WO2007110383A1 - Verkapselung lipophiler wirkstoffe - Google Patents

Verkapselung lipophiler wirkstoffe Download PDF

Info

Publication number
WO2007110383A1
WO2007110383A1 PCT/EP2007/052781 EP2007052781W WO2007110383A1 WO 2007110383 A1 WO2007110383 A1 WO 2007110383A1 EP 2007052781 W EP2007052781 W EP 2007052781W WO 2007110383 A1 WO2007110383 A1 WO 2007110383A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
retinol
acid
phase
peg
Prior art date
Application number
PCT/EP2007/052781
Other languages
English (en)
French (fr)
Inventor
Andreas Brockmeyer
Arne Ptock
Ekkehard Jahns
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2007110383A1 publication Critical patent/WO2007110383A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/16Interfacial polymerisation

Definitions

  • the invention relates to a process for the preparation of microcapsules or microcapsule dispersions on an O / W basis.
  • Another object of the invention are microcapsules and O / W microcapsule dispersions and their use in dermocosmetics.
  • dermocosmetics containing the microcapsules according to the invention or the O / W microcapsule dispersions prepared according to the method according to the invention are also the subject of the invention.
  • organic compounds are temperature, pH or photosensitive or react with other raw materials present in the cosmetic formulation.
  • microencapsulation which is based on the principle of interfacial polyaddition, spherical particles are formed which consist of a capsule core and a capsule shell surrounding the capsule core.
  • oil-in-water emulsions O / W emulsions
  • W / O emulsions water-in-oil emulsions
  • the discontinuous oil phase contains the substance to be encapsulated and a substance capable of polyaddition.
  • these are isocyanates.
  • the choice of substances to be encapsulated is almost arbitrary. They may be, for example, dyes, pharmaceutically active substances, UV protectants, vitamins or oils. If a further reactant or crosslinker necessary for the addition of polyaddition is added to the continuous aqueous phase, a high molecular weight addition product is formed between oil and water, which constitutes the capsule wall and encloses the oil droplets containing the lipophilic active substance.
  • the crosslinking reaction initiator added to the water phase may according to the prior art be amines, alcohols or amino alcohols.
  • For the Position of polyurea capsules are preferably diamines or triamines used.
  • the product properties and thus the usability of the microcapsules produced according to the above-mentioned principle depends, among other parameters, also on the substances used for producing the capsule shell.
  • DE-A 101 20 480 describes microcapsules with a capsule core containing water-soluble substances and a capsule wall of melamine / formaldehyde resins.
  • US Pat. No. 5,859,075 teaches microcapsules with diols and polyols as the capsule core and a polyurethane wall, which are prepared in paraffins as a continuous phase.
  • the microcapsules thus obtained are suitable as a powder coating component.
  • water-sensitive substances can also be encapsulated by this process.
  • EP-A-0 148 169 describes microcapsules having a water-soluble core and a polyurethane wall, which are produced in a vegetable oil.
  • capsule core material besides herbicides, water-soluble dyes are mentioned, inter alia.
  • WO 03/042274 a process is known for the production of polyurea-based microcapsules with liquid, suspension-containing or solid capsule core.
  • the capsule walls are formed by an isocyanate / amine system and further stabilized by the addition of crosslinking components such as mono- or dialdehydes.
  • WO 03/015910 relates to microcapsule dispersions comprising microcapsules with a water-soluble organic substances, in particular dyes containing Kapsikern and a capsule shell, which consists essentially of polyurethane and / or polyurea, in a hydrophobic solvent, which consists of 50 to 100 wt % Of glycerol ester oils and 0 to 50% by weight of solvents miscible with glycerol ester oils and their use in cosmetic products.
  • a water-soluble organic substances in particular dyes containing Kapsikern
  • a capsule shell which consists essentially of polyurethane and / or polyurea
  • a hydrophobic solvent which consists of 50 to 100 wt % Of glycerol ester oils and 0 to 50% by weight of solvents miscible with glycerol ester oils and their use in cosmetic products.
  • DE-A 198 46 650 relates to powder coating slurries with microencapsulated particles which contain at least one hydroxyl-containing binder and at least one polyisocyanate as crosslinking agent and water, wherein the particles of the crosslinking agent which may still be present in the aqueous phase are above the Surface existing isocyanate groups are stabilized by means of added in the aqueous phase deactivating agent.
  • the GB 1, 142,556 describes polyurethane-based microcapsules, which are accessible by reaction of isocyanate-functionalized polymers with diamines in aqueous systems.
  • sodium and potassium hydroxide and 1-hydroxyethyl-2-heptadecenyl-glyoxalidine be mentioned.
  • DE-A 27 06 329 relates to a process for reducing the residual isocyanate content in polyurea microcapsules, which comprises treating the polyurea microcapsules formed in oil-in-water systems with an excess of ammonia or an amine ,
  • preferred aftertreatment reagents are mentioned organic dialkylamines having 1 to 6 carbon atoms and ammonia.
  • the microcapsules produced in the processes mentioned have different properties with regard to their stability and / or size.
  • the microcapsules must not exceed a certain size, optimally between 5 and 100 .mu.m, and should be so stable that the oxidation-sensitive active substance is not already released beforehand or sufficient protection against the ingress of Offer oxygen.
  • microcapsules and O / W emulsions for testing which advantageously differ with respect to the abovementioned product properties over the microcapsules known in the prior art.
  • a further object of the present invention was to provide a process for producing these microcapsules or O / W emulsions.
  • Dermatocosmetics or “dermocosmetics” describes skin-cosmetic, hair-cosmetic, dermatological, hygienic or pharmaceutical agents, preparations and / or formulations for topical application to skin or hair, suitable (i) for the prevention of damage to human skin and / or human hair, ( (ii) to treat damage to human skin and / or human hair that has already occurred, (iii) to care for human skin and / or human hair, (iv) to improve skin feel (sensory properties).
  • ex- Plicitly covered are means of decorative cosmetics.
  • skin care compositions in which the pharmaceutically dermatological application is achieved taking into account cosmetic considerations.
  • the dermocosmetics according to the invention are particularly preferably preparations for protecting the skin from damage by sunlight, in particular by UV-B (280 to 320 nm) and UV-A radiation (> 320 nm). Very particular preference is given to preparations containing the lipophilic vitamins A, D, E, K and their derivatives, preferably vitamin A or .beta.-carotene.
  • Dermocosmetics contain in a cosmetically acceptable medium suitable auxiliaries and additives, which are chosen with regard to the specific field of application.
  • auxiliaries and additives are familiar to the expert and can be, for example, manuals of cosmetics, such as Schrader, bases and formulations of cosmetics, Weghig Verlag, Heidelberg, 1989, ISBN 3-7785-1491-1, or Umbach, cosmetics: development, manufacture and Application of cosmetic products, 2nd extended edition, 1995, Georg Thieme Verlag, ISBN 3 13 712602 9, be removed.
  • Dermateutics suitable for protecting human skin or hair against UV radiation contain one or more organic and / or inorganic sunscreens or UV filters in combination with one or more of the following substances: emulsifiers, surfactants, preservatives, perfume oils , Thickeners, hair polymers, hair and skin conditioners, graft polymers, water-soluble or dispersible silicone-containing polymers, gelling agents, conditioners, colorants, tinting agents, suntanning agents, dyes, pigments, bodying agents, moisturizers, re-fats, collagen, protein hydrolysates, lipids, and / or Antioxidants.
  • emulsifiers emulsifiers, surfactants, preservatives, perfume oils , Thickeners, hair polymers, hair and skin conditioners, graft polymers, water-soluble or dispersible silicone-containing polymers, gelling agents, conditioners, colorants, tinting agents, suntanning agents, dyes, pigments, bodying agents, moisturizers, re-fats,
  • Dermatocosmetic agents or “dermocosmetically active agents” in the context of the present invention are the active ingredients present in dermocosmetics according to the definition given above, which are for the prevention of damage to human skin and / or human hair, (ii) for the treatment of damage already occurred human skin and / or human hair; (iii) human skin and / or human hair care; (iv) skin feel enhancement (sensory properties); and (iv) decorative beautification or enhancement of the appearance of human skin and / or or human hair.
  • Such active ingredients are, for example, selected from the group of natural or synthetic polymers, pigments, humectants, oils, waxes, proteins, enzymes, minerals, vitamins, sunscreens, dyes, fragrances, antioxidants, peroxide decomposers and preservatives, and pharmaceutical active ingredients which are disclosed in US Pat Support, prevention and treatment of skin diseases used and have a healing, lesions preventive, regenerating or improving the general condition of the skin improving biological effect.
  • Cosmetically acceptable medium is to be understood broadly and means substances suitable for the preparation of cosmetic or dermocosmetic preparations and mixtures thereof.
  • Cosmetically-compatible substances do not cause irritation or damage on contact with human or animal dermal tissue or hair and are incompatible with other substances, and have low allergenic potential and are approved by the state regulatory authorities for use in cosmetic preparations These substances are familiar to the person skilled in the art and can be found, for example, in the handbooks of cosmetics, for example Schrader, bases and formulations of cosmetics, Weghig Verlag, Heidelberg, 1989, ISBN 3-7785-1491-1.
  • polymeric amine crosslinkers are polymers, polyfunctional amines, such as, for example, the polyvinylamines, the polyoxyalkyleneamines and / or the polyethyleneimines.They can also be used in the form of mixtures, in particular in the form of mixtures with at least one alkyldiamine with 1 to 10, preferably having 1 to 6 carbon atoms are used.
  • reactant is to be understood as meaning a compound which has at least one isocyanate-reactive group.
  • Preferred reactants are those which carry OH, NH and / or NH 2 groups as isocyanate-reactive groups which can react with isocyanate groups.
  • Particularly preferred reactants include those having a number average molecular weight of about 600 to about 380,000 g / mol.
  • Particularly preferred reactants are the polyfunctional amines such as, for example, the polyvinylamines, the polyoxyalkyleneamines and / or the polyethyleneimines. These can be used according to the invention also in the form of mixtures, in particular in the form of mixtures with at least one alkyldiamine having 1 to 10, preferably having 1 to 6 carbon atoms.
  • the invention accordingly relates to a process for the preparation of a microcapsule dispersion by interfacial polyaddition, in which, in a first step, by dispersing an oil phase containing the lipophilic dermocosmetically active substance to be encapsulated and a di- and / or polysaccharide. Isocyanate in a water phase, an oil-in-water emulsion is prepared and added in a second step, the thus produced oil-in-water emulsion of the required for polyaddition reactants, characterized in that it is in the required for the polyaddition reactants to two different amine crosslinkers act.
  • the oil phase-forming substance is the dermocosmetic agent.
  • the basic principle of microencapsulation is based on so-called interfacial polymerization or addition.
  • the lipophilic substances to be encapsulated and the substance capable of polyaddition generally isocyanates
  • the continuous water phase of the emulsion usually contains surfactants to prevent the droplets from flowing together.
  • surfactants to prevent the droplets from flowing together.
  • the water phase is the continuous disperse phase and the oil dispersed therein, containing the substances to be encapsulated, the discontinuous phase.
  • the emulsified droplets have a size which corresponds approximately to the size of the later microcapsules.
  • the emulsion is mixed with the amine crosslinkers capable of forming a wall in a second process step.
  • the amine crosslinker is capable of reacting at the interface between the discontinuous and the continuous phase with the isocyanates dissolved in the discontinuous phase to form the polymeric capsule wall.
  • At least two different amine crosslinkers are used in the process according to the invention, and these can be added as a mixture or successively to the oil-in-water emulsion. According to the invention, the use of mixtures is preferred.
  • At least one of the amine crosslinkers used is a polymeric compound having primary or secondary amino groups. Also preferred according to the invention is the use of two of the stated polymeric amine crosslinkers.
  • Suitable are di-, oligo- and / or polyisocyanates, such as aliphatic, cycloaliphatic, araliphatic, aromatic and heterocyclic di- and polyisocyanates as described by W. Siefken in Justus Liebigs Annalen der Chemie, 562, pages 75 to 136, for example Ethylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,12-dodecane diisocyanate, cyclobutane-1,3-diisocyanate, cyclohexane-1,3- and 1,4-diisocyanate and any desired mixtures of these isomers, 1 isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane, as described, for example, in DE 1 202 785 and US Pat.
  • Ethylene diisocyanate 1,4-tetramethylene diisocyanate
  • urethane group-containing polyisocyanates such as those described in U.S. Pat. in the patent applications BE-752 261 or US Pat. No. 3,394,164, acylated urea group-containing polyisocyanates according to DE 1 230 778, biuret-containing polyisocyanates, as described, for example, in US Pat. in DE-1 101 394 and GB-889 050, polyisocyanates prepared by telomerization reactions, such as e.g. in U.S. 3,654,106, ether group-containing polyisocyanates such as those described in U.S. Pat.
  • distillation residues having isocyanate groups obtained in the industrial preparation of isocyanate if appropriate dissolved in one or more of the abovementioned polyisocyanates.
  • Suitable modified aliphatic isocyanates are e.g. those based on hexamethylene-1,6-diisocyanate, m-xylylene diisocyanate, 4,4'-diisocyanatodicyclohexylmethane and isophorone diisocyanate, which have at least two isocyanate groups per molecule.
  • polyisocyanate-polyuretonimines as formed by carbodiimidization of biuret-group-containing hexamethylene-1,6-diisocyanate with organophosphorus catalysts, with carbodiimide groups formed primarily with further isocyanate groups reacting to form uretonimine groups.
  • isocyanurate-modified polyisocyanates having more than two terminal isocyanate groups for example those whose preparation is based on Hexamethylene diisocyanate is described in DE-2,839,133.
  • Other isocyanurate-modified polyisocyanates can be obtained analogously.
  • Mixtures of said isocyanates may also be used, e.g. Mixtures of aliphatic isocyanates, mixtures of aromatic isocyanates, mixtures of aliphatic and aromatic isocyanates, especially mixtures containing optionally modified diphenylmethane diisocyanates.
  • di- and / or polyisocyanates described herein can also be used as mixtures with di- and polycarboxylic acid chlorides, such as sebacoyl chloride, terephthaloyl chloride, adipic acid dichloride, oxalic acid dichloride, tricarballyl trichloride and 1, 2,4,5-benzenecarboxylic acid tetrachloride, with di- and Polysulfonklachloriden 1, 3-benzenesulfonic acid dichloride and 1, 3,5-benzenesulfonic acid trichloride, phosgene and with dichloro and
  • Polychloroformates such as 1, 3,5-Benzoltrichloroformiat and Ethylenbischloro- findiat application.
  • Preferred isocyanates are biureticians Hexamethylendiisocyanat optionally in admixture with 4,4'-diphenylmethane isocyanate and optionally 2,4-diphenylmethane isocyanate, trimerized hexamethylene diisocyanate optionally in admixture with 4,4'Diphenylmethandiisocyanat and optionally 2,4-diphenyl methane diisocyanate.
  • diisocyanates are the alkylbenzene diisocyanates and alkoxybenzene diisocyanates disclosed in the patent applications DE-3 105 776 and DE-3 521 126, also in the form of their biuret-isocyanaturetinedione oligomers.
  • Preferred di- or polyisocyanates are 4,4'-diphenylmethane diisocyanate, the mixtures of monomeric diphenylmethane diisocyanates and oligomeric diphenylmethane diisocyanates (polymer MDI), tetramethylene diisocyanate, tetramethylene diisocyanate trimers, hexa-methylene diisocyanate, hexamethylene diisocyanate trimers, isophorone diisocyanate trimer , 4,4'-methylenebis (cyclohexyl) diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, dodecyl diisocyanate, lysine alkyl ester diisocyanate, wherein alkyl is Ci to Ci 0 , 2,2,4- or 2,4, 4-trimethyl-1,6 hexamethylene diisocyanate, 2-butyl-2-ethy
  • diisocyanates or polyisocyanates are those having NCO groups of different reactivity, such as 2,4-tolylene diisocyanate (2,4-TDI), 2,4'-diphenylmethane diisocyanate (2,4'-MDI), triisocyanatotoluene, isophorone diisocyanate (IP D1), 2-butyl-2-ethylpenta-methylene diisocyanate, 2-isocyanatopropylcyclohexyl isocyanate, 3 (4) -isocyanato-methyl-1-methylcyclohexyl isocyanate, 1,4-diisocyanato-4-methylpentane, 2,4'-methylene-bis (cyclohexyl) diisocyanate and 4-methylcyclohexane-1,3-diisocyanate (H-TDI).
  • NCO groups of different reactivity such as 2,4-tolylene diisocyanate (2,4-TDI
  • isocyanates are particularly preferred whose NCO Groups are initially the same reactive, in which, however, can be induced by the first addition of an alcohol or amine to an NCO group, a drop in reactivity in the second NCO group.
  • isocyanates whose NCO groups are coupled via a delocalized electron system, for example 1,3- and 1,4-phenylene diisocyanate, 1,5-naphthylene diisocyanate, diphenyl diisocyanate, tolidine diisocyanate or 2,6-tolylene diisocyanate.
  • the di-, oligo- and / or polyisocyanate is selected from the group comprising tetramethylene diisocyanate, hexamethylene diisocyanate, dodecamethylene diisocyanate, 1,4-diisocyanato-cyclohexane, 4,4'-di- (isocyanatocyclohexyl) methane, trimethylhexane diisocyanate, tetramethylhexane diisocyanate, 1-isocyanato-3,3,5-trimethyl-5- (isocyanatomethyl) cyclohexane (IPDI), 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, tetramethylxylylene diisocyanate, 2 , 4'-diisocyanatodiphenylmethane and 4,4'-diisocyanato-diphenylmethane.
  • IPDI 1-isocyanato-3,
  • oligoisocyanates or polyisocyanates which are prepared from the abovementioned diisocyanates or polyisocyanates or mixtures thereof by linking by means of urethane, allophanate, urea, biuret, uretdione, amide, isocyanurate, carbodiimide, uretonimine , Oxadiazintrion- or iminooxadiazinedione structures.
  • oligo- or polyisocyanates which can be prepared from said di- or polyisocyanates or mixtures thereof by linking by means of urethane, isocyanurate, allophanate, urea or biuret structures or urethane, isocyanurate, allophanate -, urea and / or biuret structures have.
  • Reactants which can be reacted according to the invention with the di-, oligo- and / or polyisocyanates mentioned are those which have at least one isocyanate-reactive group.
  • Preferred isocyanate-reactive groups include NH and NH 2 groups.
  • the said reactants are primary or secondary amines which can be used individually or in the form of mixtures, for example from about 2 to about 5, preferably 2 to 3, different reactants, at least one amine being a polymeric one Amin acts.
  • preferred polymeric amine crosslinkers ie reagents having at least one isocyanate-reactive group are polyfunctional amines, in particular those having an average molecular weight of about 600 to about 380,000 g / mol, preferably from about 600 to about 300,000 g / mol, further preferred from about 600 to about 100,000 g / mol, and most preferably from about 800 to about 70,000 g / mol.
  • polyfunctional amine includes polyvinylamines of the general formula (III)
  • Polyethyleneimines polyethyleneamines of the general formula (IV) or (V),
  • indices x, y, z in formulas (III) to (VIII) are integers each independently selected so that the respective polyfunctional amines are in the above-indicated molecular weight ranges.
  • the compound class of polyoxyalkylene amines are the so-called JEFFAMINE ® such as JEFFAMINE ® D-230, JEFFAMINE ® D-400, JEFFAMINE ® D-2000, JEFFAMINE ® T-403, XTJ-510 (D-4000), XTJ-500 (ED-600), 501 (ED-900), XTJ-502 (ED-2003), XTJ 509 (T-3000) and JEFFAMINE T-5000 ® XTJ called.
  • Polyfunctional amines which are preferred in the context of the present invention are the polyvinylamines of the formula (III) and the branched polyethyleneimines of the formula (V), in particular the polyvinylamines of the formula (III).
  • Such polyvinylamines are obtainable, for example, by hydrolysis of the corresponding polyvinylformamides of the formula (IX)
  • polyvinylamine used according to the invention is the product of the hydrolysis of a polyvinylformamide
  • this may also contain polyvinylformamide of the formula (IX), depending on the extent or completeness of the hydrolysis that has ended.
  • preference is given to using those hydrolysis products which have a degree of hydrolysis of from about 60 to about 100% (mol / mol) and accordingly still contain about 40 to about 0% (mol / mol) of the originally employed polyvinylformamide.
  • preference is given to using those hydrolysis products which have a degree of hydrolysis of from about 80 to about 100%, more preferably from about 90 to about 100%, and most preferably from about 95 to about 100%.
  • polyethylenimine or polyvinylamine are used as polymeric amine crosslinkers in the process according to the invention.
  • polyethylenimines which are likewise preferred as polyfunctional amines according to the invention are accessible to methods known per se to those skilled in the art, as described, for example, in Römpp Chemie Lexikon, 9th edition, 1992.
  • the polymeric amines are used together with alkyldiamines having 2 to 10, preferably 2 to 6 carbon atoms.
  • alkyldiamines are, for example, aliphatic alkyldiamines having 2 to 10, preferably 2 to 6 carbon atoms, such as, for example, ethylenediamine, propylenediamine, butylenediamine and / or hexamethylenediamine, preferably ethylenediamine and / or hexamethylenediamine.
  • cyclic alkyldiamines for example piperazine, 2,5-dimethylpiperazine, amino-3-aminomethyl-3,5,5-trimethylcyclohexane (isophoronediamine, IPDA), 4,4'-diaminodicyclohexylmethane and / or 1, 4-diaminocyclohexane.
  • the stated alkyldiamines can also be used individually or in the form of mixtures of the compounds mentioned.
  • the polyfunctional amines mentioned can each be used individually or in the form of mixtures of from about 2 to about 5 different of the stated amines for the preparation of the microcapsule dispersions according to the invention.
  • the amount of isocyanates to be used according to the invention is in the range customary for interfacial polyaddition processes.
  • 20 to 150 preferably 40 to 150 wt .-% isocyanate based on the intended for encapsulation discontinuous phase (hydrophilic solvent + water-soluble substance) is used.
  • 40 wt .-% good shear stability of the capsules are observed.
  • Amounts above 150 wt .-% are possible, but usually do not lead to more stable capsule walls.
  • the theoretical amount of isocyanate required for wall formation is calculated from the content of reactive amino or hydroxyl groups of the reaction component or reactant components used. Usually, these proportions are expressed by so-called equivalent weights.
  • surface-active substances such as protective colloids and / or emulsifiers.
  • surfactants are used which mix with the hydrophobic phase.
  • a protective colloid is added to the water phase in the process according to the invention.
  • Polyols such as polyvinyl alcohol or cellulose derivatives, particularly preferably methylhydroxypropyl cellulose, are preferably used as protective colloids.
  • Neutral protective colloids are cellulose derivatives such as hydroxyethylcellulose, carboxymethylcellulose and methylcellulose, polyvinylpyrrolidone, copolymers of vinylpyrrolidone, gelatin, gum arabic, xanthan, sodium alginate, casein, polyethylene glycols, preferably polyvinyl alcohol and partially hydrolyzed polyvinyl acetates.
  • Suitable anionic protective colloids are polymethacrylic acid, the copolymers of sulfoethyl acrylate and methacrylate, sulfopropyl acrylate and methacrylate, N- (sulfoethyl) -maleimide, 2-acrylamido-2-alkylsulfonic acids, styrenesulfonic acid and vinylsulfonic acid, naphthalenesulfonic acid and formaldehyde-naphthalenesulfonic acid. Condensates, polyacrylic acids and phenolsulfonic acid-formaldehyde condensates.
  • the neutral protective colloids are generally used in amounts of 0.001 to 5 wt .-% based on the water phase of the emulsion, preferably 0.01 to 2 wt .-%.
  • the anionic protective colloids are generally used in amounts of from 0.01 to 5% by weight, based on the water phase of the emulsion.
  • organic protective colloids preference is given to using neutral protective colloids in combination with the inorganic solid particles.
  • linear block copolymers having a hydrophobic structural unit of a length ⁇ 50 ⁇ , alone or in mixtures with other surface-active substances.
  • the linear block copolymers are represented by the general formula
  • w is 0 or 1
  • x is a part of 1 or more
  • y is 0 or 1
  • A is a hydrophilic moiety having a solubility in water at 25 0 C ⁇ 1 wt .-% and a number average molecular weight from 200 to 50,000 g / mol
  • the covalently to the B blocks is connected
  • B is a hydrophobic moiety having a number average molecular weight of 300 to 60,000g / mol and a solubility covalent ⁇ 1% by weight in water at 25 0 C and a conditions can form
  • C and D are end groups which may independently be A or B. The end groups may be the same or different and are dependent on the manufacturing process. ren.
  • hydrophilic groups are polyethylene oxides, (poly (1,3-dioxolane), copolymers of polyethylene oxide or poly (1,3-dioxolane), poly (2-methyl-2-oxazoline), poly (glycidyltrimethylammonium chloride), polymethylene.
  • hydrophobic groups are polyesters in which the hydrophobic part has a steric barrier ⁇ 50 ⁇ , preferably ⁇ 75 ⁇ , in particular ⁇ 100 ⁇ .
  • the polyesters are derived from components such as 2-hydroxybutanoic acid, 3-hydroxybutanoic acid, 4-hydroxybutanoic acid, 2-hydroxycaproic acid, 10-hydrodecanoic acid, 12-hydroxydodecanoic acid, 16-hydroxyhexadecanoic acid, 2-hydroxyisobutanoic acid, 2- (4-hydroxyphenoxy) propionic acid, 4-hydroxyphenylpyruvic acid, 12-hydroxystearic acid, 2-hydroxyvaleric acid, polylactones of caprolactone and butyrolactone, polylactams of caprolactam, polyurethanes and polyisobutylenes.
  • the linear block copolymers contain both hydrophilic and hydrophobic units.
  • the block polymers have a molecular weight above 1000 and a length of the hydrophobic part of ⁇ 50 ⁇ calculated according to the law of Cosines. These sizes are calculated in extended configuration, taking into account the bond lengths and angles given in the literature.
  • the preparation of these units is well known. Production processes are, for example, condensation reaction of hydroxy acid, condensations of polyols such as diols with polycarboxylic acids such as dicarboxylic acids. Also suitable is the polymerization of lactones and lactams and the reaction of polyols with polyisocyanates.
  • Hydrophobic polymer units are reacted with the hydrophilic units as is well known, for example by condensation reaction and coupling reaction.
  • the preparation of such block copolymers is described for example in US 4,203,877, to which reference is expressly made.
  • the proportion of linear block copolymer is preferably 20-100% by weight of the total amount of surface-active substance used.
  • Suitable surface-active substances are also typically used for oil-in water emulsions used emulsifiers or co-emulsifiers, such as C 2 -C 8 sorbitan fatty acid ester
  • PEG-8 Stearates PEG-12 Stearates, PEG-20 Stearates, PEG-40 Stearates, PEG-
  • PEG-42 Babassu Glycerides, PEG-45 Palm Kernel Glycerides, PEG-60 Almond
  • PEG-60 Passion Fruit Glycerides, PEG-75 Shea Butter Glycerides, PEG-90 Apricot Kernel Glycerides, PEG-6 Caprylic / Capric Glycerides, PEG-60 Almond
  • sucrose distearate sucrose stearate
  • Polysorbates 20 polysorbates 40, polysorbates 60, polysorbates 80, polysorbates
  • Cetyl Alcohol (and) Stearyl Alcohol (and) Sodium Cetearyl Sulfate
  • Cetearyl Alcohol (and) Polysorbate 60 (and) Glyceryl Stearate - Cetearyl Alcohol (and) Ceteareth-25
  • Sorbitan Stearate (and) Methyl Glucose Sesquistearate.
  • Span ® series Particularly advantageous emulsifiers of Span ® series have been found. These are partially cyclized sorbitol esterified with a fatty acid, it being possible for the skeleton to be substituted by further radicals known from surface-active compounds, for example polyethylene oxide.
  • the sorbitan esters with lauric, palmitic, stearic and oleic acid are obtained. such as Span® 80 (sorbitan monooleate), Span® 60 (sorbitan monostearate) and Span® 85 (sorbitan trioleate).
  • oxypropylenated / oxyethylenated C 12 - C 2 o-fatty alcohols are used as a mixture component with other surface-active substances.
  • These fatty alcohols generally have 3 to 12 ethylene oxide or propylene oxide units.
  • Ci 2 -Ci 8 sorbitan fatty acid esters Preferably used as emulsifier Ci 2 -Ci 8 sorbitan fatty acid esters. These can be used individually, in their mixtures and / or as mixtures with other emulsifier types mentioned above.
  • the proportion of sorbitan fatty acid ester is preferably from 20 to 100% by weight of the total amount of surface-active substance used.
  • a mixture of surface active substances contained selects the linear block copolymers tend C 2 -C 8 -Sorbitanfettklaer and oxypropylenier- te / oxyethylenated Ci2-C2o-fatty alcohols.
  • linear block copolymer and from 5 to 80 wt .-% such mixtures are preferably containing 20 to 95 wt .-%, in particular 25 with respect -Sorbitanfett.saureest.er 8 to 70 wt .-% C 12 -C on the total amount of surfactant.
  • the proportion of oxypyropylen convinced / oxyethyleniertgen Ci 2 -C 2 o fatty alcohol is preferably 0 to 20 wt .-%.
  • mixtures of surface-active substances are preferably comprising essentially 30 to 50% by weight of linear block copolymer, 40 to 60% by weight.
  • the optimum amount of surface-active substance is influenced on the one hand by the surface-active substance itself and on the other hand by the reaction temperature, the desired microcapsule size and the wall materials. Simple series tests can easily determine the optimum amount required.
  • the surface-active substance for preparing the emulsion in an amount of 0.01 to 10 wt .-%, preferably 0.05 to 5 wt .-% and in particular 0.1 to 2 wt .-% based on the hydrophobic Phase applied.
  • the addition of the selected isocyanate component can be carried out continuously or batchwise. With good success, the isocyanate component is added continuously, the rate of addition being kept constant or varied over the course of the reaction.
  • the procedure is such as to add the diisocyanates and / or polyisocyanates to the emulsion continuously and with decreasing rate of reaction, ie in gradient mode.
  • This preferred preparation method makes it possible in particular to provide the inventive microcapsule dispersions with high encapsulation efficiencies with respect to the water-soluble organic substance to be encapsulated. This means that dispersions of microcapsules whose capsule walls are distinguished by a particularly low permeability to the encapsulated water-soluble organic substance are advantageously included in this preparation process.
  • the interfacial reaction can proceed, for example, at temperatures in the range from -3 to + 7O 0 C, it is preferably carried out at 15 to 65 0 C.
  • the dispersion of the core material is carried out in a known manner, depending on the size of the capsules to be prepared.
  • the dispersion is sufficient using effective stirrers, in particular propeller or impeller stirrers.
  • Homogenization may also be accomplished by the use of ultrasound (e.g., Branson Sonifier Il 450).
  • ultrasound e.g., Branson Sonifier Il 450
  • the devices described in GB 2250930 and US 5,108,654 are suitable.
  • the capsule size can tes on the number of revolutions of Dispergiergerä- / homogenizer and / or by means of suitable thickeners such as polyvinyl alcohols, carboxymethyl celluloses or acrylate thickeners (bopole example carboxylic ®, Fa. Noveon) as a function of the concentration and molecular weight, ie, the viscosity the continuous water phase, to be controlled within certain limits.
  • suitable thickeners such as polyvinyl alcohols, carboxymethyl celluloses or acrylate thickeners (bopole example carboxylic ®, Fa. Noveon) as a function of the concentration and molecular weight, ie, the viscosity the continuous water phase, to be controlled within certain limits.
  • the size of the dispersed particles decreases as the number of turns increases up to a limit of the number of turns.
  • Can furthermore also weathered clays such as Bentone ® 38 are used as thickeners.
  • the dispersers are used at the start of capsule formation. For continuously operated devices with forced circulation, it is advantageous to send the emulsion through the shear field several times.
  • the freshly prepared microcapsule dispersions are treated as described above with an after-treatment reagent having a molecular weight of at least 100 g / mol.
  • the microcapsule dispersions according to the invention may, if desired, be subjected to a further after-treatment.
  • Suitable reagents for this are low molecular weight compounds which are able to complete the reaction between the isocyanate components used and the reactants used with at least one isocyanate-reactive group or the selected aftertreatment reagent having a molecular weight of at least 100 g / mol or not Reacted isocyanate functions.
  • Particularly suitable for this purpose are amines and / or amino alcohols such as, for example: 2-aminomethylpropanol, propylamine, butylamine, pentylamine, hexylamine, 2-aminocyclohexanol and octylamine.
  • a preferred aftertreatment reagent is 2-aminomethylpropanol.
  • Microcapsule dispersions containing from 5 to 50% by weight of microcapsules can be prepared by the process according to the invention.
  • the microcapsules are single capsules.
  • capsules with an average particle size in the range from about 0.5 to 50 ⁇ m and larger can be derived.
  • the mean particle diameter is the z-average particle diameter determined by Fraunhof diffraction with Mie correction for single particle counting. Usually, one uses for its determination a Malvern Mastersizer S. Particularly advantageous is the very narrow size distribution of the capsules.
  • microcapsule dispersions according to the invention can be incorporated into cosmetic compositions in a known manner.
  • the incorporation into the cosmetic product is carried out according to customary procedures known to the person skilled in the art, generally by stirring and homogenization into the other constituents of the cosmetic product.
  • cosmetic agents that are designed as decorative cosmetic products are facial skin care products, especially in the eye area, such as kohl pencils, eyeliner pencils, eyebrow pencils, eyeshadows, cream rouge, powder rouge, make-up, make-up, e.g. B. Foundation, make-up, lipsticks.
  • cosmetic agents which may also include UV radiation-absorbing compounds such as sunscreens such as sunscreens or sunblocks.
  • sunscreens such as sunscreens or sunblocks.
  • cosmetic products that consist exclusively of oils or fats, especially those that have a solid form, eg.
  • pens such as kohl pencils, eyeliner pens, eyebrow pencils, pen-shaped theatrical make-up, lipsticks and the like, as well as powdery or powdered cosmetic products such as eye shadow and cream lot or loose powder rouge will be used preferably microcapsule dispersions.
  • the amount of microcapsules in the cosmetic composition depends primarily on the desired color impression that the decorative cosmetic product is to have. Depending on the nature of the cosmetic product and the desired color impression, the content of microcapsules in the cosmetic composition is in the range of 0.1 to 50% by weight, based on the total weight of the cosmetic product.
  • the method according to the invention comprises an aftertreatment step.
  • This process step comprises the so-called after-treatment of the freshly prepared capsule dispersion.
  • the reaction of the isocyanate functions of the or the introduced di-, oligo- and / or polyisocyanate which are not reacted with the NH- or NH 2 -function or the polymeric amine crosslinker used is completed ,
  • at least one compound selected from the group of amines, alcohols and / or amino alcohols having a molecular weight of at least 100 g / mol is used for the after-treatment.
  • the remaining free isocyanate functionalities are reacted in accordance with the invention with the selected aftertreatment reagent, ie an amine, an alcohol or an aminoalcohol or a mixture thereof.
  • the selected aftertreatment reagent ie an amine, an alcohol or an aminoalcohol or a mixture thereof.
  • Cio-C 50 alkoxy-1-propane amine such as Lauryloxypropylamin
  • Fatty alkyl 1, 3-diaminopropanes such as, for example, arachidyl-1,3-diaminopropane, behehyl-1,3-diaminopropane.
  • step b) is the polyoxyalkylene mono-amines, for example those of the general formula (I)
  • R and R ' are independently H or CH 3, and n is selected to result in a compound having a molecular weight in the above ranges.
  • R and R ' are independently H or CH 3, and n is selected to result in a compound having a molecular weight in the above ranges. Examples are for this class of compounds, the following compounds: XTJ-505 (M-600), XTJ-506 (M-1000), XTJ-507 (M-2005) and JEFFAMINE ® M-2070 (each Huntsman).
  • x is an integer and is chosen to result in a polyisobutyleneamine falling within the desired molecular weight range.
  • x is an integer from about 5 to about 25, more preferably from about 10 to about 15.
  • polyisobutylenamines Kerocom® ® PIBA 03 (polyisobutyleneamine, number average molecular weight of about 1,000 g / mol, BASF Aktiengesellschaft). Further suitable polyisobutylene amines are mentioned in EP-A 0 244 616.
  • Polyisobutyleneamines are, as described in the same place, for example, accessible by hydroformylation and subsequent reductive amination of the corresponding polyisobutylenes, which in turn can be prepared in different chain lengths.
  • particularly preferred aftertreatment reagents are the mentioned polyisobutyleneamines, especially those having a number average molecular weight of from about 300 to about 10,000 g / mol, in particular from about 400 to about 5000 g / mol.
  • step b) are the amino-defined C 3 oC 5 o-alcohols such as Myricylamin or Melissylamin, the polyoxyalkylene Mono-amine, N, N-ditridecylpropylenediamine and the C 1 0-C50, in particular the C30-C50-alkoxy-1-propanamine.
  • the amino-defined C 3 oC 5 o-alcohols such as Myricylamin or Melissylamin
  • the polyoxyalkylene Mono-amine N, N-ditridecylpropylenediamine
  • the C 1 0-C50 in particular the C30-C50-alkoxy-1-propanamine.
  • the chosen aftertreatment reagent will vary depending on the amount of free, i. not yet reacted isocyanate groups in the prepared dispersion usually in an amount of about 0.005 to about 1, 0 mol, preferably about 0.1 to about 0.7 mol and most preferably from about 0.02 to about 0.3 mol per kg the dispersion prepared according to step a) used.
  • microcapsule dispersions which are distinguished by advantageous properties, in particular by a reduced viscosity, compared with those microcapsule dispersions which have been treated with low molecular weight aftertreatment reagents ,
  • a further advantage of the microcapsule dispersions obtainable in this way is that free, not yet reacted isocyanate functionalities abreact with the aftertreatment reagents mentioned, and thus the molecular weight, in particular of residues still free in solution or isocanates present on the capsule wall, is markedly increased. As a result, among other things, the toxic potential of said, present as an impurity isocyanates can be reduced.
  • the oil phase containing the lipophilic active substance or substances consists of:
  • a. 1-100% of the lipophilic agent b. 0-99% of a carrier oil, and c. 0-10% of a stabilizing additive
  • antioxidants such as e.g. Vitamin C or E, dispersants or thickeners are used as described below.
  • Suitable carrier oils are, for example, mineral oils, mineral waxes, branched and / or unbranched hydrocarbons, triglycerides of saturated and / or unsaturated, branched and / or unbranched Cs-C24-alkanecarboxylic acids.
  • oils such as olive oil, palm oil, almond oil or mixtures; Oils, fats or waxes, esters of saturated and / or unsaturated, branched and / or unbranched C3-C30-alkanecarboxylic acids and saturated and / or unsaturated, branched and / or unbranched C3-C30-alcohols, from aromatic carboxylic acids and saturated and unsaturated or branched and / or unbranched C 3 -C 30 -alcohols, for example isopropyl myristate, isopropyl stearate, hexyldecyl stearate, oleyl oleate; also synthetic, semi-synthetic and natural mixtures of such esters as jojoba oil, Alkylbenzoates or silicone oils such as cyclomethicone, dimethylpolysiloxane, diethylpolysiloxane, octa
  • Particularly preferred glycerol ester oils here are C 6 -C 12 fatty acid triglycerides or mixtures thereof, in particular octanoic and decanoic acid triglycerides, and also their mixtures.
  • a preferred octyl tanoylglycerid / Decanoylglycerid mixture is, for example Miglyol ® 812 from. Sa- sol.
  • Glycerol ester oils are esters of saturated or unsaturated fatty acids with glycerol. Suitable are mono-, di- and triglycerides and their mixtures. Preference is given to fatty acid triglycerides.
  • glycerol ester oils which are used individually or in their mixtures.
  • Other suitable oils are:
  • Hydrocarbon oils such as paraffin oil, purcellin oil, perhydrosqualene and solutions of microcrystalline waxes in these oils, animal or vegetable oils, such as sweet almond oil, avocado oil, calophylum oil, lanolin and derivatives thereof, castor oil, horse oil, pork oil, sesame oil, olive oil, Jopheava oil, karite Oil, Hoplostethus oil, mineral oils whose distillation begins under atmospheric pressure at about 250 ° C and their distillation end point at 410 ° C, such.
  • Vaselineöl esters of saturated or unsaturated fatty acids, such as alkyl myristates, z. For example, i-propyl, butyl or cetyl myristate, hexadecyl stearate, ethyl or i-propyl palmitate and cetyl ricinolate.
  • silicone oils such as dimethylpolysiloxane, methylphenylpolysiloxane and the silicone glycol copolymer, fatty acids and fatty alcohols or waxes, such as
  • the cosmetic preparations may contain perfume oils.
  • perfume oils for example, mixtures of natural and synthetic fragrances may be mentioned.
  • Natural fragrances include extracts of flowers (eg lily, lavender, rose, jasmine, neroli, ylang-ylang), stems and leaves (eg geranium, patchuli, petitgrain), fruits (eg anise, coriander, caraway, juniper ), Fruit peel (eg bergamot, lemon, orange), roots (eg mace, angelica, celery, cardamom, costus, iris, calmus), wood (eg pine, sandal, guaiac, cedar, rosewood), Herbs and grasses (eg tarragon, lemongrass, sage, thyme), needles and twigs (eg spruce, fir, pine, pines), resins and balsams (eg galbanum, elemi, benzoin, myrrh, olibanum, opopon
  • Typical synthetic fragrance compounds which can be used if desired are furthermore compounds of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type.
  • Fragrance compounds of the ester type are known e.g. Benzyl acetate, phenoxyethyl isobutyrate, 4- tert -Butylcyclohexylacet.at, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethylmethylphenylglycinate, allylcyclohexylpropionate, styrallyl propionate and benzyl salicylate.
  • the ethers include, for example, benzyl ethyl ether, to the aldehydes e.g. the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamaldehyde, hydroxycitronellal, lilial and bourgeonate, to the ketones e.g. the alcohols, anethof, citronellol, genolene, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol; the hydrocarbons include, for example, the terpenes and balsams.
  • the aldehydes e.g. the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamaldehyde, hydroxycitronellal, lilial and bourgeon
  • fragrance oils which are most commonly used as aroma components, are useful as perfume oils, e.g. Sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, lime blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • lipophilic active ingredients is particularly preferably selected from the group comprising vitamins A, D, E, K, ubiquinone derivatives, retinoids and .beta.-carotene or derivatives and mixtures thereof.
  • carotenoids are to be understood as meaning the following compounds: xanthophylls such as violaxanthin, lutein, lycopene and zeaxanthin, furthermore astaxanthin, capsanthin, capsorubin, cryptoxanthin, bixin, phytoene, phytofluene, 3-hydroxyechinenone, adonirubin, individually or as a mixture.
  • xanthophylls such as violaxanthin, lutein, lycopene and zeaxanthin, furthermore astaxanthin, capsanthin, capsorubin, cryptoxanthin, bixin, phytoene, phytofluene, 3-hydroxyechinenone, adonirubin, individually or as a mixture.
  • xanthophylls such as violaxanthin, lutein, lycopene and zeaxanthin, furthermore astaxanthin, capsanthin, capsorubin, cryptoxanthin, bixin
  • a particularly preferred lipophilic active ingredient according to the invention is vitamin A.
  • retinoids are understood as meaning vitamin A alcohols esterified with fatty acids (eg retinol palmitate).
  • retinoic acid encompasses both all-trans retinoic acid and 13-cis retinoic acid.
  • effector molecules (i) are vitamins, provitamins and vitamin precursors from groups A, and E, in particular the palmitic acid esters and tocopherols, in particular ⁇ -tocopherol.
  • vitamin E or tocopherols comprises eight lipid-soluble derivatives which are subdivided into tocoo-herols and tocotrienols. While
  • Derivatives of these subclasses differ in the degree of methylation of the 6-chromanol ring structure.
  • the tocopherols have a saturated side chain (1) and the tocotrienols (2) have an unsaturated side chain.
  • vitamin E or tocopherol means all the tocopherols or tocotrienols mentioned above.
  • 6-chromanol derivatives can also be used as effector molecules.
  • the lipophilic active substances are selected from the group of lipophilic UV protection agents containing 4-Aminobenzoic acid derivatives, esters of cinnamic acid, esters of salicylic acid, derivatives of benzophenone, esters of benzalmalonic acid and triazine derivatives or mixtures thereof.
  • UV light protection filters organic substances capable of absorbing ultraviolet rays and absorbing the absorbed energy in the form of longer wavelength radiation, e.g. Heat, give it up again.
  • the organic substances may be oil-soluble or water-soluble.
  • oil-soluble UV filters e.g. the following substances are used:
  • Esters of salicylic acid preferably 2-ethylhexyl salicylate, 4-isopropylbenzyl salicylate, homomenthyl salicylate;
  • benzophenone preferably 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone;
  • Esters of benzalmalonic acid preferably derivatives of di-2-ethylhexyl 4-methoxybenzmalonate with free OH function;
  • Propane-1,3-diones e.g. 1- (4-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione.
  • Aminohydroxy-substituted derivatives of benzophenones e.g. N, N-diethylaminohydroxybenzoyl-n-hexyl benzoate.
  • the triazine derivative is 2,4,6-tris [anilino (p-carbo-2 '-ethyl-1' -hexyloxy)] - 1, 3,5-triazine (Uvinul®T150, BASF Aktiengesellschaft) Dioctylbutamidotriazone (UV-Sorb-HEB®, 3V Sigma) and bis-ethylhexyloxyphenol-methoxyphenyltriazine (anisotriazines or Tinosorb®s, Ciba-Geigy).
  • the compounds 2,4,6-tris [anilino (p-carbo-2 '-ethyl-1' -hexyloxy)] are - 1, 3,5-triazine (Uvinul ®T150, BASF Aktiengesellschaft) and dioctylbutamido-triazone (UV-Sorb-HEB®, 3V Sigma). Further triazine derivatives can be found in the patent applications EP-A 0796851, EP-A 0087098 and EP-A 0850935.
