (de) * 2014-08-21 2016-02-25 Beiersdorf Ag Stabile kosmetische Zubereitung
WO2016106341A1 (en) * 2014-12-22 2016-06-30 H R D Corporation Small particle size renewable triglyceride waxes for use in consumer and industrial applications
EP3037083A1 (de) * 2014-12-22 2016-06-29 Spirig Pharma AG Emulgatorfreie kosmetische Sonnenschutzmittelzusammensetzung
EP3037082A1 (de) * 2014-12-22 2016-06-29 Spirig Pharma AG Sprühbare kosmetische Sonnenschutzmittelzusammensetzung
BR112019010229B1 (pt) * 2017-04-28 2022-05-03 L'oreal Método para modelar os cabelos e uso de uma composição para cuidados com os cabelos em gel-creme
US12115290B2 (en) 2017-10-11 2024-10-15 Microban Products Company Odor control composition and carpet having a durable odor control property
CN108283603A (zh) * 2018-04-02 2018-07-17 吴伟华 一种劳保护肤膏的制备方法
CN110511252A (zh) * 2019-08-05 2019-11-29 浙江李子园食品股份有限公司 一种微波-分子印迹聚合物联用提取纯化苹果多酚的方法
CN111205393B (zh) * 2020-03-06 2021-12-17 辽宁科技大学 用于吸附分离人参皂苷Rd的印迹聚合材料及制备方法
CN111359677B (zh) * 2020-03-13 2023-03-28 湖北文理学院 选择性降解邻苯二甲酸二丁酯的光电催化剂的制备方法
DE102020210312A1 (de) * 2020-08-13 2022-02-17 Beiersdorf Aktiengesellschaft Kosmetische Ethanol-in-Öl-Emulsion
CN112354524A (zh) * 2020-11-16 2021-02-12 榆林学院 分子印迹的壳聚糖/二氧化钛复合水凝胶及处理高浓度含酚废水的应用
CN116887866A (zh) 2020-12-03 2023-10-13 巴特尔纪念研究院 聚合物纳米颗粒和dna纳米结构组合物及用于非病毒递送的方法
RU2753515C1 (ru) * 2020-12-23 2021-08-17 Общество с ограниченной ответственностью «ШАРОВАПРО» (ООО «ШАРОВАПРО») Крем для лица
WO2022216977A1 (en) 2021-04-07 2022-10-13 Batelle Memorial Institute Rapid design, build, test, and learn technologies for identifying and using non-viral carriers
CN114524911B (zh) * 2022-01-20 2024-03-12 河南科技大学 一种葡聚糖内切印迹模拟酶、制备方法及其应用
CN114752099B (zh) * 2022-04-12 2023-04-07 佳木斯大学 磁性中空分子印迹聚合物及其在分离阿魏酸中的应用
FR3139720A1 (fr) * 2022-09-15 2024-03-22 Jean-Paul RIVET Composition cosmétique ou dermatologique utile pour la protection solaire ou le soin de la peau
CN116139833B (zh) * 2023-02-22 2024-06-21 南通大学 一种含铅废水处理剂及其制备方法
PL444131A1 (pl) * 2023-03-20 2024-09-23 Warszawski Uniwersytet Medyczny Sposób wytwarzania polimeru wdrukowanego molekularnie, polimer otrzymany tym sposobem oraz jego zastosowanie