  • R 4 and R 5 independently of one another are hydrogen, C 1 -C 20 -alkyl, C 3 -C 10 -cycloalkyl or C 3 -C 10 -cycloalkenyl, are preferred. Particularly preferred are the compound 1, 1-dicarboxy (2 '2' -dimethyl) is -4-4-diphenyldutadien.
  • the stated 4,4'-diarylbutadienes are known as such and their structure and preparation are described in the patent applications EP 0967200 and EP 916 335, the contents of which are hereby incorporated by reference.
  • R 1 and R 2 independently of one another are hydrogen, C 1 -C 20 -alkyl, C 3 -C 10 -cycloalkyl or C 3 -C 10 -cycloalkenyl, where the substituents R 1 and R 2 together with the nitrogen atom to which they are attached form a 5 - or 6-ring and R 3 is a Ci-C2o-alkyl, preferably.
  • Particularly preferred is 2- (4-N, N-diethylamino-2-hydroxybenzoyl) benzoic acid (Uvinul® A Plus, BASF Aktiengesellschaft).
  • Further examples of hydroxybenzophenones and their preparation can be found in the German Patent Application DE-A 1 1917906, the content of which is hereby expressly incorporated by reference.
  • the microcapsules prepared according to the process of the invention are isolated from the emulsion by means of a spray-drying process.
  • Another object of the present invention are the O / W dispersions prepared according to the inventive method described above and the microcapsules contained in these dispersions and optionally isolated by the above-mentioned spray-drying method.
  • the invention relates to the use of the abovementioned microcapsules according to the invention or the O / W dispersions prepared in accordance with the process according to the invention in dermocosmetics. Preference is given to the microcapsules according to the invention or the O / W dispersions prepared according to the invention in combination with (i) cosmetic aids from the field of decorative cosmetics, with (ii) dermocosmetician agents and / or with (iii) suitable auxiliary and Additives used.
  • these active ingredients are active ingredients or auxiliaries and additives which are used to protect the skin, hair and / or fingernails from damage, for the treatment of skin, hair and / or fingernails or toenails that have already occurred and for the care of skin, hair and / or fingernails or toenails are used.
  • active ingredients are preferably selected from the group of natural or synthetic polymers, pigments, humectants, oils, waxes, enzymes, minerals, vitamins, sunscreens, dyes, fragrances, antioxidants, preservatives and / or pharmaceutical agents.
  • microcapsules according to the invention or the O / W dispersions prepared according to the process according to the invention is preferably carried out in skin protection agents, skin care products, skin cleansers, hair conditioners, hair care preparations, hair cleaners, hair colorants or preparations for decorative cosmetics, depending on the field of application preferably in the form of ointments, creams, emulsions, suspensions, lotions, as milk, pastes, gels, foams or sprays.
  • auxiliaries and additives for the production of hair cosmetic or skin cosmetic preparations are familiar to the expert and can from manuals of cosmetics, such as Schrader, bases and formulations of cosmetics, Weghig Verlag, Heidelberg, 1989, ISBN 3-7785-1491-1, or Limbach, cosmetics: development, production and application of ksometischer means, 2nd extended edition, 1995, Georg Thieme Verlag, ISBN 3 13 712 602 9 are removed.
  • microcapsules according to the invention or the O / W dispersions prepared in accordance with the process according to the invention in dermocosmetics preferably takes place in combination with at least one different constituent which is selected from cosmetically active substances, emulsifiers, surfactants, preservatives, perfume oils, thickeners, hair polymers, hair and skin conditioners, graft polymers, water-soluble or dispersible silicone-containing polymers, light stabilizers, bleaching agents, gelling agents, care agents, colorants, tinting agents, tanning agents, dyes, Pigments, bodying agents, moisturizers, restoats, collagen, protein hydrolysates, lipids, antioxidants, defoamers, antistatic agents, emollients and emollients.
  • at least one different constituent which is selected from cosmetically active substances, emulsifiers, surfactants, preservatives, perfume oils, thickeners, hair polymers, hair and skin conditioners, graft polymers, water-soluble or dispers
  • the antioxidants are selected from the group consisting of amino acids (eg glycine, histidine, tyrosine, tryptophan) and their derivatives, imidazolones (eg urocaninic acid) and derivatives thereof, peptides such as D, L-carnosine, D-carnosine, L-carnosine.
  • amino acids eg glycine, histidine, tyrosine, tryptophan
  • imidazolones eg urocaninic acid
  • peptides such as D, L-carnosine, D-carnosine, L-carnosine.
  • Carnosine and its derivatives eg anserine
  • carotenoids eg .beta.-carotene, lycopene
  • chlorogenic acid and its derivatives eg dihydrolipoic acid
  • lipoic acid and derivatives thereof eg dihydrolipoic acid
  • aurothioglucose propylthiouracil and other thiols
  • Dyes which may be used are the substances which are suitable and approved for cosmetic purposes, as compiled, for example, in the publication "Cosmetic Dyes” of the Dye Commission of the Irish Klastician, published by Verlag Chemie, Weinheim, 1984. These dyes are usually used in concentrations of 0.001 to 0.1 wt .-%, based on the total mixture. pigments
  • the compositions according to the invention contain at least one pigment.
  • the pigments are present in undissolved form in the product composition and may be present in an amount of from 0.01 to 25% by weight, more preferably from 5 to 15% by weight.
  • the preferred particle size is 1 to 200 .mu.m, in particular 3 to 150 .mu.m, particularly preferably 10 to 100 .mu.m.
  • the pigments are practically insoluble colorants in the application medium and may be inorganic or organic. Also inorganic-organic mixed pigments are possible. Preference is given to inorganic pigments.
  • the advantage of inorganic pigments is their excellent light, weather and temperature resistance.
  • the inorganic pigments may be of natural origin, for example made of chalk, ocher, umber, green soil, terraced terraza or graphite.
  • the pigments may be white pigments such as titanium dioxide or zinc oxide, black pigments such as iron oxide black, colored pigments such as ultramarine or iron oxide red, luster pigments, metal effect pigments, pearlescent pigments and fluorescence or phosphorescent pigments, preferably at least one pigment is colored, non-white pigment.
  • Suitable are metal oxides, hydroxides and oxide hydrates, mixed phase pigments, sulfur-containing silicates, metal sulfides, complex metal cyanides, metal sulfates, chromates and molybdate and the metals themselves (bronze pigments).
  • Titanium dioxide (Cl 77891), black iron oxide (Cl 77499), yellow iron oxide (Cl 77492), red and brown iron oxide (Cl 77491), manganese violet (Cl 77742), ultramarines (sodium aluminum sulfosilicates, Cl 77007, Pigment Blue 29 ), Chromium oxide hydrate (C 177289), iron blue (Ferric Ferro-Cyanide, CI 7751 0), Carmine (Cochineal).
  • pearlescent and color pigments based on mica or mica which are coated with a metal oxide or a metal oxychloride such as titanium dioxide or bismuth oxychloride and optionally further coloring substances such as iron oxides, iron blue, ultramarines, carmines, etc., and the color is determined by varying the layer thickness can be.
  • a metal oxide or a metal oxychloride such as titanium dioxide or bismuth oxychloride and optionally further coloring substances such as iron oxides, iron blue, ultramarines, carmines, etc.
  • Such pigments are sold, for example under the trade names Rona ®, Colorona ®, Dichrona and Timiron ® ® (Merck).
  • Organic pigments include, for example, the natural pigments sepia, cambogia, bone charcoal, Kasseler brown, indigo, chlorophyll and other plant pigments.
  • Synthetic organic pigments are, for example, azo pigments, anthraquinoids, indigoids, dioxazine, quinacridone, phthalocyanine, isoindolinone, perylene and perinone, metal complex, alcaliblau and diketopyrrolopyrrole pigments.
  • the use of the microcapsules according to the invention or the O / W dispersions prepared according to the method according to the invention is carried out with at least one particulate substance which is in the proportion of 0.01 to 10, preferably of 0, in the composition. 05 to 5 wt.% Is present.
  • Suitable substances are, for example, substances which are solid at room temperature (25 ° C.) and in the form of particles. Suitable examples are silica, silicates, aluminates, clays, mica, salts, in particular inorganic metal salts, metal oxides, for example titanium dioxide, minerals and polymer particles.
  • the particles are present in the composition in undissolved, preferably stably dispersed form and can deposit in solid form after application to the surface of the application and evaporation of the solvent.
  • Preferred particulates are silica (silica gel, silica) and metal salts, especially inorganic metal salts, with silica being particularly preferred.
  • Metal salts are, for example, alkali or alkaline earth halides such as sodium chloride or potassium chloride; Alkali or alkaline earth sulfates such as sodium sulfate or magnesium sulfate.
  • pearlescing Agents are, for example: alkylene glycol esters, special ethylene glycol disterate; Fatty acid alkanolamides, especially coconut fatty acid diethanoamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polybasic, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; Fatty substances, such as, for example, fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which in total have at least 24 carbon atoms, especially laurone and distearyl ether; Fatty acids such as stearic acid, hydroxystearic acid or behenic acid, ring-opening products of olefin epoxides having 12 to 22 carbon atoms with fatty alcohols having 12 to 22 carbon atoms and / or polyols having 2
  • Typical thickeners in such formulations are crosslinked polyacrylic acids and their derivatives, polysaccharides and their derivatives, such as xanthan gum, agar-agar, alginates or tyloses, cellulose derivatives, e.g. Carboxymethylcellulose or hydroxycarboxymethylcellulose, fatty alcohols, monoglycerides and fatty acids, polyvinyl alcohol and polyvinylpyrrolidone.
  • Nonionic thickeners are preferably used.
  • Suitable cosmetically and / or dermocosmetically active agents are e.g. coloring agents, skin and hair pigmenting agents, toning agents, suntanning agents, bleaching agents, keratin-hardening substances, antimicrobial agents, light filter active ingredients, repellent active ingredients, hyperemic substances, keratolytic and keratoplasmic substances, anti-dandruff active ingredients, anti-inflammatory agents, keratinizing substances, antioxidant resp as free-radical scavengers active substances, skin-moisturizing or moisturizing substances, lipid-replacements, anti-erythematous or anti-allergic active substances, branched fatty acids such as 18-methyl eicosanoic acid, and mixtures thereof.
  • coloring agents e.g. coloring agents, skin and hair pigmenting agents, toning agents, suntanning agents, bleaching agents, keratin-hardening substances, antimicrobial agents, light filter active ingredients, repellent active ingredients, hyperemic substances, keratolytic
  • Artificial skin tanning agents which are suitable for tanning the skin without natural or artificial irradiation with UV rays are, for example, dihydroxyacetone, alloxan and walnut shell extract.
  • Suitable keratin-hardening substances are as a rule active ingredients, as are also used in antiperspirants, for example potassium aluminum sulfate, aluminum hydroxychloride, aluminum lactate, etc.
  • Antimicrobial agents are used to destroy microorganisms or to inhibit their growth and thus serve both as a preservative and as a deodorizing substance, which reduces the formation or intensity of body odor.
  • deodorizing substances are, for example, zinc ricinoleate, triclosan, undecylenic acid alkylolamides, triethyl citronate, chlorhexidine etc.
  • Table 5 suitable preservatives.
  • the E-numbers listed in the above table are the names used in Directive 95/2 / EEC.
  • preservative additives dibromodicyanobutane (2-bromo-2-bromomethylglutarodinitrile), 3-iodo-2-propynyl butylcarbamate, 2-bromo-2-nitropropane-1,3-diol, imidazo - lidinyl urea, 5-chloro-2-methyl-4-isothiazolin-3-one, 2-chloroacetamide, benzalkonium chloride and benzyl alcohol suitable.
  • phenylhydroxyalkyl ethers in particular the compounds known as phenoxyethanol, are suitable as preservatives because of their bactericidal and fungicidal effects on a number of microorganisms.
  • Other germ-inhibiting agents are also suitable for incorporation into the preparations according to the invention.
  • Advantageous substances are, for example, 2,4,4'-trichloro-2'-hydroxydiphenyl ether (Irgasan), 1, 6-di- (4-chlorphenylbiguanido) - hexane (chlorhexidine), 3,4,4'-trichlorocarbanilide, quaternary ammonium compounds , Clove oil, mint oil, thyme oil, triethyl citrate, farnesol (3,7,1-trimethyl-2,6,10-dodecatrien-1-ol) and in the patent publications DE-37 40 186, DE-39 38 140, DE -42 04 321, DE-42 29 707, DE-43 09 372, DE-44 1 1 664, DE-195 41 967, DE-195 43 695, DE-195 43 696, DE-195 47 160, DE- 196 02 108, DE-196 02 110, DE-196 02 11 1, DE-196 31 003, DE-196 31 004 and DE-196 34 019 and the patent
  • the cosmetic compositions may contain perfume oils.
  • perfume oils for example, mixtures of natural and synthetic fragrances may be mentioned.
  • Natural fragrances are extracts of flowers (lily, lavender, rose, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (aniseed, coriander, caraway, juniper), fruit peel (bergamot, Lemon, orange), roots (macis, angelica, celery, cardamom, costus, iris, calmus), woods (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme ), Needles and twigs (spruce, fir, pine, pines), resins and balsams (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are ester type products, ethers, aldehydes, ketones, alcohols and hydrocarbons. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, 4-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzylformate, ethylmethylphenylglycinate, allylcyclohexylpropionate, styrallylpropionate and benzylsalicylate.
  • the ethers include, for example, benzyl ethyl ether, to the aldehydes, for example, the alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonate, to the ketones, for example the ionones, cc-lsomethylionen and Methylcedrylke- ton
  • the alcohols include anethole, citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terioneol; the hydrocarbons mainly include the terpenes and balsams.
  • fragrances are used, which together produce an attractive fragrance.
  • Lower volatile volatiles which are most commonly used as aroma components, are also suitable as perfume oils, eg sage oil, camomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, lime blossom oil, juniper berry oil, vetiver oil, oliban oil, galaban oil, labolanum oil and lavandin oil.
  • bergamot oil dihydro myrcenol, lilial, lyral, citronellol, phenylethyl alcohol, ⁇ -hexyl cinnamic aldehyde, geraniol, Benzyl acetone, cyclamen aldehyde, linalool, Boisambrene ® Forte, Ambroxan, indole, He- diones Sandelice, lemon oil, mandarin oil, orange oil, allyl amyl glycolate, Cyclovertal, lavandin oil, muscatel sage oil, beta-damascone, geranium oil bourbon, Cyclohexylsali- salicylate, Vertofix ® Coeur, Iso-e-Super ®, ® Fixolide NP, Evernyl, Iraldein gamma, phenylacetic sigkla, benzyl
  • compositions according to the invention preferably contain oils, fats and / or waxes.
  • Ingredients of the oil and / or fat phase of the compositions according to the invention are advantageously selected from the group of lecithins and fatty acid triglycerides, namely the triglycerol esters of saturated and / or unsaturated, branched and / or unbranched alkanecarboxylic acids having a chain length of 8 to 24, in particular 12 to 18 C atoms.
  • the fatty acid triglycerides can be selected, for example, advantageously from the group of synthetic, semisynthetic and natural oils, such as olive oil, sunflower oil, soybean oil, peanut oil, rapeseed oil, almond oil, palm oil, coconut oil, castor oil, wheat germ oil, grapeseed oil, thistle oil, evening primrose oil, macadamia nut oil and such more.
  • synthetic, semisynthetic and natural oils such as olive oil, sunflower oil, soybean oil, peanut oil, rapeseed oil, almond oil, palm oil, coconut oil, castor oil, wheat germ oil, grapeseed oil, thistle oil, evening primrose oil, macadamia nut oil and such more.
  • polar oil components can be selected from the group of esters of saturated and / or unsaturated, branched and / or unbranched alkanecarboxylic acids having a chain length of 3 to 30 carbon atoms and saturated and / or unsaturated, branched and / or unbranched alcohols of one chain length from 3 to 30 carbon atoms and from the group of esters of aromatic carboxylic acids and saturated and / or unsaturated, branched and / or unbranched alcohols having a chain length of 3 to 30 carbon atoms.
  • ester oils can then advantageously be selected from the group of isopropyl myristate, isopropyl palmitate, isopropyl stearate, isopropyl oleate, n-butyl stearate, n-hexyl laurate, n-decyl oleate, isooctyl stearate, isononyl stearate, isononyl isononanoate, 2-ethylhexyl palmitate, 2-ethylhexyl laurate, 2-hexyldecyl stearate, 2-octyldodecyl palmitate, oleyl oleate, oleyl erucate, erucyl oleate, erucyl erucate dicaprylyl carbonate (Cetiol CC) and cocoglyceride (Myritol 331), butylene glycol dicaprylate / di
  • one or more oil components can be advantageously selected from the group of branched and unbranched hydrocarbons and waxes, the SiI konöle, the dialkyl ethers, the group of saturated or unsaturated, branched or unbranched alcohols. Any mixtures of such oil and wax components are also advantageous to use in the context of the present invention. It may also be advantageous, if appropriate, to use waxes, for example cetyl palmitate, as the sole lipid component of the oil phase.
  • the oil component is advantageously selected from the group 2-ethylhexyl isostearate, octyldodecanol, isotridecyl isononanoate, isoeicosane, 2-ethylhexyl cocoate, C12-15-alkyl benzoate, caprylic capric acid triglyceride, dicaprylyl ether.
  • the oil component is advantageously selected from the group 2-ethylhexyl isostearate, octyldodecanol, isotridecyl isononanoate, isoeicosane, 2-ethylhexyl cocoate, C12-15-alkyl benzoate, caprylic capric acid triglyceride, dicaprylyl ether.
  • 2-ethylhexyl isostearate and isotridecyl isononanoate Particular preference is given according to the invention to fatty acids triglycerides, in particular soybean oil and / or almond oil, as oils having a polarity of 5 to 50 imN / m.
  • fatty acids triglycerides in particular soybean oil and / or almond oil, as oils having a polarity of 5 to 50 imN / m.
  • paraffin oil, squalane and squalene are to be used advantageously in the context of the present invention.
  • the oil phase can advantageously be chosen from the group of Guerbet alcohols.
  • Guerbet alcohols are named after Marcel Guerbet, who first described their production. They arise according to the reaction equation
  • AIR CH ? -CHR-- OH ..- TM R - CH-CH-OH catalyst by oxidation of an alcohol to an aldehyde, by aldol condensation of the aldehyde, elimination of water from the aldol and hydrogenation of the allyl aldehyde.
  • Guerbet alcohols are fluid even at low temperatures and cause virtually no skin irritation.
  • they can be used as greasing, overfatting and also re-greasing ingredients in cosmetic compositions.
  • Ri and R2 are generally unbranched alkyl radicals.
  • the Guerbet alcohol or alcohols are selected from among
  • Ri propyl, butyl, pentyl, hexyl, heptyl or octyl and
  • R2 hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl or tetradecyl.
  • Guerbet alcohols are (commercially available, for example as lsofol ® 12 (Condea)) 2-butyloctanol and 2-hexyl decanol (for example commercially available as iso- fol ® 16 (Condea)).
  • mixtures of Guerbet alcohols are according to the invention may advantageously be used such as mixtures of 2-butyloctanol and 2-hexyl decanol (for example as lsofol ® 14 (Condea) commercially available).
  • polydecenes are the preferred substances.
  • the oil component may further comprise a content of cyclic or linear silicone oils or consist entirely of such oils, although it is preferred to use an additional content of other oil phase components besides the silicone oil or silicone oils.
  • Low molecular weight silicones or silicone oils are generally defined by the following general formula:
  • silicon atoms may be substituted by identical or different alkyl radicals and / or aryl radicals, which are here generalized by radicals R 1 to R 4 .
  • radicals R 1 to R 4 the number of different radicals is not necessarily limited to 4, m may assume values of 2 to 200,000.
  • silicon atoms can be substituted with identical or different alkyl radicals and / or aryl radicals, which are here generalized by the radicals Ri to R 4 .
  • the number of different residues is not necessarily limited to 4, and "n" may be 3/2 to 20. Broken values for n take into account that odd numbers of siloxyl groups may be present in the cycle.
  • phenyltrimethicone is chosen as the silicone oil.
  • silicone oils for example dimethicone, hexamethylcyclotrisiloxane, phenyldimethicone, cyclomethicone (octamethylcyclotetrasiloxane), hexamethylcyclotrisiloxane, polydimethylsiloxane, poly (methylphenylsiloxane), cetyldimethicone, behenoxydimethicone, are also to be used advantageously in the context of the present invention. Also advantageous are mixtures of cyclomethicone and isotridecyl isononanoate, as well as those of cyclomethicone and 2- Ethylhexyl.
  • silicone oils of similar constitution as the compounds described above, whose organic side chains are derivatized, for example polyethoxylated and / or polypropoxylated.
  • These include, for example Polysiloxanpolyalkyl-polyether copolymers such as cetyl dimethicone copolyol.
  • Cyclomethicone octamethylcyclo-tetrasiloxane
  • Fat and / or wax components which can advantageously be used according to the invention can be selected from the group of vegetable waxes, animal waxes, mineral waxes and petrochemical waxes.
  • Candelilla waxes carnauba wax, Japanese wax, Esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugarcane wax, berry wax, ouricury wax, montan wax, jojoba wax, shea butter, beeswax, shellac wax, spermaceti, lanolin (wool wax), crepe fat, ceresin, ozokerite are advantageous, for example (Earthwax), paraffin waxes and microwaxes.
  • fat and / or wax components are chemically waxes modified waxes and synthetic waxes, such as Syncrowax ® (glyceryl tribehenate), and Syncrowax ® AW 1 C (Cis-36 fatty acid) as well as Montanesterwachse, sasol, hydrogenated jojoba waxes, synthetic or modified beeswaxes (z. B. dimethicone copolyol beeswax and / or C3o-so-alkyl beeswax), cetyl ricinoleates leate such as Tegosoft ® CR, polyalkylene waxes, polyethylene glycol waxes, but also chemically modified fats such.
  • Hydrogenated vegetable oils for example hydrogenated castor oil and / or hydrogenated coconut fat glycerides
  • triglycerides such as hydrogenated soy glyceride, trihydroxystearin, fatty acids, fatty acid esters and glycol kolesteres such as C2o-4o-alkyl stearate, C2o-4o-alkylhydroxy-stearyl stearate and / or glycol montanate
  • Other advantageous compounds are certain organosilicon compounds which have similar physical properties to the abovementioned fatty and / or wax components, for example stearoxytrimethylsilane.
  • the fat and / or wax components can be used both individually and as a mixture in the compositions.
  • the oil phase is selected from the group consisting of 2-ethylhexyl isostearate, octyldodecanol, isotridecyl isononanoate, butylene glycol dicaprylate / dicaprate, 2-ethylhexyl cocoate, C 12-15 alkyl benzoate, caprylic capric triglyceride, dicaprylyl ether.
  • Particularly advantageous are mixtures of octyldodecanol, caprylic-capric acid triglyceride, dicaprylyl ether, dicaprylyl carbonate, cocoglycerides or mixtures of C 12-18 -alkyl benzoate and 2-ethylhexyl isostearate, mixtures of C 12-15 -alkyl benzoate and butylene glycol dicaprylate / dicaprate and mixtures of C 12- 15-alkyl benzoate, 2-ethylhexyl isostearate and isotridecyl isononanoate.
  • hydrocarbons paraffin oil, cycloparaffin, squalane, squalene, hydrogenated polyisobutene or polydecene are to be used advantageously in the context of the present invention.
  • the oil component is also advantageously selected from the group of phospholipids.
  • the phospholipids are phosphoric acid esters of acylated glycerols.
  • phosphatidylcholines for example, are the lecithins, which are characterized by the general structure
  • advantageous paraffin oil may according to the invention Mercury Weissoel Pharma 40 from Merkur Vaseline, Shell Ondina ® 917, Shell Ondina ® 927, Shell Oil 4222, Shell Ondina ® 933 from Shell & DEA OiI, Pioneer ® 6301 S, Pioneer ® 2071 (Hansen & Rosenthal ) are used.
  • Suitable cosmetically acceptable oil and fat components are described in Karl-Heinz Schrader, Kunststoff und
  • compositions may also contain surfactants.
  • surfactants are, for example:
  • Phosphoric acid esters and salts such as, for example, DEA-oleth-10-phosphate and dilaureth-4-phosphate, alkylsulfonates, for example sodium cocosmonoglyceride sulfate, sodium C12-14-olefinsulfonate, sodium laurylsulfoacetate and magnesium PEG-3 cocamide sulfate,
  • Carboxylic acids and derivatives such as, for example, lauric acid, aluminum stearate, magnesium alkoxide and zinc undecylenate, ester carboxylic acids, for example calcium stearyl lactylate, laureth-6 citrate and sodium PEG-4 lauramide carboxylate, esters which are obtained by esterification of carboxylic acids with ethylene oxide, glycerol, sorbitan or other alcohols are formed,
  • Ethers for example ethoxylated alcohols, ethoxylated lanolin, ethoxylated polysiloxanes, propoxylated POE ethers and alkyl polyglycosides such as lauryl glucoside, decyl glycoside and cocoglycoside.
  • compositions in addition to the microcapsules according to the invention or the O / W compounds prepared by the process according to the invention.
  • Dispersions also contain polysorbates.
  • advantageous polysorbates are the
  • the dermocosmetics also contain conditioning agents.
  • Conditioning agents which are preferred according to the invention are, for example, all compounds which are described in the International Cosmetic Ingredient Dictionary and Handbook (Volume 4, publisher: RC Pepe, JA Wenninger, GN McEwen, The Cosmetic, Toiletry, and Fragrance Association, 9th edition, 2002) under Secti - 4 are listed under the keywords Hair Conditioning Agents, Humectants, Skin Conditioning Agents, Skin Conditioning Agents Emollient, Skin Conditioning Agents Humectant, Skin Conditioning Agents-Miscellaneous, Skin Conditioning Agents-Occlusive and Skin Protectans as well all compounds listed in EP-A 934 956 (p.1 1-13) under "water-soluble conditioning agent” and "oil-soluble conditioning agent”.
  • Further advantageous conditioning agents are, for example, the compounds designated as polyquaternium according to INCI (especially Polyquaternium-1 to Polyquaternium-56).
  • Suitable conditioning agents include, for example, polymeric quaternary ammonium compounds, cationic cellulose derivatives and polysaccharides. Conditioning agents which are advantageous according to the invention can be chosen from the compounds shown in the following table.
  • conditioners advantageous cellulose derivatives and quaternized guar gum derivatives, in particular guar hydroxypropylammonium chloride (for example, Jaguar Excel ®, Jaguar ® C 162 (Rhodia), CAS 65497-29-2, CAS 39421-75-5).
  • guar hydroxypropylammonium chloride for example, Jaguar Excel ®, Jaguar ® C 162 (Rhodia), CAS 65497-29-2, CAS 39421-75-5.
  • nonionic poly-N vinyl pyrrolidone / polyvinyl acetate copolymers for example, Luviskol ® VA 64 (BASF Aktiengesellschaft)
  • anionic acrylate copolymers eg Luviflex ® soft (BASF Aktiengesellschaft)
  • amphoteric amide / acrylate / methacrylate copolymers for example, Amphomer ® (National Starch)
  • ethoxylated oils selected from the group of ethoxylated glycerol fatty acid esters, more preferably PEG-10 Olivenölglyceride, PEG- 1 1 Avocado Oil Glycerides, PEG-1 1 Cocoa Butter Glycerides, PEG-13 Sunflower Oil Glycerides, PEG-15 Glyceryl Isosteate, PEG-9 Coconut Fatty Acid Glycerides, PEG-54 Hydrogenated Castor Oil, PEG-7 Hydrogenated Castor Oil, PEG-60 Hydrogenated Castor Oil, Jojoba Oil Ethoxylate (PEG) 26 jojoba fatty acids, PEG-26 jojoba alcohol), glycereth-5 cocoate, PEG-9 coconut fatty acid glycerides, PEG-7 glyceryl cocoate, PEG-45 palm oil glycerides
  • Preferred ethoxylated oils are PEG-7 glyceryl cocoate, PEG-9 coconut glycerides, PEG-40 hydrogenated castor oil, PEG-200 hydrogenated glyceryl palmat.
  • Ethoxylated glycerol fatty acid esters are used in aqueous cleaning formulations for various purposes.
  • Low ethoxylated glycerol fatty acid esters (3-12 ethylene oxide units) are usually used as a moisturizer to improve the skin feel after drying, glycerol fatty acid esters with a degree of ethoxylation of about 30-50 serve as solubilizers for non-polar substances such as perfume oils.
  • Highly ethoxylated glycerol fatty acid esters are used as thickeners. All these substances have in common that they produce on the skin when used in dilution with water, a special skin feel.
  • microcapsules according to the invention or the O / W dispersions prepared according to the method according to the invention in combination with light stabilizers in dermocosmetic preparations is likewise in accordance with the invention.
  • These cosmetic and / or dermatological sunscreen compositions are used for cosmetic and / or dermatological light protection, furthermore for the treatment and care of the skin and / or the hair and as a make-up product in the decorative cosmetics.
  • These include, for example, sunscreens, lotions, milks, oils, baisams, gels, lip care and lipsticks, masking creams and sticks, moisturizers, lotions, emulsions, face, body and hand creams, hair conditioners and rinses.
  • Sun oils are usually mixtures of various oils with one or more sunscreen filters and perfume oils.
  • the oil components are selected according to different cosmetic properties. Oils that give good fat and soft feel, such as mineral oils (eg, paraffin oils) and fatty acid triglycerides (eg, peanut oil, sesame oil, avocado oil, medium chain triglycerides) are mixed with oils that promote dispersibility and retraction Improve the sun oils in the skin, reduce the stickiness and make the oil film for air and water vapor (sweat) permeable.
  • mineral oils eg, paraffin oils
  • fatty acid triglycerides eg, peanut oil, sesame oil, avocado oil, medium chain triglycerides
  • Sun oils as anhydrous formulations usually contain no preservatives. Sunmilk and creams are made as oil-in-water (O / W) emulsions and as water-in-oil (W / O) emulsions. Depending on the type of emulsion, the properties of the preparations are very different: O / W emulsions are easily distributed on the skin, they are usually absorbed quickly and are almost always readily washable with water.
  • W / O emulsions are harder to rub in, they make the skin stronger and thus look a bit stickier, but on the other hand they better protect the skin from drying out.
  • W / O emulsions are mostly waterproof.
  • the emulsion base the selection of suitable light stabilizers and, if appropriate, the use of auxiliaries (eg polymers) determine the degree of water resistance.
  • the basis of liquid and creamy O / W-Ernulsen resemble in their composition the usual emulsions in skin care. Sunmilk should sufficiently grease the skin dried up by sun, water and wind. They must not be sticky, as this is particularly uncomfortable in the heat and in contact with sand.
  • the light stabilizers are usually based on a carrier which contains at least one oil phase.
  • a carrier which contains at least one oil phase.
  • compositions based on water are also possible. Accordingly, oils, oil-in-water and water-in-oil emulsions, creams and pastes, Lippenschutzstattmas- sen or fat-free gels into consideration.
  • Suitable emulsions include O / W macroemulsions, O / W microemulsions or O / W / O emulsions with surface-coated titanium dioxide particles present in dispersed form, the emulsions being obtainable by phase inversion technology, according to DE-A-197 26 121 .
  • Typical cosmetic auxiliaries which can be considered as additives are, for example, (co-) emulsifiers, fats and waxes, stabilizers, thickeners, biogenic active ingredients, film formers, fragrances, dyes, pearlescing agents, preservatives, pigments, electrolytes (eg magnesium sulfate) and pH regulators.
  • Biogenic active ingredients are, for example, plant extracts, protein hydrolysates and vitamin complexes.
  • Typical film formers are, for example, hydrocolloids such as chitosan, microcrystalline chitosan or quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone / vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives and similar compounds.
  • Suitable light filter active substances are substances which absorb UV rays in the UV-B and / or UV-A range.
  • UV filters are, for example, 2,4,6-triaryl-1,3,5-triazines, in which the aryl groups can each carry at least one substituent, which is preferably selected from hydroxy, alkoxy, especially methoxy, alkoxycarbonyl, especially Methoxycarbonyl and ethoxycarbonyl.
  • p-aminobenzoic acid esters p-aminobenzoic acid esters, cinnamic acid esters, benzophenones, camphor derivatives and UV-radiation-stopping pigments, such as titanium dioxide, talc and zinc oxide. Particular preference is given to pigments based on titanium dioxide.
  • UV-B filters e.g. the following substances are used: 3-benzylidene camphor and its derivatives, e.g. 3- (4-methylbenzylidene) camphor;
  • 4-aminobenzoic acid derivatives preferably 2-ethylhexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and 4- (dimethylamino) benzoic acid ester;
  • esters of cinnamic acid preferably 2-ethylhexyl 4-methoxycinnamate, 4-propyl methoxy cinnamate, isoamyl 4-methoxycinnamate, 4-isoacetyl methoxycinnamate, 2-cyano-3-phenylcinnamic acid 2-ethylhexyl ester (octocrylene);
  • Esters of salicylic acid preferably 2-ethylhexyl salicylate, 4-isopropylbenzyl salicylate, homomenthyl salicylate;
  • benzophenone preferably 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone;
  • Esters of benzalmalonic acid preferably di-2-ethylhexyl 4-methoxybenzmalonate
  • Triazine derivatives such as 2,4,6-trianilino- (p-carbo-2'-ethyl-1 '-hexyloxy) -1, 3,5-triazine (octyl tyltriazone) and Dioctyl Butamido Triazone (Uvasorb HEB ®):
  • Propane-1,3-diones e.g. 1- (4-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione.
  • Suitable water-soluble substances are:
  • Sulfonic acid derivatives of the 3-benzylidene camphor e.g. 4- (2-Oxo-3-bornylidenemethyl) benzenesulfonic acid and 2-methyl-5- (2-oxo-3-bomylidene) -sulfonic acid and its salts.
  • esters of cinnamic acid preferably 2-ethylhexyl A-methoxycinnamate, isopentyl 4-methoxycinnamate, 2-ethylhexyl 2-cyano-3-phenylcinnamate (octocrylene).
  • Typical UV-A filters are:
  • benzoylmethane such as 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione, 4-tert-butyl-4'-methoxydibenzoylmethane or 1-phenyl-3 - (4'-isopropylphenyl) -propane-1,3-dione;
  • Amino-hydroxy-substituted derivatives of benzophenones e.g. N, N-diethylamino-hydroxybenzoyl-n-hexylbenzoate.
  • UV-A and UV-B filters can also be used in mixtures.
  • UV filter substances are mentioned in the following table.
  • secondary light stabilizers of the antioxidant type which interrupt the photochemical reaction chain which is triggered when UV radiation penetrates into the skin.
  • Typical examples are superoxide dismutase, catalase, tocopherols (vitamin E) and ascorbic acid (vitamin C).
  • anti-irritants which have an anti-inflammatory effect on UV-damaged skin.
  • anti-irritants which have an anti-inflammatory effect on UV-damaged skin.
  • Such substances are, for example, bisabolol, phytol and phytantriol.
  • the use of the microcapsules according to the invention or prepared according to the inventive method or the O / W dispersions prepared according to the inventive method in combination with UV-blocking inorganic pigments in dermokosmetischen preparations Preference is given to pigments based on metal oxides and / or other sparingly water-soluble or insoluble metal compounds selected from the group of the oxides of zinc (ZnO), titanium (TiO 2), iron (eg Fe 2 O 3), zirconium (ZrO 2), silicon (SiO 2), Manganese (eg MnO), aluminum (AI2O3), Cers (eg C ⁇ 2 ⁇ 3), mixed oxides of the corresponding metals and mixtures of such oxides.
  • the inorganic pigments may be present in coated form, i. that they are superficially treated.
  • This surface treatment can be, for example, that the pigments are provided in a manner known per se, as described in DE-A-33 14 742, with a thin hydrophobic layer.
  • peroxide decomposed i.
  • Compounds which are able to decompose peroxides particularly preferably lipid peroxides.
  • organic substances such as e.g. Pyridine-2-thiol-3-carboxylic acid, 2-
  • Methoxypyrimidinolcarboxylic acids 2-methoxypyridinecarboxylic acids, 2-dimethylaminopyrimidinolecarboxylic acids, 2-dimethylaminopyridinecarboxylic acids.
  • Suitable repellent agents are compounds which are able to prevent or expel certain animals, in particular insects, from humans. These include, for example, 2-ethyl-1,3-hexanediol, N, N-diethyl-m-toluamide, etc.
  • Suitable hyperemic substances which stimulate the perfusion of the skin are, for example, essential oils, such as mountain pine extract, lavender extract, rosemary extract, juniper berry extract, Horse chestnut extract, birch leaf extract, hay flower extract, ethyl acetate, camphor, menthol, peppermint oil, rosemary extract, eucalyptus oil, etc.
  • Suitable keratolytic and keratoplastic substances are, for example, salicylic acid, calcium thioglycolate, thioglycolic acid and its salts, sulfur, etc.
  • Suitable antidandruff active substances are, for example, sulfur Sulfur polyethylene glycol sorbitan monooleate, sulfur ricinol polyethoxylate, zinc pyrithione, aluminum pyrithione, etc.
  • Suitable antiphlogistic agents which counteract skin irritation include allantoin, bisabolol, dragosantol, chamomile extract, panthenol, etc.
  • the invention likewise relates to the use of the microcapsules according to the invention or the O / W dispersions prepared according to the process according to the invention in combination with at least one cosmetically or pharmaceutically acceptable polymer.
  • Suitable polymers are e.g. cationic polymers called polyquaternium according to INCI, e.g. Copolymers of vinylpyrrolidone / N-vinylimidazolium salts (Luviquat FC, Luviquat HM, Luviquat MS, Luviquat & commat, Care), copolymers of N-vinylpyrrolidone / dimethylaminoethyl methacrylate, quaternized with diethyl sulfate (Luviquat PQ 11), copolymers of N-vinylcaprolactam / N- Vinylpyrrolidone / N-vinylimidazolium salts (Luviquat E Hold), cationic cellulose derivatives (Polyquaternium-4 and -10), acrylamidocopolymers (Polyquaternium-7) and chitosan.
  • polyquaternium cationic polymers called polyquaternium according to INCI, e
  • Suitable cationic (quaternized) polymers are also Merquat (polymer based on dimethyldiallylammonium chloride), gafquat (quaternary polymers which are formed by reaction of polyvinylpyrrolidone with quaternary ammonium compounds), polymer JR (hydroxyethylcellulose with cationic groups) and cationic polymers based on plants. eg Guarpolymers, such as the Jaguar brands of Rhodia.
  • polystyrene resins are also neutral polymers, such as polyvinylpyrrolidones, copolymers of N-vinylpyrrolidone and vinyl acetate and / or vinyl propionate, polysiloxanes, polyvinylcaprolactam and other copolymers with N-vinylpyrrolidone, polyethylenimines and their salts, polyvinylamines and their salts, cellulose derivatives, Polyasparaginic acid salts and derivatives.
  • neutral polymers such as polyvinylpyrrolidones, copolymers of N-vinylpyrrolidone and vinyl acetate and / or vinyl propionate, polysiloxanes, polyvinylcaprolactam and other copolymers with N-vinylpyrrolidone, polyethylenimines and their salts, polyvinylamines and their salts, cellulose derivatives, Polyasparaginic acid salts and derivatives.
  • Suitable polymers are also nonionic, water-soluble or water-dispersible polymers or oligomers, such as polyvinylcaprolactam, for example Luviskol 0 Plus (BASF), or polyvinylpyrrolidone and their copolymers, in particular with vinyl esters, such as vinyl acetate, for example Luviskol 0 VA 37 (BASF), polyamides , For example, based on itaconic acid and aliphatic diamines, as described for example in DE-A-43 33 238.
  • polyvinylcaprolactam for example Luviskol 0 Plus (BASF)
  • BASF Luviskol 0 VA 37
  • BASF Luviskol 0 VA 37
  • polyamides For example, based on itaconic acid and aliphatic diamines, as described for example in DE-A-43 33 238.
  • Suitable polymers are also amphoteric or zwitterionic polymers, such as the octylacrylamide / methyl methacrylate / tert-butylaminoethyl methacrylate-hydroxypropyl methacrylate copolymers available under the names Amphomer (National Starch) and zwitterionic polymers, as described, for example, in German Patent Applications DE 39 29 973 DE 21 50 557, DE 28 17 369 and DE 3708 451 are disclosed. Acrylamidopropyl trimethylammonium chloride / acrylic acid or. -Methacrylklare-
  • Copolymers and their alkali metal and ammonium salts are preferred zwitterionic polymers.
  • Further suitable zwitterionic polymers are methacroylethylbetaine / methacrylate copolymers, which are commercially available under the name Amersette (AMERCHOL), and copolymers of hydroxyethyl methacrylate, methyl methacrylate, N, N-dimethylaminoethyl methacrylate and acrylic acid (Jordapon (D)).
  • Suitable polymers are also nonionic, siloxane-containing, water-soluble or -dispersible polymers, e.g. Polyether siloxanes, such as Tegopren 0 (Goldschmidt) or Besi & commat (Wacker).
  • Polyether siloxanes such as Tegopren 0 (Goldschmidt) or Besi & commat (Wacker).
  • microcapsules according to the invention or the O / W dispersions prepared according to the inventive method in combination with the dermocosmetic active substances (one or more compounds) selected from the group consisting of acetylsalicylic acid, atropine, azulene, hydrocortisone and its derivatives , z. B.
  • dermocosmetic active substances one or more compounds selected from the group consisting of acetylsalicylic acid, atropine, azulene, hydrocortisone and its derivatives , z. B.
  • hydrocortisone-17-valerate vitamins of the B and D series, especially vitamin Bi, vitamin B12, vitamin D, vitamin A or its derivatives such as retinyl palmitate, vitamin E or its derivatives such as tocopheryl acetate, vitamin C and its Derivatives such as ascorbyl glucoside but also niacinamide, panthenol, bisabolol, polydocanol, unsaturated fatty acids such as the essential fatty acids (commonly referred to as vitamin F), in particular ⁇ -linolenic acid, oleic acid, eicosapentaenoic acid, docosahexaenoic acid and its derivatives, chloramphene - nicol, caffeine, prostaglandins, thymol, camphor, squalene, extracts or other products of plant and animal origin, eg.
  • vitamins of the B and D series especially vitamin Bi, vitamin B12, vitamin D, vitamin A or its derivatives such as
  • antidandruff active ingredients eg selenium disulfide, zinc pyrithione, piroctone, olamine, climbazole, octopirox, polydocanol and their combinatines
  • Complexing agents such as those from ⁇ -oryzanol and calcium salts such as calcium panthotenate, calcium chloride, calcium acetate.
  • the active ingredients from the group of emollients advantageous, for example PurCellin, Eucerit ® and Neocerit® ®.
  • the active compound or agents are furthermore particularly advantageously selected from the group of NO synthase inhibitors, in particular when the preparations according to the invention are used for the treatment and prophylaxis of the symptoms of intrinsic and / or extrinsic skin aging and for the treatment and prophylaxis of the harmful effects of ultraviolet radiation on the skin and the Hair should serve.
  • Preferred NO synthase inhibitor is nitroarginine.
  • the active ingredient (s) are selected from the group comprising catechins and bile acid esters of catechins and aqueous or organic extracts of plants or plant parts which have a content of catechins or bile acid esters of catechins, such as the leaves of the plant family Theaceae, in particular the species Camellia sinensis (green tea).
  • catechins and bile acid esters of catechins are selected from the group comprising catechins and bile acid esters of catechins and aqueous or organic extracts of plants or plant parts which have a content of catechins or bile acid esters of catechins, such as the leaves of the plant family Theaceae, in particular the species Camellia sinensis (green tea).
  • Particularly advantageous are their typical ingredients (eg polyphenols or catechins, caffeine, vitamins, sugars, minerals, amino acids, lipids).
  • Catechins represent a group of compounds which are to be regarded as hydrogenated flavones or anthocyanidins and derivatives of "catechin” (catechol, 3,3 ', 4', 5,7-flavanpentaol, 2- (3,4-dihydroxyphenyl) -chroman
  • epicatechin ((2R, 3R) -3,3 ', 4', 5,7-flavanpentaol) is an advantageous active ingredient in the context of the present invention a content of catechins, in particular extracts of green tea, such as extracts from leaves of the plants of the species Camellia spec, especially the teas Camellia sinenis, C. assamica, C. taliensis and C.
  • inawadiensis and crosses of these with Camellia japonica are also preferred polyphenols or catechins from the group (-) - catechin, (+) - catechin, (-) - catechin gallate, (-) - gallocatechin gallate, (+) - epicatechin, (-) - epicatechin , (-) - epicatechin gallate, (-) - epigallocatechin, (-) - epigallocatechin gallate.
  • flavone and its derivatives are advantageous active ingredients in the sense of the present invention and are characterized by the following basic structure (substitution positions indicated):
  • flavones usually occur in glycosidated form.
  • the flavonoids are preferably selected from the group of substances of the general formula
  • Zi to Z 7 independently of one another, are selected from the group consisting of H, OH, alkoxy and hydroxyalkoxy, where the alkoxy or hydroxyalkoxy groups can be branched and unbranched and can have 1 to 18 C atoms, and where GIy is selected is selected from the group of mono- and oligoglycoside radicals.
  • the active ingredients can also be chosen very advantageously from the group of hydrophilic active ingredients, in particular from the following group: ⁇ -hydroxy acids such as lactic acid or salicylic acid or salts thereof, such as. Na lactate, Ca lactate, TEA lactate, urea, allantoin, serine, sorbitol, glycerin, milk proteins, panthenol, chitosan.
  • ⁇ -hydroxy acids such as lactic acid or salicylic acid or salts thereof, such as. Na lactate, Ca lactate, TEA lactate, urea, allantoin, serine, sorbitol, glycerin, milk proteins, panthenol, chitosan.
  • the amount of such active ingredients (one or more compounds) in the preparations according to the invention is preferably 0.001 to 30 wt .-%, particularly preferably 0.05 to 20 wt .-%, in particular 1 to 10 wt .-%, based on the Total weight of the preparation.
  • the above-mentioned and other active substances which can be used in the preparations according to the invention are specified in DE 103 18 526 A1 on pages 12 to 17, to which reference is made at this point in its entirety.
  • the present invention relates to the use of the above-mentioned preparations for the prevention of undesired changes in the appearance of the skin, such as, for example, acne or oily skin, keratoses, rosaceae, photosensitive, inflammatory, erythematous, allergic or autoimmune-reactive reactions.
  • the cosmetic preparations according to the invention are applied to the skin, hair, fingernails or toenails in the manner customary for cosmetics or dermocosmetics.
  • the dermocosmetics preferably skin and hair treatment agents, microcapsules or the O / W dispersions prepared according to the inventive method in a concentration of 0.001 to 1 weight percent (wt .-%), preferably 0 , 01 to 0.9 wt .-%, particularly preferably 0.01 to 0.8 wt .-% or 0.01 to 0.7 wt.%, Very particularly preferably 0.01 to 0.6 wt.% Or 0.01 to 0.5% by weight, most preferably 0.01 to 0.4% by weight or 0.01 to 0.3% by weight, based on the total weight of the composition.
  • the agents contain microcapsules according to the invention or the O / W dispersions prepared according to the method according to the invention in a concentration of 1 to 10 wt.%, Preferably 2 to 8 wt.%, 3 to 7 wt. , 4 to 6 wt .-% based on the total weight of the composition.
  • the agents according to the invention contain microcapsules or the O / W dispersions prepared according to the method of the invention in a concentration of 10 to 20% by weight, preferably 1 to 19% by weight, 12 to 18% by weight. -%, 13 to 17 wt .-%, 14 to 16 wt .-% based on the total weight of the composition.
  • the agents according to the invention contain microcapsules or the O / W dispersions prepared according to the method of the invention in a concentration of 20 to 30% by weight, preferably 21 to 29% by weight, 22 to 28% by weight. %, 23 to 27 wt .-%, 24 to 26 wt .-% based on the total weight of the composition.
  • Another object of the present invention are dermocosmetician preparations containing microcapsules or the O / W dispersions prepared according to the inventive method.
  • the agents according to the invention are preferably skin protection agents, skin care agents, skin cleansing agents, hair protection agents, hair care preparations, hair cleaners, hair dyes or preparations for decorative cosmetics, preferably in the form of ointments, creams, emulsions, suspensions, lotions, depending on the field of application. be used as milk, pastes, gels, foams or sprays.
  • the dermocosmetics according to the invention may contain all the above-mentioned polymers, pigments, humectants, oils, waxes, enzymes, minerals, vitamins, sunscreens, dyes, fragrances, antioxidants, Preservatives and / or pharmaceutical agents contained.
  • compositions according to the invention preferably contains cosmetically or dermocosmetically / pharmaceutically acceptable excipients.
  • pharmaceutically acceptable excipients which are known to be useful in the field of pharmacy, food technology and related fields, in particular those listed in relevant pharmacopoeias (eg DAB Ph. Eur. BP NF) and other excipients whose properties do not preclude physiological application.
  • Suitable auxiliaries may be: lubricants, wetting agents, emulsifying and suspending agents, preserving agents, antioxidants, anti-irritants, chelating agents, emulsion stabilizers, film formers, gelling agents, odor masking agents, resins, hydrocolloids, solvents, solubilizers, neutralizing agents, permeation accelerators, pigments, quaternary ammonium compounds, Rest grease and superfatting agents, ointment, cream or oil bases, silicone derivatives, stabilizers, sterilants, blowing agents, drying agents, opacifiers, thickeners, waxes, softeners, white oil.
  • a related embodiment is based on expert knowledge, as for example in Fiedler, H. P. Lexicon of excipients for pharmacy, cosmetics and related fields, 4th ed., Aulendorf: ECV Editio Kantor Verlag, 1996, are shown.
  • the active ingredients may be mixed or diluted with a suitable excipient (excipient).
  • Excipients may be solid, semi-solid or liquid materials which may serve as a vehicle, carrier or medium for the active ingredient. If desired, the admixing of further auxiliaries takes place in the manner known to the person skilled in the art.
  • the polymers and dispersions are suitable as auxiliaries in pharmacy, preferably as or in coating agent (s) or binder (s) for solid dosage forms. They can also be used in creams and as tablet coatings and tablet binders.
  • the agents according to the invention are cosmetic agents for the care and protection of the skin and hair, nail care preparations or preparations for decorative cosmetics.
  • Suitable skin cosmetic agents are e.g. Face lotions, face masks, deodorizers and other cosmetic lotions.
  • Means for use in decorative cosmetics include, for example, masking pens, theatrical paints, mascara and eye shadows, lipsticks, kohl pencils, eyeliners, rouges, powders, and eyebrow pencils.
  • microcapsules according to the invention or the O / W dispersions prepared according to the method according to the invention can be used in Nose Strips for pore cleansing, in Antiakneffenn, repellents, shaving, After and Pre Shave care products, After Sun care products, hair removal agents, hair dyes, intimate care products , Foot care products and baby care.
  • the skin care compositions according to the invention are, in particular, O / W skin creams, day creams, eye creams, face creams, anti-wrinkle creams, sunscreen creams, moisturizing creams, bleaching creams, self-tanning creams, vitamin creams, skin lotions, skin lotions and moisturizing lotions.
  • Skin-cosmetic and dermatological compositions according to the invention may further comprise, as protection against oxidative processes and the associated aging processes or damage to the skin and / or hair, in addition to the microcapsules according to the invention or the O / W dispersions prepared according to the method according to the invention, a radical-decomposing active substance.
  • active substances are preferably the substances described in the patent applications WO / 0207698 and WO / 03059312, the contents of which are hereby incorporated by reference, preferably the boron-containing compounds described there, the peroxides or hydroperoxides to give the corresponding alcohols without formation reduce radical development.
  • sterically hindered amines according to the general formula 3 can be used for this purpose,
  • radical Z has the following meaning: H, C1-C22 alkyl group, preferably C1-C12 alkyl group such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec. butyl, tert. Butyl, pentyl, isopentyl, neopentyl, tert.
  • Cio-aryl group such as phenyl and naphthyl, wherein the phenyl radical substituted by Ci to C 4 alkyl radicals may be C, to Cio-O-aryl group which may be substituted with a C 1 -C 22 alkyl or C 1 -C 22 alkoxyl group, preferably with a C 1 -C 12 alkyl or C 1 -C 12 alkoxyl group as described above.
  • the skin cosmetic preparations may contain, in addition to the abovementioned compounds of the invention and suitable carriers, other active ingredients and adjuvants customary in skin cosmetics, as described above. These preferably include emulsifiers, preservatives, perfume oils, cosmetic active ingredients such as phytantriol, bisabolol, panthenol, light stabilizers, bleaching agents, colorants, tinting agents, tanning agents, collagen, protein hydrolysates, stabilizers, pH regulators, dyes, salts, thickeners, gelling agents, bodying agents, Silicones, humectants, moisturizers and / or other common additives.
  • emulsifiers emulsifiers, preservatives, perfume oils, cosmetic active ingredients such as phytantriol, bisabolol, panthenol, light stabilizers, bleaching agents, colorants, tinting agents, tanning agents, collagen, protein hydrolysates, stabilizers, pH regulators, dyes, salts, thickeners, gel
  • Preferred oil and fat components of the skin cosmetic and dermocosmetic agents are the aforementioned mineral and synthetic oils, e.g. Paraffins, silicone oils and aliphatic hydrocarbons having more than 8 carbon atoms, animal and vegetable oils, such as e.g. Sunflower oil, coconut oil, avocado oil, olive oil, lanolin, or waxes, fatty acids, fatty acid esters, e.g. Triglycerides of C6-C30 fatty acids, wax esters, e.g. Jojoba oil, fatty alcohols, vaseline, hydrogenated lanolin and acetylated.es lanolin, and mixtures thereof.
  • mineral and synthetic oils e.g. Paraffins, silicone oils and aliphatic hydrocarbons having more than 8 carbon atoms
  • animal and vegetable oils such as e.g. Sunflower oil, coconut oil, avocado oil, olive oil, lanolin, or waxes, fatty acids, fatty acid esters, e.g. Triglycerides of
  • the skin-cosmetic and dermocosmetic preparations may additionally contain the skin-cosmetic and dermocosmetic preparations also conditioning substances based on silicone compounds.
  • Suitable silicone compounds are, for example, polyalkylsiloxanes, polyarylsiloxanes, polyarylalkylsiloxanes, polyethersiloxanes or silicone resins.
  • the preparation of the cosmetic or dermocosmetic preparations is carried out by customary methods known to the person skilled in the art.
  • the cosmetic and dermocosmetic compositions are preferably in the form of emulsions, in particular as water-in-oil (W / O) or oil-in-water (O / W) emulsions.
  • formulations for example, gels, oils, oleogels, multiple emulsions, for example in the form of W / O / W or O / W / O emulsions, anhydrous ointments, etc.
  • emulsifier-free formulations such as hydrodispersions, hydrogels or a Pickering emulsion are advantageous embodiments.
  • Emulsions are prepared by known methods.
  • the emulsions generally contain customary constituents, such as fatty alcohols, fatty acid esters and especially fatty acid triglycerides, fatty acids, lanolin and derivatives thereof, natural or synthetic oils or waxes and emulsifiers in the presence of water.
  • Preferred fat components which may be included in the fat phase of the emulsions are: hydrocarbon oils such as paraffin oil, purcellin oil, perhydrosqualene and solutions of microcrystalline waxes in these oils; animal or vegetable oils, such as sweet almond oil, avocado oil, calophilum oil, lanolin and derivatives thereof, castor oil, seed oil, olive oil, jojoba oil, karite oil, hoplostethus oil, mineral oils, whose onset of distillation under atmospheric pressure at about 250 ° C and their Distillation end point at 410 ° C, such as Vaseline oil, esters of saturated or unsaturated fatty acids such as alkyl myristates, e.g.
  • hydrocarbon oils such as paraffin oil, purcellin oil, perhydrosqualene and solutions of microcrystalline waxes in these oils
  • animal or vegetable oils such as sweet almond oil, avocado oil, calophilum oil, lanolin and derivatives thereof, castor oil, seed oil, olive oil, jojoba oil
  • the fat phase may also contain other oil-soluble silicone oils such as dimethylpolysiloxane, methylphenylpolysiloxane and the silicone glycol copolymer, fatty acids and fatty alcohols.
  • oil-soluble silicone oils such as dimethylpolysiloxane, methylphenylpolysiloxane and the silicone glycol copolymer, fatty acids and fatty alcohols.
  • the skin care agents may also contain waxes, such as carnauba wax, candililla wax, beech wax, microcrystalline wax, ozokerite wax and Ca, Mg and Al oleates, myristates, linoleates and stearates.
  • waxes such as carnauba wax, candililla wax, beech wax, microcrystalline wax, ozokerite wax and Ca, Mg and Al oleates, myristates, linoleates and stearates.
  • the agents according to the invention are a light stabilizer, a shower gel, a shampoo formulation or a bath preparation, sunscreen preparations being particularly preferred.
  • such formulations usually contain anionic surfactants as base surfactants and amphoteric and / or nonionic surfactants as cosurfactants.
  • suitable active ingredients and / or auxiliaries are generally selected from lipids, perfume oils, dyes, organic acids, preservatives and antioxidants, as well as thickeners / gelling agents, skin conditioners and humectants.
  • formulations preferably contain from 2 to 50% by weight, preferably from 5 to 40% by weight, particularly preferably from 8 to 30% by weight of surfactants, based on the total weight of the formulation.
  • Suitable anionic surfactants are, for example, alkyl sulfates, alkyl ether sulfates, alkyl sulfonates, alkylaryl sulfonates, alkyl succinates, alkyl sulfosuccinates, N-alkoyl sarcosylates, acyl taurates, acyl isothionates, alkyl phosphates, alkyl ether phosphates, alkyl ether carboxylates, alpha-olefin sulfonates, especially the alkali and alkaline earth metal salts, e.g.
  • alkyl ether sulfates, alkyl ether phosphates and alkyl ether carboxylates can have between 1 to 10 ethylene oxide or propylene oxide units, preferably 1 to 3 ethylene oxide units in the molecule.
  • Suitable amphoteric surfactants are e.g. Alkylbetaines, alkylamidopropylbetaines, alkylsulfobetaines, alkylglycinates, alkylcarboxyglycinates, alkylamphoacetates or -propionates, alkylamphodiacetates or -dipropionates.
  • cocodimethylsulfopropyl betaine, lauryl betaine, cocamidopropyl betaine or sodium cocamphopropionate can be used.
  • Suitable nonionic surfactants are, for example, the reaction products of aliphatic alcohols or alkylphenols having 6 to 20 C atoms in the alkyl chain, which may be linear or branched, with ethylene oxide and / or propylene oxide. The amount of alkylene oxide is about 6 to 60 moles per mole of alcohol.
  • alkylamine oxides are also suitable.
  • mono- or dialkylalkanolamides are also suitable.
  • fatty acid esters of polyethylene glycols are also suitable.
  • ethoxylated fatty acid amides are also suitable.
  • alkylpolyglycosides are also suitable.
  • washing, showering and bathing preparations may contain conventional cationic surfactants, such as e.g. quaternary ammonium compounds, for example cetyltrimethylammonium chloride.
  • conventional cationic surfactants such as e.g. quaternary ammonium compounds, for example cetyltrimethylammonium chloride.
  • shower gel / shampoo formulations may contain thickeners, e.g. Common salt, PEG-55, propylene glycol oleate, PEG-120 methyl glucose dioleate and others, as well as preservatives, other active ingredients and auxiliaries and water.
  • thickeners e.g. Common salt, PEG-55, propylene glycol oleate, PEG-120 methyl glucose dioleate and others, as well as preservatives, other active ingredients and auxiliaries and water.
  • the dermocosmetics according to the invention are hair treatment agents.
  • the hair treatment compositions of the present invention are in the form of a mousse, hair mousse, hair gel, shampoo, hair spray, hair mousse, top fluid, perming, hair dyeing and bleaching or hot oil treatments.
  • the hair cosmetic preparations can be applied as (aerosol) spray, (aerosol) foam, gel, gel spray, cream, lotion or wax.
  • Hairsprays include both aerosol sprays and pump sprays without propellant gas.
  • Hair foams include both aerosol foams and pump foams without propellant gas.
  • Hair sprays and hair foams preferably comprise predominantly or exclusively water-soluble or water-dispersible components.
  • the compounds used in the hair sprays and hair foams according to the invention are water-dispersible, they can be used in the form of aqueous microdispersions with particle diameters of usually from 1 to 350 nm, preferably from 1 to 250 nm.
  • the solids contents of these preparations are usually in a range of about 0.5 to 20 wt .-%.
  • these microdispersions do not require emulsifiers or surfactants for their stabilization.
  • Further constituents are the additives customary in cosmetics, for example propellants, defoamers, surface-active compounds, ie surfactants. side, emulsifiers, foaming agents and solubilizers.
  • the surface-active compounds used can be anionic, cationic, amphoteric or neutral.
  • Further customary constituents may also be, for example, preservatives, perfume oils, opacifiers, active ingredients, UV filters, care substances such as panthenol, collagen, vitamins, protein hydrolysates, alpha- and beta-hydroxycarboxylic acids, stabilizers, pH regulators, dyes, viscosity regulators, gel formers, Salts, humectants, greases, complexing agents and other common additives.
  • this includes all known in cosmetics styling and conditioner polymers that can be used in combination with the microcapsules according to the invention or the O / W-Dispersenn prepared according to the inventive method, if very special properties are to be set.
  • Suitable conventional hair cosmetic polymers are the abovementioned cationic, anionic, neutral, nonionic and amphoteric polymers, to which reference is hereby made.
  • the preparations may additionally contain conditioning substances based on silicone compounds.
  • Suitable silicone compounds are, for example, polyalkylsiloxanes, polyarylsiloxanes, polyarylalkylsiloxanes, polyethersiloxanes, silicone resins or dimethicone copolyols (CTFA) and amino-functional silicone compounds such as amodimethicones (CTFA).
  • Blowing agents are the blowing agents commonly used for hairsprays or aerosol foams. Preference is given to mixtures of propane / butane, pentane, dimethyl ether, 1,1-difluoroethane (HFC-152a), carbon dioxide, nitrogen or compressed air.
  • emulsifiers all emulsifiers commonly used in hair foams can be used. Suitable emulsifiers may be nonionic, cationic or anionic or amphoteric. Examples of nonionic emulsifiers (INCI nomenclature) are Laurethe, e.g. Laureth-4; Cetethe, e.g. Cetheth-1, polyethylene glycol cetyl ether, ceteareth, e.g. Cetheareth-25, polyglycol fatty acid glycerides, hydroxylated lecithin, lactyl esters of fatty acids, alkylpolyglycosides.
  • cationic emulsifiers are cetyldimethyl-2-hydroxyethylammonium dihydrogenphosphate, cetyltrimonium chloride, cetyltrimmonium bromide, cocotrimonium methylsulfate, quaternium-1 to x (INCI).
  • Anionic emulsifiers can be selected, for example, from the group of alkyl sulfates, alkyl ether sulfates, alkyl sulfonates, alkylaryl sulfonates, alkyl succinates, alkyl sulfosuccinates, N-alkoylsarcosinates, acyl taurates, acyl isethionates, alkyl phosphates, alkyl ether phosphates, alkyl ether carboxylates, alpha-olefin sulfonates, in particular the alkali metal and alkaline earth metal salts, for example sodium, Potassium, magnesium, calcium, as well Ammonium and triethanolamine salts.
  • the alkyl ether sulfates, alkyl ether phosphates and alkyl ether carboxylates can have between 1 to 10 ethylene oxide or propylene oxide units, preferably 1 to 3 ethylene oxide units in the
  • gel formers all gel formers customary in cosmetics can be used. These include lightly crosslinked polyacrylic acid, for example carbomer (INCI), celulose derivatives, e.g. Hydroxypropyl cellulose, hydroxyethyl cellulose, cationic modified celluloses, polysaccharides, e.g.
  • Xanthan gum caprylic / capric triglyceride, sodium acrylate copolymers
  • Suitable anionic surfactants include, for example, alkyl sulfates, alkyl ether sulfates, alkyl sulfonates, alkylaryl sulfonates, alkyl succinates, alkyl sulfosuccinates, N-alkoxy sarcosinates, acyl taurates, acyl isothionates, alkyl phosphates, alkyl ether phosphates, alkyl ether carboxylates, alpha olefin sulfonates, especially the alkali and alkaline earth metal salts, e.g. Sodium, potassium, magnesium, calcium, as well as ammonium and triethanolamine salts.
  • the alkyl ether sulfates, alkyl ether phosphates and alkyl ether carboxylates can have between 1 to 10 ethylene oxide or propylene oxide units, preferably 1 to 3 ethylene oxide units in the molecule.
  • Suitable examples are sodium lauryl sulfate, ammonium lauryl sulfate, sodium lauryl sulfate, ammonium lauryl ether sulfate, sodium lauroyl sarcosinate, sodium oleyl succinate, ammonium lauryl sulfosuccinate, sodium dodecylbenzenesulfonate, triethanolamine dodecylbenzenesulfonate.
  • Suitable amphoteric surfactants are, for example, alkylbetaines, alkylamidopropylbetaines, alkylsulfobetaines, alkylglycinates, alkylcarboxyglycinates, alkylamphoacetates or -propionates, alkylamphodiacetates or -dipropionates.
  • cocodimethylsulfopropyl betaine cocodimethylsulfopropyl betaine, lauryl betaine, cocamidopropyl betaine or sodium cocamphopropionate can be used.
  • Suitable nonionic surfactants are, for example, the reaction products of aliphatic alcohols or alkylphenols having 6 to 20 C atoms in the alkyl chain, which may be linear or branched, with ethylene oxide and / or propylene oxide.
  • the amount of alkylene oxide is about 6 to 60 moles per mole of alcohol.
  • alkylamine oxides, Mono- or dialkylalkanolamides, fatty acid esters of polyethylene glycols, alkylpolyglycosides or sorbitan ether esters are suitable.
  • the shampoo formulations may contain conventional cationic surfactants, such as e.g. quaternary ammonium compounds, for example cetyltrimethylammonium chloride.
  • conventional cationic surfactants such as e.g. quaternary ammonium compounds, for example cetyltrimethylammonium chloride.
  • Conventional conditioning agents in combination with the microcapsules according to the invention or the O / W dispersions prepared according to the method of the invention can be used in the shampoo formulations to achieve certain effects.
  • cationic polymers with the name Polyquaternium according to INCI, in particular copolymers of vinylpyrrolidone / N-vinylimidazolium salts (Luviquat FC, Luviquat & commat, HM, Luviquat MS, Luviquat Care), copolymers of N-vinylpyrrolidone / dimethylaminoethyl methacrylate, quaternized with diethyl sulfate ( Luviquat D PQ 1 1), copolymers of N-vinylcaprolactam / N-vinylpyrrolidone / N-vinylimidazolium salts (Luviquat D Hold), cationic cellulose derivatives (Polyquaternium-4 and -10), acrylamide copolymers (Polyquaternium-7).
  • protein hydrolysates can be used, as well as conditioning substances based on silicone compounds, for example polyalkylsiloxanes, polyarylsiloxanes, polyarylalkylsiloxanes, polyethersiloxanes or silicone resins.
  • silicone compounds for example polyalkylsiloxanes, polyarylsiloxanes, polyarylalkylsiloxanes, polyethersiloxanes or silicone resins.
  • suitable silicone compounds are dimethicone copolyols (CTFA) and amino-functional silicone compounds such as amodimethicones (CTFA).
  • CTFA dimethicone copolyols
  • amino-functional silicone compounds such as amodimethicones
  • cationic guar derivatives such as guar hydroxypropyltrimonium chloride (INCI) can be used.
  • this hair cosmetic or skin cosmetic preparation is for the care or protection of the skin or hair and is in the form of an emulsion, a dispersion, a suspension, an aqueous surfactant preparation, a milk, a lotion, a cream, a balm, an ointment, a gel, a granule, a powder, a stick preparation, such as a lipstick, a foam, an aerosol or a spray.
  • Suitable emulsions are oil-in-water emulsions and water-in-oil emulsions or microemulsions.
  • the hair cosmetic or skin cosmetic preparation is used for application on the skin (topically) or hair.
  • Topical preparations are to be understood as meaning those preparations which are suitable for applying the active ingredients to the skin in fine distribution and preferably in a form absorbable by the skin.
  • aqueous and aqueous-alcoholic solutions, sprays, foams, foam aerosols, ointments, aqueous gels, emulsions of the O / W or W / O type, microemulsions or cosmetic stick preparations are suitable.
  • the agent contains a carrier.
  • Preferred as a carrier is water, a gas, a water-based liquid, an oil, a gel, an emulsion or microemulsion, a dispersion or a mixture thereof.
  • the mentioned carriers show good skin tolerance.
  • Particularly advantageous for topical preparations are aqueous gels, emulsions or microemulsions.
  • Nonionic surfactants, zwitterionic surfactants, ampholytic surfactants or anionic emulsifiers can be used as emulsifiers.
  • the emulsifiers may be present in the composition according to the invention in amounts of 0.1 to 10, preferably 1 to 5,% by weight, based on the composition.
  • a surfactant of at least one of the following groups may be used:
  • Polyglycerol polyricinoleate polyglycerol poly-12-hydroxystearate or polyglycerol dimerate. Also suitable are mixtures of compounds of several of these classes of substances; Addition products of 2 to 15 moles of ethylene oxide with castor oil and / or hydrogenated castor oil;
  • Partial esters based on linear, branched, unsaturated or saturated C6 / 22 fatty acids, ricinoleic acid and 12-hydroxystearic acid and glycerol, polyglycerol, pentaerythritol, dipentaerythritol, sugar alcohols (eg sorbitol), alkyl glucosides (eg methyl glucoside, butyl glucoside , Lauryl glucoside) as well as polyglucosides (eg cellulose); Mono-, di- and trialkyl phosphates and mono-, di- and / or tri-PEG-alkyl phosphates and their salts;
  • Polysiloxane-polyalkyl-polyether copolymers or corresponding derivatives Polysiloxane-polyalkyl-polyether copolymers or corresponding derivatives; Mixed esters of pentaerythritol, fatty acids, citric acid and fatty alcohol according to DE PS 1 165574 and / or mixed esters of fatty acids having 6 to 22 carbon atoms, methyl glucose and polyols, preferably glycerol or polyglycerol and polyalkylene glycols.
  • zwitterionic surfactants can be used as emulsifiers. Zwitterionic surfactants are those surface-active compounds which carry at least one quaternary ammonium group and at least one carboxy or sulfonate group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines, such as N-alkyl-N, N-dimethylammonium glycinates, for example cocoalkyldimethylammonium glycinate, N-acylamino-propyl-N, N-dimethylammonium glycinates, for example cocoacylaminopropyldimethylammonium glycinate, and 2-alkylbenzenesulfonate. 3-carboxymethyl-3-hydroxy-ethylimidazolines having in each case 8 to 18 C atoms in the alkyl or acyl group, and the cocoacylaminoethylhydroxyethyl carboxymethylglycinate. Particularly preferred is the known under the CTFA name Cocamidopropyl Betaine fatty acid amide derivative.
  • ampholytic surfactants are to be understood as meaning those surface-active compounds which, apart from a C 8, 18 alkyl or acyl group in the molecule, contain at least one free amino group and at least one -COOH or -SCbH group and are capable of forming internal salts.
  • ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylamino-butanoic acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamido-propylglycines, N-alkyltaurines, N alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids each having about 8 to 18 C atoms in the alkyl group.
  • ampholytic surfactants are N-cocoalkylaminopropionate, cocoacylaminoethylaminopropionate and C 12/18 acylsarcosine.
  • quaternary emulsifiers are also suitable, those of the esterquat type, preferably methyl-quaternized difatty acid triethanolamine ester salts, being particularly preferred. It is also possible to use, as anionic emulsifiers, alkyl ether sulfates, monoglyceride sulfates, fatty acid sulfates, sulfosuccinates and / or ether carboxylic acids.
  • Guerbet alcohols based on fatty alcohols containing 6 to 18, preferably 8 to 10, carbon atoms, esters of linear C6-C22 fatty acids with linear C6-C22 fatty alcohols, esters of branched C6-C13 carboxylic acids with linear C12-C22 fatty alcohols , Esters of linear C6-C22-fatty acids with branched alcohols, in particular 2-ethylhexanol, esters of linear and / or branched fatty acids with polyhydric alcohols (such as propylene glycol, dimerdiol or trimer triol) and / or Guerbet alcohols, triglycerides based on C ⁇ -Cio Fatty acids, liquid mono- / di-, triglyceride mixtures based on C6-Cis fatty acids, esters of C6-C22 fatty alcohols and / or Guerbet alcohols with aromatic carboxylic acids, in particular benzoic acid, esters of C2-C12
  • oils bodies are silicone compounds, for example dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and also amino, fatty acid, alcohol, polyether, epoxy, fluorine, alkyl and / or glycoside-modified silicone compounds which may be both liquid and resinous at room temperature.
  • the oil bodies may be present in the compositions according to the invention in amounts of from 1 to 90, preferably from 5 to 80, and in particular from 10 to 50,% by weight, based on the composition.
  • the mixture By means of a dispersing disk made of stainless steel (0 7 cm), the mixture at a speed of 600 rev / min (RZR 2102control, Fa. Heidolph) for 10 min. dispersed at room temperature.
  • the dispersion is stirred for 90 minutes at 60 ° C., then cooled to 20 ° C., 6 g of aminopropanol are added and the mixture is stirred for a further 60 minutes to give a milky-yellow dispersion having a particle diameter of 10 - 30 ⁇ m (determined by light microscope) and a solids content of 28.9%
  • the ratio of capsule wall to capsule core is 20:80.
  • Example 1 The dispersion from Example 1 was dried by means of a spray drier from Büchi (two-component nozzle 0 1.3 mm Teflon, 60 ° C.). This gives a slightly yellow powder with a particle diameter of 15- 50 microns.
  • Example 1 but with a 47.7 g of a polyisocyanate mixture (0.25 mol NCO) consists of 50 parts of HDI cyanurate and (22% NCO) and 50 parts of HDI biuret (22% NCO 1 )
  • Example 2 The dispersion from Example 2 was dried by means of a spray drier from Büchi (two-component nozzle 0 1.3 mm Teflon, 60 ° C.). This gives a slightly yellow powder with a particle diameter of 15- 55 microns.
  • Example 3a The dispersion from example 3 was dried by means of a spray drier from Büchi (two-component nozzle 0 1.3 mm Teflon, 60 ° C.). A powder having a particle diameter of 10 to 60 ⁇ m is obtained.
  • Example 5 As Example 1, but with a core to shell ratio of 50:50 129 g Retinol 15% in Delios (Caprylic / Capric Triglyceride) and 129g polyisocyanate mixture, consisting of 70 parts of an HDI cyanurate (22% NCO 1 ) and 30 parts of an IPDI cyanurate (17% NCO 1 )
  • the dispersion from example 5 was dried by means of a spray drier from Büchi (two-component nozzle 0 1.3 mm Teflon, 60 ° C.). This gives a slightly yellow powder with a particle diameter of 10-55 microns.
  • the amine component consisting of a mixture of 120 g of water, 10.5 g of diethylenetriamine (0.3 mol of nitrogen) is added dropwise within 2 hours.
  • the dispersion is for 90 min. Stirred at 60 ° C, then cooled to 20 ° C, added another 6 g of aminopropanol and for a further 60 min. touched. This gives a milky yellow dispersion with a particle diameter of 10 - 30 microns (determined by light microscope) and a solids content of 28.9%.
  • the ratio of capsule wall to capsule core is 20:80.
  • the dispersion from Comparative Example 1 was prepared by means of a spray dryer of the Fa.
  • Emulsion O / W emulsion, preparation without argon A 2.0 Cremophor A ⁇ Ceteareth-6, Stearvl Alcohol
  • Preparation Heat phases A and B separately from each other to about 80 ° C. Stir phase B into phase A and homogenize. Stir in phase C and homogenize again. Cool with stirring to about 40 0 C, incorporate phase D, homogenize and cold. 98.Oq or 99.6q emulsion are placed in a 250 ml beaker, 2 g retinol capsules or 0.4 g retinol 15D added and stirred with the paddle stirrer at 120 Umdr./min for about 2h. Concentration: * Active substance content of the microcapsules approx. 3% - Retinol
  • Emulsion aluminum tubes at 40 ° C. (storage without further oxygen access, two separate tubes per analysis time, initial value homogeneity test with 3 tubes)
  • Active ingredient content of the emulsion 500 ppm retinol
  • Microencapsulated retinol 15D (according to Example 1) 100.0 90.0 98.0 85.0 88.0 Microencapsulated retinol 15D (according to Example 2) 100.0 89.0 91, 0 89.0 80.0 Microencapsulated retinol 15D ( according to Example 4) 100.0 82.0 90.0 81, 0 81, 0 Microencapsulated retinol 15D (according to Example 5) 100.0 88.0 93.0 84.0 83.0 Retinol 15D 100.0 65.8 44.9 45.4 39.5
  • Microencapsulated Retinol 15D (according to Comparative Example 1) 100 27.7 20.4 - -
  • Microencapsulated Retinol 15D (according to Example 1) 100,000 115,000 3,5
  • Microencapsulated retinol 15D (according to Example 2) 100,000 97,100 2.9
  • Microencapsulated retinol 15D (according to Example 4) 100,000 69,600 2,1
  • Microencapsulated retinol 15D (according to Example 5) 100,000 86 200 2,6
  • Microencapsulated Retinol 15D (according to Comparative Example 1) 100,000 122,000 3,7
  • Microencapsulated retinol 15D (according to Example 1) 100.0 81, 3 77.2 64.8 52.9 Microencapsulated retinol 15D (according to Example 2) 100.0 84.8 89.5 73.8 71, 9 Microencapsulated retinol 15D ( according to Example 4) 100.0 86.0 83.0 76.0 64.0 Microencapsulated Retinol 15D (according to Example 5) 100.0 92.0 94.0 82.0 64.0 Retinol 15D 100.0 86.3 71, 3 47.2 32.8
  • Microencapsulated Retinol 15D (according to Comparative Example 1) 100 11, 8 Desmocosmetic preparations according to the invention are described below, comprising the O / W dispersion prepared according to Example 1. Said O / W dispersion is referred to in the following examples as "O / W dispersion containing microencapsulated retinol 15 D.”
  • the "O / W dispersion containing microencapsulated retinol 15 D" is represented in the following examples as representative of all other O described above / W called dispersions containing microencapsulated lipophilic compounds.
  • Example 7 Use of the O / W Dispersion Containing Microencapsulated Retinol 15 D in a Day Care Emulsion - Type O / W
  • Preparation Heat phases A and B separately from each other to about 80 ° C. Stir phase B into phase A and homogenize. Stir phase C into combined phases A and B and homogenize again. Cool to about 40 ° C. with stirring, add phase D, adjust the pH to about 6.5 with phase E, homogenize and cool to room temperature while stirring.
  • the formulation is produced without inert gas.
  • the filling must be in oxygen-impermeable packaging, e.g. Aluminum tubes take place.
  • Example 8 Use of the O / W Dispersion Containing Microencapsulated Retinol 15 D in a Protective Day Cream - Type O / W
  • Preparation Heat phases A and B separately from each other to about 80 ° C. Stir phase B into phase A and homogenize. Prepare phase C in combined phases A and B and homogenize. Cool to about 40 ° C. while stirring. Add phase D, adjust the pH to about 6.5 with phase E and homogenize. Cool to room temperature while stirring.
  • Example 9 Use of the O / W Dispersion Containing Microencapsulated Retinol 15 D in a Facial Cleansing Lotion - Type O / W WS 1%:
  • Example 10 Use of the O / W Dispersion Containing Microencapsulated Retinol 15 D in a Daily Care Body Spray
  • Example 12 Use of the O / W Dispersion Containing Microencapsulated Retinol 15 D in an After Shave Lotion
  • Preparation Mix the components of phase A. Dissolve phase B, work in phase A and homogenize.
  • Preparation Mix the components of phase A. Stir phase B into phase A while homogenizing. Neutralize with Phase C and homogenize again.
  • Preparation Heat the components of phases A and B separately to about 80 ° C. Stir phase B into phase A and homogenize. Heat phase C to about 80 ° C. and stir into the combined phases A and B while homogenizing. Cool with stirring to about 40 0 C, add phase D and homogenize again.
  • Example 15 Use of the O / W Dispersion Containing Microencapsulated Retinol 15 D in a Sunscreen Lotion - Type O / W WS 1%:
  • Example 16 Use of the O / W Dispersion Containing Microencapsulated Retinol 15 D in a Sunscreen Lotion - Type O / W
  • Example 17 Use of the O / W dispersion containing microencapsulated retinol 15 D in a foot balm
  • Example 18 Use of the O / W Dispersion Containing Microencapsulated Retinol 15 D in a W / O Emulsion with Bisabolol
  • Example 19 Foam Conditioner with Stabilizer WS 1%
  • Example 20 Foam conditioner WS 1%
  • Preparation Mix the components of phase A. Add the components of phase B one by one and dissolve. Fill with phase C.
  • Preparation Mix the components of phase A. Add the components of phase B one by one and dissolve. Fill with phase C.
  • Preparation Mix the components of phase A. Clear the components of phase B, then stir phase B into phase A. Adjust the pH to 6-7, fill with phase C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cosmetics (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von Mikrokapseln bzw. Mikrokapseldispersionen auf O/W Basis. Ein weiterer Gegenstand der Erfindung sind Mikrokapseln und O/W Mikrokapseldispersionen und deren Verwendung in Dermokosmetika. Ferner sind auch Dermokosmetika enthaltend die erfindungsgemäßen Mikrokapseln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W Mikrokapseldispersionen Gegenstand der Erfindung.

Description

Verkapselung lipophiler Wirkstoffe
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung von Mikrokapseln bzw. Mikrokap- seldispersionen auf O/W Basis. Ein weiterer Gegenstand der Erfindung sind Mikrokapseln und O/W Mikrokapseldispersionen und deren Verwendung in Dermokosmetika. Ferner sind auch Dermokosmetika enthaltend die erfindungsgemäßen Mikrokapseln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W Mikrokapsel- dispersionen Gegenstand der Erfindung.
Viele organische Verbindungen reagieren mit molekularem Sauerstoff, wobei oftmals die aus diesen Reaktionen resultierenden Verbindungen ihre Wirksamkeit verlieren. Diese als Autooxidation bezeichente Reaktion ist in den meisten Fällen mit einer Ab- Spaltung von Wasserstoff unter Bildung von Radikalen und daraus resultierenden Radikalketten verknüpft. Diese freien Radikale wiederum können in dem sie umgebenden Medium oder Gewebe, z.b. der menschlichen Haut, große Schäden anrichten. Auch bei Arzneimitteln läßt sich häufig eine Stabilisierung gegen Sauerstoffeinwirkung nicht umgehen.
Weiterhin sind viele organische Verbindungen temperatur-, pH- oder lichtempfindlich oder reagieren mit anderen in der kosmetischen Formulierung vorhandenen Rohstoffen.
Die Verkapselung bzw. Mikroverkapselung oxidations- .temperatur-, pH- oder lichtempfindlicher Substanzen ermöglicht die Inaktivierung kosmetischer oder pharmazeutischer Substanzen zu verhindern und somit deren Stabilität zu erhöhen. Bei der Mikroverkapselung, welche nach dem Prinzip einer Grenzflächen-Polyaddition abläuft, entstehen sphärische Teilchen, die aus einem Kapselkern und eine den Kap- seikern umgebende Kapselhülle bestehen. Zur Herstellung solcher Mikrokapseln werden Öl-in-Wasser Emulsionen (O/W-Emulsionen) oder Wasser-in-ÖI Emulsionen (W/O- Emulsionen) verwendet. Bei der Mikroverkapselung unter Verwendung von O/W- Emulsionen, enthält die diskontinuierliche Ölphase den zu verkapselnden Stoff und eine zur Polyaddition befähigte Substanz. In der Regel handelt es sich dabei um Isocy- anate. Die Wahl der zu verkapselnden Stoffe ist nahezu beliebig. Es kann sich z.b. um Farbstoffe, pharmazeutisch aktive Substanzen, UV-Schutzmittel, Vitamine oder Öle handeln. Wenn nun der kontinuierlichen Wasserphase ein weiterer zur Polyaddition notwendiger Reaktionspartner oder Vernetzer zugegeben wird, so entsteht zwischen Öl und Wasser ein hochmolekulares Additionsprodukt, das die Kapselwand darstellt und die den lipophilen Wirkstoff enthaltenden Öltröpfchen einschließt. Bei dem der Wasserphase zugesetzten quervernetzenden Reaktionsstarter kann es sich gemäß dem Stand der Technik um Amine, Alkohole oder Aminoalkohole handeln. Für die Her- Stellung von Polyharnstoff-Kapseln werden bevorzugt Diamine oder Triamine eingesetzt.
Die Produkteigenschaften und somit die Verwendbarkeit der nach dem oben genann- ten Prinzip erzeugten Mikrokapseln richtet sich neben anderen Parametern auch nach den zur Erzeugung der zur Kapselhülle verwendeten Substanzen.
So beschreibt die DE-A 101 20 480 Mikrokapseln mit einem wasserlösliche Substanzen enthaltenden Kapselkern und einer Kapselwand aus Melamin/Formaldehyd- Harzen.
Ferner lehrt die US 5,859,075 Mikrokapsel mit Diolen und Polyolen als Kapselkern und einer Polyurethanwand, die in Paraffinen als kontinuierliche Phase hergestellt werden. Die so erhaltenen Mikrokapseln eignen sich als Pulverlackkomponente. Gemäß dieser Lehre lassen sich auch wasserempfindliche Substanzen nach diesem Verfahren verkapseln.
Die EP-A-O 148 169 beschreibt Mikrokapseln mit einem wasserlöslichen Kern und einer Polyurethanwand, die in einem Pflanzenöl hergestellt werden. Als Kapselkernmate- rial werden neben Herbiziden unter anderem wasserlösliche Farbstoffe genannt.
Aus der WO 03/042274 ist ein Verfahren bekannt zur Herstellung von polyharnstoffba- sierten Mikrokapseln mit flüssigem, suspensionshaltigem oder festem Kapselkern. Die Kapselwände werden durch ein Isocyanat-/Amin-System gebildet und durch Zugabe von vernetzenden Komponenten wie beispielsweise Mono- oder Dialdehyden weiter stabilisiert.
Die WO 03/015910 betrifft Mikrokapseldispersionen enthaltend Mikrokapseln mit einem wasserlösliche organische Substanzen, insbesondere Farbstoffe, enthaltenden Kap- seikern und einer Kapselhülle, die im wesentlichen aus Polyurethan und/oder PoIy- harnstoff besteht, in einem hydrophoben Lösungsmittel, das aus 50 bis 100 Gew.-% Glycerinesterölen und 0 bis 50 Gew.-% mit Glycerinesterölen mischbare Lösungsmitteln besteht und deren Verwendung in kosmetischen Mitteln.
Ein Problem bei der Verwendung von Mikrokapseldispersionen, die durch Polymerisation von Di- bzw. Polyisocyanaten zugänglich sind, stellen freie, d.h. nicht abreagierte Isocyanat-Funktionalitäten dar, die zu unerwünschten Nebenreaktionen bzw. Produkteigenschaften führen können.
Die DE-A 198 46 650 betrifft Pulverlack-Slurries mit mikroverkapselten Partikeln, die mindestens ein hydroxylgruppenhaltiges Bindemittel und mindestens ein Polyisocyanat als Vernetzungsmittel sowie Wasser enthalten wobei die gegebenenfalls noch in der wässrigen Phase befindlichen Partikel des Vernetzungsmittels über die an ihrer Ober- fläche vorhandenen Isocyanatgruppen mittels eines in der wässrigen Phase zugesetzten Desaktivierungsmittels stabilisiert sind.
Die GB 1 ,142,556 beschreibt Mikrokapseln auf Polyurethanbasis, welche zugänglich sind durch Reaktion von Isocyanat-funktionalisierten Polymeren mit Diaminen in wäss- rigen Systemen. Als Reagenzien zur Nachbehandlung werden Natrium- und Kaliumhydroxid sowie 1-Hydroxyethyl-2-heptadecenyl-glyoxalidin genannt.
Die DE-A 27 06 329 betrifft ein Verfahren zur Verminderung des restlichen Isocyanat- gehaltes in Polyharnstoffmikrokapseln, das dadurch gekennzeichnet ist, dass man die in Öl-in-Wasser-Systemen gebildeten Polyharnstoffmikrokapseln mit einem Über- schuss an Ammoniak oder an einem Amin behandelt. Als bevorzugte Nachbehandlungsreagenzien werden organische Dialkylamine mit 1 bis 6 Kohlenstoffatomen sowie Ammoniak genannt.
Die bei den genannten Verfahren erzeugten Mikrokapseln weisen allerdings hinsich- licht ihrer Stabilität und/oder Größe unterschiedliche Eigenschaften auf. Besonders im Bereich der kosmetischen Anwendung ist es wünschenswert, dass die Freisetzung der aktiven Wirkstoffe erst direkt mit der Verabreichung der Mikrokapseln auf der Haut oder dem Haar erfolgt. Dabei erfolgt die kontrollierte Freisetzung (controlled release) durch zerdrücken der Mikrokapseln auf der Haut oder auf dem Haar. Damit dieser Effekt erzielt werden kann, dürfen die Mikrokapseln eine gewisse Größe, die optimalerweise zwischen 5 und 100 μm liegt, nicht überschreiten und dabei so stabil sein, dass der oxidationsempfindliche Wirkstoff nicht bereits vorher freigesetzt wird bzw. ausreichen- den Schutz gegen das Eindringen von Sauerstoff bieten.
Daher war es Aufgabe der vorliegenden Erfindung Mikrokapseln und O/W Emulsionen zur Verüfung zu stellen, die sich hinsichtlich der oben genannten Produkteingenschaf- ten gegenüber den im Stand der Technik bekannten Mikrokapseln vorteilhaft unter- scheiden. Ferner war es Ziel der vorliegenden Erfindung ein Verfahren zur Herstellung dieser Mikrokapseln bzw. O/W Emulsionen bereitzustellen.
Überraschenderweise wurde gefunden, dass die erfinderischen Aufgaben durch die Verwendung von polymeren Aminvernetzern gelöst werden konnte.
Definitionen
„Dermokosmetika" oder „Dermokosmetikum" beschreibt hautkosmetische, haarkosmetische, dermatologische, hygienische oder pharmazeutische Mittel, Zubereitungen und/oder Formulierungen zur topischen Anwendung auf Haut oder Haar, geeignet (i) zur Prävention von Schädigungen der menschlichen Haut und/oder menschlicher Haare, (ii) zur Behandlung von bereits aufgetretenen Schädigungen der menschlichen Haut und/oder menschlicher Haare, (iii) zur Pflege der menschlichen Haut und/oder menschlicher Haare, (iv) zur Verbesserung des Hautgefühls (sensorische Eigenschaften). Ex- plizit umfaßt sind Mittel zur dekorativen Kosmetik. Ferner umfaßt sind Mittel zur Hautpflege, bei denen der pharmazeutisch dermatologische Anwendungszweck unter Mitberücksichtigung kosmetischer Gesichtspunkte erreicht wird. Derartige Mittel oder Zubereitungen werden zur Unterstützung, Vorbeugung und Behandlung von Hauterkran- kungen eingesetzt und können neben dem kosmetischen Effekt eine biologische Wirkung entfalten. Besonders bevorzugt handelt es sich bei den erfindungsgemäßen Dermokosmetika um Zubereitungen zum Schutz der Haut vor Schädigungen durch Sonnenlicht, im speziellen durch UV-B- (280 bis 320 nm) und UV-A-Strahlung (>320 nm). Ganz besonders bevorzugt handelt es sich um Zubereitungen enthaltend die lipophilen Vitamine A, D, E, K und deren Derivate, bevorzugt Vitamin A oder ß- Carotin. Dermokosmetika enthalten in einem kosmetisch verträglichen Medium geeignete Hilfs- und Zusatzstoffe, welche im Hinblick auf das spezielle Anwendungsgebiet gewählt werden. Derartige Hilfs- und Zusatzstoffe sind dem Fachmann geläufig und können z.B. Handbüchern der Kosmetik, beispielsweise Schrader, Grundlagen und Rezepturen der Kosmetika, Hüthig Verlag, Heidelberg, 1989, ISBN 3-7785-1491-1 , oder Umbach, Kosmetik: Entwicklung, Herstellung und Anwendung kosmetischer Mittel, 2. erweiterte Auflage, 1995, Georg Thieme Verlag, ISBN 3 13 712602 9, entnommen werden.