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4237253A (en) * 1977-04-21 1980-12-02 L'oreal Copolymers, their process of preparation, and cosmetic compounds containing them
CA1168157A (en) * 1981-03-23 1984-05-29 Eric S. Abrutyn Polymer entrapped emollient-moisturizer composition
FR2594691B1 (fr) * 1986-02-24 1990-08-03 Bonne Claude Nouvelles preparations cosmetiques contenant un extrait des fruits de silybum marianum
US4855127A (en) * 1986-07-07 1989-08-08 Dow Corning Corporation Lattice-entrapped composition
JPS63218765A (ja) * 1986-07-07 1988-09-12 ダウ・コ−ニング・コ−ポレ−ション 格子にトラップされた組成物
DE3708451A1 (de) * 1987-03-16 1988-10-06 Henkel Kgaa Zwitterionische polymere und deren verwendung in haarbehandlungsmitteln
FR2697159B1 (fr) * 1992-10-22 1995-01-13 Oreal Composition cosmétique ou dermo-pharmaceutique contenant en association un lauroylméthionate d'un amino acide basique et au moins un polyphénol.
DE4309372C2 (de) * 1993-03-23 1997-08-21 Beiersdorf Ag Kosmetische Desodorantien, enthaltend Gemische aus Wollwachssäuren oder Wollwachssäurekomponenten und Fettsäurepartialglyceriden unverzweigter Fettsäuren
DE4333238A1 (de) * 1993-09-30 1995-04-06 Basf Ag Pyrrolidongruppenhaltige Polyester und Polyamide
US6884842B2 (en) * 1997-10-14 2005-04-26 Alnis Biosciences, Inc. Molecular compounds having complementary surfaces to targets
EP0925776A3 (de) * 1997-12-16 2001-08-29 Givaudan SA Polymere mit Bindungsfähigkeit für organoleptischen Substanzen
SG77209A1 (en) * 1997-12-16 2000-12-19 Givaudan Roure Int Polymer
NO20002309L (no) * 1999-05-12 2000-11-13 Hoffmann La Roche Fotostabile kosmetiske lysavskjermende sammensetninger
DE60210737T2 (de) * 2002-01-04 2007-01-18 L'oreal S.A. Ein Silikon-Copolymer und entweder ein Polymer aus einem ethylenisch ungesättigten Monomer mit Sulfongruppen oder ein organisches Pulver enthaltende Zusammensetzung; deren Verwendungen, insbesondere in der Kosmetik
CA2488981C (en) * 2003-12-15 2008-06-17 Rohm And Haas Company Oil absorbing composition and process
FR2867070B1 (fr) * 2004-03-04 2009-07-10 Oreal Gel autobronzant transparent contenant un polymere d'acide acrylamido 2-methyl propane sulfonique hydrosoluble ou hydrodispersible
US9308397B2 (en) * 2004-04-30 2016-04-12 The Procter & Gamble Company Long-wearing cosmetic compositions
CN1252099C (zh) * 2004-06-29 2006-04-19 武汉大学 甲基丙烯酸—乙二醇二甲基丙烯酸酯聚合物的用途
GB2418428A (en) * 2004-08-27 2006-03-29 Univ Cranfield Design and use of imprinted polymers, with specific affinity affecting controlled release of chemicals
JP4879554B2 (ja) * 2005-10-21 2012-02-22 株式会社メニコン ポストインプリント可能なヒドロゲル材料の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008034764A3 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102336871A (zh) * 2010-07-16 2012-02-01 中国科学院过程工程研究所 一种尺寸均一的氯霉素分子印迹聚合物微球及制备方法和应用
CN102336871B (zh) * 2010-07-16 2013-11-06 中国科学院过程工程研究所 一种尺寸均一的氯霉素分子印迹聚合物微球及制备方法和应用

Also Published As

Publication number Publication date
KR20090073170A (ko) 2009-07-02
WO2008034764A3 (de) 2008-05-08
WO2008034764A2 (de) 2008-03-27
CN101516448B (zh) 2014-07-16
US20100048737A1 (en) 2010-02-25
US20130085186A1 (en) 2013-04-04
RU2499607C2 (ru) 2013-11-27
JP2010503715A (ja) 2010-02-04
CA2662911A1 (en) 2008-03-27
RU2009114552A (ru) 2010-10-27
CN101516448A (zh) 2009-08-26

Similar Documents

Publication Publication Date Title
EP2066406A2 (de) Kosmetische zubereitungen auf basis molekular geprägter polymere
EP1915122B1 (de) Copolymere für kosmetische anwendungen
WO2007012574A1 (de) Dermokosmetische zubereitungen
EP1843742A1 (de) Verwendung von wasser-in-wasser-emulsionspolymerisaten als verdicker in kosmetischen zubereitungen
WO2006106140A2 (de) Verwendung von polyisobuten enthaltenden copolymerisaten in kosmetischen zusammensetzungen
JP2009503174A (ja) シリコーン基を含有するコポリマー、その製造及び使用
EP2051780A1 (de) Verwendung von kationischen copolymerisaten aus aminhaltigen acrylaten und n-vinylimidazoliumsalzen in haarkosmetischen zubereitungen
WO2009007339A2 (de) Kosmetische mittel auf basis von vinylimidazol-polymeren
US20100135917A1 (en) Cosmetically used cross-linked methyl methacrylate-copolymer
WO2006106114A1 (de) Verwendung von polyisobuten enthaltenden copolymerisaten in lichtschutzmitteln
US20130236397A1 (en) Hair setting compositions based on t-butyl acrylate and hydroxyalkyl methacrylate
WO2007110383A1 (de) Verkapselung lipophiler wirkstoffe
DE102004051647A1 (de) Kosmetische Zubereitungen enthaltend Ethylmethacrylat-Copolymere
EP1915124B1 (de) Festigerpolymere auf basis von polyesteracrylaten
WO2006106113A2 (de) Verwendung von polyisobuten enthaltenden copolymerisaten in shampoos und haarpflegemitteln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090420

R17D Deferred search report published (corrected)

Effective date: 20080508

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090924

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160301