„Dermokosmetika geeignet zum Schutz der menschlichen Haut oder menschlicher Haare vor UV-Strahlung" enthalten einen oder mehrere organische und/oder anorganische Lichtschutzmittel bzw. UV-Filter in Kombination mit einer oder mehrerer der im folgenden aufgeführten Substanzen: Emulgatoren, Tenside, Konservierungsmittel, Parfümöle, Verdicker, Haarpolymere, Haar- und Hautconditioner, Pfropfpolymere, wasser- lösliche oder dispergierbare silikonhaltige Polymere, , Gelbildner, Pflegemittel, Färbemittel, Tönungsmittel, Bräunungsmittel, Farbstoffe, Pigmente, Konsistenzgebern, Feuchthaltemitteln, Rückfettern, Collagen, Eiweißhydrolysaten, Lipiden, und/oder Anti- oxidantien.
„Dermokosmetische Wirkstoffe" oder „dermokosmetisch aktive Wirkstoffe" im Sinne der vorliegenden Erfindung sind die in Dermokosmetika gemäß der oben gegebenen Definition vorhandenen Wirkstoffe, welche zur Prävention von Schädigungen der menschlichen Haut und/oder menschlicher Haare, (ii) zur Behandlung von bereits aufgetretenen Schädigungen der menschlichen Haut und/oder menschlicher Haare, (iii) zur Pflege der menschlichen Haut und/oder menschlicher Haare, (iv) zur Verbesserung des Hautgefühls (sensorische Eigenschaften) und (iv) zur dekorativen Verschönerung oder Verbesserung des Aussehens der menschlichen Haut und/oder menschlicher Haare angewendet werden. Derartige Wirkstoffe sind z.B. ausgewählt aus der Gruppe der natürlichen oder synthetischen Polymere, Pigmente, Feuchthaltemittel, Öle, Wachse, Prote- ine, Enzyme, Mineralien, Vitamine, Sonnenschutzmittel, Farbstoffe, Duftstoffe, Antioxi- dantien, Peroxydzersetzer und Konservierungsmittel und pharmazeutische Wirkstoffe die zur Unterstützung, Vorbeugung und Behandlung von Hauterkrankungen eingesetzt werden und eine heilende, Schädigungen vorbeugende, regenerierende oder den allgemeinen Zustand der Haut verbessernde biologische Wirkung haben.
„kosmetisch verträgliches Medium" ist breit zu verstehen und meint für die Herstellung von kosmetischen oder dermokosmetischen Zubereitungen geeignete Substanzen und Mischungen derselben.
„Kosmetisch verträgliche Substanzen" führen bei Kontakt mit menschlichem bzw. tierischen Hautgewebe oder Haaren zu keinen Irritationen oder Schäden und weisen keine Inkompatibilitäten mit anderen Substanzen auf. Ferner verfügen diese Substanzen über ein geringes allergenes Potential und sind von staatlichen Zulassungsbehörden für die Verwendung in kosmetische Zubereitungen zugelassen. Diese Substanzen sind dem Fachmann geläufig und können z.B. Handbüchern der Kosmetik, beispielsweise Schrader, Grundlagen und Rezepturen der Kosmetika, Hüthig Verlag, Heidelberg, 1989, ISBN 3-7785-1491 -1 , entnommen werden.
„Polymere Aminvernetzer" im Sinne der vorliegenden Erfindung sind Polymere, polyfunktionelle Amine wie beispielsweise die Polyvinylamine, die Polyoxyalkylenamine und/oder die Polyethylenimine. Diese können erfindungsgemäß auch in Form von Ge- mischen, insbesondere in Form von Gemischen mit mindestens einem Alkyldiamin mit 1 bis 10, bevorzugt mit 1 bis 6 Kohlenstoffatomen eingesetzt werden.
Unter Reaktand ist im Rahmen dieser Anmeldung eine Verbindung zu verstehen, die mindestens eine isocyanatreaktive Gruppe aufweist. Bevorzugte Reaktanden sind sol- che, die als isocyanatreaktive Gruppen OH-, NH- und/oder NH2-Gruppen tragen, die mit Isocyanatgruppen reagieren können. Besonders bevorzugte Reaktanden sind darunter solche, die ein zahlenmittleres Molekulargewicht von etwa 600 bis etwa 380.000 g/mol aufweisen. Insbesondere bevorzugte Reaktanden sind die polyfunktionellen A- mine wie beispielsweise die Polyvinylamine, die Polyoxyalkylenamine und/oder die Polyethylenimine. Diese können erfindungsgemäß auch in Form von Gemischen, insbesondere in Form von Gemischen mit mindestens einem Alkyldiamin mit 1 bis 10, bevorzugt mit 1 bis 6 Kohlenstoffatomen eingesetzt werden.
Detaillierte Beschreibung der Erfindung In einer ersten Ausführungsform betrifft die Erfindung demnach ein Verfahren zur Herstellung einer Mikrokapseldispersion durch Grenzflächen-Polyaddition, indem in einem ersten Schritt, durch Dispersion einer den zu verkapselnden lipohilen dermokosmetisch aktiven Wirkstoff enthaltenden Ölphase und eines Di- und/oder Poly-Isocyanats in einer Wasserphase, eine Öl-in-Wasser Emulsion hergestellt wird und in einem zweiten Schritt, der so erzeugten Öl-in-Wasser Emulsion der zur Polyaddition benötigte Reaktionspartner zugesetzt wird, dadurch gekennzeichnet, dass es sich bei dem zur Polyaddition benötigten Reaktionspartner um zwei verschiedene Aminvernetzer handelt. In einer bevorzugten Ausführungsform handelt es sich bei der die Ölphase bildende Substanz um den dermokosmetischen Wirkstoff.
Das Grundprinzip der Mikroverkapselung beruht auf der sogenannten Grenzflächenpo- lymerisation oder -addition. Bei der erfindungsgemäßen Grenzflächenpolyaddition werden in einem ersten Verfahrensschritt die zu verkapselnden lipophilen Stoffe und die zur Polyaddition befähigte Substanz, in der Regel handelt es sich dabei um Isocyanate, in einer Wasserphase gelöst und dabei eine Öl-in-Wasser Emulsion hergestellt. Die kontinuierliche Wasserphase der Emulsion enthält üblicherweise oberflächenaktive Substanzen, um ein Zusammenfließen der Tröpfchen zu vermeiden. Solche Substanzen sind in dem Patent EP 0706 822 B1 beschrieben, auf deren Inhalt hiermit ausdrücklich Bezug genommen wird. In dieser Emulsion ist die Wasserphase die kontinuierliche disperse Phase und das darin dispergierte Öl, enthaltend die zu verkapselnden Substanzen, die diskontinuierliche Phase. Die emulgierten Tröpfchen besitzen dabei eine Größe, die ungefähr der Größe der späteren Mikrokapseln entspricht. Zur Bildung der Kapselwand vermischt man in einem zweiten Verfahrensschritt die Emulsion mit den zur Wandbildung befähigten Aminvernetzer. Der Aminvernetzer ist in der Lage an der Grenzfläche zwischen der diskontinuierlichen und der kontinuierlichen Phase mit dem in der diskontinuierlichen Phase gelösten Isocyanaten unter Ausbildung der poly- meren Kapselwand zu reagieren.
Im erfindungsgemäßen Verfahren werden mindestens zwei verschiedene Aminvernetzer verwendet, wobei diese als Mischung oder nacheinander der Öl-in-Wasser Emulsion zugesetzt werden können. Erfindungsgemäß bevorzugt ist die Verwendung von Mischungen.
In einer besonders bevorzugten Ausführungsform der Erfindung handelt es sich bei mindestens einem der verwendeten Aminvernetzer um eine polymere Verbindung mit primären oder sekundären Aminogruppen. Erfindungsgemäß bevorzugt ist weiterhin die Verwendung von zwei der genannten polymeren Aminvernetzern.
Geeignet sind Di-, Oligo- und/oder Polyisocyanate, wie aliphatische, cycloaliphatische, araliphatische, aromatische und heterocyclische Di- und Polyisocyanate wie sie von W. Siefken in Justus Liebigs Annalen der Chemie, 562, Seiten 75 bis 136, beschrieben werden, beispielsweise Ethylendiisocyanat, 1 ,4-Tetramethylendiisocyanat, 1 ,6- Hexamethylendiisocyanat, 1 ,12-Dodecandiisocyanat, Cyclobutan-1 ,3-diisocyanat, Cyc- lohexan-1 ,3- und -1 ,4-diisocyanat und beliebige Gemische dieser Isomeren, 1- lsocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexan, wie z.B. beschrieben in DE- 1 202 785 und US- 3,401 ,190, 2,4- und 2,6-Hexanhydrotoluylendiisocyanat sowie be- liebige Gemische dieser Isomeren, Hexahydro-1 ,3- und -1 ,4-phenylendiisocyanat, Perhydro-1 ,4'- und -4,4'-diphenylmethandiisocyanat, 1 ,3- und 1 ,4- Phenylendiisocyanat, 2,4- und 2,6-Toluylendiisocyanat sowie beliebige Gemische dieser Isomeren, Diphenylmethan-2,4'- und 4,4'-diisocyanat, Naphthylen-1 ,5-diisocyanat, Triphenylmethan-4,4',4"-Triisocyanat, Polyphenylpolymethylenpolyisocyanate, wie sie durch Anilin-Formaldehyd-Kondensation und anschließende Phosgenierung erhalten werden und z.B. in GB-874 430 und GB-848 671 beschrieben werden, m- und p- Isocyanatophenylsulfonylisocyanate gemäß der US-3,454,606, perchlorierte Arylpolyi- socyanate, wie sie z.B. in der DE- 1 157 601 beschrieben werden, Carbodiimidgruppen aufweisende Polyisocyanate, wie sie in der DE-1 092 007 (US-3,152,162) beschrieben werden, Diisocyanate, wie sie in der US-3,492,330 beschrieben werden, Allopha- natgruppen aufweisende Polyisocyanate, wie sie in der GB-761 626 und der veröffentlichten NL-Patentanmeldung 7 102 524 beschrieben werden Isocyanuratgruppen auf- weisende Polyisocyanate, wie sie z.B. in der US-3, 001 , 973, in den De-1 022 789, DE-
1 222 067 und DE-1 027 394 sowie in den Anmeldungen DE-1 929 034 und DE-
2 004 048 beschrieben werden, Urethangruppen aufweisende Polyisocyanate, wie sie z.B. in den Patentanmeldungen BE-752 261 oder US-3, 394, 164 beschrieben werden, acylierte Harnstoffgruppen aufweisende Polyisocyanate gemäß der DE 1 230 778, Biu- retgruppen aufweisende Polyisocyanate, wie sie z.B. in der DE-1 101 394 sowie in der GB-889 050 beschrieben werden, durch Telomerisationsreaktionen hergestellte Polyisocyanate, wie sie z.B. in der US-3, 654, 106 beschrieben werden, Ethergruppen aufweisende Polyisocyanate, wie sie z.B. in der GB-965 474, der GB-1 072 956, der US- 3, 567, 763 und in der DE-1 231 688 genannte werden, Umsetzungsprodukte der o- bengenannten Isocyanate mit Acetalen gemäß der DE-1 072 385 und polymere Fettsäurereste enthaltende Polyisocyanate gemäß der US-3, 455, 883.
Es ist auch möglich, die bei der technischen Isocyanatherstellung anfallenden Isocya- natgruppen aufweisenden Destillationsrückstände, gegebenenfalls gelöst in einem o- der mehreren der vorgenannten Polyisocyanate, einzusetzen. Ferner ist es möglich, beliebige Mischungen der vorgenannten Polyisocyanate zu verwenden.
Geeignete modifizierte, aliphatische Isocyanate sind z.B. solche auf der Basis von He- xamethylen-1 ,6-diisocyanat, m-Xylylendiisocyanat, 4,4'-Diisocyanat-dicyclohexyl- methan und Isophorondiisocyanat, die pro Molekül mindestens zwei Isocyanatgruppen aufweisen.
Ferner geeignet sind z.B. Polyisocyanate auf der Basis von Derivaten des Hexamethy- len-1 ,6-diisocyanats mit Biuretstruktur wie in DE-1 101 394, DE-1 453 543, DE- 1 568 017 und DE-1 931 055 beschrieben.
Außerdem einsetzbar sind Polyisocyanat-polyuretonimine, wie sie durch Carbodiimidi- sierung von Biuretgruppen enthaltendem Hexamethylen-1 ,6-diisocyanat mit phosphororganischen Katalysatoren entstehen, wobei sich primär gebildete Carbodiimidgruppen mit weiteren Isocyanatgruppen zu Uretonimingruppen umsetzten.
Es können auch Isocyanurat-modifizierte Polyisocyanate mit mehr als zwei endständigen Isocyanatgruppen verwendet werden, z.B. solche deren Herstellung auf Basis von Hexamethylendiisocyanat in der DE-2 839 133 beschrieben ist. Andere Isocyanurat- modifizierte Polyisocyanate können analog dazu erhalten werden.
Es können auch Gemische aus den genannten Isocyanaten verwendet werden, z.B. Gemische aliphatischer Isocyanate, Gemische aromatischer Isocyanate, Gemische aus aliphatischen und aromatischen Isocyanaten, insbesondere Mischungen, die gegebenenfalls modifizierte Diphenylmethandiisocyanate enthalten.
Die hier beschriebenen Di- und/oder Polyisocyanate können auch als Mischungen mit Di- und Polycarbonsäurechloriden, wie Sebacoylchlorid, Terephthaloylchlorid, Adipin- säuredichlorid, Oxalsäuredichlorid, Tricarballylsäuretrichlorid und 1 ,2,4,5-Benzol- carbonsäuretetrachlorid, mit Di- und Polysulfonsäurechloriden wie 1 ,3-Benzolsulfon- säuredichlorid und 1 ,3,5-Benzolsulfonsäuretrichlorid, Phosgen und mit Dichlor- und
Polychlorameisensäureester, wie 1 ,3,5-Benzoltrichloroformiat und Ethylenbischloro- formiat Anwendung finden.
Bevorzugte Isocyanate sind biuretisches Hexamethylendiisocyanat gegebenenfalls in Abmischung mit 4,4'-Diphenylmethanisocyanat und gegebenenfalls 2,4-Diphenyl- methanisocyanat, trimerisiertes Hexamethylendiisocyanat gegebenenfalls in Abmi- schung mit 4,4'Diphenylmethandiisocyanat und gegebenenfalls 2,4-Diphenyl- methandiisocyanat.
Weitere geeignete Diisocyanate sind die in den PatentanmeldungenDE-3 105 776 und DE-3 521 126 angegebenen Alkylbenzoldiisocyanate und Alkoxybenzoldiisocyanate, auch in Form ihrer Biuret-isocyanaturetdion-Oligomeren.
Bevorzugte Di- oder Polyisocyanate sind 4,4'-Diphenylmethandiisocyanat, die Mischungen aus monomeren Diphenylmethandiisocyanaten und oligomeren Diphenyl- methandiisocyanaten (Polymer-MDI), Tetramethylendiisocyanat, Tetramethylendiiso- cyanat-Trimere, Hexa-methylendiisocyanat, Hexamethylendiisocyanat-Trimere, Isopho- rondiisocyanat-Trimer, 4,4'-Methylenbis(cyclohexyl)-diisocyanat, Xylylendiisocyanat, Tetramethylxylylendiisocyanat, Dodecyldiisocyanat, Lysinalkylester-diisocyanat, wobei Alkyl für Ci bis Ci0 steht, 2,2,4- oder 2,4, 4-Trimethyl-1 ,6-hexamethylen-diisocyanat, 2- Butyl-2-ethyl-pentamethylendiisocyanat, 1 ,4-Diisocyanatocyclohexan oder 4-lso- cyanato-methyl-1 ,8-octamethylendiisocyanat.
Weiterhin bevorzugte Di- oder Polyisocyanate sind solche mit NCO-Gruppen unterschiedlicher Reaktivität, wie 2,4-Toluylendiisocyanat (2,4-TDI), 2,4'- Diphenylmethandiisocyanat (2,4'-MDI), Triisocyanatotoluol, Isophorondiisocyanat (IP- Dl), 2-Butyl-2-ethylpenta-methylendiisocyanat, 2-lsocyanatopropylcyclohexyliso- cyanat, 3(4)-lsocyanato-methyl-1-methylcyclohexylisocyanat, 1 ,4-Diisocyanato-4- methylpentan, 2,4'-Methylen-bis(cyclo-hexyl)diisocyanat und 4-Methyl-cyclohexan- 1 ,3-diisocyanat (H-TDI). Weiterhin sind Isocyanate besonders bevorzugt, deren NCO- Gruppen zunächst gleich reaktiv sind, bei denen sich jedoch durch Erstaddition eines Alkohols oder Amins an einer NCO-Gruppe ein Reaktivitätsabfall bei der zweiten NCO- Gruppe induzieren läßt. Beispiele dafür sind Isocyanate, deren NCO-Gruppen über ein delokalisiertes Elektronensystem gekoppelt sind, z.B. 1 ,3- und 1 ,4- Phenylendiisocyanat, 1 ,5-Naphthylendiisocyanat, Diphenyldiisocyanat, Tolidindiisocya- nat oder 2,6-Toluylendiisocyanat.
In einer weiterhin bevorzugten Ausführungsform der voliegenden Erfindung ist das Di-, Oligo- und/oder Polyisocyanat ausgewählt aus der Gruppe enthaltend Tetramethylen- diisocyanat, Hexamethylendiisocyanat, Dodecamethylendiisocyanat, 1 ,4-Diisocyanato- cyclohexan, 4,4'-Di-(isocyanatocyclohexyl)-methan, Trimethylhexandiiso-cyanat, Tetramethylhexandiisocyanat, 1 -lsocyanato-3,3,5-trimethyl-5-(iso-cyanatomethyl) cyclohexan (IPDI), 2,4- Toluylendiisocyanat und 2,6-Toluylendiisocyanat, Tetramethylxyly- lendiisocyanat, 2,4'- Diisocyanatodiphenylmethan und 4,4'-Diisocyanato- diphenylmethan.
Insbesondere bevorzugt sind Oligo- oder Polyisocyanate, die sich aus den genannten Di- oder Polyisocyanaten oder deren Mischungen durch Verknüpfung mittels Urethan-, Allophanat-, Harnstoff-, Biuret-, Uretdion-, Amid-, Isocyanurat-, Carbodiimid-, Uretoni- min-, Oxadiazintrion- oder Iminooxadiazindion-Strukturen herstellen lassen. Darunter wiederum bevorzugt sind Oligo- oder Polyisocyanate, die sich aus den genannten Di- oder Polyisocyanaten oder deren Mischungen durch Verknüpfung mittels Urethan-, Isocyanurat-, Allophanat-, Harnstoff- oder Biuret-Strukturen herstellen lassen bzw. Urethan-, Isocyanurat-, Allophanat-, Harnstoff- und/oder Biuret-Strukturen aufweisen.
In erfindungsgemäßer Weise mit den genannten Di-, Oligo- und/oder Polyisocyanaten umsetzbare Reaktanden sind solche, die mindestens eine isocyanatreaktive Gruppe aufweisen. Als bevorzugte isocyanatreaktive Gruppen genannt seien NH- und NH2- Gruppen. Demgemäss handelt es sich bei den genannten Reaktanden um primäre oder sekundäre Amine, die jeweils einzeln oder in Form von Gemischen, beispielsweise von etwa 2 bis etwa 5, bevorzugt 2 bis 3 verschiedenen Reaktanden eingesetzt werden können, wobei es sich bei mindestens einem Amin ein polymeres Amin handelt.
Im Rahmen der vorliegenden Erfindung bevorzugte polymere Aminvernetzer, d.h. Reagenzien mit mindestens einer isocyanatreaktiven Gruppe, sind polyfunktionelle Amine, insbesondere solche mit einem mittleren Molekulargewicht von etwa 600 bis etwa 380.000 g/mol, bevorzugt von etwa 600 bis etwa 300.000 g/mol, weiterhin bevorzugt von etwa 600 bis etwa 100.000 g/mol und ganz besonders bevorzugt von etwa 800 bis etwa 70.000 g/mol. Diese Verbindungen können jeweils in reiner Form oder als Mischungen untereinander eingesetzt werden. Unter dem Begriff polyfunktionelles Amin sind im Rahmen der vorliegenden Erfindung Polyvinylamine der allgemeinen Formel (III),
Figure imgf000011_0001
Polyethylenimine (Polyethylenamine) der allgemeinen Formel (IV) bzw. (V),
^pO^ (IV)
-[(CH2)2-NH]X-[(CH2)2-N]y-
I (V)
[(CH2)2-NH]Z-(CH2)2-NH2
und/oder Polyoxyalkylenamine der allgemeinen Formeln (VI) bis (VIII)
NH2CH(CH3)CH2-[OCH2CH(CH3)]X-NH2
CH2[OCH2CH(CH3)X-NH2
CH3CH2CCH2[OCH2CH(CH3)y-NH2 (VN)
CH2[OCH2CH(CH3)Z-NH2
CH2[OCH2CHCH(CH3)]X-NH2
CH2[OCH2CHCH(CH3)]y-NH2 ^1"*
CH2[OCH2CHCH(CH3)]Z-NH2
wobei die Indices x,y,z in den Formeln (III) bis (VIII) ganze Zahlen bedeuten, die jeweils unabhängig voneinander so gewählt sind, dass die jeweiligen polyfunktionellen Amine in den oben angegebenen Molekulargewichtsbereichen liegen. Als Beispiele für die Verbindungsklasse der Polyoxyalkylenamine seien die sogenannten JEFFAMINE® wie z.B. JEFFAMINE® D-230, JEFFAMINE® D-400, JEFFAMINE® D-2000, JEFFAMINE® T-403, XTJ-510 (D-4000), XTJ-500 (ED-600), XTJ 501 (ED-900), XTJ-502 (ED- 2003) XTJ 509 (T-3000) und JEFFAMINE® T-5000 genannt. Im Rahmen der vorliegenden Erfindung bevorzugte polyfunktionelle Amine sind die Polyvinylamine der Formel (IM) und die verzweigten Polyethylenimine der Formel (V), insbesondere die Polyvinylamine der Formel (IM). Derartige Polyvinylamine sind beispielsweise zugänglich durch Hydrolyse der entsprechenden Polyvinylformamide der Formel (IX)
Figure imgf000012_0001
Handelt es sich bei dem erfindungsgemäß eingesetzten Polyvinylamin um das Produkt der Hydrolyse eines Polyvinylformamids, so kann dies, je nach Ausmaß bzw. Vollständigkeit der abgelaufenen Hydrolyse, noch Polyvinylformamid der Formel (IX) enthalten. Bevorzugt werden im Rahmen der vorliegenden Erfindung solche Hydrolyseprodukte eingesetzt, die einen Hydrolysegrad von etwa 60 bis etwa 100% (mol/mol) aufweisen und demnach noch etwa 40 bis etwa 0% (mol/mol) des ursprünglich eingesetzten Po- lyvinylformamids enthalten. Bevorzugt setzt man solche Hydrolyseprodukte ein, die einen Hydrolysegrad von etwa 80 bis etwa 100%, besonders bevorzugt von etwa 90 bis etwa 100% und insbesondere bevorzugt von etwa 95 bis etwa 100% aufweisen.
In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung werden im erfindungsgemäßen Verfahren als polymere Aminvernetzer Polyethylenimin- oder Polyvinylamin verwendet.
Die erfindungsgemäß als polyfunktionelle Amine ebenfalls bevorzugten Polyethylenimine sind nach dem Fachmann an sich bekannten Methoden zugänglich, wie bei- spielsweise in Römpp Chemie Lexikon, 9. Auflage, 1992 beschrieben.
In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung werden die polymeren Amine gemeinsam mit Alkyldiaminen mit 2 bis 10, bevorzugt 2 bis 6 Kohlenstoffatomen eingesetzt. Geeignete Alkyldiamine sind beispielsweise aliphatische Alkyldiamine mit 2 bis 10, bevorzugt 2 bis 6 Kohlenstoffatomen wie beispielsweise E- thylendiamin, Propylendiamin, Butylendiamin und/oder Hexamethylendiamin, bevorzugt Ethylendiamin und/oder Hexamethylendiamin. Ebenfalls geeignet sind die cycli- schen Alkyldiamine wie beispielsweise Piperazin, 2,5-Dimethylpiperazin, Amino-3- aminomethyl-3,5,5-trimethyl-cyclohexan (Isophorondiamin, IPDA), 4,4'- Diaminodicyclohexylmethan und/oder 1 ,4-Diaminocyclohexan. Auch die genannten Alkyldiamine können jeweils einzeln oder in Form von Gemischen der genannten Verbindungen eingesetzt werden. Die genannten polyfunktionellen Amine können jeweils einzeln oder in Form von Gemischen von etwa 2 bis etwa 5 verschiedenen der genannten Amine zur Herstellung der erfindungsgemäßen Mikrokapseldispersionen eingesetzt werden.
Die Menge der erfindungsgemäß einzusetzenden Isocyanate bewegt sich in dem für Grenzflächenpolyadditionsverfahren üblichen Rahmen. So werden in der Regel 20 bis 150 bevorzugt 40 bis 150 Gew.-% Isocyanat bezogen auf die zur Verkapselung vorgesehene diskontinuierliche Phase (hydrophiles Lösungsmittel + wasserlösliche Substanz) eingesetzt. Bereits ab 40 Gew.-% sind gute Scherstabilitäten der Kapseln zu beobachten. Mengen oberhalb 150 Gew.-% sind möglich, führen jedoch in der Regel zu keinen stabileren Kapselwänden.
Die theoretische Menge des zur Wandbildung notwendigen Isocyanates errechnet sich aus dem Gehalt an reaktiven Amino- bzw. Hydroxylgruppen der verwendeten Reak- tandkomponente bzw. Reaktandkomponenten. Üblicherweise werden diese Mengenverhältnisse durch sogenannte Äquivalentgewichte ausgedrückt.
42
Aquivalentgewichtlsocyanat = x 100
NCO-Gehalt *)
r) = z.B. titπmetπsch zu ermitteln (DIN 53 185)
MolgewichtReaktand AquvivalentgewichtReaktand =
Anzahl Reaktivgruppen im Molekül
Zur Reaktion sämtlicher NCO-Gruppen sind zumindest theoretisch gleich viele NH2- bzw. -NH-Gruppen erforderlich. Es ist deshalb vorteilhaft, das Isocyanat und den po- lymereren Aminvernetzer im Verhältnis ihrer Äquivalentgewichte einzusetzen. Es ist jedoch ebenfalls möglich, von der stöchiometrisch errechneten Vernetzermenge entweder nach unten abzuweichen, da bei Grenzflächenpolyadditionsverfahren eine Ne- benreaktion des Isocyanates mit dem im Überschuss vorhandenen Wasser nicht auszuschließen ist, oder einen Überschuss der Reaktandkomponente anzuwenden, weil ein solcher unkritisch ist und weil insbesondere bei den eingesetzten polyfunktionellen Aminen aus sterischen Gründen in der Regel nicht alle Aminofunktionalitäten zur Reaktion kommen.
Insbesondere wendet man deshalb den Reaktanden in einer Menge an, die zwischen etwa 50 und 250 Gew.-% der theoretischen berechneten liegt. Bevorzugt liegt diese Menge zwischen etwa 90 und 200 Gew.-%, insbesondere zwischen etwa 105 und 170 Gew.-%, bezogen auf die theoretisch berechnete Menge. Um eine stabile Emulsion zu erhalten, benötigt man oberflächenaktive Substanzen wie Schutzkolloide und/oder Emulgatoren. In der Regel verwendet man oberflächenaktive Substanzen, die sich mit der hydrophoben Phase mischen. In einer weiterhin bevorzugten Ausführungsform der vorliegenden Erfindung wird in dem erfindungsgemäßen Verfahren der Wasserphase ein Schutzkolloid zugesetzt. Bevorzugt werden als Schutzkolloide Polyole wie z.B. Polyvinylalkohol oder Cellulose- derivate, besonders bevorzugt Methylhydroxypropylcellulose verwendet.
Neutrale Schutzkolloide sind Cellulosederivate wie Hydroxyethylcellulose, Carboxy- methylcellulose und Methylcellulose, Polyvinylpyrrolidon, Copolymere des Vinyl- pyrrolidons, Gelatine, Gummiarabicum, Xanthan, Natriumalginat, Kasein, Polyethylen- glykole, bevorzugt Polyvinylalkohol und partiell hydrolysierte Polyvinylacetate.
Als anionische Schutzkolloide eignen sich Polymethacrylsaure, die Copolymerisate des Sulfoethylacrylats und -methacrylats, Sulfopropylacrylats und -methacrylats, des N- (Sulfoethyi )-maleinimids, der 2-Acrylamido-2-alkylsulfonsauren, der Styrolsulfonsaure sowie der Vinylsulfonsaure, Naphthalinsulfonsaure und Naphthalinsulfonsaure- Formaldehyd-Kondensate, Polyacrylsauren und Phenolsulfonsaure- Formaldehyd-Kondensate. Die neutralen Schutzkolloide werden in der Regel in Mengen von 0,001 bis 5 Gew.-% bezogen auf die Wasserphase der Emulsion eingesetzt, vorzugsweise 0,01 bis 2 Gew.-%. Die anionischen Schutzkolloide werden in der Regel in Mengen von 0,01 bis 5 Gew.-% eingesetzt, bezogen auf die Wasserphase der E- mulsion. Als organische Schutzkolloide werden bevorzugt neutrale Schutzkolloide in Kombination mit den anorganischen festen Teilchen eingesetzt.
Weiterhin bevorzugte Schutzkolloide sind lineare Blockcopolymere mit einer hydrophoben Struktureinheit von einer Länge ≥ 50 Ä, allein oder in Mischungen mit anderen oberflächenaktiven Substanzen. Die linearen Blockcopolymere werden durch die all- gemeine Formel
Cw(B-A-By)xDz
wiedergegeben, in der w 0 oder 1 , x ein Teil von 1 oder mehr, y 0 oder 1 und A eine hydrophile Struktureinheit, mit einer Löslichkeit in Wasser bei 250C ≥ 1 Gew.-% und einem zahlenmittleren Molekulargewicht von 200 bis 50.000 g/mol, der kovalent mit den B-Blöcken verbunden ist und B eine hydrophobe Struktureinheit, mit einem zahlenmittleren Molekulargewicht von 300 bis 60.000 g/mol und eine Löslichkeit <1 Gew.- % in Wasser bei 250C und zu A kovalente Bedingungen bilden kann; und in der C und D Endgruppe sind, die unabhängig voneinander A oder B sein können. Die Endgrup- pen können gleich oder verschieden sein und sind abhängig vom Herstellungsverfah- ren.
Beispiele für hydrophile Gruppen sind Polyethylenoxide, (PoIy(1 , 3-dioxolan), Copoly- mere von Polyethylenoxid oder PoIy(1 , 3-dioxolan), Poly(2-methyl-2-oxazolin), Po- ly(glycidyltrimethylammoniumchlorid), Polymethylenoxid.
Beispiele für hydrophobe Gruppen sind Polyester, bei denen der hydrophobe Teil eine sterische Barriere ≥ 50 Ä, vorzugsweise ≥ 75 Ä insbesondere ≥ 100 Ä ist. Die Polyester sind abgeleitet von Komponenten wie 2-Hydroxybutansäure, 3-Hydroxybutansäure, 4- Hydroxybutansäure, 2-Hydroxycapronsäure, 10-Hydrodecansäue, 12-Hydroxy- dodecansäure, 16-Hydroxyhexadecansäue, 2-Hydroxyisobutansäure, 2-(4-Hydroxy- phenoxy)propionsäure, 4-Hydroxyphenylbrenztraubensäure, 12-Hydroxystearinsäure, 2-Hydroxyvaleriansäure, Polylactonen aus Caprolacton und Butyrolacton, Polylacta- men aus Caprolactam, Polyurethanen und Polyisobutylenen.
Die linearen Blockcopolymere enthalten sowohl hydrophile wie auch hydrophobe Einheiten. Die Blockpolymere haben ein Molekulargewicht oberhalb 1000 und eine Länge des hydrophoben Teils von ≥ 50 Ä berechnet nach dem Gesetz von Cosines. Diese Größen werden bei ausgestreckter Konfiguration berechnet unter Berücksichtigung der in der Literatur angegebenen Bindungslängen und -winkel. Die Herstellung dieser Einheiten ist allgemein bekannt. Herstellverfahren sind beispielsweise Kondensationsreaktion von Hydroxysäure, Kondensationen von Polyolen wie Diolen mit Polycarbonsäuren wie Dicarbonsäuren. Geeignet ist auch die Polymerisation von Lactonen und Lactamen sowie die Reaktion von Polyolen mit Polyisocyanaten. Hydrophobe Polymereinheiten werden mit den hydrophilen Einheiten wie allgemein bekannt umgesetzt, beispielsweise durch Kondensationsreaktion und Kupplungsreaktion. Die Herstellung solcher Blockcopolymere wird beispielsweise in der US 4,203,877 beschrieben, auf die ausdrücklich verwiesen wird. Bevorzugt beträgt der Anteil an linearem Blockcopolymer 20 - 100 Gew.-% der Gesamtmenge an eingesetzter oberflächenaktiver Substanz.
Geeignete oberflächenaktive Substanzen sind ferner die gewöhnlich für Öl-in Wasser- Emulsionen verwendeten Emulgatoren oder Coemulgatoren wie beispielsweise Ci2-Ci8-Sorbitan-Fettsäureester,
Mono- und Diester von Ci2-Cie-Fettsäuren und Glycerin oder Polyglycerin, - Kondensate von Ethylenoxid und Propylenglycolen, oxypropylenierte/oxyethylenierte Ci2-C2o-Fettalkohole, polycyclische Alkohole, wie Sterole,
Mischungen von oxypropylenierten/polyglycerinierten Alkoholen und Magnesiu- misostearat, - Succinester von polyoxyethylierten oder polyoxypropylenierten Fettalkoholen, sulfatierte oder phosphatiere Fettalkohole oder sulfatierte oder phosphatiere Fettalkohole oxypropylenierte/oxyethylenierte Fettalkohole, PEG-7 Hydrogenated Castor Oil, PEG-40 Hydrogenated Castor Oil, PEG-40/45
Hydrogenated Castor OiI, PEG-60 Hydrogenated Castor OiI
Oleth-2, Oleth-3, Oleth-5, Oleth-10, Oleth-20, Laneth-5, Laneth-15, Laneth-20, Ceteareth-6, Ceteareth-7, Ceteareth-12, Ceteareth-20, Ceteareth-25, Steareth-
20, Steareth-21 , Ceteth-5
PEG-4 Dioleate, PEG-8 Dioleate, PEG-8 Dilaurate, PEG-7 Glyceryl Cocoate,
PEG-8 Stearate, PEG-12 Stearate, PEG-20 Stearate, PEG-40 Stearate, PEG-
100 Stearate, PEG-8 Laurate, PEG-8 Glyceryl Laurate, PEG-15 Glyceryl Laurate, PEG-15 Castor OiI, PEG-29 Castor OiI, PEG-35 Castor OiI, PEG-40
Castor Oil , PEG-30 Lanolin, PEG-75 Lanolin
PEG-42 Babassu Glycerides, PEG-45 Palm Kernel Glycerides, PEG-60 Almond
Glycerides, PEG-60 Com Glycerides, PEG-60 Evening Primrose Glycerides,
PEG-60 Maracuja Glycerides, PEG-75 Shea Butter Glycerides, PEG-90 Apricot Kernel Glycerides, PEG-6 Caprylic/Capric Glycerides, PEG-60 Almond
Glycerides (and) PEG-6 Caprylic/Capric Glycerides
Sucrose Distearate, Sucrose Stearate
Sorbitan Palmitate, Sorbitan Laurate
C12-13 Pareth-3, C12-13 Pareth-4, C12-13 Pareth-23 - Polyglyceryl-3 Polyricinoleate, Polyglyceryl-2 Stearate, Polyglyceryl-10 Laurate
PEG-10 Polyglyceryl-2 Laurate, PEG-4 Polyglyceryl-2 Stearate
Cocoyl Sarcosine, Lauroyl Sarcosine
Polysorbate 20, Polysorbate 40, Polysorbate 60, Polysorbate 80, Polysorbate
85 - Cetyl Phosphate, Potassium Cetyl Phosphate, Stearyl Phosphate, Trilaureth-4
Phosphate, Triceteareth-4 Phosphate, Oleth-3 Phosphate
Glyceryl Stearate (and) PEG-100 Stearate
Glyceryl Stearate (and) PEG-30 Stearate
Triceteareth-4 Phosphate (and) Cetyl Alcohol (and) Stearyl Alcohol (and) Sodium Cetearyl Sulfate (and) Oleth-10
Cetyl Alcohol (and) Stearyl Alcohol (and) Sodium Lauryl Sulfate
Cetyl Alcohol (and) Stearyl Alcohol (and) Sodium Cetearyl Sulfate
Cetearyl Alcohol (and) Polysorbate 60
Cetearyl Alcohol (and) Polysorbate 60 (and) Glyceryl Stearate - Cetearyl Alcohol (and) Ceteareth-25
Steareth-2 (and) PEG-8 Distearate
Sorbitan Stearate (and) Methyl Glucose Sesquistearate.
Als besonders vorteilhaft haben sich Emulgatoren der Span®-Reihe herausgestellt. Dabei handelt es sich um teilweise mehrfach mit einer Fettsäure verestertes cyclisier- tes Sorbit, wobei das Grundgerüst noch mit weiteren, von oberflächenaktiven Verbindungen bekannten Resten substituiert sein kann, beispielsweise mit Polyethylenoxid. Beispielhaft seien die Sorbitanester mit Laurin-, Palmitin-, Stearin- und Ölsäure er- wähnt wie Span® 80 (Sorbitanmonooleat), Span® 60 (Sorbitanmonostearat) und Span® 85 (Sorbitantrioleat).
In einer bevorzugten Ausführungsform werden oxypropylenierte/oxyethylenierte C12- C2o-Fettalkohole als Mischungskomponente mit weiteren oberflächenaktiven Substanzen eingesetzt. Diese Fettalkohole haben in der Regel 3 bis 12 Ethylenoxid- bzw. Pro- pylenoxid-Einheiten.
Bevorzugt verwendet man als Emulgator Ci2-Ci8-Sorbitanfettsäureester. Diese können einzeln, in ihren Mischungen und/oder als Mischungen mit anderen obengenannten Emulgatortypen eingesetzt werden. Bevorzugt beträgt der Anteil an Sorbitanfettsäu- reester 20 - 100 Gew.-% der Gesamtmenge an eingesetzter oberflächenaktiver Substanz.
In einer bevorzugten Ausführungsform wählt man eine Mischung von oberflächenaktiven Substanzen enthaltend die oben definierte linearen Blockcopolymere und C12-C18- Sorbitanfettsäureester.
Besonders bevorzugt wählt man eine Mischung oberflächenaktiver Substanzen enthal- tend die linearen Blockcopolymere Ci2-Ci8-Sorbitanfettsäureester und oxypropylenier- te/oxyethylenierte Ci2-C2o-Fettalkohole.
Bevorzugt werden solche Mischungen enthaltend 20 bis 95 Gew.-% insbesondere 30 bis 75 Gew.-% lineares Blockcopolymer und 5 bis 80 Gew.-% insbesondere 25 bis 70 Gew.-% C12-Ci8-Sorbitanfett.saureest.er bezogen auf die Gesamtmenge oberflächenaktive Substanz. Der Anteil an oxypyropylenierten/oxyethyleniertgen Ci2-C2o-Fettalkohol beträgt bevorzugt 0 bis 20 Gew.-%.
Insbesondere werden Mischungen von oberflächenaktiven Substanzen bevorzugt ent- haltend im wesentlichen 30 bis 50 Gew.-% lineares Blockcopolymer, 40 bis 60 Gew.-%
Ci2-Ci8-Sorbitanfettsäureester und 2 bis 10 Gew.-% oxypropylenierte/oxyethylenierte
Ci2-C2o-Fettalkohole, bezogen auf die Gesamtmenge oberflächenaktive Substanz.
Die optimale Menge an oberflächenaktiver Substanz wird zum einen von der oberflä- chenaktiven Substanz selbst, zum anderen von der Reaktionstemperatur, der gewünschten Mikrokapselgröße und den Wandmaterialien beeinflusst. Durch einfache Reihenversuche kann die optimal benötigte Menge leicht ermittelt werden. In der Regel wird die oberflächenaktive Substanz zur Herstellung der Emulsion in einer Menge von 0,01 bis 10 Gew.-%, bevorzugt 0,05 bis 5 Gew.-% und insbesondere 0,1 bis 2 Gew.-% bezogen auf die hydrophobe Phase angewendet. Die Zugabe der gewählten Isocyanatkomponente kann kontinuierlich oder diskontinuierlich durchgeführt werden. Mit gutem Erfolg gibt man die Isocyanatkomponente kontinuierlich zu, wobei die Zugaberate konstant gehalten oder im Verlauf der Reaktion variiert werden kann. Im Rahmen einer besonders bevorzugten Ausführungsform der Her- Stellung der erfindungsgemäßen Mikrokapseldispersionen geht man so vor, dass man die Di- und/oder Polyisocyanate der Emulsion kontinuierlich und mit fortschreitender Reaktion abnehmender Rate, d.h. in Gradientenfahrweise zufügt. Dieses bevorzugte Herstellverfahren erlaubt es insbesondere, die erfindungsgemäßen Mikrokapseldispersionen mit hohen Verkapselungseffizienzen bezüglich der zu verkapselnden wasser- löslichen organischen Substanz bereitzustellen. Dies bedeutet, dass man auf dieses Herstellverfahren in vorteilhafter Weise Dispersionen von Mikrokapseln enthält, deren Kapselwände sich durch eine besonders geringe Durchlässigkeit für die verkapselte wasserlösliche organische Substanz auszeichnen.
Die Grenzflächenreaktion kann beispielsweise bei Temperaturen im Bereich von -3 bis +7O0C ablaufen, vorzugsweise arbeitet man bei 15 bis 650C.
Die Dispergierung des Kernmaterials erfolgt je nach der Größe der herzustellenden Kapseln in bekannter Weise. Für die Herstellung großer Kapseln reicht die Dispergie- rung unter Verwendung von wirksamen Rührern, insbesondere von Propeller- oder Impellerrührern aus. Kleine Kapseln, insbesondere wenn die Größe unterhalb von 50 μm liegen soll, erfordern Homogenisier- oder Dispergiermaschinen, wobei diese Geräte mit oder ohne Zwangsdurchlaufvorrichtung versehen sein können.
Die Homogenisierung kann ferner durch die Anwendung von Ultraschall (z.B. Branson Sonifier Il 450) erfolgen. Für die Homogenisierung mittels Ultraschall sind beispielsweise die in der GB 2250930 und US 5,108,654 beschriebenen Vorrichtungen geeignet.
Die Kapselgröße kann über die Tourenzahl des Dispergiergerä- tes/Homogenisiergerätes und/oder mit Hilfe von geeigneten Verdickern wie beispielsweise Polyvinylalkoholen, Carboxymethylcellulosen oder Acrylatverdickern (z.B. Car- bopole®, Fa. Noveon) in Abhängigkeit von deren Konzentration und Molekulargewicht, d. h. über die Viskosität der kontinuierlichen Wasser-Phase, innerhalb gewisser Grenzen gesteuert werden. Dabei nimmt mit Erhöhung der Tourenzahl bis zu einer Grenz- tourenzahl die Größe der dispergierten Teilchen ab. Als Verdicker können darüber hinaus aus auch verwitterte Tonerden wie beispielsweise Bentone® 38 verwendet werden.
Dabei ist es wichtig, dass die Dispergiergeräte zu Beginn der Kapselbildung angewendet werden. Bei kontinuierlich arbeitenden Geräten mit Zwangsdurchlauf ist es vorteil- haft, die Emulsion mehrmals durch das Scherfeld zu schicken. Erfindungsgemäß werden die frisch hergestellten Mikrokapseldispersionen wie vorstehend beschrieben mit einem Nachbehandlungsreagenz mit einem Molekulargewicht von mindestens 100 g/mol versetzt.
Im Anschluss daran können die erfindungsgemäßen Mikrokapseldispersionen ge- wünschtenfalls noch einer weiteren Nachbehandlung unterzogen werden. Geeignete Reagenzien hierfür sind niedermolekulare Verbindungen, die in der Lage sind, die Reaktion zwischen der bzw. den eingesetzten Isocyanatkomponenten und den eingesetzten Reaktanden mit mindestens einer isocyanatreaktiven Gruppe bzw. dem gewählten Nachbehandlungsreagenz mit einem Molekulargewicht von mindestens 100g/mol zu vervollständigen bzw. mit nicht umgesetzten Isocyanatfunktionen zu reagieren. Hierfür geeignet sind insbesondere Amine und/oder Aminoalkohole wie beispielsweise: 2- Aminomethylpropanol, Propylamin, Butylamin, Pentylamin, Hexylamin, 2- Aminocyclohexanol und Octylamin. Ein bevorzugtes Nachbehandlungsreagenz ist 2- Aminomethylpropanol.
Nach dem erfindungsgemäßen Verfahren können Mikrokapseldispersionen mit einem Gehalt von 5 bis 50 Gew.-% an Mikrokapseln hergestellt werden. Die Mikrokapseln sind Einzelkapseln. Durch geeignete Bedingungen bei der Dispergierung können Kap- sein mit einer mittleren Teilchengröße im Bereich von etwa 0,5 bis zu 50 μm und größer hergeleitet werden. Bevorzugt werden Kapseln mit einer mittleren Teilchengröße von etwa 0,5 bis 50 μm, insbesondere bis etwa 30 μm. Bei dem mittleren Teilchendurchmesser handelt es sich um den z-mittleren Teilchendurchmesser, bestimmt durch Fraunhoferbeugung mit Mie-Korrektur zur Einzelteilchenzählung. Üblicherweise verwendet man zu seiner Bestimmung einen Malvern Mastersizer S. Besonders vorteilhaft ist die sehr enge Größenverteilung der Kapseln.
Die erfindungsgemäßen Mikrokapseldispersionen können in bekannter Weise in kosmetische Mittel eingearbeitet werden. Die Einarbeitung in das kosmetische Mittel er- folgt nach den hierfür üblichen, dem Fachmann an sich bekannten Vorgehensweisen, in der Regel durch Einrühren und Homogenisieren in die übrigen Bestandteile des kosmetischen Mittels.
Beispiele für kosmetische Mittel, die als dekorative kosmetische Mittel ausgestaltet werden, sind Mittel zur Behandlung der Gesichtshaut, insbesondere im Augenbereich, wie Kajal-Stifte, Eyeliner-Stifte, Augenbrauenstifte, Lidschatten, Cremerouge, Puderrouge, Make-up, Schminke, z. B. Foundation, Theaterschminke, Lippenstifte.
Als weitere kosmetische Mittel seien auch UV-Strahlen absorbierende Verbindungen enthaltende Mittel wie beispielsweise Sonnenschutzmittel wie beispielsweise Sonnenschutzcremes oder Sonnenschutzsticks genannt. Bei kosmetischen Mitteln, die ausschließlich aus Ölen oder Fetten bestehen, insbesondere solche, die eine feste Form haben, z. B. Stifte, wie Kajal-Stifte, Eyeliner-Stifte, Augenbrauenstifte, stiftförmige Theaterschminke, Lippenstifte und ähnliche, sowie bei pulver- oder puderförmigen kosmetischen Mitteln wie Lidschatten und Cremerouge oder loses Puderrouge wird man bevorzugt Mikrokapseldispersionen einsetzen.
Die Menge an Mikrokapseln in dem kosmetischen Mittel richtet sich in erster Linie nach dem gewünschten Farbeindruck, den das dekorative kosmetische Mittel aufweisen soll. Je nach Art des kosmetischen Mittels und des gewünschten Farbeindrucks liegt der Gehalt an Mikrokapseln in dem kosmetischen Mittel im Bereich von 0,1 bis 50 Gew.-%, bezogen auf das Gesamtgewicht des kosmetischen Mittels.
In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung umfasst das erfindungsgemäße Verfahren einen Nachbehandlungsschritt. Dieser Verfahrensschritt umfasst die sogenannte Nachbehandlung der frisch hergestellten Kapseldispersion. Hierbei wird unter Kontrolle von Temperatur und Verweilzeit die Reaktion der nicht mit den NH- bzw. NH2-Funktionon der bzw. des eingesetzten polymeren Aminvernetzers abreagierten Isocyanat-Funktionen der bzw. des eingebrachten Di-, Oligo- und/oder Polyisocyants zu Ende geführt. Erfindungsgemäß setzt man zur Nachbehandlung mindestens eine Verbindung ausgewählt aus der Gruppe der Amine, Alkohole und/oder Aminoalkohole, die ein Molekulargewicht von mindestens 100 g/mol aufweisen, ein. Dabei werden die noch vorliegenden freien Isocyanat- Funktionalitäten in erfindungsgemäßer Weise mit dem gewählten Nachbehandlungsreagenz, d.h. einem Amin, einem Alkohol oder einem Aminoalkohol oder einem Gemisch derselben umgesetzt. Bevorzugt setzt man solche Nachbehandlungsreagenzien eine, die ein zahlenmittleres Molekulargewicht von etwa 200 bis etwa 70.000 g/mol, besonders bevorzugt von etwa 200 bis etwa 20.000 g/mol, insbesondere von etwa 300 bis etwa 10.000 g/mol und ganz besonders bevorzugt von etwa 400 bis etwa 5.000 g/mol aufweisen. Beispielhaft seien als erfindungsgemäß einsetzbare Nachbehandlungsrea- genzien die folgenden Verbindungen genannt: Aminierte Fettalkohole wie beispielsweise Stearylamin, Oleylamin, Arachidylamin, Laurylamin und aminierte C3o-C5o-Alkohole wie z.B. Cetylamin, Nonatrien-1-amin, Isotridecylamin und Behenylamin.
Darüber hinaus können mit gutem Erfolg als Nachbehandlungsreagenzien eingesetzt werden
Cio-C50-Alkoxy-1-propanamine, wie beispielsweise Lauryloxypropylamin,
Stearyloxypropylamin, Isotridecyloxypropylamin und Talgfettalkyl-γ- aminopropylether, ω-Amino-Fettsäuren/ester wie z.B. ω-Amino-laurinsäure und ω-Amino- laurinsäureester,
Methyltetraglycolamin, Ethyltetraglycolamin, 6-Amino-hexansäureoctylamid,
Fettalkyl-1 ,3-diaminopropane wie beispielsweise Arachidyl-1 ,3- diaminopropan, Behehyl-1 ,3-diaminopropan. Ammoniak oder Hydroxylamin
Weitere geeignete Nachbehandlungsreagenzien gemäß Schritt b) sind die Polyoxyalkylen-mono-amine, beispielsweise solche der allgemeinen Formel (I)
CH3O(CH2CHO)n-CH2CHNH2
R R'
wobei R und R' unabhängig voneinander H oder CH3 bedeuten und n so gewählt, dass einen Verbindung resultiert, die ein Molekulargewicht in den vorstehend genannten Bereichen aufweist. Beispielhaft seien für diese Verbindungsklasse genannt die folgenden Verbindungen genannt: XTJ-505 (M-600), XTJ-506 (M-1000), XTJ-507 (M- 2005) und JEFFAMINE® M-2070 (jeweils Huntsman).
Darüber hinaus zur Herstellung der erfindungsgemäßen Mikrokapselsdispersionen geeignete Nachbehandlungsreagenzien sind die Polyisobutylenamine der allgemeinen Formel (II)
C(CH3)3-[CH2-C(CH3)3]χ-CH2-CH(CH3)-(CH2)2-NH2 II,
wobei x für eine ganze Zahl steht und so gewählt wird, dass ein Polyisobutylenamin resultiert, das in den gewünschten Molekulargewichtsbereich fällt. Bevorzugt bedeutet x eine ganze Zahl von etwa 5 bis etwa 25, insbesondere bevorzugt von etwa 10 bis etwa 15.
Beispielhaft hierfür sei als erfindungsgemäß mit gutem Erfolg einsetzbares Polyisobutylenamine genannt: Kerocom® PIBA 03 (Polyisobutylenamin, zahlenmittleres Molekulargewicht ca. 1.000 g/mol, BASF Aktiengesellschaft). Weitere geeignete Polyisobutylenamine sind in der EP-A 0 244 616 genannt.
Polyisobutylenamine sind, wie an gleicher Stelle beschrieben, beispielsweise zugänglich durch Hydroformylierung und anschließenden reduktiver Aminierung der entsprechenden Polyisobutylene, die ihrerseits in verschiedenen Kettenlängen hergestellt werden können.
Im Rahmen der vorliegenden Erfindung besonders bevorzugte Nachbehandlungsreagenzien sind die genannten Polyisobutylenamine, insbesondere solche mit einem zahlenmittleren Molekulargewicht von etwa 300 bis etwa 10.000 g/mol, insbesondere von etwa 400 bis etwa 5000 g/mol.
Weitere besonders bevorzugte Nachbehandlungsreagenzien in Schritt b) sind die ami- nierten C3o-C5o-Alkohole wie z.B. Myricylamin oder Melissylamin, die Polyoxyalkylen- mono-amine, N,N-Ditridecylpropylendiamin und die C10-C50, insbesondere die C30-C50- Alkoxy-1 -propanamine.
Das gewählte Nachbehandlungsreagenz wird in Abhängigkeit von der Menge an freien, d.h. noch nicht abreagierten Isocyanatgruppen in der hergestellten Dispersion üblicherweise in einer Menge von etwa 0.005 bis etwa 1 ,0 mol, bevorzugt etwa 0,1 bis etwa 0,7 mol und ganz besonders bevorzugt von etwa 0,02 bis etwa 0,3 mol pro kg der nach Schritt a) hergestellten Dispersion eingesetzt.
Durch die Verwendung der genannten Verbindungen mir einem zahlenmittleren Molekulargewicht von mindestens 100 g/mol zur Nachbehandlung der frisch hergestellten Mikrokapseln sind Mikrokapseldispersionen zugänglich, die sich durch vorteilhafte Eigenschaften, insbesondere durch eine verringerte Viskosität gegenüber solchen Mikrokapseldispersionen auszeichnen, die mit niedermolekularen Nachbehandlungsreagen- zien behandelt wurden.
Ein weitere Vorteil der so erhältlichen Mikrokapseldispersionen besteht darin, dass freie, noch nicht abreagierte Isocyanatfunktionalitäten mit den genannten Nachbehandlungsreagenzien abreagieren und so das Molekulargewicht, insbesondere von Resten noch frei in Lösung bzw. an der Kapselwand befindlicher Isocanate deutlich gesteigert wird. Dadurch kann unter anderem das toxische Potential der genannten, als Verunreinigung vorliegenden Isocyanate vermindert werden.
In einer weiteren Ausführungsform der vorliegenden Erfindung besteht die den oder die lipophilen Wirkstoffe enthaltende Ölphase aus:
a. 1-100% des lipophilen Wirkstoffes b. 0-99% eines Trägeröls, und c. 0-10% eines stabilisierenden Additivs
Als stabilisierende Agenzien können Antioxidatien wie z.B. Vitamin C oder E, Dispergiermittel oder Verdicker wie nachstehend beschrieben verwendet werden.
Als Trägeröle eigenen sich beispielsweise Mineralöle, Mineralwachse, verzweigte und/oder unverzweigte Kohlenwasserstoffe, Triglyceride gesättigter und/oder ungesät- tigter, verzweigter und/oder unverzweigter Cs-C24-Alkancarbonsäuren. Weiterhin genannt seien die synthetischen, halbsynthetischen oder natürlichen Öle wie Olivenöl, Palmöl, Mandelöl oder Mischungen; Öle, Fette oder Wachse, Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten C3-C30- Alkancarbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder un- verzweigten C3-C3o-Alkoholen, aus aromatischen Carbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten C3-C3o-Alkoholen, beispielhaft Isopropylmyristat, Isopropylstearat, Hexyldecylstearat, Oleyloleat; außerdem synthetische, halbsynthetische und natürliche Gemische solcher Ester wie Jojobaöl, Alkylbenzoate oder Silikonöle wie z.B. Cyclomethicon, Dimethylpolysiloxan, Diethylpo- lysiloxan, Octamethylcyclotetrasiloxan sowie Mischungen daraus oder Dialkylether, wie zum Beispiel lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe.
Besonders bevorzugt sind reine Gylcerinesteröle. Hierbei insbesondere bevorzugte Glycerinesteröle sind C6-Ci2-Fettsäuretriglyceride oder Mischungen davon, insbesondere Octan- und Decansäuretriglyceride sowie ihre Mischungen. Eine bevorzugte Oc- tanoylglycerid/Decanoylglycerid Mischung ist beispielsweise Miglyol® 812 der Fa. Sa- sol.
In einer bevorzugten Ausführungsform werden erfindungsgemäß reine Glycerinesteröle oder etwa 50 bis etwa 100 gew.-%ige Glycerinesteröl-Mischungen eingesetzt. Unter Glycerinesterölen versteht man Ester gesättigter oder ungesättigter Fettsäuren mit Glycerin. Geeignet sind Mono-, Di- und Triglyceride sowie ihre Mischungen. Bevorzugt werden Fettsäuretriglyceride.
Besonders bevorzugt sind Glycerinesteröle, die einzeln oder in ihren Mischungen eingesetzt werden. Weitere geeignete Öle sind:
Kohlenwasserstoff-Öle, wie Paraffinöl, Purcellinöl, Perhydrosqualen und Lösungen mikrokristalliner Wachse in diesen Ölen, tierische oder pflanzliche Öle, wie Süßmandelöl, Avocadoöl, Calophylumöl, Lanolin und Derivate davon, Ricinusöl, Pferdeöl, Schweineöl, Sesamöl, Olivenöl, Jo- jobaöl, Karite-Öl, Hoplostethus-Öl, mineralische Öle, deren Destillationsbeginn unter Atmosphärendruck bei ca. 250°C und deren Destillationsendpunkt bei 410°C liegt, wie z. B. Vaselinöl, Ester gesättigter oder ungesättigter Fettsäuren, wie Alkylmyristate, z. B. i-Propyl-, Butyl- oder Cetylmyristat, Hexadecylstearat, Ethyl- oder i-Propylpalmitat und Ce- tylricinolat.
Weitere Verbindungen sind Siliconöle, wie Dimethylpolysiloxan, Methylphenylpolysilo- xan und das Siliconglycol-Copolymer, Fettsäuren und Fettalkohole oder Wachse wie
Carnauba-Wachs, Candellilawachs, Bienenwachs, mikrokristallines Wachs, Ozokerit- wachs und Ca-, Mg- und Al-Oleate, -Myristate, -Linoleate und -Stearate.
Gewünschtenfalls können die kosmetischen Zubereitungen Parfümöle enthalten. Als Parfümöle seien beispielsweise Gemische aus natürlichen und synthetischen Riechstoffen genannt. Natürliche Riechstoffe sind z.B. Extrakte von Blüten (z.B. Lilie, Laven- del, Rose, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (z.B. Geranium, Pat- chouli, Petitgrain), Früchten (z.B. Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (z.B. Bergamotte, Zitrone, Orange), Wurzeln (z.B. Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (z.B. Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (z.B. Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (z.B. Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (z.B. Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Betracht, wie beispielsweise Ambra, Zibet und Castoreum.
Typische gewünschtenfalls einsetzbare synthetische Riechstoffverbindungen sind darüber hinaus Verbindungen vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, 4-tert.-Butylcyclohexylacet.at, Linalylacetat, Dimethylbenzyl- carbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylgly- cinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclame- naldehyd, Hydroxycitronellal, Lilial und Bourgeonat, zu den Ketonen z.B. die Jonone, cc-lsomethylionen und Methylcedrylketon, zu den Alkoholen Anethof, Citronellol, Eu- genol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen zählen beispielsweise die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzeöl, Zimtblätteröl, Lindenblütenöl, Wacholder- beerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, a- Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, b-Damascone, Gerani- umöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romillat, Irotyl und Floramat allein oder in Form von Mischungen eingesetzt.
Besonders bevorzugt ist im erfindungsgemäßen Verfahren die Vewendung lipophiler Wirkstoffe ausgewählt ist aus der Gruppe enthaltend Vitamine A, D, E, K, Ubichinonde- rivate, Retinoide und ß-Carotin oder Derivate und Mischungen derselben.
Weitere bevorzugte Wirkstoffe sind Carotinoide. Unter Carotinoide sind erfindungsgemäß folgende Verbindungen zu verstehen: Xanthophylle wie das Violaxanthin, Lutein, Lycopin und Zeaxanthin, ferner Astaxanthin, Capsanthin , Capsorubin, Cryptoxanthin, Bixin, Phytoen, Phytofluen, 3-Hydroxyechinenon, Adonirubin, einzeln oder als Mischung. Bevorzugt verwendete Carotinoide sind Lutein, Lycopin, Astaxanthin, Zea- xanthin, Mutatoxanthin, Luteoxanthin, Auroxanthin, Phytoen und Phytofluen.
Ein erfindungsgemäß besonders bevorzugter lipophiler Wirkstoff ist das Vitamin A ist. Unter Retinoide sind im Rahmen der vorliegenden Erfindung mit Fettsäuren veresterte Vitamin A Alkohole (z.b Retinolpalmitat) gemeint. Der Begriff Retinsäure umfasst dabei sowohl all-trans Retinsäure als auch 13-cis Retinsäure.
Weitere bevorzugte Effektormoleküle (i) sind Vitamine, Provitamine und Vitaminvorstufen aus den Gruppen A, und E, insbesondere die Palmitinsäureester und Tocopherole, insbesondere α-Tocopherol.
Vitamin E oder Tocopherole im Sinne der vorliegenden Erfindung umfasst acht lipid- lösliche Derivate, die in Tocooherole und Tocotrienole unterteilt werden. Während
Figure imgf000025_0001
Derivate dieser Subklassen unterscheiden sich im Methylierungsgrad der 6- Chromanol-Ringstruktur. Die Tocopherole verfügen über eine gesättigte Seitenkette (1 ) und die Tocotrienole (2) haben eine ungesättigte Seitenkette.
1)
Figure imgf000025_0002
R1 R2 R3 α CH3 CH3 CH3 ß CH3 H CH3
T H CH3 CH3 δ H H CH3
In der vorliegenden Anmeldung ist mit Vitamin E oder Tocopherol alle vorstehend genannten Tocopherole oder Tocotrienole gemeint. Ferner können erfindungsgemäß auch 6-Chromanol-derivate als Effektormoleküle verwendet werden.
In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung, sind die lipophilen Wirkstoffe ausgewählt aus der Gruppe lipophiler UV-Schutzmittel enthaltend 4-Aminobenzoesäurederivate, Ester der Zimtsäure, Ester der Salicylsäure, Derivate des Benzophenons, Ester der Benzalmalonsäure und Triazinderivate oder Mischungen derselben.
Unter UV-Lichtschutzfiltern sind organische Substanzen zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme, wieder abzugeben. Die organischen Substanzen können öllöslich oder wasserlöslich sein.
Als öllösliche UV-Filter können z.B. folgende Substanzen verwendet werden:
4-Aminobenzoesäurederivate, vorzugsweise Derivate von 4-
(Dimethylamino)benzoesäure-2-ethylhexylester, 4-(Dimethylamino)benzoesäure-2- octylester und 4-(Dimethylamino)-benzoesäureamylester mit freier NH-Funktion;
Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4 isopropylbenzylester, Salicylsäurehomomenthylester;
Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2- Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;
Ester der Benzalmalonsäure, vorzugsweise Derivate von 4-Methoxybenzmalonsäuredi- 2-ethylhexylester mit freier OH-Funktion;
Propan-1 ,3-dione, wie z.B. 1 -(4-tert. Butylphenyl)-3-(4'-methoxyphenyl)propan-1 ,3- dion.
Aminohydroxy-substituierte Derivate von Benzophenonen wie z.B. N,N-Diethylamino- hyd roxybenzoyl-n-hexyl benzoat.
Bei den Triazinderivaten sind die Verbindungen 2,4,6-Tris-[anilino-(p-carbo-2'-ethyl-1 '- hexyloxy)]-1 ,3,5-triazin, Dioctylbutamidotriazon, Bis-Ethylhexyloxyphenol-methoxy- phenyltriazin, 2,4,6-tris(diethyl-4'-amino-benzalmalonate)-s-triazin, 2,4,6-tris(dimethyl- 4'-amino-benzalmalonate-s-triazin, 2,4,6-tris(diiso-propyl-4-aminobenzal-malonate)-s- triazin, 2,4,6-tris[3'-benzotriazol-2-yl)-2'-hydroxy-5'-methyl)phenyl-amino]-s-triazin und 2, 4, 6-tris[3'benzotriazol-2-yl)-2'-hydroxy-5'-tert-octyl)phenyl-amino]-s-triazin bevorzugt. Besonders bevorzugt sind dabei die Triazinderivat 2,4,6-Tris-[anilino-(p-carbo-2'-ethyl- 1 '-hexyloxy)]-1 ,3,5-triazin (Uvinul®T150, BASF Aktiengesellschaft,) Dioctylbutamidotriazon (UV-Sorb-HEB®, 3V Sigma) und Bis-Ethylhexyloxyphenol-methoxyphenyltriazin (Anisotriazine oder Tinosorb®S, Ciba-Geigy). Ganz besonders bevorzugt sind die Verbindungen 2,4,6-Tris-[anilino-(p-carbo-2'-ethyl-1 '-hexyloxy)]-1 ,3,5-triazin (Uvinul ®T150, BASF Aktiengesellschaft,) und Dioctylbutamido-triazon (UV-Sorb-HEB®, 3V Sigma). Weitere Triazinderivate können den Patentanmeldungen EP-A 0796851 , EP- A 0087098 und EP-A 0850935 entnommen werden.
Bei den Diarylbutadienderivaten sind die 4,4'-Diarylbutadiene der Formel II,
H COOR4
^\ "\ COOR5
I I ,
H
Formel Il
wobei R4 und R5 unabhängig voneinander Wasserstoff, Ci-C2o-Alkyl, C3-C10- Cycloalkyl oder C3-Cio-Cycloalkenyl bedeuten, bevorzugt. Besonders bevorzugt ist die Verbindung 1 ,1-Dicarboxy(2'2'-dimethyl)-4-4-diphenyldutadien. Die genannten 4,4'- Diarylbutadiene sind als solche bekannt und ihre Struktur und Herstellung sind in den Patentanmeldungen EP 0967200 und EP 916 335 beschrieben, auf deren Inhalt hiermit ausdrücklich Bezug genommen wird.
Bei den Hydroxybenzophenonen die Verbindungen der allgemeinen Formel IM,
Figure imgf000027_0001
Formel
wobei R1 und R2 unabhängig voneinander Wasserstoff, Ci-C2o-Alkyl, C3-C10- Cycloalkyl oder C3-Cio-Cycloalkenyl bedeuten, wobei die Substituenten R1 und R2 gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen 5- oder 6-Ring bilden können und R3 einen Ci-C2o-Alkyl bedeutet, bevorzugt. Besonders bevorzugt ist die 2-(4-N,N-Diethylamino-2-hydroxybenzoyl)-benzoesäure (Uvinul®A Plus, BASF Ak- tiengesellschaft). Weiter Beispiele für Hydroxybenzophenone und deren Herstellung kann der Deutschen Patentanmeldung DE-A 1 1917906, auf deren Inhalt hiermit ausdrücklich Bezug genommen wird, entnommen werden.
Bei den Methylen-bis-Benzotriazolyl-Tetramethylbutylphenolderivaten ist 2,2 - methylenbis[6-(2H-benzotriazol-2-yl)-4-(1 ,1 ,3,3-tetramethylbutyl)phenol] (Tinosorb®M, Ciba-Geigy) bevorzugt. Diese Verbindungen sind auch in der FR 2440933 beschreiben, auf deren Inhalt hiermit ausdrücklich Bezug genommen wird. In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung werden die gemäß dem erfindungsgemäßen Verfahren hergestellten Mikrokapseln mittels eines Sprühtrocknungsverfahrens aus der Emulsion isoliert.
Ein weiterer Gegenstand der vorliegenden Erfindung sind die gemäß dem vorab beschriebenen erfindungsgemäßen Verfahren hergestellten O/W-Dispersionen und die in diesen Dispersionen enthaltenen und gegebenenfalls nach dem oben genannten Sprühtrocknungsverfahren isolierten Mikrokapseln.
Desweiteren betrifft die Erfindung die Verwendung der oben genannten erfindungsgemäßen Mikrokapseln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W-Dispersionen in Dermokosmetika. Bevorzugt werden die erfindungsgemäßen Mikrokapseln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W- Dispersionen in Kombination mit (i) kosmetischen Hilfsmitteln aus dem Bereich der dekorativen Kosmetik, mit (ii) dermokosmetischen Wirkstoffen und/oder mit (iii) geeigneten Hilfs- und Zusatzstoffen verwendet. Vorzugsweise handelt es sich dabei um Wirkstoffe bzw. Hilfs- und Zusatzstoffe, die zum Schutz von Haut, Haar und/oder Finger- bzw. Fußnägel vor Schädigungen, zur Behandlung von bereits aufgetretenen Schädigungen von Haut, Haar und/oder Finger- bzw. Fußnägel und zur Pflege von Haut, Haar und/oder Finger- bzw. Fußnägel eingesetzt werden. Diese Wirkstoffe sind vorzugsweise ausgewählt aus der Gruppe der natürlichen oder synthetischen Polymere, Pigmente, Feuchthaltemittel, Öle, Wachse, Enzyme, Mineralien, Vitamine, Sonnenschutzmittel, Farbstoffe, Duftstoffe, Antioxidantien, Konservierungsmittel und/oder pharmazeutische Wirkstoffe.
Die Verwendung der oben genannten erfindungsgemäßen Mikrokapseln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W-Dispersionen erfolgt vorzugsweise in Hautschutzmittel, Hautpflegemittel, Hautreinigungsmittel, Haarschutzmit- tel, Haarpflegemittel, Haarreinigungsmittel, Haarfärbemittel, oder Zubereitung für die dekorative Kosmetik, die je nach Anwendungsgebiet vorzugsweise in Form von Salben, Cremes, Emulsionen, Suspensionen, Lotionen, als Milch, Pasten, Gelen, Schäumen oder Sprays angewendet werden.
Geeignete Hilfs- und Zusatzstoffe für die Herstellung von haarkosmetischen oder hautkosmetischen Zubereitungen sind dem Fachmann geläufig und können aus Handbüchern der Kosmetik, beispielsweise Schrader, Grundlagen und Rezepturen der Kosmetika, Hüthig Verlag, Heidelberg, 1989, ISBN 3-7785-1491-1 , oder Limbach, Kosmetik: Entwicklung, Herstellung und Anwendung ksometischer Mittel, 2. erweiterte Auflage, 1995, Georg Thieme Verlag, ISBN 3 13 712602 9 entnommen werden.
Vorzugsweise erfolgt die Verwendung der erfindungsgemäßen Mikrokapseln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W-Dispersionen in Dermokosmetika in Kombination mit wenigstens einem davon verschiedenen Bestandteil, der ausgewählt ist unter kosmetisch aktiven Wirkstoffen, Emulgatoren, Tensiden, Konservierungsmitteln, Parfümölen, Verdickern, Haarpolymeren, Haar-und Hautconditionern, Pfropfpolymeren, wasserlöslichen oder dispergierbaren silikonhaltigen Polymeren, Lichtschutzmitteln, Bleichmitteln, Gelbildnern, Pflegemitteln, Färbemitteln, Tönungsmit- teln, Bräunungsmitteln, Farbstoffen, Pigmenten, Konsistenzgebern, Feuchthaltemitteln, Rückfettern, Collagen, Eiweißhydrolysaten, Lipiden, Antioxidantien, Entschäumern, Antistatika, Emollienzien und Weichmachern.
Vorteilhafterweise werden die Antioxidantien gewählt aus der Gruppe bestehend aus Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazo- Ie (z.B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L- Carnosin und deren Derivate (z.B. Anserin), Carotinoide, Carotine (z.B. ß-Carotin, Ly- copin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Aurothioglucose, Propylthiouracil und andere Thiole (z.B. Thiorodoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl- , Methyl-, Ethyl-, Propyl-, Amyl-, Butyl-, und Lauryl-, Palmitoyl-, Oleyl-, γ-Linoleyl-, Cho- lesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthio- dipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfo- ximine, Homocysteinsulfoximine, Buthioninsulfone, Penta-, Hexa-, Heptathioninsulfo- ximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μmol/kg), ferner (Me- tall)-Chelatoren (z.B. α-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α- Hydroxysäuren (z.B. Citronensäure, Milchsäure, Apfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA und deren Derivate, ungesättigte Fett- säuren und deren Derivate (z.B. γ-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und deren Derivate (z.B. Natriumascorbat, Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherol und Derivate (z.B. Vitamin-E-Acetat, Tocotrienol), Vitamin A und Derivate (Vitamin-A-Palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Carnosin, Butylhydroxyto- luol, Butylhydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Tri- hydroxybutyrophenon, Harnsäure und deren Derivate, Mannose und deren Derivate, Zink und dessen Derivate (z.B. ZnO, ZnSO4), Selen und dessen Derivate (z.B. Selen- methionin), Stilbene und deren Derivate (z.B. Stilbenoxid, Trans-Stilbenoxid).
Farbstoffe
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, veröf- fentlicht im Verlag Chemie, Weinheim, 1984, zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentration von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt. Pigmente
In einer bevorzugten Ausführungsform enthalten die erfindungsgemäßen Zusammensetzungen mindestens ein Pigment. Die Pigmente liegen in der Produktmasse in ungelöster Form vor und können in einer Menge von 0,01 bis 25 Gew.%, besonders bevor- zugt von 5 bis 15 Gew.% enthalten sein. Die bevorzugte Teilchengröße beträgt 1 bis 200 μm, insbesondere 3 bis 150 μm, besonders bevorzugt 10 bis 100 μm. Die Pigmente sind im Anwendungsmedium praktisch unlösliche Farbmittel und können anorganisch oder organisch sein. Auch anorganisch-organische Mischpigmente sind möglich. Bevorzugt sind anorganische Pigmente. Der Vorteil der anorganischen Pigmente ist deren ausgezeichnete Licht-, Wetter- und Temperaturbeständigkeit. Die anorganischen Pigmente können natürlichen Ursprungs sein, beispielsweise hergestellt aus Kreide, Ocker, Umbra, Grünerde, gebranntem Terra di Siena oder Graphit. Bei den Pigmenten kann es sich um Weißpigmente wie z.B. Titandioxid oder Zinkoxid, um Schwarzpigmente wie z.B. Eisenoxidschwarz, Buntpigmente wie z.B. Ultramarin oder Eisenoxid rot, um Glanzpigmente, Metalleffekt-Pigmente, Perlglanzpigmente sowie um Fluoreszenz- oder Phosphoreszenzpigmente handeln, wobei vorzugsweise mindestens ein Pigment ein farbiges, nicht-weißes Pigment ist. Geeignet sind Metalloxide, -hydroxide und -oxidhydrate, Mischphasenpigmente, schwefelhaltige Silicate, Metallsulfide, komplexe Metallcyanide, Metallsulfate, -Chromate und -molybdate sowie die Metalle selbst (Bronze-Pigmente). Geeignet sind insbesondere Titandioxid (Cl 77891), schwarzes Eisenoxid (Cl 77499), gelbes Eisenoxid (Cl 77492), rotes und braunes Eisenoxid (Cl 77491 ), Manganviolett (Cl 77742), Ultramarine (Natrium-Aluminiumsulfosilikate, Cl 77007, Pigment Blue 29), Chromoxidhydrat (C 177289), Eisenblau (Ferric Ferro- Cyanide, CI7751 0), Carmine (Cochineal). Besonders bevorzugt sind Perlglanz- und Farbpigmente auf Mica- bzw. Glimmerbasis welche mit einem Metalloxid oder einem Metalloxychlorid wie Titandioxid oder Wismutoxychlorid sowie gegebenenfalls weiteren farbgebenden Stoffen wie Eisenoxiden, Eisenblau, Ultramarine, Carmine etc. beschichtet sind und wobei die Farbe durch Variation der Schichtdicke bestimmt sein kann. Derartige Pigmente werden beispielsweise unter den Handelsbezeichnungen Rona®, Colorona®, Dichrona® und Timiron® (Merck) vertrieben. Organische Pigmente sind beispielsweise die natürlichen Pigmente Sepia, Gummigutt, Knochenkohle, Kasseler Braun, Indigo, Chlorophyll und andere Pflanzenpigmente. Synthetische organische Pigmente sind beispielsweise Azo-Pigmente, Anthrachinoide, Indigoide, Dioxazin-, Chinacridon-, Phtalocyanin-, Isoindolinon-, Perylen- und Perinon-, Metallkomplex-, Al- kaliblau- und Diketopyrrolopyrrol-Pigmente.
In einer Ausführungsform erfolgt die Verwendung der erfindungsgemäßen Mikrokap- seln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W- Dispersionen mit mindestens einem partikelförmigen Stoff, der in der Zusammenset- zung in einem Anteil von 0,01 bis 10, bevorzugt von 0,05 bis 5 Gew.% vorliegt. Geeignete Stoffe sind z.B. Stoffe, die bei Raumtemperatur (25°C) fest sind und in Form von Partikeln vorliegen. Geeignet sind etwa Silica, Silikate, Aluminate, Tonerden, Mica, Salze, insbesondere anorganische Metallsalze, Metalloxide, z.B. Titandioxid, Minerale und Polymerpartikel. Die Partikel liegen in dem Mittel in ungelöster, vorzugsweise stabil dispergierter Form vor und können sich nach Aufbringen auf die Anwendungsoberfläche und Verdampfen des Lösungsmittels in fester Form abscheiden. Bevorzugte partikelförmige Stoffe sind Silica (Kieselgel, Siliciumdioxid) und Metallsalze, insbesondere anorganische Metallsalze, wobei Silica besonders bevorzugt ist. Metallsalze sind z.B. Alkali- oder Erdalkalihalogenide wie Natriumchlorid oder Kaliumchlorid; Alkali- oder Erdalkalisulfate wie Natriumsulfat oder Magnesiumsulfat.
Perlglanzmittel Als Perlglanzmittel kommen beispielsweise in Frage: Alkylenglycolester, spezielle E- thylenglycoldisterat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanoamid; Par- tialglyceride, speziell Stearinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalko- hole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydro- xylgruppen sowie deren Mischungen
Übliche Verdickungsmittel in derartigen Formulierungen sind vernetzte Polyacrylsäu- ren und deren Derivate, Polysaccharide und deren Derivate, wie Xanthangum, Agar- Agar, Alginate oder Tylosen, Cellulosederivate, z.B. Carboxymethylcellulose oder Hydroxycarboxymethylcellulose, Fettalkohole, Monoglyceride und Fettsäuren, Polyvi- nylalkohol und Polyvinylpyrrolidon. Bevorzugt werden nichtionische Verdicker eingesetzt.
Geeignete kosmetisch und/oder dermokosmetisch aktive Wirkstoffe sind z.B. färbende Wirkstoffe, Haut- und Haarpigmentierungsmittel, Tönungsmittel, Bräunungsmittel, Bleichmittel, Keratin-härtende Stoffe, antimikrobielle Wirkstoffe, Lichtfilterwirkstoffe, Repellent-wirkstoffe, hyperemisierend wirkende Stoffe, keratolytisch und kera- toplastisch wirkende Stoffe, Antischuppenwirkstoffe, Antiphlogistika, keratinisierend wirkende Stoffe, antioxidativ bzw. als Radikalfänger aktive Wirkstoffe, hautbefeuchten- de oder -feuchthaltende Stoffe, rückfettende Wirkstoffe, antierythimatös oder antiallergisch aktive Wirkstoffe, verzweigte Fettsäuren wie 18-Methyleicosansäure, und Mischungen davon.
Künstlich hautbräunende Wirkstoffe, die geeignet sind, die Haut ohne natürliche oder künstliche Bestrahlung mit UV-Strahlen zu bräunen, sind z.B. Dihydroxyaceton, AIIo- xan und Walnussschalenextrakt. Geeignete Keratin-härtende Stoffe sind in der Regel Wirkstoffe, wie sie auch in Antitranspirantien eingesetzt werden, wie z.B. Kaliumaluminiumsulfat, Aluminiumhydroxychlorid, Aluminiumlactat, etc. Antimikrobielle Wirkstoffe werden eingesetzt, um Mikroorganismen zu zerstören bzw. ihr Wachstum zu hemmen und dienen somit sowohl als Konservierungsmittel als auch als desodorierend wirkender Stoff, welcher die Entstehung oder die Intensität von Körpergeruch vermindert. Dazu zählen z.B. übliche, dem Fachmann bekannte Konservie- rungsmittel, wie p-Hydroxybenzoesäureester, Imidazolidinyl-Harnstoff, Formaldehyd, Sorbinsäure, Benzoesäure, Salicylsäure, etc. Derartige desodorierend wirkende Stoffe sind z.B. Zinkricinoleat, Triclosan, Undecylensäurealkylolamide, Citronensäuretriethy- lester, Chlorhexidin etc.
Als geeignete Konservierungsmittel sind erfindungsgemäß vorteilhaft zu verwenden:
Figure imgf000032_0001
Tabelle 5: geeignete Konservierungsmittel. Bei den in der obigen Tabelle aufgeführten E-Nummern handelt es sich um die im der Richtlinie 95/2/EWG gebräuchlichen Bezeichnungen.
Ferner sind erfindungsgemäß in der Kosmetik gebräuchliche Konservierungsmittel o- der Konservierungshilfsstoffe Dibromdicyanobutan (2-Brom-2-brommethyl- glutarodinitril), 3-lod-2-propinylbutylcarbamat, 2-Brom-2-nitro-propan-1 ,3-diol, Imidazo- lidinylharnstoff, 5-Chlor-2-methyl-4-isothiazolin-3-on, 2-Chloracetamid, Benzalkonium- chlorid und Benzylalkohol geeignet. Ferner sind Phenylhydroxyalkylether, insbesonde- re die unter der Bezeichnung Phenoxyethanol bekannte Verbindung aufgrund ihrer bakteriziden und fungiziden Wirkungen auf eine Anzahl von Mikroorganismen als Konservierungsmittel geeignet. Auch andere keimhemmende Mittel sind ebenfalls geeignet, in die erfindungsgemäßen Zubereitungen eingearbeitet zu werden. Vorteilhafte Substanzen sind zum Beispiel 2,4,4'-Trichlor-2'-hydroxydiphenylether (Irgasan), 1 ,6-Di-(4-chlorphenylbiguanido)- hexan (Chlorhexidin), 3,4,4'-Trichlorcarbanilid, quaternäre Ammoniumverbindungen, Nelkenöl, Minzöl, Thymianöl, Triethylcitrat, Farnesol (3,7,1 1-Trimethyl-2,6,10- dodecatrien-1-ol) sowie die in den Patentoffenlegungsschriften DE-37 40 186, DE-39 38 140, DE-42 04 321 , DE-42 29 707, DE-43 09 372, DE-44 1 1 664, DE-195 41 967, DE-195 43 695, DE-195 43 696, DE-195 47 160, DE-196 02 108, DE-196 02 110, DE- 196 02 11 1 , DE-196 31 003, DE-196 31 004 und DE-196 34 019 und den Patentschrif- ten DE-42 29 737, DE-42 37 081 , DE-43 24 219, DE-44 29 467, DE-44 23 410 und DE-195 16 705 beschriebenen Wirkstoffe bzw. Wirkstoffkombinationen. Auch Natrium- hydrogencarbonat ist vorteilhaft zu verwenden. Ebenso können auch mikrobielle Polypeptide eingesetzt werden.
Parfümöle
Gegebenenfalls können die kosmetischen Zusammensetzungen Parfümöle enthalten. Als Parfümöle seien beispielsweise Gemische aus natürlichen und synthetischen Riechstoffen genannt. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rose, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Pe- titgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orange), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opopo- nax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, 4-tert- Butylcyclo-hexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzy- lethylether, zu den Aldehyden z.B. die Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonat, zu den Ketonen z.B. die Jonone, cc-lsomethylionen und Methylcedrylke- ton, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terioneol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzeöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galba- numöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydro- myrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene®Forte, Ambroxan, Indol, He- dione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsali- cylat, Vertofix®Coeur, Iso-E-Super®, Fixolide®NP, Evernyl, Iraldein gamma, Phenyles- sigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romillat, Irotyl und Floramat allein oder in Mischungen eingesetzt.
Öle, Fette und Wachse
Bevorzugt enthalten die erfindungsgemäßen Zusammensetzungen Öle, Fette und/oder Wachse. Bestandteile der Öl- und/oder Fettphase der erfindungsgemäßen Zusammensetzungen werden vorteilhaft gewählt aus der Gruppe der Lecithine und der Fettsäu- retriglyceride, namentlich der Triglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12 bis 18 C-Atomen. Die Fettsäuretriglyceride können beispielsweise vorteilhaft gewählt werden aus der Gruppe der synthetischen, halbsynthetischen und natürlichen Öle, wie z.B. Olivenöl, Sonnenblumenöl, Sojaöl, Erdnußöl, Rapsöl, Mandelöl, Palmöl, Kokosöl, Rizinusöl, Weizenkeimöl, Traubenkernöl, Distelöl, Nachtker- zenöl, Macadamianußöl und dergleichen mehr. Weitere polare Ölkomponenten können gewählt werden aus der Gruppe der Ester aus gesättigten und/oder ungesättigten, ver- zweigten und/oder unverzweigten Alkancarbonsäuren einer Kettenlänge von 3 bis 30 C-Atomen und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen sowie aus der Gruppe der Ester aus aromatischen Carbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen. SoI- che Esteröle können dann vorteilhaft gewählt werden aus der Gruppe Isopropylmy- ristat, Isopropylpalmitat, Isopropylstearat, Isopropyloleat, n-Butylstearat, n-Hexyllaurat, n-Decyloleat, Isooctylstearat, Isononylstearat, Isononylisononanoat, 2-Ethylhexyl- palmitat, 2-Ethylhexyllaurat, 2-Hexyldecylstearat, 2-Octyl-dodecylpalmitat, Oleyloleat, Oleylerucat, Erucyloleat, Erucylerucat Dicaprylyl Carbonat (Cetiol CC) und Cocoglyce- ride (Myritol 331 ), Butylen Glycol Dicaprylat/Dicaprat und Dibutyl Adipat sowie synthetische, halbsynthetische und natürliche Gemische solcher Ester, wie z.B. Jojobaöl. Ferner können eine oder mehrere Ölkomponenten vorteilhaft gewählt werden aus der Gruppe der verzweigten und unverzweigten Kohlenwasserstoffe und -wachse, der SiI- konöle, der Dialkylether, der Gruppe der gesättigten oder ungesättigten, verzweigten oder unverzweigten Alkohole. Auch beliebige Abmischungen solcher Öl- und Wachskomponenten sind vorteilhaft im Sinne der vorliegenden Erfindung einzusetzen. Es kann auch gegebenenfalls vorteilhaft sein, Wachse, beispielsweise Cetylpalmitat, als alleinige Lipidkomponente der ölphase einzusetzen. Erfindungsgemäß vorteilhaft wird die Ölkomponente gewählt aus der Gruppe 2-Ethylhexylisostearat, Octyldodecanol, Isotridecylisononanoat, Isoeicosan, 2-Ethylhexylcocoat, C12-15-Alkylbenzoat, Capryl- Caprinsäure-triglycerid, Dicaprylylether. Erfindungsgemäß vorteilhaft sind Mischungen aus C12-15-Alkylbenzoat und 2-Ethylhexylisostearat, Mischungen aus C12-15- Alkylbenzoat und Isotridecylisononanoat sowie Mischungen aus C12-15-Alkylbenzoat, 2-Ethylhexylisostearat und Isotridecylisononanoat. Erfindungsgemäß besonders bevorzugt werden als Öle mit einer Polarität von 5 bis 50 imN/m Fettsäuretriglyceride, insbesondere Sojaöl und/oder Mandelöl eingesetzt. Von den Kohlenwasserstoffen sind Pa- raffinöl, Squalan und Squalen vorteilhaft im Sinne der vorliegenden Erfindung zu ver- wenden.
Ferner kann die Ölphase vorteilhaft gewählt werden aus der Gruppe der Guerbetalko- hole. Guerbetalkohole sind benannt nach Marcel Guerbet, der ihre Herstellung erstmalig beschrieb. Sie entstehen nach der Reaktionsgleichung
R
A I R CH? -CHr-- OH ..— ™ ^ R — CH-CH- OH Katalysator durch Oxidation eines Alkohols zu einem Aldehyd, durch Aldol-Kondensation des Aldehyds, Abspaltung von Wasser aus dem Aldol- und Hydrierung des Allylaldehyds. Guerbetalkohole sind selbst bei niederen Temperaturen flüssig und bewirken praktisch keine Hautreizungen. Vorteilhaft können sie als fettende, überfettende und auch rück- fettend wirkende Bestandteile in kosmetischen Zusammensetzungen eingesetzt werden.
Die Verwendung von Guerbet-Alkoholen in Kosmetika ist an sich bekannt. Solche Spe- cies zeichnen sich dann meistens durch die Struktur
Figure imgf000035_0001
aus. Dabei bedeuten Ri und R2 in der Regel unverzweigte Alkylreste.
Erfindungsgemäß vorteilhaft werden der oder die Guerbet-Alkohole gewählt aus der
Gruppe, wobei
Ri = Propyl, Butyl, Pentyl, Hexyl, Heptyl oder Octyl und
R2 = Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tridecyl oder Tetradecyl.
Erfindungsgemäß bevorzugte Guerbet-Alkohole sind 2-Butyloctanol (beispielsweise als lsofol®12 (Condea) kommerziell erhältlich) und 2-Hexyldecanol (beispielsweise als Iso- fol®16 (Condea) kommerziell erhältlich). Auch Mischungen von erfindungsgemäßen Guerbet-Alkoholen sind erfindungsgemäß vorteilhaft zu verwenden wie beispielsweise Mischungen aus 2-Butyloctanol und 2-Hexyldecanol (beispielsweise als lsofol®14 (Condea) kommerziell erhältlich).
Auch beliebige Abmischungen solcher Öl- und Wachskomponenten sind vorteilhaft im Sinne der vorliegenden Erfindung einzusetzen. Unter den Polyolefinen sind Polydece- ne die bevorzugten Substanzen.
Vorteilhaft kann die Ölkomponente ferner einen Gehalt an cyclischen oder linearen Silikonölen aufweisen oder vollständig aus solchen Ölen bestehen, wobei allerdings bevorzugt wird, außer dem Silikonöl oder den Silikonölen einen zusätzlichen Gehalt an anderen Ölphasenkomponenten zu verwenden. Niedermolekulare Silicone oder Siliconöle sind in der Regel durch folgende allgemeine Formel definiert:
R1 R,— O— Si — O—R*
Höhermolekulare Silicone oder Siliconöle sind in der Regel durch folgende allgemeine Formel definiert,
Figure imgf000036_0001
wobei die Siliciumatome mit gleichen oder unterschiedlichen Alkylresten und/oder Aryl- resten substituiert sein können, welche hier verallgemeinernd durch die Reste Ri bis R4 dargestellt sind. Die Anzahl der unterschiedlichen Reste ist aber nicht notwendigerweise auf bis zu 4 beschränkt, m kann dabei Werte von 2 bis 200.000 annehmen.
Erfindungsgemäß vorteilhaft einzusetzende cyclische Silicone sind in der Regel durch folgende allgemeine Formel definiert
Figure imgf000036_0002
wobei die Siliciumatome mit gleichen oder unterschiedlichen Alkylresten und/oder Aryl- resten substituiert werden können, welche hier verallgemeinernd durch die Reste Ri bis R4 dargestellt sind. Die Anzahl der unterschiedlichen Reste ist aber nicht notwendigerweise auf bis zu 4 beschränkt, "n" kann dabei Werte von 3/2 bis 20 annehmen. Gebrochene Werte für n berücksichtigen, daß ungeradzahlige Anzahlen von Siloxylgrup- pen im Zyklus vorhanden sein können. Vorteilhaft wird Phenyltrimethicon als Siliconöl gewählt. Auch andere Silikonöle, bei- spielsweise Dimethicon, Hexamethylcyclotrisiloxan, Phenyldimethicon, Cyclomethicon (Octamethylcyclotetrasiloxan), Hexamethylcyclotrisiloxan, Polydimethylsiloxan, Po- ly(methylphenylsiloxan), Cetyldimethicon, Behenoxydimethicon sind vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden. Vorteilhaft sind ferner Mischungen aus Cyclomethicon und Isotridecylisononanoat, sowie solche aus Cyclomethicon und 2- Ethylhexylisostearat. Es ist aber auch vorteilhaft, Silikonöle ähnlicher Konstitution wie der vorstehend bezeichneten Verbindungen zu wählen, deren organische Seitenketten derivatisiert, beispielsweise polyethoxyliert und/oder polypropoxyliert sind. Dazu zählen beispielsweise Polysiloxanpolyalkyl-Polyether-copolymere wie z.B. Cetyl-Dimethicon- Copolyol. Vorteilhaft wird Cyclomethicon (Octamethylcyclo-tetrasiloxan) als erfindungsgemäß zu verwendendes Silikonöl eingesetzt. Erfindungsgemäß vorteilhaft zu verwendende Fett- und/oder Wachskomponenten können aus der Gruppe der pflanzlichen Wachse, tierischen Wachse, Mineralwachse und petrochemischen Wachse gewählt werden. Vorteilhaft sind beispielsweise Candelillawachs, Carnaubawachs, Ja- panwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Beerenwachs, Ouricurywachs, Montanwachs, Jojobawachs, Shea Butter, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozo- kerit (Erdwachs), Paraffinwachse und Mikrowachse. Weitere vorteilhafte Fett- und/oder Wachskomponenten sind chemisch modifzierte Wachse und synthetische Wachse, wie beispielsweise Syncrowax®HRC (Glyceryltribe- henat), und Syncrowax®AW 1 C (Cis-36-Fettsäure) sowie Montanesterwachse, Sasol- wachse, hydrierte Jojobawachse, synthetische oder modifizierte Bienenwachse (z. B. Dimethicon Copolyol Bienenwachs und/oder C3o-so-Alkyl Bienenwachs), Cetyl Ricino- leate wie beispielsweise Tegosoft®CR, Polyalkylenwachse, Polyethylenglykolwachse, aber auch chemisch modifzierte Fette, wie z. B. hydrierte Pflanzenöle (beispielsweise hydriertes Ricinusöl und/oder hydrierte Cocosfettglyceride), Triglyceride wie beispielsweise Hydriertes Soy Glycerid, Trihydroxystearin, Fettsäuren, Fettsäureester und GIy- kolester wie beispielsweise C2o-4o-Alkylstearat, C2o-4o-Alkylhydroxy-stearoylstearat und/oder Glykolmontanat. Weiter vorteilhaft sind auch bestimmte Organosiliciumver- bindungen, die ähnliche physikalische Eigenschaften aufweisen wie die genannten Fett- und/oder Wachskomponenten, wie beispielsweise Stearoxytrimethylsilan. Erfindungsgemäß können die Fett- und/oder Wachskomponenten sowohl einzeln als auch als Gemisch in den Zusammensetzungen verwendet werden. Auch beliebige Abmischungen solcher Öl- und Wachskomponenten sind vorteilhaft im Sinne der vor- liegenden Erfindung einzusetzen. Vorteilhaft wird die Ölphase gewählt aus der Gruppe 2-Ethylhexylisostearat, Octyldodecanol, Isotridecylisononanoat, Butylen Glycol Dicaprylat/Dicaprat, 2-Ethyl-hexylcocoat, Ci2-15-Alkylbenzoat, Capryl-Caprin-säure- triglycerid, Dicaprylylether. Besonders vorteilhaft sind Mischungen aus Octyldodecanol, Capryl-Caprinsäure-triglycerid, Dicaprylylether, Dicaprylyl Carbonat, Cocoglyceriden oder Mischungen aus Ci2-is-Alkylbenzoat und 2-Ethylhexylisostearat, Mischungen aus Ci2-15-Alkylbenzoat und Butylen Glycol Dicaprylat/Dicaprat sowie Mischungen aus C12- 15-Alkylbenzoat, 2-Ethylhexylisostearat und Isotridecylisononanoat. Von den Kohlenwasserstoffen sind Paraffinöl, Cycloparaffin, Squalan, Squalen, hydriertes Polyisobuten bzw. Polydecen vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden.
Die Ölkomponente wird ferner vorteilhaft aus der Gruppe der Phospholipide gewählt. Die Phospholipide sind Phosphorsäureester acylierter Glycerine. Von größter Bedeu- tung unter den Phosphatidylcholinen sind beispielsweise die Lecithine, welche sich durch die allgemeine Struktur
Figure imgf000038_0001
auszeichnen, wobei R' und R" typischerweise unverzweigte aliphatische Reste mit 15 oder 17 Kohlenstoffatomen und bis zu 4 cis-Doppelbindungen darstellen.
Als erfindungsgemäß vorteilhaftes Paraffinöl kann erfindungsgemäß Merkur Weissoel Pharma 40 von Merkur Vaseline, Shell Ondina® 917, Shell Ondina® 927, Shell OiI 4222, Shell Ondina®933 von Shell & DEA OiI, Pionier® 6301 S, Pionier® 2071 (Hansen & Rosenthal) eingesetzt werden. Geeignete kosmetisch verträgliche Öl- und Fett- komponenten sind in Karl-Heinz Schrader, Grundlagen und Rezepturen der Kosmetika, 2. Auflage, Verlag Hüthig, Heidelberg, S. 319 - 355, beschrieben, worauf hier in vollem Umfang Bezug genommen wird.
Tenside Erfindungsgemäß können Zusammensetzungen neben den erfindungsgemäßen Mik- rokapseln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W- Dispersionen auch Tenside enthalten. Solche Tenside sind beispielsweise:
- Phosphorsäureester und Salze, wie beispielsweise DEA-Oleth-10 Phosphat und Di- laureth-4 Phosphat, - Alkylsulfonate, beispielsweise Natriumcocosmonoglyceridsulfat, Natrium C12-14 Olefin- sulfonat, Natriumlaurylsulfoacetat und Magnesium PEG-3 Cocamidsulfat,
- Carbonsäuren und Derivate, wie beispielsweise Laurinsäure, Aluminiumstearat, Magnesiumalkanolat und Zinkundecylenat, Ester-Carbonsäuren, beispielsweise Calci- umstearoyllactylat, Laureth-6 Citrat und Natrium PEG-4 Lauramidcarboxylat, - Ester, die durch Veresterung von Carbonsäuren mit Ethylenoxid, Glycerin, Sorbitan oder anderen Alkoholen entstehen,
- Ether, beispielsweise ethoxylierte Alkohole, ethoxyliertes Lanolin, ethoxylierte Polysi- loxane, propoxylierte POE Ether und Alkylpolyglycoside wie Laurylglucosid, Decylgly- cosid und Cocoglycosid.
Polysorbate
Erfindungsgemäß können Zusammensetzungen neben den erfindungsgemäßen Mik- rokapseln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W-
Dispersionen auch Polysorbate enthalten. Im Sinne der Erfindung vorteilhafte Polysorbate sind dabei das
- Polyoxyethylen(20)sorbitanmonolaurat (Tween 20, CAS-Nr. 9005-64-5)
- Polyoxyethylen(4)sorbitanmonolaurat (Tween 21 , CAS-Nr. 9005-64-5)
- Polyoxyethylen(4)sorbitanmonostearat (Tween 61 , CAS-Nr. 9005-67-8) - Polyoxyethylen(20)sorbitantristearat (Tween 65, CAS-Nr. 9005-71 -4)
- Polyoxyethylen(20)sorbitanmonooleat (Tween 80, CAS-Nr. 9005-65-6)
- Polyoxyethylen(5)sorbitanmonooleat (Tween 81 , CAS-Nr. 9005-65-5)
- Polyoxyethylen(20)sorbitantrioleat (Tween 85, CAS-Nr. 9005-70-3). Besonders vorteilhaft sind insbesondere
- Polyoxyethylen(20)sorbitanmonopalmitat (Tween 40, CAS-Nr. 9005-66-7)
- Polyoxyethylen(20)sorbitanmonostearat (Tween 60, CAS-Nr. 9005-67-8).
Diese werden erfindungsgemäß vorteilhaft in einer Konzentration von 0,1 bis 5 Ge- wichts-% und insbesondere in einer Konzentration von 1 ,5 bis 2,5 Gewichts-%, bezogen auf das Gesamtgewicht der Zusammensetzung einzeln oder als Mischung mehrer Polysorbate, eingesetzt.
Konditionierungsmittel In einer bevorzugten Ausführungsform der Erfindung enthalten die Dermokosmetika auch Konditionierungsmittel. Erfindungsgemäß bevorzugte Konditionierungsmittel sind beispielsweise alle Verbindungen, welche im International Cosmetic Ingredient Dictio- nary and Handbook (Volume 4, Herausgeber: R. C. Pepe, J.A. Wenninger, G. N. McEwen, The Cosmetic, Toiletry, and Fragrance Association, 9. Auflage, 2002) unter Secti- on 4 unter den Stichworten Hair Conditioning Agents, Humectants, Skin-Conditioning Agents, Skin-Conditioning Agents-Emollient, Skin-Conditioning Agents-Humectant, Skin-Conditioning Agents-Miscellaneous, Skin-Conditioning Agents-Occlusive und Skin Protectans aufgeführt sind sowie alle in der EP-A 934 956 (S.1 1-13) unter "water so- luble conditioning agent" und „oil soluble conditioning agent" aufgeführten Verbindun- gen. Weitere vorteilhafte Konditionierungsmittel stellen beispielsweise die nach INCI als Polyquaternium bezeichneten Verbindungen dar (insbesondere Polyquaternium-1 bis Polyquaternium-56).
Zu den geeigneten Konditionierungsmitteln zählen beispielsweise auch polymere qua- ternäre Ammoniumverbindungen, kationische Cellulosederivate und Polysaccharide. Erfindungsgemäß vorteilhafte Konditionierungsmittel können dabei unter den in der folgenden Tabelle dargestellten Verbindungen gewählt werden.
Figure imgf000039_0001
Figure imgf000040_0001
Tabelle 6: Vorteilhaft zu verwendende Konditioniermittel
Weitere erfindungsgemäß vorteilhafte Konditionierer stellen Cellulosederivate und quaternisierte Guargum Derivate, insbesondere Guar Hydroxypropylammoniumchlorid (z.B. Jaguar Excel®, Jaguar C 162® (Rhodia), CAS 65497-29-2, CAS 39421-75-5) dar. Auch nichtionische Poly-N-vinylpyrrolidon/Polyvinylacetat-Copolymere (z.B. Luviskol®VA 64 (BASF Aktiengesellschaft )), anionische Acrylat-Copolymere (z.B. Luviflex®Soft (BASF Aktiengesellschaft )), und/oder amphotere Amid/Acrylat/Methacrylat Copolymere (z.B. Amphomer® (National Starch)) können erfindungsgemäß vorteilhaft als Konditionierer eingesetzt werden.
Puderrohstoffe
Ein Zusatz von Puderrohstoffen kann allgemein vorteilhaft sein. Besonders bevorzugt wird der Einsatz von Talkum. Ethoxylierte Glycerin-Fettsäureester
Erfindungsgemäß können Zusammensetzungen neben den erfindungsgemäßen bzw. gemäß dem erfinderischen Verfahren hergestellten Mikrokapseln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W-Dispersionen gegebenenfalls auch ethoxylierte Öle ausgewählt aus der Gruppe der ethoxylierten Glycerin-Fettsäureester, insbesondere bevorzugt PEG-10 Olivenölglyceride, PEG-1 1 Avocadoölglyceride, PEG- 1 1 Kakaobutterglyceride, PEG-13 Sonnenblumenölglyceride, PEG-15 Glycerylisostea- rat, PEG-9 Kokosfettsäureglyceride, PEG-54 Hydriertes Ricinusöl, PEG-7 Hydriertes Ricinusöl, PEG-60 Hydriertes Ricinusöl, Jojobaöl Ethoxylat (PEG-26 Jojoba-Fett- Säuren, PEG-26 Jojobaalkohol), Glycereth-5 Cocoat, PEG-9 Kokosfettsäureglyceride, PEG-7 Glycerylcocoat, PEG-45 Palmkemölglyceride, PEG-35 Ricinusöl, Olivenöl-PEG- 7 Ester, PEG-6 Caprylisäure/ Caprinsäureglyceride, PEG-10 Olivenölglyceride, PEG- 13 Sonnenblumenölglyceride, PEG-7 Hydriertes Ricinusöl, Hydrierte Palmkernölglyce- rid-PEG-6 Ester, PEG-20 Maisölglyceride, PEG- 18 Glycerylolead-cocoat, PEG-40 Hydriertes Ricinusöl, PEG-40 Ricinusöl, PEG-60 Hydriertes Ricinusöl, PEG-60 Maisölglyceride, PEG-54 Hydriertes Ricinusöl, PEG-45 Palmkemölglyceride, PEG-35 Ricinusöl, PEG-80 Glycerylcocoat, PEG-60 Mandelölglyceride, PEG-60 "Evening Primrose" Glyceride, PEG-200, Hydriertes Glycerylpalmat und PEG-90 Glycerylisostearat enthalten.
Bevorzugte ethoxylierte Öle sind PEG-7 Glycerylcocoat, PEG-9 Kokosglyceride, PEG- 40 Hydriertes Rizinusöl, PEG-200 hydriertes Glycerylpalmat. Ethoxylierte Glycerin- Fettsäureester werden in wässrigen Reinigungsrezepturen zu verschiedenen Zwecken eingesetzt. Niedrig ethoxylierte Glycerin-Fettsäureester (3-12 Ethylenoxideinheiten) dienen üblicherweise als Rückfetter zur Verbesserung des Hautgefühls nach dem Abtrocknen, Glycerin-Fettsäureester mit einem Ethoxylierungsgrad von ca. 30-50 dienen als Lösungsvermittler für unpolare Substanzen wie Parfumöle. Hochethoxylierte Glycerin-Fettsäureester werden als Verdicker eingesetzt. Allen diesen Substanzen ist gemeinsam, dass sie auf der Haut bei der Anwendung bei der Verdünnung mit Wasser ein besonderes Hautgefühl erzeugen.
Lichtschutzmittel
Erfindungsgemäß ist ebenfalls die Verwendung der erfindungsgemäßen Mikrokapseln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W-Dispersionen in Kombination mit Lichtschutzmittel in dermokosmetischen Zubereitungen. Diese kosmetischen und/oder dermatologischen Lichtschutzzusammensetzungen dienen dem kosmetischen und/oder dermatologischen Lichtschutz, ferner zur Behandlung und Pflege der Haut und/oder der Haare und als Schminkprodukt in der dekorativen Kosmetik. Dazu zählen beispielsweise Sonnencremes, -lotionen, -milche, -öle, -baisame, - gele, Lippenpflegen und Lippenstifte, Abdeckcremes und -stifte, Feuchtigkeitscremes, -lotionen, -emulsionen, Gesichts-, Körper- und Handcremes, Haarkuren und - Spülungen, Haarfestiger, Styling-Gele, Haarsprays, Deoroller oder Augenfältchencre- mes, Tropicals, Sunblocker, Aftersun-Präparate. Sonnenöle sind meist Mischungen verschiedener Öle mit einem oder mehreren Lichtschutzfiltern und Parfümölen. Die Ölkomponenten werden nach unterschiedlichen kosmetischen Eigenschaften ausgewählt. Öle, die gut fetten und ein weiches Hautgefühl vermitteln, wie Mineralöle (z. B. Paraffinöle) und Fettsäuretriglyceride (z. B. Erd- nussöl, Sesamöl, Avocadoöl, mittelkettige Triglyceride), werden mit Ölen gemischt, die die Verteilbarkeit und das Einziehen der Sonnenöle in die Haut verbessern, die Klebrigkeit verringern und den Ölfilm für Luft und Wasserdampf (Schweiß) durchlässig machen. Hierzu zählen verzweigtkettige Fettsäureester (z. B. Isopropylpalmitat) und Siliconöle (z. B. Dimethylsilicon). Bei Verwendung von Ölen auf Basis ungesättigter Fett- säuren werden Antioxidantien, z. B. Tocopherol, zugesetzt, um das Ranzigwerden zu verhindern. Sonnenöle enthalten als wasserfreie Formulierungen in der Regel keine Konservierungsmittel. Sonnenmilch und -Cremes werden als Öl-in-wasser- (O/W) E- mulsionen und als Wasser-in-ÖI-(W/O-)Emulsionen hergestellt. Je nach Emulsionstyp sind die Eigenschaften der Präparate sehr unterschiedlich: O/W-Emulsionen sind auf der Haut leicht verteilbar, sie ziehen meist schnell ein und sind fast immer mit Wasser leicht abwaschbar. W/O-Emulsionen sind schwerer einzureiben, sie fetten die Haut stärker und wirken dadurch etwas klebriger, bewahren aber andererseits die Haut besser vor dem Austrocknen. W/O-Emulsionen sind meist wasserfest. Bei O/W- Emulsionen entscheiden die Emulsionsbasis, die Auswahl geeigneter Lichtschutzstoffe und ggf. der Einsatz von Hilfsstoffen (z. B. Polymere) über den Grad der Wasserfestigkeit. Die Grundlagen von flüssigen und cremeförmigen O/W-Ernulsionen ähneln in ihrer Zusammensetzung den sonstigen in der Hautpflege üblichen Emulsionen. Sonnenmilch sollen die durch Sonne, Wasser und Wind ausgetrocknete Haut ausreichend fetten. Sie dürfen nicht klebrig sein, da dies in der Hitze und bei Kontakt mit Sand als besonders unangenehm empfunden wird. Die Lichtschutzmittel sind in der Regel auf der Basis eines Trägers, der mindestens eine Ölphase enthält. Es sind aber auch Zusammensetzungen allein auf wässriger Basis möglich. Demgemäss kommen Öle, Öl- in-Wasser- und Wasser-in-ÖI-Emulsionen, Cremes und Pasten, Lippenschutzstiftmas- sen oder fettfreie Gele in Betracht. Als Emulsionen kommen u.a. auch O/W- Makroemulsionen, O/W-Mikroemulsionen oder O/W/O-Emulsionen mit in dispergierter Form vorliegenden oberflächenbeschichteten Titandioxidpartikeln in Frage, wobei die Emulsionen durch Phaseninversionstechnologie, gemäß DE-A-197 26 121 erhältlich sind. Übliche kosmetische Hilfsstoffe, die als Zusätze in Betracht kommen können, sind z.B. (Co-)Emulgatoren, Fette und Wachse, Stabilisatoren, Verdickungsmittel, biogene Wirkstoffe, Filmbildner, Duftstoffe, Farbstoffe, Perlglanzmittel, Konservierungsmittel, Pigmente, Elektrolyt^ (z.B. Magnesiumsulfat) und pH-Regulatoren. Als Stabilisatoren können Metallsalze von Fettsäuren wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat eingesetzt werden. Unter biogenen Wirkstoffen sind beispielsweise Pflanzenextrakte, Eiweißhydrolysate und Vitaminkomplexe zu verstehen. Gebräuchliche Filmbildner sind beispielsweise Hydrocolloide wie Chitosan, mikrokristallines Chitosan oder quaternier- tes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäurereihe, quaternäre Cellulose-Derivate und ähnliche Verbindungen. Geeignete Lichtfilterwirkstoffe sind Stoffe, die UV-Strahlen im UV-B- und/oder UV-A- Bereich absorbieren. Darunter sind organische Substanzen zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme, wieder abzugeben. Die organischen Substanzen können öllöslich oder wasserlöslich sein. Geeignete UV-Filter sind z.B. 2,4,6- Triaryl-1 ,3,5- triazine, bei denen die Arylgruppen jeweils wenigstens einen Substituen- ten tragen können, der vorzugsweise ausgewählt ist unter Hydroxy, Alkoxy, speziell Methoxy, Alkoxycarbonyl, speziell Methoxycarbonyl und Ethoxycarbonyl. Geeignet sind weiterhin p-Aminobenzoesäureester, Zimtsäureester, Benzophenone, Campherderivate sowie UV-Strahlen abhaltende Pigmente, wie Titandioxid, Talkum und Zinkoxid. Besonders bevorzugt handelt es sich um Pigmente auf der Basis von Titandioxid.
Als öllösliche UV-B-Filter können z.B. folgende Substanzen verwendet werden: 3-Benzylidencampher und dessen Derivate, z.B. 3-(4-Methylbenzyliden)campher;
4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2- ethylhexylester, 4-( Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)- benzoesäureamylester;
Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4 Methoxy- zimtsäurepropylester, 4-Methoxyzimtsäureisoamylester, 4 Methoxyzimtsäureisopenty- lester, 2-Cyano-3-phenyl-zimtsäure-2-ethylhexylester (Octocrylene);
Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4 isopropylbenzylester, Salicylsäurehomomenthylester;
Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2- Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;
Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2- ethylhexylester;
Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1 '-hexyloxy)-1 ,3,5-triazin (Oc- tyltriazone) und Dioctyl Butamido Triazon (Uvasorb® HEB):
Propan-1 ,3-dione, wie z.B. 1 -(4-tert. Butylphenyl)-3-(4'-methoxyphenyl)propan-1 ,3- dion.
Als wasserlösliche Substanzen kommen in Frage:
2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alky- lammonium-, Alkanolammonium- und Glucammoniumsalze; Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzo- phenon-5-sulfonsäure und ihre Salze;
Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3- bornylidenmethyl)benzolsulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.
Besonders bevorzugt ist die Verwendung von Estern der Zimtsäure, vorzugsweise A- Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäureisopentylester, 2-Cyano-3- phenyl-zimtsäure-2-ethylhexylester (Octocrylene).
Des weiteren ist die Verwendung von Derivaten des Benzophenons, insbesondere 2- Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-methoxy-4"-methylbenzophenon, 2,2'- Dihydroxy-4-methoxybenzophenon sowie der Einsatz von Propan-1 ,3-dionen, wie z.B. 1-(4-tert. Butylphenyl)-3-(4-'methoxyphenyl)propan-1 ,3-dion bevorzugt.
Als typische UV-A-Filter kommen in Frage:
Derivate des Benzoylmethans, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'- methoxyphenyl) propan-1 ,3-dion, 4-tert.-Butyl-4'-methoxydibenzoylmethan oder 1- Phenyl-3-(4'-isopropylphenyl)-propan-1 ,3-dion;
Amino-hydroxy-substituierte Derivate von Benzophenonen wie z.B. N,N-Diethylamino- hydroxybenzoyl-n-hexylbenzoat.
Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden.
Weitere geeignete UV-Filtersubstanzen sind in der folgenden Tabelle genannt.
Figure imgf000044_0001
Figure imgf000045_0001
Figure imgf000046_0001
Tabelle 7: geeignete Lichtschutzmittel
Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV- Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Superoxid-Dismutase, Katalase, Tocopherole (Vitamin E) und Ascorbinsäure (Vitamin C).
Eine weitere Gruppe sind Antiirritantien, die eine entzündungshemmende Wirkung auf durch UV-Licht geschädigte Haut besitzen. Solche Stoffe sind beispielsweise Bisabolol, Phytol und Phytantriol.
Erfindungsgemäß ist ebenfalls die Verwendung der erfindungsgemäßen bzw. gemäß dem erfinderischen Verfahren hergestellten Mikrokapseln bzw. die gemäß dem erfin- dungsgemäßen Verfahren hergestellten O/W-Dispersionen in Kombination mit UV- Strahlen abhaltenden anorganischen Pigmenten in dermokosmetischen Zubereitungen. Bevorzugt sind Pigmente auf Basis von Metalloxiden und/oder anderen in Wasser schwerlöslichen oder unlöslichen Metallverbindungen ausgewählt aus der Gruppe der Oxide des Zinks (ZnO), Titan (Tiθ2), Eisens (z.B. Fe2θ3), Zirkoniums (Zrθ2), Siliciums (Siθ2), Mangans (z.B. MnO), Aluminiums (AI2O3), Cers (z.B. Cβ2θ3), Mischoxiden der entsprechenden Metalle und Abmischungen aus solchen Oxiden enthalten.
Die anorganischen Pigmente können dabei in gecoateter Form vorliegen, d.h. dass sie oberflächlich behandelt sind. Diese Oberflächenbehandlung kann beispielsweise darin bestehen, dass die Pigmente nach an sich bekannter Weise, wie in DE-A-33 14 742 beschrieben, mit einer dünnen hydrophoben Schicht versehen sind.
Weiter bevorzugt sind sogenannte Peroxydzersetzter, d.h. Verbindungen die in der Lage sind Peroxyde, besonders bevorzugt Lipidperoxyde zu zersetzen. Darunter sind organische Substanzen zu verstehen, wie z.B. Pyridin-2-thiol-3-carbonsäure, 2-
Methoxy-pyrimidinol-carbonsäuren, 2-Methoxy-pyridincarbonsäuren, 2-Dimethylamino- pyrimidinolcarbonsäuren, 2-Dimethylamino-pyridincarbonsäuren.
Geeignete Repellentwirkstoffe sind Verbindungen, die in der Lage sind, bestimmte Tie- re, insbesondere Insekten, vom Menschen abzuhalten oder zu vertreiben. Dazu gehört z.B. 2-Ethyl-1 , 3-hexandiol, N, N-Diethyl-m-toluamid etc. Geeignete hyperemisierend wirkende Stoffe, welche die Durchblutung der Haut anregen, sind z.B. ätherische Öle, wie Latschenkieferextrakt, Lavendelextrakt, Rosmarinextrakt, Wacholderbeerextrakt, Rosskastanienextrakt, Birkenblätterextrakt, Heublumenextrakt, Ethylacetat, Campher, Menthol, Pfefferminzöl, Rosmarinextrakt, Eukalyptusöl, etc. Geeignete keratolytisch und keratoplastisch wirkende Stoffe sind z.B. Salicylsäure, Kalziumthioglykolat, Thi- oglykolsäure und ihre Salze, Schwefel, etc. Geeignete Antischuppen-Wirkstoffe sind z.B. Schwefel, Schwefelpolyethylenglykolsorbitanmonooleat, Schwefelricinolpolyetho- xylat, Zinkpyrithion, Aluminiumpyrithion, etc. Geeignete Antiphlogistika, die Hautreizungen entgegenwirken, sind z.B. Allantoin, Bisabolol, Dragosantol, Kamillenextrakt, Panthenol, etc.
Erfindungsgemäß ist ebenfalls die Verwendung der erfindungsgemäßen Mikrokapseln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W-Dispersionen in Kombination mit wenigstens einem kosmetisch oder pharmazeutisch akzeptablen Polymer.
Geeignete Polymere sind z.B. kationische Polymere mit der Bezeichnung Polyquater- nium nach INCI, z.B. Copolymere aus Vinylpyrrolidon/N-Vinylimidazoliumsalzen (Luvi- quat FC, Luviquat HM, Luviquat MS, Luviquat&commat, Care), Copolymere aus N-Vinylpyrrolidon/Dimethylaminoethylmethacrylat, quaternisiert mit Diethylsulfat (Luviquat PQ 1 1 ), Copolymere aus N-Vinylcaprolactam/N-Vinylpyrrolidon/N-Vinyl- imidazoliumsalzen (Luviquat E Hold), kationische Cellulosederivate (Polyquaternium-4 und -10), Acrylamidocopolymere (Polyquaternium-7) und Chitosan.
Geeignete kationische (quaternisierte) Polymere sind auch Merquat (Polymer auf Basis von Dimethyldiallylammoniumchlorid), Gafquat (quaternäre Polymere, die durch Reak- tion von Polyvinylpyrrolidon mit quaternären Ammoniumverbindungen entstehen), Polymer JR (Hydroxyethylcellulose mit kationischen Gruppen) und kationische Polymere auf pflanzlicher Basis, z.B. Guarpolymere, wie die Jaguar-Marken der Firma Rhodia.
Weitere geeignete Polymere sind auch neutrale Polymere, wie Polyvinylpyrrolidone, Copolymere aus N-Vinylpyrrolidon und Vinylacetat und/oder Vinylpropionat, Polysilo- xane, Polyvinylcaprolactam und andere Copolymere mit N-Vinylpyrrolidon, Polyethyle- nimine und deren Salze, Polyvinylamine und deren Salze, Cellulosederivate, Polyaspa- raginsäuresalze und Derivate. Dazu zählt beispielsweise Luviflex 0 Swing (teilverseiftes Copolymerisat von Polyvinylacetat und Polyethylenglykol, Firma BASF Aktienge- Seilschaft).
Geeignete Polymere sind auch nichtionische, wasserlösliche bzw. wasserdispergierba- re Polymere oder Oligomere, wie Polyvinylcaprolactam, z.B. Luviskol 0 Plus (BASF), oder Polyvinylpyrrolidon und deren Copolymere, insbesondere mit Vinylestern, wie Vinylacetat, z.B. Luviskol 0 VA 37 (BASF), Polyamide, z.B. auf Basis von Itaconsäure und aliphatischen Diaminen, wie sie z.B. in der DE-A-43 33 238 beschrieben sind. Geeignete Polymere sind auch amphotere oder zwitterionische Polymere, wie die unter den Bezeichnungen Amphomer (National Starch) erhältlichen Octylacrylamid / Methyl- methacrylat / tert.-Butylaminoethylmethacrylat-Hydroxypropylmethacrylat-Copolymere sowie zwitterionische Polymere, wie sie beispielsweise in den deutschen Patentanmel- düngen DE39 29 973, DE 21 50 557, DE28 17 369 und DE 3708 451 offenbart sind. Acrylamidopropyltrimethylammoniumchlorid/Acrylsäure-bzw. -Methacrylsäure-
Copolymerisate und deren Alkali-und Ammoniumsalze sind bevorzugte zwitterionische Polymere. Weiterhin geeignete zwitterionische Polymere sind Methacroylethylbe- tain/Methacrylat-Copolymere, die unter der Bezeichnung Amersette (AMERCHOL) im Handel erhältlich sind, und Copolymere aus Hydroxyethylmethacrylat, Methylmethacry- lat, N, N-Dimethylaminoethylmethacrylat und Acrylsäure (Jordapon (D)).
Geeignete Polymere sind auch nichtionische, siloxanhaltige, wasserlösliche oder - dispergierbare Polymere, z.B. Polyethersiloxane, wie Tegopren 0 (Firma Goldschmidt) oder Besi&commat (Firma Wacker).
Vorteilhaft ist ebenfalls die Verwendung der erfindungsgemäßen Mikrokapseln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W-Dispersionen in Kombination mit dermokosmetischen Wirkstoffen (eine oder mehrere Verbindungen) ausge- wählt aus der Gruppe bestehend aus Acetylsalicylsäure, Atropin, Azulen, Hydrocortison und dessen Derivaten, z. B. Hydrocortison-17-valerat, Vitamine der B- und D- Reihe, insbesondere Vitamin Bi, Vitamin B12, Vitamin D, Vitamin A bzw. dessen Derivate wie Retinylpalmitat, Vitamin E oder dessen Derivate wie z.B. Tocopheryl Acetat, Vitamin C und dessen Derivate wie z.B. Ascorbylglucusid aber auch Niacinamid, Pan- thenol, Bisabolol, Polydocanol, ungesättigte Fettsäuren, wie z.B. die essentiellen Fettsäuren (üblicherweise als Vitamin F bezeichnet), insbesondere die γ-Linolen-säure, Ölsäure, Eicosapentaensäure, Docosahexaensäure und deren Derivate, Chloramphe- nicol, Coffein, Prostaglandine, Thymol, Campher, Squalen, Extrakte oder andere Produkte pflanzlicher und tierischer Herkunft, z . B. Nachtkerzenöl, Borretschöl oder Jo- hannisbeerkernöl, Fischöle, Lebertran aber auch Ceramide und ceramidähnliche Verbindungen, Weihrauchextrakt, Grünteeextrakt, Wasserlilienextrakt, Süßholzextrakt, Hamamelis, Antischuppenwirkstoffe (z.B. Selendisulfid, Zinkpyrithion, Pirocton, Olamin, Climbazol, Octopirox, Polydocanol und deren Kombinatinen), Komplexwirkstoffen wie z.B. jenen aus γ-Oryzanol und Calciumsalzen wie Calciumpanthotenat, Calciumchlorid, Calciumacetat. Vorteilhaft ist es auch, die Wirkstoffe aus der Gruppe der rückfettenden Substanzen zu wählen, beispielsweise Purcellinöl, Eucerit® und Neocerit®. Besonders vorteilhaft werden der oder die Wirkstoffe ferner ausgewählt aus der Gruppe der NO- Synthasehemmer, insbesondere wenn die erfindungsgemäßen Zubereitungen zur Behandlung und Prophylaxe der Symptome der intrinsischen und/oder extrinsischen Hautalterung sowie zur Behandlung und Prophylaxe der schädlichen Auswirkungen ultravioletter Strahlung auf die Haut und die Haare dienen sollen. Bevorzugter NO- Synthasehemmer ist Nitroarginin. Weiter vorteilhaft werden der oder die Wirkstoffe gewählt aus der Gruppe umfassend Catechine und Gallensäureester von Catechinen und wässrige bzw. organische Extrakte aus Pflanzen oder Pflanzenteilen, die einen Gehalt an Catechinen oder Gallensäureestern von Catechinen aufweisen, wie beispielsweise den Blättern der Pflanzenfamilie Theaceae, insbesondere der Spezies Camellia sinensis (grüner Tee). Besonders vorteilhaft sind deren typische Inhaltsstoffe (z.B. Polyphenole bzw. Catechine, Coffein, Vitamine, Zucker, Mineralien, Aminosäuren, Lipide). Catechine stellen eine Gruppe von Verbindungen dar, die als hydrierte Flavone oder Anthocyanidine aufzufassen sind und Derivate des „Catechins" (Catechol, 3,3',4',5,7-Flavanpentaol, 2-(3,4-Dihydroxyphenyl)-chroman-3,5,7-triol) darstellen. Auch Epicatechin ((2R,3R)-3,3',4',5,7-Flavanpentaol) ist ein vorteilhafter Wirkstoff im Sinne der vorliegenden Erfindung. Vorteilhaft sind ferner pflanzliche Auszüge mit einem Gehalt an Catechinen, insbesondere Extrakte des grünen Tees, wie z. B. Extrakte aus Blättern der Pflanzen der Spezies Camellia spec, ganz besonders der Teesorten Camellia sinenis, C. assamica, C. taliensis bzw. C. inawadiensis und Kreuzungen aus diesen mit beispielsweise Camellia japonica. Bevorzugte Wirkstoffe sind ferner Polyphenole bzw. Catechine aus der Gruppe (-)-Catechin, (+)-Catechin, (-)- Catechingallat, (-)-Gallocatechingallat, (+)-Epicatechin, (-)-Epicatechin, (-)-Epicatechin Gallat, (-)-Epigallocatechin, (-)-Epigallocatechingallat.
Auch Flavon und seine Derivate (oft auch kollektiv „Flavone" genannt) sind vorteilhafte Wirkstoffe im Sinne der vorliegenden Erfindung. Sie sind durch folgende Grundstruktur gekennzeichnet (Substitutionspositionen angegeben):
Figure imgf000049_0001
Einige der wichtigeren Flavone, welche auch bevorzugt in erfindungsgemäßen Zubereitungen eingesetzt werden können, sind in der nachstehenden Tabelle 8 aufgeführt.
Figure imgf000049_0002
Figure imgf000050_0002
Tabelle 8: Flavone
In der Natur kommen Flavone in der Regel in glycosidierter Form vor. Erfindungsgemäß werden die Flavonoide bevorzugt gewählt gewählt aus der Gruppe der Substanzen der allgemeinen Formel,
Figure imgf000050_0001
wobei Zi bis Z7, unabhängig voneinander gewählt werden aus der Gruppe H, OH, Al- koxy- sowie Hydroxyalkoxy-, wobei die Alkoxy- bzw. Hydroxyalkoxygruppen verzweigt und unverzweigt sein und 1 bis 18 C-Atome aufweisen können, und wobei GIy gewählt wird aus der Gruppe der Mono- und Oligoglycosidreste.
Außerdem können die Wirkstoffe (eine oder mehrere Verbindungen) auch sehr vorteilhaft gewählt werden aus der Gruppe der hydrophilen Wirkstoffe, insbesondere aus folgender Gruppe: α-Hydroxysäuren wie Milchsäure oder Salicylsäure bzw. deren Salze wie z.B. Na- Lactat, Ca-Lactat, TEA-Lactat, Harnstoff, Allantoin, Serin, Sorbitol, Glycerin, Milchproteine, Panthenol, Chitosan.
Die Menge solcher Wirkstoffe (eine oder mehrere Verbindungen) in den Zubereitungen gemäß der Erfindung beträgt vorzugsweise 0,001 bis 30 Gew.-%, besonders bevorzugt 0,05 bis 20 Gew.-%, insbesondere 1 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung. Die genannten und weitere Wirkstoffe, die in den erfindungsgemäßen Zubereitungen verwendet werden können, sind in der DE 103 18 526 A1 auf den Seiten 12 bis 17 angegeben, worauf an dieser Stelle in vollem Umfang Bezug genommen wird.
Weiterhin betrifft die vorliegende Erfindung die Verwendung der o.g. Zubereitungen zur Vorbeugung unerwünschter Veränderungen des Hautbildes, wie z.B. Akne oder fettige Haut, Keratosen, Rosaceae, lichtempfindliche, entzündliche, erythematöse, allergische oder autoimmunreaktive Reaktionen. Zur Anwendung werden die erfindungsgemäßen kosmetischen Zubereitungen in der für Kosmetika oder Dermokosmetika üblichen Weise auf die Haut, Haare, Finger- oder Fußnägel aufgebracht.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthalten die Dermokosmetika, bevorzugt Haut- und Haar-Behandlungsmittel, Mikrokapseln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W-Dispersionen in einer Konzentration von 0,001 bis 1 Gewichtsprozent (Gew.-%), vorzugsweise 0,01 bis 0,9 Gew.-%, besonders bevorzugt 0,01 bis 0,8 Gew.-% oder 0,01 bis 0,7 Gew.%, ganz besonders bevorzugt 0,01 bis 0,6 Gew.% oder 0,01 bis 0,5 Gew.%, am meisten bevorzugt 0,01 bis 0,4 Gew.% oder 0,01 bis 0,3 Gew.% bezogen auf das Gesamtgewicht des Mittels. In einer weiteren Ausführungsform enthalten die Mittel erfindungsgemäße Mikrokapseln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W- Dispersionen in einer Konzentration von 1 bis 10 Gew.-%, vorzugsweise 2 bis 8 Gew.- %, 3 bis 7 Gew.-%, 4 bis 6 Gew.-% bezogen auf das Gesamtgewicht des Mittels. In einer ebenfalls bevorzugten Ausführungsform enthalten die Mittel erfindungsgemäßen Mikrokapseln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W- Dispersionen in einer Konzentration von 10 bis 20 Gew.-%, vorzugsweise 1 1 bis 19 Gew.-%, 12 bis 18 Gew.-%, 13 bis 17 Gew.-%, 14 bis 16 Gew.-% bezogen auf das Gesamtgewicht des Mittels. In einer ebenfalls bevorzugten Ausführungsform enthalten die Mittel erfindungsgemäße Mikrokapseln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W-Dispersionen in einer Konzentration von 20 bis 30 Gew.- %, vorzugsweise 21 bis 29 Gew.-%, 22 bis 28 Gew.-%, 23 bis 27 Gew.-%, 24 bis 26 Gew.-% bezogen auf das Gesamtgewicht des Mittels.
Ein weiterer Gegenstand der vorliegenden Erfindung sind dermokosmetischen Zubereitungen enthaltend Mikrokapseln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W-Dispersionen. Bei den erfindungsgemäßen Mitteln handelt es sich vorzugsweise um Hautschutzmittel, Hautpflegemittel, Hautreinigungsmittel, Haar- Schutzmittel, Haarpflegemittel, Haarreinigungsmittel, Haarfärbemittel, oder Zubereitung für die dekorative Kosmetik, die je nach Anwendungsgebiet vorzugsweise in Form von Salben, Cremes, Emulsionen, Suspensionen, Lotionen, als Milch, Pasten, Gelen, Schäumen oder Sprays angewendet werden.
Die erfindungsgemäßen Dermokosmetika können neben den erfindungsgemäßen Mikrokapseln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W- Dispersionenn, alle bereits oben aufgeführten Polymere, Pigmente, Feuchthaltemittel, Öle, Wachse, Enzyme, Mineralien, Vitamine, Sonnenschutzmittel, Farbstoffe, Duftstoffe, Antioxidantien, Konservierungsmittel und/oder pharmazeutischen Wirkstoffen ent- halten.
Zudem gilt für die erfindungsgemäßen Dermokosmetika das folgende:
Die Formulierungsgrundlage erfindungsgemäßer Mittel enthält bevorzugt kosmetisch oder dermokosmetisch/pharmazeutisch akzeptable Hilfsstoffe. Pharmazeutisch akzep- tabel sind die im Bereich der Pharmazie, der Lebensmitteltechnologie und angrenzenden Gebieten bekanntermaßen verwendbaren Hilfsstoffe, insbesondere die in einschlägigen Arzneibüchern (z.B. DAB Ph. Eur. BP NF) gelisteten sowie andere Hilfsstoffe, deren Eigenschaften einer physiologischen Anwendung nicht entgegenstehen.
Geeignete Hilfsstoffe können sein: Gleitmittel, Netzmittel, emulgierende und suspendierende Mittel, konservierende Mittel, Antioxidantien, Antireizstoffe, Chelatbildner, Emulsionsstabilisatoren, Filmbildner, Gelbildner, Geruchsmaskierungsmittel, Harze, Hydrokolloide, Lösemittel, Lösungsvermittler, Neutralisierungsmittel, Permeations- beschleuniger, Pigmente, quaternäre Ammoniumverbindungen, Rückfettungs- und Überfettungsmittel, Salben-, Creme- oder Öl-Grundstoffe, Siliconderivate, Stabilisatoren, Sterilantien, Treibmittel, Trocknungsmittel, Trübungsmittel, Verdickungsmittel, Wachse, Weichmacher, Weissöl. Eine diesbezügliche Ausgestaltung beruht auf fachmännischem Wissen, wie sie beispielsweise in Fiedler, H. P. Lexikon der Hilfsstoffe für Pharmazie, Kosmetik und angrenzende Gebiete, 4. Aufl., Aulendorf: ECV-Editio- Kantor-Verlag, 1996, dargestellt sind.
Zur Herstellung der erfindungsgemäßen dermokosmetischen Mittel können die Wirkstoffe mit einem geeigneten Hilfsstoff (Exzipient) vermischt oder verdünnt werden. Ex- zipienten können feste, halb feste oder flüssige Materialien sein, die als Vehikel, Träger oder Medium für den Wirkstoff dienen können. Die Zumischung weiterer Hilfsstoffe erfolgt gewünschtenfalls in der dem Fachmann bekannten Weise. Weiterhin sind die Polymere und Dispersionen geeignet als Hilfsmittel in der Pharmazie, bevorzugt als oder in Beschichtungsmittel(n) oder Bindemittel(n) für feste Arzneiformen. Sie können auch in Cremes und als Tablettenüberzugsmittel und Tablettenbindemittel verwendet werden.
Nach einer weiteren bevorzugten Ausführungsform handelt es sich bei den erfindungsgemäßen Mitteln um kosmetische Mittel zur Pflege und zum Schutz der Haut und Haar, Nagelpflegemittel oder Zubereitungen für die dekorative Kosmetik.
Geeignete hautkosmetische Mittel sind z.B. Gesichtswässer, Gesichtsmasken, Deodo- rantien und andere kosmetische Lotionen. Mittel für die Verwendung in der dekorativen Kosmetik umfassen beispielsweise Abdeckstifte, Theaterfarben, Mascara und Lidschatten, Lippenstifte, Kajalstifte, Eyeliner, Rouges, Puder und Augenbrauenstifte.
Ausserdem können die erfindungsgemäßen Mikrokapseln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W-Dispersionen verwendet werden in Nose- Strips zur Porenreinigung, in Antiaknemitteln, Repellents, Rasiermitteln, After- und Pre Shave Pflegemittel, After Sun Pflegemittel, Haarentfernungsmitteln, Haarfärbemitteln, Intimpflegemitteln, Fusspflegemitteln sowie in der Babypflege. Bei den erfindungsgemäßen Hautpflegemitteln handelt es sich insbesondere um O/W- Hautcremes, Tag- und Nachtcremes, Augencremes, Gesichtscremes, Antifaltencre- mes, Sonnenschutzcremes, Feuchthaltecremes, Bleichcremes, Selbstbräunungscremes, Vitamincremes, Hautlotionen, Pflegelotionen und Feuchthaltelotionen.
Erfindungsgemäße hautkosmetische und dermatologische Mittel können ferner als Schutz vor oxidativen Prozessen und den damit verbundenen Alterungsprozessen oder Schädigungen von Haut und/oder Haar, neben den erfindungsgemäßen Mikrokapseln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W-Dispersionen, einen Radikale zersetzenden Wirkstoff enthalten. Bei diesen Wirkstoffen handelt es sich bevorzugt um die in den Patentanmeldungen WO/0207698 und WO/03059312, auf deren Inhalt hiermit ausdrücklich bezuggenommen wird, beschriebenen Substanzen, bevorzugt die dort beschriebenen Bor-enthaltenden Verbindungen, die Peroxide oder Hydroperoxide zu den entsprechenden Alkoholen ohne Bildung radikalischer FoI- gestufen reduzieren können. Ferner können für diesen Zweck sterisch gehinderte Amine gemäß der allgemeinen Formel 3 verwendet werden,
Formel 3
Figure imgf000053_0001
z wobei der Rest Z folgende Bedeutung hat: H, C1-C22 Alkylgruppe, bevorzugt C1-C12 Alkylgruppe wie Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec. Butyl, tert. Butyl, Pentyl, Isopentyl, Neopentyl, tert. Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl.Dodecyl, Ci-C22-Alkoxylgruppe, bevorzugt Ci-Ci2-Alkoxylgruppe wie Alkoxy- Methyl, Alkoxy-Ethyl, AI koxy- Propyl, Alkoxy-Isopropyl, Alkoxy-Butyl, Alkoxy-Isobutyl, Alkoxy-sec. Butyl, Alkoxy-tert. Butyl, Alkoxy-Pentyl, Alkoxy-Isopentyl, Alkoxy- Neopentyl, Alkoxy-tert. Pentyl, Alkoxy-Hexyl, AI koxy- Heptyl, Alkoxy-Octyl, Alkoxy- Nonyl, Alkoxy-Decyl, Alkoxy-Undecyl, Alkoxy-Dodecyl, Ce bis Cio-Arylgruppe wie Phenyl und Naphtyl, wobei der Phenylrest mit Ci bis C4 Alkylresten substituiert sein kann, Ce bis Cio-0-Arylgruppe, welche mit einer C1-C22 Alkyl- oder C1-C22- Alkoxylgruppe, bevorzugt mit mit einer C1-C12 Alkyl- oder Ci-Ci2-Alkoxylgruppe wie oben beschrieben, substituiert sein kann, und die Reste R1 bis R6 unabhängig voneinander folgende Bedeutung haben: H, OH, O, C1-C22 Alkylgruppe, bevorzugt d- C12 Alkylgruppe wie Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec. Butyl, tert. Butyl, Pentyl, Isopentyl, Neopentyl, tert. Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Ci-C22-Alkoxylgruppe, bevorzugt Ci-Ci2-Alkoxylgruppe wie Alkoxy- Methyl, Alkoxy-Ethyl, Alkoxy-Propyl, Alkoxy-Isopropyl, Alkoxy-Butyl, Alkoxy-Isobutyl, Alkoxy-sec. Butyl, Alkoxy-tert. Butyl, Alkoxy-Pentyl, Alkoxy-Isopentyl, Alkoxy- Neopentyl, Alkoxy-tert. Pentyl, Alkoxy-Hexyl, Alkoxy-Heptyl, Alkoxy-Octyl, Alkoxy- Nonyl, Alkoxy-Decyl, Alkoxy-Undecyl, Alkoxy-Dodecyl, Cβ bis Cio-Arylgruppe wie Phenyl und Naphtyl, wobei der Phenylrest mit Ci bis C4 Alkylresten substituiert sein kann, Cβ bis Cio-0-Arylgruppe, welche mit einer C1-C22 Alkyl- oder C1-C22- Alkoxylgruppe, bevorzugt mit mit einer C1-C12 Alkyl- oder Ci-Ci2-Alkoxylgruppe wie oben beschrieben, substituiert sein kann.
Besonders bevorzugt ist die Verwendung der sterisch gehindernten Amine 3-Dodecyl- N^^.Θ.Θ-tetramethyM-piperidinyOsuccinimid. S-Dodecyl-N^I ^^.Θ.Θ-penta-methyM- piperidinyl) succinimid, 3-Octyl-N-(2,2,6,6-tetramethyl-4-piperidinyl) succinimid, 3-Octyl- N-(1 ,2,2,6,6-pentamethyl-4-piperidinyl) succinimid, 3-Octenyl-N-(2,2,6,6-tetramethyl-4- piperidinyl) succinimid, 3-Octenyl-N-(1 ,2,2,6,6-pentamethyl-4-piperidinyl)succinimid und/oder Uvinul®5050H, in einem Anteil von 0,001 bis 1 Gewichtsprozent (Gew.-%), vorzugsweise 0,01 bis 0,1 Gew.-%, 0,1 bis 1 Gew.-% bezogen auf das Gesamtgewicht des Mittels.
Die hautkosmetischen Zubereitungen können neben den erfindungsgemäßen oben genannten Verbindungen und geeigneten Trägern noch weitere in der Hautkosmetik übliche Wirkstoffe und Hilfsstoffe, wie zuvor beschrieben, enthalten. Dazu zählen vorzugsweise Emulgatoren, Konservierungsmittel, Parfümöle, kosmetische Wirkstoffe wie Phytantriol, Bisabolol, Panthenol, Lichtschutzmittel, Bleichmittel, Färbemittel, Tönungsmittel, Bräunungsmittel, Collagen, Eiweisshydrolysate, Stabilisatoren, pH-Wert- Regulatoren, Farbstoffe, Salze, Verdicker, Gelbildner, Konsistenzgeber, Silicone, Feuchthaltemittel, Rückfetter und/oder weitere übliche Additive.
Bevorzugte Öl- und Fettkomponenten der hautkosmetischen und dermokosmetischen Mittel sind die zuvor genannten mineralischen und synthetischen Öle, wie z.B. Paraffi- ne, Siliconöle und aliphatische Kohlenwasserstoffe mit mehr als 8 Kohlenstoffatomen, tierische und pflanzliche Öle, wie z.B. Sonnenblumenöl, Kokosöl, Avocadoöl, Olivenöl, Lanolin, oder Wachse, Fettsäuren, Fettsäureester, wie z.B. Triglyceride von C6-C30- Fettsäuren, Wachsester, wie z.B. Jojobaöl, Fettalkohole, Vaseline, hydriertes Lanolin und acetyliert.es Lanolin sowie Mischungen davon.
Zur Einstellung bestimmter Eigenschaften wie z.B. Verbesserung des Anfassgefühls, des Spreitverhaltens, der Wasserresistenz und/oder der Bindung von Wirk- und Hilfs- stoffen, wie Pigmenten, können die hautkosmetischen und dermokosmetischen Zubereitungen zusätzlich auch konditionierende Substanzen auf Basis von Siliconverbin- düngen enthalten.
Geeignete Siliconverbindungen sind beispielsweise Polyalkylsiloxane, Polyarylsiloxa- ne, Polyarylalkylsiloxane, Polyethersiloxane oder Siliconharze. Die Herstellung der kosmetischen oder dermokosmetischen Zubereitungen erfolgt nach üblichen, dem Fachmann bekannten Verfahren.
Bevorzugt liegen die kosmetischen und dermokosmetischen Mittel in Form von Emulsionen, insbesondere als Wasser-in-ÖI (W/O)- oder Öl-in-Wasser (O/W)-Emulsionen vor.
Es ist aber auch möglich, andere Formulierungsarten zu wählen, beispielsweise, Gele, Öle, Oleogele, multiple Emulsionen, beispielsweise in Form von W/O/W- oder O/W/O- Emulsionen, wasserfreie Salben bzw. Salbengrundlagen, usw. Auch emulgatorfreie Formulierungen wie Hydrodispersionen, Hydrogele oder eine Pickering-Emulsion sind vorteilhafte Ausführungsformen.
Die Herstellung von Emulsionen erfolgt nach bekannten Methoden. Die Emulsionen enthalten neben wenigstens einem keratinbindenden Effektormolekül in der Regel übliche Bestandteile, wie Fettalkohole, Fettsäureester und insbesondere Fettsäuretriglyce- ride, Fettsäuren, Lanolin und Derivate davon, natürliche oder synthetische Öle oder Wachse und Emulgatoren in Anwesenheit von Wasser. Die Auswahl der Emulsionstyp- spezifischen Zusätze und die Herstellung geeigneter Emulsionen ist beispielsweise beschrieben in Schrader, Grundlagen und Rezepturen der Kosmetika, Hüthig Buch Verlag, Heidelberg, 2. Auflage, 1989, dritter Teil, oder Limbach, Kosmetik: Entwicklung, Herstellung und Anwendung ksometischer Mittel, 2. erweiterte Auflage, 1995, Georg Thieme Verlag, ISBN 3 13 712602 9, Seiten 122 ff., worauf hiermit ausdrücklich Bezug genommen wird.
Bevorzugte Fettkomponenten, welche in der Fettphase der Emulsionen enthalten sein können, sind: Kohlenwasserstofföle, wie Paraffinöl, Purcellinöl, Perhydrosqualen und Lösungen mikrokristalliner Wachse in diesen Ölen; tierische oder pflanzliche Öle, wie Süssmandelöl, Avocadoöl, Calophylumöl, Lanolin und Derivate davon, Ricinusöl, Se- samöl, Olivenöl, Jojobaöl, Karite-Öl, Hoplostethus-Öl, mineralische Öle, deren Destillationsbeginn unter Atmosphärendruck bei ca. 250°C und deren Destillationsendpunkt bei 410°C liegt, wie z.B. Vaselinöl, Ester gesättigter oder ungesättigter Fettsäuren, wie Alkylmyristate, z.B. i-Propyl-, Butyl- oder Cetylmyristat, Hexadecylstearat, Ethyl- oder i- Propylpalmitat, Octan- oder Decansäuretriglyceride und Cetylricinoleat.
Die Fettphase kann auch in anderen Ölen lösliche Siliconöle, wie Dimethylpolysiloxan, Methylphenylpolysiloxan und das Siliconglykol-Copolymer, Fettsäuren und Fettalkohole enthalten.
Neben den erfindungsgemäßen oben beschriebenen Verbindungen können die Hautpflegemittel auch Wachse enthalten, wie z.B. Carnaubawachs, Candilillawachs, Bie- nenwachs, mikrokristallines Wachs, Ozokeritwachs und Ca-, Mg- und Al-Oleate, - Myristate, -Linoleate und -Stearate.
Nach einer weiteren bevorzugten Ausführungsform handelt es sich bei den erfindungs- gemäßen Mitteln um ein Lichtschutzmittel, ein Duschgel, eine Shampoo-Formulierung oder ein Badepräparat, wobei Lichtschutzpräparate besonders bevorzugt sind.
Solche Formulierungen enthalten neben den erfindungsgemäßen Mikrokapseln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W-Dispersionen übli- cherweise anionische Tenside als Basistenside und amphotere und/oder nichtionische Tenside als Cotenside. Weitere geeignete Wirkstoffe und/oder Hilfsstoffe sind im allgemeinen ausgewählt unter Lipiden, Parfümölen, Farbstoffen, organischen Säuren, Konservierungsstoffen und Antioxidantien sowie Verdickern/Gelbildnern, Hautkonditio- niermitteln und Feuchthaltemitteln.
Diese Formulierungen enthalten vorzugsweise 2 bis 50 Gew.-%, bevorzugt 5 bis 40 Gew.-%, besonders bevorzugt 8 bis 30 Gew.-% Tenside, bezogen auf das Gesamtgewicht der Formulierung.
In den Wasch-, Dusch- und Badepräparaten können alle in Körperreinigungsmitteln üblicherweise eingesetzten anionischen, neutralen, amphoteren oder kationischen Tenside verwendet werden.
Geeignete anionische Tenside sind beispielsweise Alkylsulfate, Alkylethersulfate, Al- kylsulfonate, Alkylarylsulfonate, Alkylsuccinate, Alkylsulfosuccinate, N-Alkoylsarkosi- nate, Acyltaurate, Acylisothionate, Alkylphosphate, Alkyletherphosphate, Alkylethercar- boxylate, Alpha-Olefinsulfonate, insbesondere die Alkali- und Erdalkalimetallsalze, z.B.
Natrium, Kalium, Magnesium, Calcium, sowie Ammonium- und Triethanolamin-Salze.
Die Alkylethersulfate, Alkyletherphosphate und Alkylethercarboxylate können zwischen 1 bis 10 Ethylenoxid- oder Propylenoxideinheiten, bevorzugt 1 bis 3 Ethylenoxideinhei- ten im Molekül aufweisen.
Dazu zählen z.B. Natriumlaurylsulfat, Ammoniumtaurytsulfat, Natriumlaurylethersulfat, Ammoniumlaurylethersulfat, Natriumlaurylsarkosinat, Natriumoleylsuccinat, Ammoni- umlauryl-sulfosuccinat, Natriumdodecylbenzolsulfonat, Triethanolamindodecylbenzol- sulfonat.
Geeignete amphotere Tenside sind z.B. Alkylbetaine, Alkylamidopropylbetaine, Alkyl- sulfobetaine, Alkylglycinate, Alkylcarboxyglycinate, Alkylamphoacetate oder - propionate, Alkylamphodiacetate oder -dipropionate.
Beispielsweise können Cocodimethylsulfopropylbetain, Laurylbetain, Cocamidopropyl- betain oder Natriumcocamphopropionat eingesetzt werden. Als nichtionische Tenside sind beispielsweise geeignet die Umsetzungsprodukte von aliphatischen Alkoholen oder Alkylphenolen mit 6 bis 20 C-Atomen in der Alkylkette, die linear oder verzweigt sein kann, mit Ethylenoxid und/oder Propylenoxid. Die Menge Alkylenoxid beträgt ca. 6 bis 60 Mole auf ein Mol Alkohol. Ferner sind Alkylaminoxide, Mono-oder Dialkylalkanolamide, Fettsäureester von Polyethylenglykolen, ethoxylierte Fettsäureamide, Alkylpolyglycoside oder Sorbitanetherester geeignet.
Ausserdem können die Wasch-, Dusch- und Badepräparate übliche kationische Tensi- de enthalten, wie z.B. quaternäre Ammoniumverbindungen, beispielsweise Cetyltri- methylammoniumchlorid.
Weiterhin können die Duschgel-/Shampoo-Formulierungen Verdicker, wie z.B. Kochsalz, PEG-55, Propylenglykol-Oleat, PEG-120-Methylglucosedioleat und andere, so- wie Konservierungsmittel, weitere Wirk- und Hilfsstoffe und Wasser enthalten.
Haarbehandlungsmittel
Nach einer weiteren bevorzugten Ausführungsform handelt es sich bei den erfindungsgemäßen Dermokosmetika um Haarbehandlungsmittel.
Vorzugsweise liegen die erfindungsgemäßen Haarbehandlungsmittel in Form eines Schaumfestigers, Haarmousses, Haargels, Shampoos, Haarsprays, Haarschaums, Spitzenfluids, Egalisierungsmittels für Dauerwellen, Haarfärbe- und -bleichmittels oder "Hot-Oil-Treatments" vor. Je nach Anwendungsgebiet können die haarkosmetischen Zubereitungen als (Aerosol-) Spray, (Aerosol-) Schaum, Gel, Gelspray, Creme, Lotion oder Wachs appliziert werden. Haarsprays umfassen dabei sowohl Aerosolsprays als auch Pumpsprays ohne Treibgas. Haarschäume umfassen sowohl Aerosolschäume wie auch Pumpschäume ohne Treibgas. Haarsprays und Haarschäume umfassen vorzugsweise überwiegend oder ausschließlich wasserlösliche oder wasserdispergierbare Komponenten. Sind die in den erfindungsgemäßen Haarsprays und Haarschäumen eingesetzten Verbindungen wasserdispergierbar, können sie in Form von wässrigen Mikrodispersionen mit Teilchendurchmessern von üblicherweise 1 bis 350 nm, bevorzugt 1 bis 250 nm, zur Anwendung gebracht werden. Die Feststoffgehalte dieser Präparate liegen dabei üblicherweise in einem Bereich von etwa 0,5 bis 20 Gew.-%. Diese Mikrodispersionen benötigen in der Regel keine Emulgatoren oder Tenside zu ihrer Stabilisierung.
Unter weiteren Bestandteilen sind die in der Kosmetik üblichen Zusätze zu verstehen, beispielsweise Treibmittel, Entschäumer, grenzflächenaktive Verbindungen, d.h. Ten- side, Emulgatoren, Schaumbildner und Solubilisatoren. Die eingesetzten grenzflächenaktiven Verbindungen können anionisch, kationisch, amphoter oder neutral sein. Weitere übliche Bestandteile können ferner sein z.B. Konservierungsmittel, Parfümöle, Trübungsmittel, Wirkstoffe, UV-Filter, Pflegestoffe wie Panthenol, Collagen, Vitamine, Eiweisshydrolysate, Alpha- und Beta-Hydroxycarbonsäuren, Stabilisatoren, pH-Wert- Regulatoren, Farbstoffe, Viskositätsregulierer, Gelbildner, Salze, Feuchthaltemittel, Rückfetter, Komplexbildner und weitere übliche Additive.
Weiterhin zählen hierzu alle in der Kosmetik bekannten Styling- und Conditioner- Polymere, die in Kombination mit den erfindungsgemäßen Mikrokapseln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W-Dispersionenn eingesetzt werden können, falls ganz spezielle Eigenschaften eingestellt werden sollen.
Als herkömmliche Haarkosmetik-Polymere eignen sich beispielsweise die zuvor ge- nannten kationischen, anionischen, neutralen, nichtionischen und amphoteren Polymere, auf die hier Bezug genommen wird.
Zur Einstellung bestimmter Eigenschaften können die Zubereitungen zusätzlich auch konditionierende Substanzen auf Basis von Silikonverbindungen enthalten. Geeignete Silikonverbindungen sind beispielsweise Polyalkylsiloxane, Polyarylsiloxane, Polyary- lalkylsiloxane, Polyethersiloxane, Silikonharze oder Dimethicon Copolyole (CTFA) und aminofunktionelle Silikonverbindungen wie Amodimethicone (CTFA).
Treibmittel sind die für Haarsprays oder Aerosolschäume üblich verwendeten Treibmit- tel. Bevorzugt sind Gemische aus Propan/Butan, Pentan, Dimethylether, 1 ,1- Difluorethan (HFC-152 a), Kohlendioxid, Stickstoff oder Druckluft.
Als Emulgatoren können alle in Haarschäumen üblicherweise eingesetzten Emulgatoren verwendet werden. Geeignete Emulgatoren können nichtionisch, kationisch bzw. anionisch oder amphoter sein. Beispiele für nichtionische Emulgatoren (INCI- Nomenklatur) sind Laurethe, z.B. Laureth-4 ; Cetethe, z.B. Cetheth-1 , Polyethylengly- colcetylether, Cetearethe, z.B. Cetheareth-25, Polyglycolfettsäureglyceride, hydroxy- liertes Lecithin, Lactylester von Fettsäuren, Alkylpolyglycoside.
Beispiele für kationische Emulgatoren sind Cetyldimethyl-2-hydroxyethylammonium- dihydrogenphosphat, Cetyltrimoniumchlorid, Cetyltrimmoniumbromid, Cocotrimonium- methylsulfat, Quaternium-1 bis x (INCI).
Anionische Emulgatoren können beispielsweise ausgewählt werden aus der Gruppe der Alkylsulfate, Alkylethersulfate, Alkylsulfonate, Alkylarylsulfonate, Alkylsuccinate, Alkylsulfosuccinate, N-Alkoylsarkosinate, Acyltaurate, Acylisethionate, Alkylphosphate, Alkyletherphosphate, Alkylethercarboxylate, Alpha-Olefinsulfonate, insbesondere die Alkali- und Erdalkalimetallsalze, z.B. Natrium, Kalium, Magnesium, Calcium, sowie Ammonium- und Triethanolamin-Salze. Die Alkylethersulfate, Alkyletherphosphate und Alkylethercarboxylate können zwischen 1 bis 10 Ethylenoxid oder Propylenoxid- Einheiten, bevorzugt 1 bis 3 Ethylenoxid-Einheiten im Molekül aufweisen.
Als Gelbildner können alle in der Kosmetik üblichen Gelbildner eingesetzt werden. Hierzu zählen leicht vernetzte Polyacrylsäure, beispielsweise Carbomer (INCI), CeIIu- losederivate, z.B. Hydroxypropylcellulose, Hydroxyethylcellulose, kationisch modifizierte Cellulosen, Polysaccharide, z.B. Xanthangummi, Capryl/Caprin-Triglycerid, Natriu- macrylat-Copolymere, Polyquaternium-32 (und) Paraffinum Liquidum (INCI), Natriu- macrylat-Copolymere (und) Paraffinum Liquidum (und) PPG-1 Trideceth-6, Acrylami- dopropyltrimoniumchlorid / Acrylamid-Copolymere, Steareth-10-Allylether, Acrylat- Copolymere, Polyquaternium-37 (und) Paraffinum Liquidum (und) PPG-1 Trideceth-6, Polyquaternium 37 (und) Propylenglycoldicapratdicaprylat (und) PPG-1 Trideceth-6, Polyquaternium-7, Polyquaternium-44.
In den Shampooformulierungen können alle in Shampoos üblicherweise eingesetzten anionischen, neutralen, amphoteren oder kationischen Tenside verwendet werden.
Geeignete anionische Tenside sind beispielsweise Alkylsulfate, Alkylethersulfate, Alkylsulfonate, Alkylarylsulfonate, Alkylsuccinate, Alkylsulfosuccinate, N- Alkoylsarkosinate, Acyltaurate, Acylisothionate, Alkylphosphate, Alkyletherphosphate, Alkylethercarboxylate, Alpha-Olefinsulfonate, insbesondere die Alkali- und Erdalkalimetallsalze, z.B. Natrium, Kalium, Magnesium, Calcium, sowie Ammonium- und Triethanolamin-Salze. Die Alkylethersulfate, Alkyletherphosphate und Alkylethercarboxylate können zwischen 1 bis 10 Ethylenoxid- oder Propylenoxid- Einheiten, bevorzugt 1 bis 3 Ethylenoxid-Einheiten im Molekül aufweisen.
Geeignet sind zum Beispiel Natriumlaurylsulfat, Ammoniumlaurysulfat, Natriumlaury- lethersulfat, Ammoniumlaurylethersulfat, Natriumlauroylsarkosinat, Natriumoleylsucci- nat, Ammoniumlaurylsulfosuccinat, Natriumdodecylbenzolsulfonat, Triethanolamindo- decylbenzolsulfonat.
Geeignete amphotere Tenside sind zum Beispiel Alkylbetaine, Alkylamidopropylbetai- ne, Alkylsulfobetaine, Alkylglycinate, Alkylcarboxyglycinate, Alkylamphoacetate oder - propionate, Alkylamphodiacetate oder -dipropionate.
Beispielsweise können Cocodimethylsulfopropylbetain, Laurylbetain, Cocamidopropyl- betain oder Natriumcocamphopropionat eingesetzt werden.
Als nichtionische Tenside sind beispielsweise geeignet die Umsetzungsprodukte von aliphatischen Alkoholen oder Alkylphenolen mit 6 bis 20 C-Atomen in der Alkylkette, die linear oder verzweigt sein kann, mit Ethylenoxid und/oder Propylenoxid. Die Menge Alkylenoxid beträgt ca. 6 bis 60 Mole auf ein Mol Alkohol. Ferner sind Alkylaminoxide, Mono- oder Dialkylalkanolamide, Fettsäureester von Polyethylenglykolen, Alkylpolygly- koside oder Sorbitanetherester geeignet.
Ausserdem können die Shampooformulierungen übliche kationische Tenside enthal- ten, wie z.B. quaternäre Ammoniumverbindungen, beispielsweise Cetyltrimethylammo- niumchlorid.
In den Shampooformulierungen können zur Erzielung bestimmter Effekte übliche Kon- ditioniermittel in Kombination mit den erfindungsgemäßen Mikrokapseln bzw. die ge- maß dem erfindungsgemäßen Verfahren hergestellten O/W-Dispersionenn eingesetzt werden.
Hierzu zählen beispielsweise die zuvor genannten kationischen Polymere mit der Bezeichnung Polyquaternium nach INCI, insbesondere Copolymere aus Vinylpyrrolidon/ N-Vinylimidazoliumsalzen (Luviquat FC, Luviquat&commat, HM, Luviquat MS, Luviquat Care), Copolymere aus N-Vinylpyrrolidon/Dimethylaminoethylmethacrylat, quaternisiert mit Diethylsulfat (Luviquat D PQ 1 1 ), Copolymere aus N-Vinylcaprolactam/N- Vinylpyrrolidon/N-Vinylimidazoliumsalzen (Luviquat D Hold), kationische Cellulosederi- vate (Polyquaternium-4 und -10), Acrylamidcopolymere (Polyquaternium-7). Ferner können Eiweißhydrolysate verwendet werden, sowie konditionierende Substanzen auf Basis von Silikonverbindungen, beispielsweise Polyalkylsiloxane, Polyarylsiloxane, Polyarylalkylsiloxane, Polyethersiloxane oder Silikonharze. Weitere geeignete Silikonverbindungen sind Dimethicon Copolyole (CTFA) und aminofunktionelle Silikonverbindungen wie Amodimethicone (CTFA). Ferner können kationische Guarderivate wie Guarhydroxypropyltrimoniumchlorid (INCI) verwendet werden.
Nach einer weiteren Ausführungsform dient diese haarkosmetische oder hautkosmetische Zubereitung der Pflege oder dem Schutz der Haut oder Haars und liegt in Form einer Emulsion, einer Dispersion, einer Suspension, einer wässrigen Tensidzube- reitung, einer Milch, einer Lotion, einer Creme, eines Balsams, einer Salbe, eines Gels, eines Granulats, eines Puders, eines Stiftpräparates, wie z.B. eines Lippenstifts, eines Schaums, eines Aerosols oder eines Sprays vor. Solche Formulierungen sind gut geeignet für topische Zubereitungen. Als Emulsionen kommen ÖI-in-Wasser-Emulsionen und Wasser-in-ÖI-Emulsionen oder Mikroemulsionen in Frage.
Im Regelfall wird die haarkosmetische oder hautkosmetische Zubereitung zur Applikation auf der Haut (topisch) oder Haar verwendet. Unter topischen Zubereitungen sind dabei solche Zubereitungen zu verstehen, die dazu geeignet sind, die Wirkstoffe in feiner Verteilung und bevorzugt in einer durch die Haut resorbierbaren Form auf die Haut aufzubringen. Hierfür eignen sich z.B. wässrige und wässrig-alkoholische Lösungen, Sprays, Schäume, Schaumaerosole, Salben, wässrige Gele, Emulsionen vom O/W- oder W/O-Typ, Mikroemulsionen oder kosmetische Stiftpräparate. Nach einer bevorzugten Ausführungsform des erfindungsgemäßen dermokosmeti- schen Mittels enthält das Mittel einen Träger. Bevorzugt als Träger ist Wasser, ein Gas, eine Wasser-basierte Flüssigkeit, ein Öl, ein Gel, eine Emulsion oder Mikroemul- sion, eine Dispersion oder eine Mischung davon. Die genannten Träger zeigen eine gute Hautverträglichkeit. Besonders vorteilhaft für topische Zubereitungen sind wässri- ge Gele, Emulsionen oder Mikroemulsionen.
Als Emulgatoren können nichtionogene Tenside, zwitterionische Tenside, ampholyti- sche Tenside oder anionische Emulgatoren verwendet werden. Die Emulgatoren kön- nen in der erfindungsgemäßen Zusammensetzung in Mengen von 0,1 bis 10, vorzugsweise 1 bis 5 Gew.-%, bezogen auf die Zusammensetzung, enthalten sein.
Als nichtionogenes Tensid kann beispielsweise ein Tensid aus mindestens einer der folgenden Gruppen verwendet werden:
Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe;
Ci2/18-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin; Glycerinmono- und -diester und Sorbitanmono- und -diester von gesättigten und ungesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen und deren Ethylenoxidanlagerungsprodukte; Alkylmono- und -oligoglycoside mit 8 bis 22 Kohlenstoffatomen im Alkylrest und deren ethoxylierte Analoga; Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl; Polyol- und insbesondere Polyglycerinester, wie z.B. Polyglycerinpolyricinoleat, Polygl ycerinpoly-12- hydroxystearat oder Polyglycerindimerat. Ebenfalls geeignet sind Gemische von Verbindungen aus mehreren dieser Substanzklassen; Anlagerungsprodukte von 2 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
Partialester auf Basis linearer, verzweigter, ungesättigter bzw. gesättigter C6/22 - Fettsäuren, Ricinolsäure sowie 12-Hydroxystearinsäure und Glycerin, Polyglycerin, Pentaerythrit, Dipenta-erythrit, Zuckeralkohole (z. B. Sorbit), Alkylglucoside (z.B. Me- thylglucosid, Butylglucosid, Lauryl-glucosid) sowie Polyglucoside (z.B. Cellulose); Mo- no-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze;
Wollwachsalkohole;
Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate; Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE PS 1 165574 und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methyl- glucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin sowie Polyalkylengly- cole. Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Car- boxylat- oder eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosalkyldimethyl-ammoniumglycinat, N-Acylamino-propyl-N,N dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyldimethylam- monium-glycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxy-ethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydro- xyethyl-carboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat.
Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktive Verbindungen verstanden, die außer einer C8,i8-Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SCbH-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N- Alkylpropionsäuren , N-Alkylamino-buttersäuren , N Alkyliminodipropionsäuren, N- Hydroxyethyl-N-alkylamido-propylglycine, N-Alkyltaurine, N Alkylsarcosine, 2- Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C- Atomen in der Alkylgruppe.
Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, Kokosacylaminoethylaminopropionat und das Ci2/18-Acylsarcosin. Neben den ampholytischen kommen auch quartäre Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methyl-quaternierte Difettsäuretriethanolaminester-Salze, besonders bevorzugt sind. Des weiteren können als anionische Emulgatoren Alky- lethersulfate, Monoglyceridsulfate, Fettsäuresulfate, Sulfosuccinate und/oder Ethercar- bonsäuren eingesetzt werden.
Als Ölkörper kommen Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22-Fettsäuren mit linearen C6-C22-Fettaikohoien, Ester von verzweigten C6-Ci3-Carbonsäuren mit linearen Ce- C22-Fettalkoholen, Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis Cβ-Cio-Fettsäuren, flüssige Mono-/Di-, Trigly- ceridmischungen auf Basis von C6-Cis-Fettsäuren, Ester von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-Ci2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohe- xane, lineare C6-C22-Fettalkoholcarbonate, Guerbetcarbonate, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen (z.B. Finsolv® TN), Dialkylether, Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe in Betracht. Als Ölkör- per können ferner auch Siliconverbindungen eingesetzt werden, beispielsweise Di- methylpolysiloxane, Methylphenylpolysiloxane, cyclische Silicone sowie amino-, fett- säure-, alkohol-, polyether-, epoxy-, fluor-, alkyl- und/oder glykosidmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Die Ölkörper können in den erfindungsgemäßen Mitteln in Mengen von 1 bis 90, vorzugsweise 5 bis 80, und insbesondere 10 bis 50 Gew.-%, bezogen auf die Zusammensetzung enthalten sein.
Die Liste der genannten Inhaltstoffe, die gemeinsam mit den erfindungsgemäßen bzw. gemäß dem erfinderischen Verfahren hergestellten Mikrokapseln bzw. die gemäß dem erfindungsgemäßen Verfahren hergestellten O/W-Dispersionen verwendet werden können, soll selbstverständlich nicht als abschließend oder limitierend betrachtet werden. Die Inhaltsstoffe können einzelnen oder in beliebigen Kombinationen miteinander verwendet werden.
Experimentelle Beispiele
Die folgenden Beispiele werden offenbart um bevorzugte Ausführungsformen der vorliegenden Erfindung zu illustrieren. Diese Beispiele sind nicht als abschließend oder den Erfindungsgegestand limitierend zu betrachten.
In der experimentellen Beschreibung werden folgende Abkürzungen verwendet: (2-Amino-2-Methyl-Propanol) AMP, (Grad Celsius) C°, (Ethylendiamintetraessigsäure) EDTA, , (1 ,1-Difluorethan) HFC 152, (International Nomenclature of Cosmetic Ingre- dients) INCI, (Milliliter) ml_, (Minuten) min., (Öl/Wasser) O/W, (Polyethylenglykol) PEG- 25, (Para Amino Benzoesäure) PABA, (parts per million) ppm, (quantum satis) q.s, (Vinylpyrrolidone) VP, (Wasser/Öl) W/O, (Wirkstoff) WS, (Polyvinylpyrrolydone) PVP.
Beispiel 1 :
Im einem Stickstoff-gespülten 2I Rühr-Reaktor wird ein Gemisch von 9,5 g Culminal MHPC 400 (Methylhydroxypropylcellulose, Fa. Aqualon), 47.6 g eines Polyvinylalkohol, teilhydrolysiert Mowiol 15-79 (10% in Wasser) und 460g VE-Wasser vorgelegt. Zu der wässrigen Phase wird Gemisch von 206.4 Retinol 15%ig in Delios (Caprylic/Capric Triglyceride) und 51.6 g Polyisocyanat-Mischung (0.25mol NCO), bestehend 70 Teilen eines HDI-Cyanurat (22% NCO, ) und 30 Teilen eines IPDI-Cyanurat (17% NCO1) bei 20°C zugegeben. Mittels einer Dispergierscheibe aus Edelstahl (0 7 cm) wird die Mischung mit einer Drehzahl von 600 U/min (RZR 2102control, Fa. Heidolph) für 10 min. bei Raumtemperatur dispergiert. Bei 10°C wird innerhalb von 2 h die Amin-Komponente, bestehend aus einer Mischung aus 120 g Wasser, 15.2 g einer polymeren Aminkomponente ( (Polyvinylamin, (27.2%, 95 % Hydrolysegrad hydrolysiert, Mw = 53.000 da) und 8.7 g Diethylentriamin (0.25 mol Stickstoff) hinzugetropft. Die Dispersion wird für 90 min. bei 60°C gerührt, dann auf 20°C abgekühlt, noch 6 g Aminopropanol hinzugegeben und für weitere 60min. gerührt. Man erhält eine milchig-gelbe Dispersion mit einem Teilchendurchmesser von 10 - 30 μm (Bestimmung per Lichtmikroskop) und einem Feststoffgehalt von 28.9%. Das Verhältnis von Kapselwandung zur Kapselkern beträgt 20:80.
Beispiel 1 a:
Die Dispersion aus Beispiel 1 wurde mittels eines Sprühtrockner der Fa. Büchi (Zweistoffdüse 0 1.3 mm Teflon, 60°C) getrocknet. Man erhält ein leicht gelbes Pulver mit einem Teilchendurchmesser von 15- 50 μm.
Beispiel 2:
Wie Beispiel 1 , aber mit einer 47.7 g einer Polyisocyanat-Mischung ( 0.25 mol NCO) besteht aus 50 Teilen HDI-Cyanurat und (22%NCO) und 50 Teilen HDI-Biuret (22% NCO1)
Beispiel 2a:
Die Dispersion aus Beispiel 2 wurde mittels eines Sprühtrockner der Fa. Büchi (Zweistoffdüse 0 1.3 mm Teflon, 60°C) getrocknet. Man erhält ein leicht gelbes Pulver mit einem Teilchendurchmesser von 15- 55 μm.
Beispiel 3:
Wie Beispiel 1 , aber mit 206.4g Retinolpalmitat (100%) statt Retinol (15%ig in Delios (Caprylic/Capric Triglyceride))
Beispiel 3a: Die Dispersion aus Beispiel 3 wurde mittels eines Sprühtrockner der Fa. Büchi (Zweistoffdüse 0 1.3 mm Teflon, 60°C) getrocknet. Man erhält ein Pulver mit einem Teilchendurchmesser von 10 - 60 μm.
Beispiel 4: Wie Beispiel 1 , aber mit 7.5 g eines niedermolekularen Polyethylenimin (50%, Mw =1300 da) als polymere Aminkomponente.
Beispiel 4a:
Die Dispersion aus Beispiel 4 wurde mittels eines Sprühtrockner der Fa. Büchi (Zwei- stoffdüse 0 1.3 mm Teflon, 60°C) getrocknet. Man erhält ein leicht gelbes Pulver mit einem Teilchendurchmesser von 15-65 μm. Beispiel 5: Wie Beispiel 1 , aber mit einem Kern-Schale-Verhältnis von 50:50 129 g Retinol 15%ig in Delios (Caprylic/Capric Triglyceride)und 129g Polyisocyanat-Mischung, bestehend 70 Teilen eines HDI-Cyanurat (22% NCO1) und 30 Teilen eines IPDI-Cyanurat (17% NCO1)
Beispiel 5a:
Die Dispersion aus Beispiel 5 wurde mittels eines Sprühtrockner der Fa. Büchi (Zweistoffdüse 0 1.3 mm Teflon, 60°C) getrocknet. Man erhält ein leicht gelbes Pulver mit einem Teilchendurchmesser von 10-55 μm.
Vergleichsbeispiel 1 :
In einem Stickstoff-gespülten 2I Rühr-Reaktor wird ein Gemisch von 9,5 g Culminal MHPC 400 (Methylhydroxypropylcellulose, Fa. Aqualon), 47.6 g eines Polyvinylalkohol, teilhydrolysiert Mowiol 15-79 (10% in Wasser) und 460 g VE-Wasser vorgelegt. Zu der wässrigen Phase wird Gemisch von 206.4 Retinol 15%ig in Delios (Caprylic/Capric Triglyceride) und 51.6 g Polyisocyanat-Mischung (0.25 mol NCO), bestehend 70 Teilen eines HDI-Cyanurat (22% NCO) und 30 Teilen eines IPDI-Cyanurat (17% NCO1) bei 20°C zugegeben. Mittels einer Dispergierscheibe aus Edelstahl (0 7 cm) wird die Mischung mit einer Drehzahl von 600 U/min (RZR 2102control, Fa. Heidolph) für 10 min. bei Raumtemperatur dispergiert.
Bei 10°C wird innerhalb von 2 h die Amin-Komponente, bestehend aus einer Mischung aus 120 g Wasser, 10.5 g Diethylentriamin (0.3 mol Stickstoff) hinzugetropft. Die Dispersion wird für 90 min. bei 60°C gerührt, dann auf 20°C abgekühlt, noch 6 g Ami- nopropanol hinzugegeben und für weitere 60min. gerührt. Man erhält eine milchiggelbe Dispersion mit einem Teilchendurchmesser von 10 - 30 μm (Bestimmung per Lichtmikroskop) und einem Feststoffgehalt von 28.9%. Das Verhältnis von Kapselwandung zur Kapselkern beträgt 20:80.
Die Dispersion aus Vergleichs-Beispiel 1 wurde mittels eines Sprühtrockner der Fa.
Büchi (Zweistoffdüse 0 1.3 mm Teflon) getrocknet. Man erhält ein leicht gelbes Pulver mit einem Teilchendurchmesser von 20-50 μm.
Figure imgf000065_0001
Figure imgf000066_0001
6. Anwendungstechnische Methode: a) Test in Creme-Emulsion mit verschiedenen nach Beispiel 1 , 2, 4, 5, Vergleichsbeispiel 1 hergestellten mikroverkapseltem Retinol 15D.
Emulsion: O/W-Emulsion, Herstellung ohne Argon A 2,0 Cremophor A δ Ceteareth-6, Stearvl Alcohol
2,0 Cremophor A 25 Ceteareth-25 3,0 Joiobaöl Simmondsia Chinensis (Joioba) Seed OiI
3,0 La nette O Cetearvl Alcohol
10,0 Paraffinöl Mineral OiI 5,0 Vaseline Petrolatum
4,0 Miqlvol 812 Caprvlic/Capric Triqlvceride B 5,0 1 ,2-Propvlenqlvkol Care Propvlene Glvcol
0,1 Edeta BD Disodium EDTA
20,0 Carbopol 934 1 % in Wasser Carbomer 0,3 Chemaq 2000 Imidazolidinvl Urea
44,6 Wasser dem. Aqua dem. C 0,8 Natriumhydroxid 10% in Wasser Sodium Hvdroxide
D 0,2 Phenoxvethanol Phenoxvethanol
100,0
Herstellung: Die Phasen A und B getrennt voneinander auf ca. 800C erwärmen. Phase B in Phase A einrühren und homogenisieren. Phase C einrühren und erneut homogenisieren. Unter Rühren auf ca. 400C abkühlen, Phase D einarbeiten, homogenisieren und kaltrühren. 98.Oq bzw. 99.6q Emulsion werden in einem 250ml Becherqlas vorgelegt, 2g Retinol-Kapseln bzw. 0.4g Retinol 15D zugegeben und mit dem Blattrührer bei 120 Umdr./min ca. 2h gerührt. Konzentration: * Wirkstoffgehalt der Mikrokapseln ca. 3% - Retinol
* Wirkstoffgehalt in Emulsion ca. 500ppm Bemerkung: * Herstellung und Lagerung der Emulsionen erfolgen ohne Schutzgas!
Lagerung -
Emulsion: Alu-Tuben bei 400C (Lagerung ohne weiteren Sauerstoffzutritt; pro Analysenzeitpunkt 2 separate Tuben, Ausgangswert Homogenitätstest mit 3 Tuben)
Prüfzeitpunkte: 0, 3, 6, 9 und 12 Wochen
Wirkstoffgehalt der Emulsion: 500 ppm Retinol
Wiederfin- dungsrate [%]
Startwert nach 3Wo nach 6Wo nach 9Wo nach 12Wo
Mikroverkapseltes Retinol 15D (gemäß Beispiel 1) 100,0 90,0 98,0 85,0 88,0 Mikroverkapseltes Retinol 15D (gemäß Beispiel 2) 100,0 89,0 91 ,0 89,0 80,0 Mikroverkapseltes Retinol 15D (gemäß Beispiel 4) 100,0 82,0 90,0 81 ,0 81 ,0 Mikroverkapseltes Retinol 15D (gemäß Beispiel 5) 100,0 88,0 93,0 84,0 83,0 Retinol 15D 100,0 65,8 44,9 45,4 39,5
Mikroverkapseltes Retinol 15D (gemäß Vergleichsbeispiel 1) 100 27,7 20,4 - -
b) Stabilität von verschiedene nach Beispiel 1 , 2, 4, 5, Vergleichsbeispiel 1 hergestellten mikroverkapseltem Retinol 15D Produkten:
Lagerung: Alu-Flaschen bei 40°C
Startwert
Sollwert Gehalt Gehalt
[IU] [IU] [%]
Mikroverkapseltes Retinol 15D (gemäß Beispiel 1) 100 000 115 000 3,5
Mikroverkapseltes Retinol 15D (gemäß Beispiel 2) 100 000 97 100 2,9
Mikroverkapseltes Retinol 15D (gemäß Beispiel 4) 100 000 69 600 2,1
Mikroverkapseltes Retinol 15D (gemäß Beispiel 5) 100 000 86 200 2,6
Retinol 15D 500 000 487 000 14,6
Mikroverkapseltes Retinol 15D (gemäß Vergleichsbeispiel 1) 100 000 122 000 3,7
Wiederfindungsrate [%]
AGW nach 3Wo nach 6Wo nach 9Wo nach 12Wo
Mikroverkapseltes Retinol 15D (gemäß Beispiel 1) 100,0 81 ,3 77,2 64,8 52,9 Mikroverkapseltes Retinol 15D (gemäß Beispiel 2) 100,0 84,8 89,5 73,8 71 ,9 Mikroverkapseltes Retinol 15D (gemäß Beispiel 4) 100,0 86,0 83,0 76,0 64,0 Mikroverkapseltes Retinol 15D (gemäß Beispiel 5) 100,0 92,0 94,0 82,0 64,0 Retinol 15D 100,0 86,3 71 ,3 47,2 32,8
Mikroverkapseltes Retinol 15D (gemäß Vergleichsbeispiel 1) 100 11 ,8 Im Folgenden sind erfindungsgemäße dermokosmetische Zubereitungen beschrieben, enthaltend die gemäß Beispiel 1 hergestellte O/W Dispersion. Besagte O/W Dispersion wird in den folgenden Beispielen als „O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D" bezeichnet. Die „O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D" wird in den folgenden Beispielen stellvertretend für alle anderen oben beschriebenen O/W Dispersionen enthaltend mikroverkapselte lipohile Verbindungen genannt.
Es ist für den Fachmann selbstverständlich, dass auch alle anderen genannten lipohi- len Verbindungen gemäß Beispiel 1 mikroverkapselt werden können und in Form von O/W Emulsionen in den folgenden Zubereitungen verwendet werden können.
Beispiel 7: Verwendung der O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D in einer Emulsion zur Tagespflege - Typ O/W
WS 1 %:
% Inhaltsstoff (INCI)
A 1 ,7 Ceteareth-6, Stearyl Alcohol
0,7 Ceteareth-25
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
2,0 PEG-14 Dimethicone
3,6 Cetearyl Alcohol
6,0 Ethylhexyl Methoxycinnamate
2,0 Dibutyl Adipate
B 5,0 Glycerin
0,2 Disodium EDTA
1 ,0 Panthenol q.s. Konservierungsmittel
67,8 Aqua dem.
C 4,0 Caprylic/Capric Triglyceride, Sodium Acrylates Copolymer
D 0,2 Sodium Ascorbyl Phosphate
1 ,0 Tocopheryl Acetate
0,2 Bisabolol
1 ,0 Caprylic/Capric Triglyceride, Sodium Ascorbate, Tocopherol, Retinol
1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1%)
Eq. s. Sodium Hydroxide
WS 5%:
% Inhaltsstoff (INCI)
A 1 ,7 Ceteareth-6, Stearyl Alcohol 0,7 Ceteareth-25
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
2,0 PEG-14 Dimethicone
3,6 Cetearyl Alcohol
6,0 Ethylhexyl Methoxycinnamate 2,0 Dibutyl Adipate
B 5,0 Glycerin
0,2 Disodium EDTA 1 ,0 Panthenol q.s. Konservierungsmittel
63,8 Aqua dem.
C 4,0 Caprylic/Capric Triglyceride, Sodium Acrylates Copolymer
D 0,2 Sodium Ascorbyl Phosphate
1 ,0 Tocopheryl Acetate
0,2 Bisabolol
1 ,0 Caprylic/Capric Triglyceride, Sodium Ascorbate, Tocopherol, Retinol
5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%) E E qq..ss.. Sodium Hydroxide
Herstellung: Die Phasen A und B getrennt voneinander auf ca. 800C erwärmen. Phase B in Phase A einrühren und homogenisieren. Phase C in die kombinierten Phasen A und B einrühren und nochmals homogenisieren. Unter Rühren auf ca. 400C abkühlen, Phase D zugeben, den pH-Wert mit Phase E auf etwa 6.5 einstellen, homogenisieren und unter Rühren auf Raumtemperatur abkühlen.
Hinweis: Die Formulierung wird ohne Schutzgas hergestellt. Die Abfüllung muß in sauerstoffundurchlässige Verpackungen, z.B. Aluminiumtuben erfolgen.
Beispiel 8: Verwendung der O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D in einer schützenden Tagescreme - Typ O/W
WS 1 %:
% Inhaltsstoff (INCI)
A 1 ,7 Ceteareth-6, Stearyl Alcohol
0,7 Ceteareth-25
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
2,0 PEG-14 Dimethicone
3,6 Cetearyl Alcohol
6,0 Ethylhexyl Methoxycinnamate
2,0 Dibutyl Adipate
B 5,0 Glycerin
0,2 Disodium EDTA
1 ,0 Panthenol q.s. Konservierungsmittel
68,6 Aqua dem.
C 4,0 Caprylic/Capric Triglyceride, Sodium Acrylates Copolymer
D 1 ,0 Sodium Ascorbyl Phosphate
1 ,0 Tocopheryl Acetate
0,2 Bisabolol
1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %)
E q.s. Sodium Hydroxide
WS 5%:
% Inhaltsstoff (INCI)
A 1 ,7 Ceteareth-6, Stearyl Alcohol
0,7 Ceteareth-25 2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
2,0 PEG-14 Dimethicone
3,6 Cetearyl Alcohol
6,0 Ethylhexyl Methoxycinnamate
2,0 Dibutyl Adipate
B 5,0 Glycerin
0,2 Disodium EDTA
1 ,0 Panthenol q.s. Konservierungsmittel
64,6 Aqua dem.
C 4,0 Caprylic/Capric Triglyceride, Sodium Acrylates Copolymer
D 1 ,0 Sodium Ascorbyl Phosphate
1 ,0 Tocopheryl Acetate
0,2 Bisabolol
5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
E q.s. Sodium Hydroxide
Herstellung: Die Phasen A und B getrennt voneinander auf ca. 800C erwärmen. Phase B in Phase A einrühren und homogenisieren. Phase C in die kombinierten Phasen A und B einarbei- ten und homogenisieren. Unter Rühren auf ca. 400C abkühlen. Phase D hinzugeben, den pH- Wert mit Phase E auf ca. 6.5 einstellen und homogenisieren. Unter Rühren auf Raumtemperatur abkühlen.
Beispiel 9: Verwendung der O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D in einer Gesichtsreinigungslotion - Typ O/W WS 1 %:
% Inhaltsstoff (INCI)
A 10,0 Cetearyl Ethylhexanoate
10,0 Caprylic/Capric Triglyceride 1 ,5 Cyclopentasiloxane, Cyclohexasilosane
2,0 PEG-40 Hydrogenated Castor OiI
B 3,5 Caprylic/Capric Triglyceride, Sodium Acrylates Copolymer
C 1 ,0 Tocopheryl Acetate
0,2 Bisabolol q.s. Konservierungsmittel q.s. Parfümöl
D 3,0 Polyquaternium-44
0,5 Cocotrimonium Methosulfate
0,5 Ceteareth-25 2,0 Panthenol, Propylene Glycol
4,0 Propylene Glycol
0,1 Disodium EDTA
1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %)
60,7 Aqua dem. WS 5%:
% Inhaltsstoff (INCI)
A 10,0 Cetearyl Ethylhexanoate
10,0 Caprylic/Capric Triglyceride 1 ,5 Cyclopentasiloxane, Cyclohexasilosane
2,0 PEG-40 Hydrogenated Castor OiI
B 3,5 Caprylic/Capric Triglyceride, Sodium Acrylates Copolymer
C 1 ,0 Tocopheryl Acetate
0,2 Bisabolol q.s. Konservierungsmittel q.s. Parfümöl
D 3,0 Polyquaternium-44
0,5 Cocotrimonium Methosulfate
0,5 Ceteareth-25
2,0 Panthenol, Propylene Glycol
4,0 Propylene Glycol
0,1 Disodium EDTA
5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
56,7 Aqua dem.
Herstellung: Phase A lösen. Phase B in Phase A einrühren, Phase C in die kombinierten Phasen A und B einarbeiten. Phase D lösen, in die kombinierten Phasen A, B und C einrühren und homogenisieren. 15min nachrühren.
Beispiel 10: Verwendung der O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D in einem Daily Care Body Spray
WS 1 %: % Inhaltsstoff (INCI)
A 3,0 Ethylhexyl Methoxycinnamate
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
1 ,0 Polyquaternium-44
3,0 Propylene Glycol 2,0 Panthenol, Propylene Glycol
1 ,0 Cyclopentasiloxane, Cyclohexasiloxane
10,0 Octyldodecanol
0,5 PVP
10,0 Caprylic/Capric Triglyceride 3,0 C12-15 AI kyl Benzoate
3,0 Glycerin
1 ,0 Tocopheryl Acetate
0,3 Bisabolol
1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %) 59,2 Alcohol
WS 5%:
% Inhaltsstoff (INCI)
A 3,0 Ethylhexyl Methoxycinnamate 2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
1 ,0 Polyquaternium-44
3,0 Propylene Glycol
2,0 Panthenol, Propylene Glycol
1 ,0 Cyclopentasiloxane, Cyclohexasiloxane 10,0 Octyldodecanol
0,5 PVP
10,0 Caprylic/Capric Triglyceride
3,0 C12-15 AI kyl Benzoate
3,0 Glycerin 1 ,0 Tocopheryl Acetate
0,3 Bisabolol
5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
55,2 Alcohol
Herstellung: Die Komponenten der Phase A einwiegen und klar lösen.
11 : Verwendung der O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D in einem Hautpflegegel WS 1 %: % Inhaltsstoff (INCI)
A 3,6 PEG-40 Hydrogenated Castor OiI
15,0 Alcohol
0,1 Bisabolol 0,5 Tocopheryl Acetate q.s. Parfümöl
B 3,0 Panthenol
0,6 Carbomer
1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %)
75,4 Aqua dem,
C 0,8 Triethanolamine
WS ! 5%:
% Inhaltsstoff (INCI)
A 3,6 PEG-40 Hydrogenated Castor OiI
15,0 Alcohol
0,1 Bisabolol
0,5 Tocopheryl Acetate q.s. Parfümöl
B 3,0 Panthenol
0,6 Carbomer
5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
71 ,4 Aqua dem,
C 0.8 Triethanolamine
Herstellung: Die Phase A klar lösen. Phase B quellen lassen und mit Phase C neutralisieren. Phase A in die homogenisierte Phase B einrühren und homogenisieren.
Beispiel 12: Verwendung der O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D in einer After Shave Lotion
WS 1 %:
% Inhaltsstoff (INCI) A 10,0 Cetearyl Ethylhexanoate
5,0 Tocopheryl Acetate
1 ,0 Bisabolol
0,1 Parfümöl
0,3 Acrylates/C10-30 Alkyl Acrylate Crosspolymer B 15,0 Alcohol
1 ,0 Panthenol
3,0 Glycerin
1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %)
0,1 Triethanolamine 63,5 Aqua dem.
WS 5%:
% Inhaltsstoff (INCI)
A 10,0 Cetearyl Ethylhexanoate 5,0 Tocopheryl Acetate
1 ,0 Bisabolol
0,1 Parfümöl
0,3 Acrylates/C10-30 Alkyl Acrylate Crosspolymer B 15, ,0 Alcohol
1 , ,0 Panthenol
3, ,0 Glycerin
5, ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
0; ,1 Triethanolamine
59; ,5 Aqua dem.
Herstellung: Die Komponenten der Phase A mischen. Phase B lösen, in Phase A einarbeiten und homogenisieren.
Beispiel 13: Verwendung der O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D in einer After Sun Lotion WS 1 %:
% Inhaltsstoff (INCI) A 0,4 Acrylates/C10-30 Alkyl Acrylate Crosspolymer
15,0 Cetearyl Ethylhexanoate 0,2 Bisabolol 1 ,0 Tocopheryl Acetate q.s. Parfümöl B 1 ,0 Panthenol
15,0 Alcohol 3,0 Glycerin
1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %) 63,2 Aqua dem, C 0,2 Triethanolamine
WS 5%:
% Inhaltsstoff (INCI)
A 0,4 Acrylates/C10-30 Alkyl Acrylate Crosspolymer 15,0 Cetearyl Ethylhexanoate
0,2 Bisabolol
1 ,0 Tocopheryl Acetate q.s. Parfümöl
B 1 ,0 Panthenol 15,0 Alcohol
3,0 Glycerin
5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
59,2 Aqua dem,
C 0,2 Triethanolamine
Herstellung: Die Komponenten der Phase A mischen. Phase B unter Homogenisieren in Phase A einrühren. Mit Phase C neutralisieren und erneut homogenisieren.
Beispiel 14: Verwendung der O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D in einer Sonnenschutzlotion WS 1 %:
% Inhaltsstoff (INCI) A 4,5 Ethylhexyl Methoxycinnamate 2 ,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
3 ,0 Octocrylene
2 ,5 Di-C12-13 Alkyl Malate
0 ,5 Tocopheryl Acetate
4 ,0 Polyglyceryl-3 Methyl Glucose Distearate
B 3 ,5 Cetearyl Isononanoate
1 ,0 VP/Eicosene Copolymer
5 ,0 Isohexadecane
2 ,5 Di-C12-13 Alkyl Malate
33 ,,00 Titanium Dioxide, Trimethoxycaprylylsilane
C 5 ,0 Glycerin
1 ,0 Sodium Cetearyl Sulfate
0 ,5 Xanthan Gum
59 ,7 Aqua dem.
DD 11 ,,00 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %)
1 ,0 Phenoxyethanol, Methylparaben, Ethylparaben, Butylparaben, Propyl- paraben, Isobutylparaben 0,3 Bisabolol
WS 5%:
% Inhaltsstoff (INCI)
A 4,5 Ethylhexyl Methoxycinnamate
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
3,0 Octocrylene 2,5 Di-C12-13 Alkyl Malate
0,5 Tocopheryl Acetate
4,0 Polyglyceryl-3 Methyl Glucose Distearate
B 3,5 Cetearyl Isononanoate
1 ,0 VP/Eicosene Copolymer 5,0 Isohexadecane
2,5 Di-C12-13 Alkyl Malate
3,0 Titanium Dioxide, Trimethoxycaprylylsilane
C 5,0 Glycerin
1 ,0 Sodium Cetearyl Sulfate 0,5 Xanthan Gum
55,7 Aqua dem.
D 5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
1 ,0 Phenoxyethanol, Methylparaben, Ethylparaben, Butylparaben, Propyl- paraben, Isobutylparaben 0,3 Bisabolol
Herstellung: Die Komponenten der Phasen A und B getrennt voneinander auf ca. 800C erwärmen. Phase B in Phase A einrühren und homogenisieren. Phase C auf ca. 800C erwärmen und unter Homogenisieren in die kombinierten Phasen A und B einrühren. Unter Rühren auf ca. 400C abkühlen, Phase D zugeben und nochmals homogenisieren.
Beispiel 15: Verwendung der O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D in einer Sonnenschutzlotion - Typ O/W WS 1 %:
% Inhaltsstoff (INCI)
A 2,0 Ceteareth-6, Stearyl Alcohol
2,0 Ceteareth-25
3,0 Tribehenin
2,0 Cetearyl Alcohol
2,0 Cetearyl Ethylhexanoate
5,0 Ethylhexyl Methoxycinnamate
1 ,0 Ethylhexyl Triazone
1 ,0 VP/Eicosene Copolymer
7,0 Isopropyl Myristate
B 5,0 Zinc Oxide, Triethoxycaprylylsilane
C 0,2 Xanthan Gum
0,5 Hydroxyethyl Acrylate/Sodium Acryloyldimethyl Taurate Copolymer,
Squalane, Polysorbate 60
0,2 Disodium EDTA
5,0 Propylene Glycol
0,5 Panthenol
60,9 Aqua dem.
D 1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %)
0,5 Phenoxyethanol, Methylparaben, Butylparaben, Ethylparaben, Propylpa- raben, Isopropylparaben
1 ,0 Tocopheryl Acetate
0,2 Bisabolol
WS 5%:
% Inhaltsstoff (INCI)
A 2,0 Ceteareth-6, Stearyl Alcohol
2,0 Ceteareth-25
3,0 Tribehenin
2,0 Cetearyl Alcohol
2,0 Cetearyl Ethylhexanoate
5,0 Ethylhexyl Methoxycinnamate
1 ,0 Ethylhexyl Triazone
1 ,0 VP/Eicosene Copolymer
7,0 Isopropyl Myristate
B 5,0 Zinc Oxide, Triethoxycaprylylsilane
C 0,2 Xanthan Gum
0,5 Hydroxyethyl Acrylate/Sodium Acryloyldimethyl Taurate Copolymer,
Squalane, Polysorbate 60
0,2 Disodium EDTA
5,0 Propylene Glycol
0,5 Panthenol
56,9 Aqua dem.
D 5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
0,5 Phenoxyethanol, Methylparaben, Butylparaben, Ethylparaben, Propylpa- raben, Isopropylparaben 1 ,0 Tocopheryl Acetate
0,2 Bisabolol
Herstellung: Phase A auf ca. 800C erwärmen, Phase B einrühren und 3min homogenisieren. Phase C ebenfalls auf 800C erwärmen und unter Homogenisieren in die kombinierten Phasen A und B einrühren. Abkühlen auf ca. 400C, Phase D einrühren und nochmals homogenisieren.
Beispiel 16: Verwendung der O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D in einer Sonnenschutlotion - Typ O/W
WS 1 %:
% Inhaltsstoff (INCI)
A 3,5 Ceteareth-6, Stearyl Alcohol
1 ,5 Ceteareth-25 7,5 Ethylhexyl Methoxycinnamate
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
2,0 Cyclopentasiloxane, Cyclohexasiloxane
0,5 Bees Wax
3,0 Cetearyl Alcohol 10,0 Caprylic/Capric Triglyceride
B 5,0 Titanium Dioxide, Silica, Methicone, Alumina
C 3,0 Glycerin
0,2 Disodium EDTA
0,3 Xanthan Gum 1 ,0 Decyl Glucoside
2,0 Panthenol, Propylene Glycol
56,3 Aqua dem.
D 1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %)
1 ,0 Tocopheryl Acetate 0,2 Bisabolol q.s. Parfümöl q.s. Konservierungsmittel
WS 5%: % Inhaltsstoff (INCI)
A 3,5 Ceteareth-6, Stearyl Alcohol
1 ,5 Ceteareth-25
7,5 Ethylhexyl Methoxycinnamate
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate 2,0 Cyclopentasiloxane, Cyclohexasiloxane
0,5 Bees Wax
3,0 Cetearyl Alcohol
10,0 Caprylic/Capric Triglyceride
B 5,0 Titanium Dioxide, Silica, Methicone, Alumina C 3,0 Glycerin
0,2 Disodium EDTA
0,3 Xanthan Gum
1 ,0 Decyl Glucoside 2 ,0 Panthenol, Propylene Glycol
52 ,3 Aqua dem.
D 5 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
1 ,0 Tocopheryl Acetate
0 ,2 Bisabolol q- S. Parfümöl q- S. Konservierungsmittel
Herstellung: Phase A auf ca. 800C erwärmen, Phase B einrühren und 3min homogenisieren. Phase C ebenfalls auf 800C erwärmen und unter Homogenisieren in die kombinierten Phasen A und B einrühren. Abkühlen auf ca. 400C, Phase D einrühren und nochmals homogenisieren.
Beispiel 17: Verwendung der O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D in einem Fußbalsam
WS 1 %:
% Inhaltsstoff (INCI)
A 2,0 Ceteareth-6, Stearyl Alcohol
2,0 Ceteareth-25
5,0 Cetearyl Ethylhexanoate
4,0 Cetyl Alcohol
4,0 Glyceryl Stearate
5,0 Mineral OiI
0,2 Menthol
0,5 Camphor
B 69,3 Aqua dem. q.s. Konservierungsmittel
C 1 ,0 Bisabolol
1 ,0 Tocopheryl Acetate
D 1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %)
5,0 Witch Hazel Extract
WS 5%:
% Inhaltsstoff (INCI)
A 2,0 Ceteareth-6, Stearyl Alcohol
2,0 Ceteareth-25
5,0 Cetearyl Ethylhexanoate
4,0 Cetyl Alcohol
4,0 Glyceryl Stearate
5,0 Mineral OiI
0,2 Menthol
0,5 Camphor
B 65,3 Aqua dem. q.s. Konservierungsmittel
C 1 ,0 Bisabolol
1 ,0 Tocopheryl Acetate
D 5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
5.0 Witch Hazel Extract Herstellung: Die Komponenten der Phasen A und B getrennt voneinander auf ca. 800C erwärmen. Phase B in Phase A unter Homogenisieren einrühren. Unter Rühren abkühlen auf ca. 400C, die Phasen C und D hinzugeben und kurz nachhomogenisieren. Unter Rühren auf Raum- temperatur abkühlen.
Beispiel 18: Verwendung der O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D in einer W/O Emulsion mit Bisabolol
WS 1 %:
% Inhaltsstoff (INCI)
A 6,0 PEG-7 Hydrogenated Castor OiI
8,0 Cetearyl Ethylhexanoate
5,0 Isopropyl Myristate
15,0 Mineral OiI
0,3 Magnesium Stearate
0,3 Aluminum Stearate
2,0 PEG-45/Dodecyl Glycol Copolymer
B 5,0 Glycerin
0,7 Magnesium Sulfate
55,6 Aqua dem.
C 1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %)
0,5 Tocopheryl Acetate
0,6 Bisabolol
WS 5%:
% Inhaltsstoff (INCI)
A 6,0 PEG-7 Hydrogenated Castor OiI
8,0 Cetearyl Ethylhexanoate
5,0 Isopropyl Myristate
15,0 Mineral OiI
0,3 Magnesium Stearate
0,3 Aluminum Stearate
2,0 PEG-45/Dodecyl Glycol Copolymer
B 5,0 Glycerin
0,7 Magnesium Sulfate
51 ,6 Aqua dem.
C 5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
0,5 Tocopheryl Acetate
Herstellung: Die Phasen A und B getrennt voneinander auf ca. 85°C erwärmen. Phase B in Phase A einrühren und homogenisieren. Unter Rühren auf ca. 400C abkühlen, Phase C hinzugeben und nochmals kurz homogenisieren. Unter Rühren auf Raumtemperatur abkühlen. Zusammenstellung Rezepturen für Patent Keratin-Bindedomäne - Haircare
Beispiel 19: Schaumconditioner mit Festiger WS 1 %
% Inhaltsstoff (INCI) A 10,0 PVP/VA Copolymer
0,2 Hydroxyethyl Cetyldimonium Phosphate
0,2 Ceteareth-25
0,5 Dimethicone Copolyol q.s. Parfümöl
10.0 Alcohol
1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %)
68.1 Aqua dem. 10,0 Propane/Butane
WS 5%
% Inhaltsstoff (INCI)
A 10,0 PVP/VA Copolymer
0,2 Hydroxyethyl Cetyldimonium Phosphate 0,2 Ceteareth-25
0,5 Dimethicone Copolyol q.s. Parfümöl
10,0 Alcohol
5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%) 64,1 Aqua dem.
10,0 Propane/Butane
Herstellung: Die Komponenten der Phase A zusammenwiegen, rühren bis alles gelöst ist und abfüllen.
Beispiel 20: Schaumconditioner WS 1 %
% Inhaltsstoff (INCI)
A 1 ,0 Polyquaternium-4 0,5 Hydroxyethyl Cetyldimonium Phosphate
1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %) q.s. Parfümöl q.s. Konservierungsmittel
91 ,5 Aqua dem. 6,0 Propane/Butane
WS 5%
% Inhaltsstoff (INCI)
A 1 ,0 Polyquaternium-4 0,5 Hydroxyethyl Cetyldimonium Phosphate
5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%) q.s. Parfümöl q.s. Konservierungsmittel
87,5 Aqua dem. 6,0 Propane/Butane
Herstellung: Die Komponenten der Phase A zusammenwiegen, rühren bis alles klar gelöst ist und abfüllen. Beispiel 21 : Schaumconditioner WS 1 %
% Inhaltsstoff (INCI)
A 1 ,0 Polyquaternium-11
0,5 Hydroxyethyl Cetyldimonium Phosphate
1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %) q.s. Parfümöl q.s. Konservierungsmittel
91 ,5 Aqua dem.
6,0 Propane/Butane
WS 5%
% Inhaltsstoff (INCI)
A 1 ,0 Polyquaternium-11
0,5 Hydroxyethyl Cetyldimonium Phosphate
5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%) q.s. Parfümöl q.s. Konservierungsmittel
87,5 Aqua dem.
6,0 Propane/Butane
Herstellung: Die Komponenten der Phase A zusammenwiegen, rühren bis alles klar gelöst ist und abfüllen.
Beispiel 22: Styling Schaum
WS 1 %
% Inhaltsstoff (INCI)
A 0,5 Laureth-4 q.s. Parfümöl
B 77,3 Aqua dem.
10,0 Polyquaternium-28
1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %)
0,5 Dimethicone Copolyol
0,2 Ceteareth-25
0,2 Panthenol
0,1 PEG-25 PABA
0,2 Hyd roxyethylcel I u lose
C 10,0 HFC 152 A
WS 5%
% Inhaltsstoff (INCI)
A 0,5 Laureth-4 q.s. Parfümöl
B 73,3 Aqua dem.
10,0 Polyquaternium-28
5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
0,5 Dimethicone Copolyol 0,2 Ceteareth-25
0,2 Panthenol
0,1 PEG-25 PABA
0,2 Hyd roxyethylcel I u lose
C 10,0 HFC 152 A
Herstellung: Die Komponenten der Phase A mischen. Die Komponenten der Phase B eine nach der anderen zugeben und lösen. Mit Phase C abfüllen.
Beispiel 23: Styling Schaum
WS 1 %
% Inhaltsstoff (INCI)
A 2,0 Cocotrimonium Methosulfate q.s. Parfümöl
B 78,5 Aqua dem.
6,7 Acrylates Copolymer
0,6 AMP
1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %)
0,5 Dimethicone Copolyol
0,2 Ceteareth-25
0,2 Panthenol
0,1 PEG-25 PABA
0,2 Hyd roxyethylcel I u lose
C 10,0 HFC 152 A
WS 5%
% Inhaltsstoff (INCI)
A 2,0 Cocotrimonium Methosulfate q.s. Parfümöl
B 74,5 Aqua dem.
6,7 Acrylates Copolymer
0,6 AMP
5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
0,5 Dimethicone Copolyol
0,2 Ceteareth-25
0,2 Panthenol
0,1 PEG-25 PABA
0,2 Hyd roxyethylcel I u lose
C 10,0 HFC 152 A
Herstellung: Die Komponenten der Phase A mischen. Die Komponenten der Phase B eine nach der anderen zugeben und lösen. Mit Phase C abfüllen.
Beispiel 24: Styling Schaum
WS 1 %
% Inhaltsstoff (INCI) A 2,0 Cocotrimonium Methosulfate q.s. Parfümöl
B 7,70 Polyquaternium-44
1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %) q.s. Konservierungsmittel
79,3 Aqua dem.
C 10,0 Propane/Butane
WS 5%
% Inhaltsstoff (INCI) A A 2 2,,00 Cocotrimonium Methosulfate q.s. Parfümöl
B 7,70 Polyquaternium-44
5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%) q.s. Konservierungsmittel 7 755,,33 Aqua dem.
C 10,0 Propane/Butane
Herstellung: Die Komponenten der Phase A mischen. Die Komponenten der Phase B klar lösen, dann Phase B in Phase A einrühren. Den pH-Wert auf 6-7 einstellen, mit Phase C abfüllen.
Beispiel 25: Styling Schaum
WS 1 %
% Inhaltsstoff (INCI)
A 2,00 Cocotrimonium Methosulfate q.s. Parfümöl
B 72,32 Aqua dem.
2,00 VP/Acrylates/Lauryl Methacrylate Copolymer
0,53 AMP
1 ,00 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %)
0,20 Ceteareth-25
0,50 Panthenol
0,05 Benzophenone-4
0,20 Amodimethicone, Cetrimonium Chloride, Trideceth-12
15,00 Alcohol
C 0,20 Hyd roxyethylcel I u lose
D 6,00 Propane/Butane
WS 5%
% Inhaltsstoff (INCI)
A 2,00 Cocotrimonium Methosulfate q.s. Parfümöl
B 68,32 Aqua dem. 2,00 VP/Acrylates/Lauryl Methacrylate Copolymer
0,53 AMP
5,00 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
0,20 Ceteareth-25 0, ,50 Panthenol
0, ,05 Benzophenone-4
0, ,20 Amodimethicone, Cetrimonium Chloride, Trideceth-12
15, ,00 Alcohol
C 0; ,20 Hyd roxyethylcel I u lose
D 6; ,00 Propane/Butane
Herstellung: Die Komponenten der Phase A mischen. Die Komponenten der Phase B eine nach der anderen zugeben und lösen. Phase C in der Mischung aus A und B lösen, dann den pH- Wert auf 6-7 einstellen. Mit Phase D abfüllen
Beispiel 26: Styling Schaum
WS 1 %
% Inhaltsstoff (INCI)
A 2,00 Cetrimonium Chloride q.s. Parfümöl
B 67,85 Aqua dem.
7,00 Polyquaternium-46
1 ,00 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %)
0,20 Ceteareth-25
0,50 Panthenol
0,05 Benzophenone-4
0,20 Amodimethicone, Cetrimonium Chloride, Trideceth-12
15,00 Alcohol
C 0,20 Hyd roxyethylcel I u lose
D 6,00 Propane/Butane
WS 5%
% Inhaltsstoff (INCI)
A 2,00 Cetrimonium Chloride q.s. Parfümöl
B 63,85 Aqua dem.
7,00 Polyquaternium-46
5,00 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
0,20 Ceteareth-25
0,50 Panthenol
0,05 Benzophenone-4
0,20 Amodimethicone, Cetrimonium Chloride, Trideceth-12
15,00 Alcohol
C 0,20 Hyd roxyethylcel I u lose
D 6,00 Propane/Butane
Herstellung: Die Komponenten der Phase A mischen. Die Komponenten der Phase B eine nach der anderen zugeben und lösen. Phase C in der Mischung aus A und B lösen, dann den pH- Wert auf 6-7 einstellen. Mit Phase D abfüllen. Beispiel 27: Styling Schaum WS 1 %
% Inhaltsstoff (INCI)
A q.s. PEG-40 Hydrogenated Castor OiI q.s. Parfümöl
85,5 Aqua dem.
B 7,0 Sodium Polystyrene Sulfonate
1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %)
0,5 Cetrimonium Bromide q.s. Konservierungsmittel
C 6,0 Propane/Butane
Styling Schaum WS 5% % Inhaltsstoff (INCI)
A q.s. PEG-40 Hydrogenated Castor OiI q.s. Parfümöl
81 ,5 Aqua dem.
B 7,0 Sodium Polystyrene Sulfonate 5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
0,5 Cetrimonium Bromide q.s. Konservierungsmittel
C 6,0 Propane/Butane
Herstellung: Phase A solubilisieren. Phase B in Phase A einwiegen und klar lösen. Den pH- Wert auf 6-7 einstellen, mit Phase C abfüllen.
Beispiel 28: Styling Schaum WS 1 %
% Inhaltsstoff (INCI)
A q.s. PEG-40 Hydrogenated Castor OiI q.s. Parfümöl
92,0 Aqua dem.
B 0,5 Polyquaternium-10
1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %)
0,5 Cetrimonium Bromide q.s. Konservierungsmittel
C 6,0 Propane/Butane
WS 5%
% Inhaltsstoff (INCI)
A q.s. PEG-40 Hydrogenated Castor OiI q.s. Parfümöl
88,0 Aqua dem.
B 0,5 Polyquaternium-10
5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
0,5 Cetrimonium Bromide q.s. Konservierungsmittel C 6,0 Propane/Butane
Herstellung: Phase A solubilisieren. Phase B in Phase A einwiegen und klar lösen. Den pH- Wert auf 6-7 einstellen, mit Phase C abfüllen.
Beispiel 29: Styling Schaum
WS 1 %
% Inhaltsstoff (INCI)
A q- S. PEG-40 Hydrogenated Castor OiI q- S. Parfümöl
82 ,5 Aqua dem.
B 10 ,0 Polyquaternium-16
1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
0 ,5 Hydroxyethyl Cetyldimonium Phosphate qq-- S S.. Konservierungsmittel
C C 6 6 , ,00 Propane/Butane
WS 5%
% Inhaltsstoff (INCI)
AA qq..ss.. PEG-40 Hydrogenated Castor OiI q- S. Parfümöl
78 ,5 Aqua dem. B 10,0 Polyquaternium-16
5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%) 0,5 Hydroxyethyl Cetyldimonium Phosphate q.s. Konservierungsmittel C 6,0 Propane/Butane
Herstellung: Phase A solubilisieren. Phase B in Phase A einwiegen und klar lösen. Den pH- Wert auf 6-7 einstellen, mit Phase C abfüllen.
Beispiel 30: Styling Schaum
WS 1 %
% Inhaltsstoff (INCI)
A 2,0 Cocotrimonium Methosulfate q.s. Parfümöl
B 84,0 Aqua dem.
2,0 Chitosan
1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %)
0,5 Dimethicone Copolyol
0,2 Ceteareth-25
0,2 Panthenol
0,1 PEG-25 PABA
C 10,0 HFC 152 A
WS 5%
% Inhaltsstoff (INCI) A 2,0 Cocotrimonium Methosulfate q.s. Parfümöl
B 80,0 Aqua dem.
2,0 Chitosan
5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
0,5 Dimethicone Copolyol
0,2 Ceteareth-25
0,2 Panthenol
0, 1 PEG-25 PABA C C 1 100,,00 HFC 152 A
Herstellung: Die Komponenten der Phase A mischen. Die Komponenten der Phase B eine nach der anderen zugeben und lösen. Mit Phase C abfüllen.
Beispiel 31 : Pflegeshampoo WS 1 %
% Inhaltsstoff (INCI)
A 30,0 Sodium Laureth Sulfate
6,0 Sodium Cocoamphoacetate
6,0 Cocamidopropyl Betaine
3,0 Sodium Laureth Sulfate, Glycol Distearate, Cocamide MEA, Laureth-10
1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %)
7,7 Polyquaternium-44
2,0 Amodimethicone q.s. Parfümöl q.s. Konservierungsmittel
1 ,0 Sodium Chloride
43,3 Aqua dem.
B q.s. Citric Acid
WS 5%
% Inhaltsstoff (INCI)
A 30,0 Sodium Laureth Sulfate
6,0 Sodium Cocoamphoacetate
6,0 Cocamidopropyl Betaine
3,0 Sodium Laureth Sulfate, Glycol Distearate, Cocamide MEA, Laureth-10
5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
7,7 Polyquaternium-44
2,0 Amodimethicone q.s. Parfümöl q.s. Konservierungsmittel
1 ,0 Sodium Chloride
39,3 Aqua dem.
B q.s. Citric Acid
Herstellung: Die Komponenten der Phase A mischen und lösen. Den pH-Wert mit Citronensäu- re auf 6-7 einstellen. Beispiel 32: Duschgel
WS 1 %
% Inhaltsstoff (INCI)
A 40,0 Sodium Laureth Sulfate
5,0 Decyl Glucoside
5,0 Cocamidopropyl Betaine
1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %)
1 ,0 Panthenol q.s. Parfümöl q.s. Konservierungsmittel
2,0 Sodium Chloride
46,0 Aqua dem.
B q.s. Citric Acid
WS 5%
% Inhaltsstoff (INCI)
A 40,0 Sodium Laureth Sulfate
5,0 Decyl Glucoside
5,0 Cocamidopropyl Betaine
5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
1 ,0 Panthenol q.s. Parfümöl q.s. Konservierungsmittel
2,0 Sodium Chloride
42,0 Aqua dem.
B q.s. Citric Acid
Herstellung: Die Komponenten der Phase A mischen und lösen. Den pH-Wert mit Citronensäu- re auf 6-7 einstellen.
Beispiel 33: Shampoo
WS 1 %
% Inhaltsstoff (INCI)
A 40,0 Sodium Laureth Sulfate
5,0 Sodium C12-15 Pareth-15 Sulfonate
5,0 Decyl Glucoside q.s. Parfümöl
0,1 Phytantriol
44,6 Aqua dem.
1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %)
0,3 Polyquaternium-10
1 ,0 Panthenol q.s. Konservierungsmittel
1 ,0 Laureth-3
2,0 Sodium Chloride
WS 5%
% Inhaltsstoff (INCI) A 40,0 Sodium Laureth Sulfate
5,0 Sodium C12-15 Pareth-15 Sulfonate
5,0 Decyl Glucoside q.s. Parfümöl
0,1 Phytantriol
40,6 Aqua dem.
5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
0,3 Polyquaternium-10
1 ,0 Panthenol q.s. Konservierungsmittel
1 ,0 Laureth-3
2.0 Sodium Chloride
Herstellung: Die Komponenten der Phase A mischen und lösen. Den pH-Wert mit Citronensäu- re auf 6-7 einstellen.
Beispiel 34: Shampoo WS 1 %
% Inhaltsstoff (INCI) A 15,00 Cocamidopropyl Betaine
10,00 Disodium Cocoamphodiacetate
5,00 Polysorbate 20
5,00 Decyl Glucoside q.s. Parfümöl q.s. Konservierungsmittel
1 ,00 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %)
0,15 Guar Hydroxypropyltrimonium Chloride
2,00 Laureth-3
58,00 Aqua dem. q.s. Citric Acid
B 3,00 PEG-150 Distearate
WS 5%
% Inhaltsstoff (INCI) A 15,00 Cocamidopropyl Betaine
10,00 Disodium Cocoamphodiacetate
5,00 Polysorbate 20
5,00 Decyl Glucoside q.s. Parfümöl q.s. Konservierungsmittel
5,00 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
0,15 Guar Hydroxypropyltrimonium Chloride
2,00 Laureth-3
54,00 Aqua dem. q.s. Citric Acid
B 3,00 PEG-150 Distearate Herstellung: Die Komponenten der Phase A einwiegen und lösen. Den pH-Wert auf 6-7 einstellen. Phase B zugeben und auf ca. 500C erwärmen. Unter Rühren auf Raumtemperatur abkühlen.
Beispiel 35: Feuchtigkeitsspendende Körperpflegecreme
WS 1 %
% Inhaltsstoff (INCI)
A 2,0 Ceteareth-25
2,0 Ceteareth-6, Stearyl Alcohol
3,0 Cetearyl Ethylhexanoate
1 ,0 Dimethicone
4,0 Cetearyl Alcohol
3,0 Glyceryl Stearate SE
5,0 Mineral OiI
4,0 Simmondsia Chinensis (Jojoba) Seed OiI
3,0 Mineral OiI, Lanolin Alcohol
B 5,0 Propylene Glycol
1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %)
1 ,0 Panthenol
0,5 Magnesium Aluminum Silicate q.s Konservierungsmittel
65,5 Aqua dem.
C q.s. Parfümöl
D q.s. Citric Acid
WS 5%
% Inhaltsstoff (INCI)
A 2,0 Ceteareth-25
2,0 Ceteareth-6, Stearyl Alcohol
3,0 Cetearyl Ethylhexanoate
1 ,0 Dimethicone
4,0 Cetearyl Alcohol
3,0 Glyceryl Stearate SE
5,0 Mineral OiI
4,0 Simmondsia Chinensis (Jojoba) Seed OiI
3,0 Mineral OiI, Lanolin Alcohol
B 5,0 Propylene Glycol
5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
1 ,0 Panthenol
0,5 Magnesium Aluminum Silicate q.s Konservierungsmittel
61 ,5 Aqua dem.
C q.s. Parfümöl
D α.s. Citric Acid
Herstellung: Die Phasen A und B getrennt auf ca. 800C erwärmen. Phase B kurz vorhomogenisieren, dann Phase B in Phase A einrühren und erneut homogenisieren.Abkühlen auf ca. 40°C, Phase C zugeben und nochmals gut homogenisieren. Den pH-Wert mit Citronensäure auf 6-7 einstellen.
Beispiel 36: Feuchtigkeitsspendende Körperpflegecreme
WS 1 %
% Inhaltsstoff (INCI)
A 6,0 PEG-7 Hydrogenated Castor OiI
10,0 Cetearyl Ethylhexanoate
5,0 Isopropyl Myristate
7,0 Mineral OiI
0,5 Shea Butter (Butyrospermum Parkii)
0,5 Aluminum Stearate
0,5 Magnesium Stearate
0,2 Bisabolol
0,7 Quaternium-18-Hectorite
B 5,0 Dipropylene Glycol
0,7 Magnesium Sulfate q.s. Konservierungsmittel
62,9 Aqua dem.
C q.s. Parfümöl
1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %)
WS 5%
% Inhaltsstoff (INCI)
A 6,0 PEG-7 Hydrogenated Castor OiI
10,0 Cetearyl Ethylhexanoate
5,0 Isopropyl Myristate
7,0 Mineral OiI
0,5 Shea Butter (Butyrospermum Parkii)
0,5 Aluminum Stearate
0,5 Magnesium Stearate
0,2 Bisabolol
0,7 Quaternium-18-Hectorite
B 5,0 Dipropylene Glycol
0,7 Magnesium Sulfate q.s. Konservierungsmittel
58,9 Aqua dem.
C q.s. Parfümöl
5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%)
Herstellung: Die Phasen A und B getrennt auf ca. 800C erwärmen. Phase B in Phase A einrühren und homogenisieren. Unter Rühren auf ca. 400C abkühlen, Phase C zugeben und nochmals homogenisieren. Unter Rühren auf Raumtemperatur abkühlen lassen.
Beispiel 37: Flüssiges Make-up - Typ O/W WS 1 %
% Inhaltsstoff (INCI) A 2,0 Ceteareth-6, Stearyl Alcohol 2,0 Ceteareth-25
6,0 Glyceryl Stearate
1 ,0 Cetyl Alcohol
8,0 Mineral OiI
7,0 Cetearyl Ethylhexanoate
0,2 Dimethicone
B 3,0 Propylene Glycol
1 ,0 Panthenol q.s. Konservierungsmittel
61 ,9 Aqua dem.
C 0,1 Bisabolol
1 ,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 1 %) q.s. Parfümöl
D 5,7 C. I. 77 891 , Titanium Dioxide
1 ,1 Iran Oxides
WS 5%
% Inhaltsstoff (INCI)
A 2,0 Ceteareth-6, Stearyl Alcohol
2,0 Ceteareth-25
6,0 Glyceryl Stearate
1 ,0 Cetyl Alcohol
8,0 Mineral OiI
7,0 Cetearyl Ethylhexanoate
0,2 Dimethicone
B 3,0 Propylene Glycol
1 ,0 Panthenol q.s. Konservierungsmittel
57,9 Aqua dem.
C 0,1 Bisabolol
5,0 O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D (Retinolgehalt 5%) q.s. Parfümöl
D 5,7 C. I. 77 891 , Titanium Dioxide
1 ,1 Iran Oxides
Herstellung: Die Phasen A und B getrennt auf ca. 800C erwärmen. Phase B in Phase A einrühren und homogenisieren. Unter Rühren auf ca. 400C abkühlen, Phasen C und D zugeben und nochmals gründlich homogenisieren. Unter Rühren auf Raumtemperatur abkühlen lassen.
Beispiel 38
Im Folgenden sind erfindungesgemäße dermokosmetische Zubereitungen beschrieben, enthaltend das gemäß der Beispiele 1 , 1 a, 2, 4, 5 hergestellte O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D oder mikroverkapseltes Retinol Das mikroverkapselte Retinol wird als Feststoff eingesetzt. Alle Angaben sind Gewichtsanteile.
Klares Shampoo
Figure imgf000093_0001
Schaum O/W-Emulsionen
Figure imgf000094_0001
Conditioner Shampoo mit Perlglanz
Polyquaternium-10 0,50 0,50 0,40
Sodium Laureth Sulfate 9,00 8,50 8,90
Codamidopropyl Betaine 2,50 2,60 3,00
Uvinul® MS 40 1 ,50 0,50 1 ,00
Mikroverkapseltes Retinol 15 D 1 ,0 5,0 0,5
Perlglanzlösung 2,00 2,50
Disodium EDTA 0,10 0,15 0,05
Konservierungsmittel, Parfümöl, Verdicker q.s. q.s. q.s. I Aqua dem. I ad 100 I ad 100 I ad 1Oθ| pH einstellen auf 6,0
Klares Conditioner Shampoo
Figure imgf000095_0001
pH einstellen auf 6,0
Klares Conditioner Shampoo mit Volumen Effekt
Figure imgf000095_0002
pH einstellen auf 6,0
Gelcreme
Figure imgf000095_0003
Figure imgf000096_0001
OW Sunscreenformulation
Figure imgf000096_0002
Figure imgf000097_0001
Hydrodispersion
Figure imgf000097_0002
Figure imgf000098_0001
WO Sunscreen Emulsion
Figure imgf000099_0001
Figure imgf000100_0001
Sticks
Figure imgf000100_0002
Figure imgf000101_0001
PIT-Emulsion
Figure imgf000101_0002
Figure imgf000102_0001
Gelcreme
Figure imgf000103_0001
OW Formulations Selbstbräu- ner
Figure imgf000103_0002
Figure imgf000104_0001
OW Make Up
Figure imgf000104_0002
Figure imgf000105_0001
Hydrodispersion Selbstbräuner
Figure imgf000105_0002
Figure imgf000106_0001
Figure imgf000107_0001
Figure imgf000108_0001
Sticks
Figure imgf000108_0002
PIT-Emulsionen Selbstbräuner
Figure imgf000109_0001
Figure imgf000110_0001
Beispiel 39:
In den folgenden Rezepturen werden kosmetische Sonnenschutzzubereitungen, enthaltend eine Kombination aus mindestens einem anorganischen Pigment, bevorzugt Zinkoxid und/oder Titandioxid und organische UV-A- und UV-B-Filter beschrieben.
Die Herstellung der nachfolgend genanntenen Formulierungen erfolgt auf übliche, dem Fachmann bekannte Art und Weise.
Der Gehalt an O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D bezieht sich auf 100% Wirkstoff. Der erfindungsgemäße Wirkstoff kann sowohl in reiner Form als auch als wässerige Lösung eingesetzt werden. Im Falle der wässerigen Lösung muss der Gehalt an Wasser dem. in der jeweiligen Formulierung angepasst werden.
Figure imgf000110_0002
Figure imgf000111_0001
Figure imgf000112_0001
Figure imgf000113_0001
Figure imgf000114_0001
Figure imgf000115_0001
0,10 Allantoin Allantoin
65,20 Wasser dem. Aqua dem.
D 2,00 Simulgel NS Hydroxyethyl Acrylate/Sodium Acryloyldimethyl Taurate Copolymer, Squalane, Polysorbate 60
2% O/W-Dispersion enthaltend mikrover- kapseltes Retinol 15 D q.s. Konservierungsmittel
A 5,00 Uvinul N 539 T Octocrylene
2,00 Uvinul A Plus Diethylamino Hydroxybenzoyl Hexyl Benzoate
0,80 RyIo PG 11 Polyglyceryl Dimer Soyate
1 ,00 Span 60 Sorbitan Stearate
0,50 Vitamin E-Acetat Tocopheryl Acetate
3,00 Dracorin 100 SE Glyceryl Stearate, PEG-100 Stearate
1 ,00 Cremophor CO 410 PEG-40 Hydrogenated Castor OiI
B 3,00 Z-COTE MAX Zinc Oxide(and) Diphenyl Capryl Methicone
1 ,00 Cetiol SB 45 Butyrospermum Parkii (Shea Butter)
6,50 Finsolv TN C12-15 Alkyl Benzoate
C 5,00 Butylenglykol Butylene Glycol
0,30 Keltrol Xanthan Gum
0,10 Edeta BD Disodium EDTA
0,10 Allantoin Allantoin
66,70 Wasser dem. Aqua dem.
D 2,00 Simulgel NS Hydroxyethyl Acrylate/Sodium Acryloyldimethyl Taurate Copolymer, Squalane, Polysorbate 60
0,5% O/W-Dispersion enthaltend mikrover- kapseltes Retinol 15 D q.s. Konservierungsmittel
Figure imgf000116_0001
Figure imgf000117_0001
Figure imgf000117_0002
Figure imgf000117_0003
Figure imgf000118_0001
Figure imgf000118_0002
Figure imgf000118_0003
Figure imgf000119_0001
Figure imgf000120_0001
Figure imgf000121_0001
Figure imgf000122_0001
Figure imgf000123_0001
Figure imgf000124_0001
Figure imgf000125_0001
Figure imgf000126_0001
Figure imgf000127_0001
Figure imgf000128_0001
Figure imgf000129_0001
Figure imgf000129_0002
Figure imgf000129_0003
Figure imgf000130_0001
5,00 Witconol APM PPG-3 Myristyl Ether
5,00 Dow Corning 345 Fluid Cyclopentasiloxane, Cyclohexasiloxane
0,1 % Mikroverkapseltes Retinol 15 D
28,90 Rizinusöl Castor (Ricinus Communis) OiI
5,00 T-Lite SF Titanium Dioxide, Alumina Hydrate, Dimethicone/Methicone Copolymer
6,00 Finsolv TN C12-15 Alkyl Benzoate
10,00 Uvinul MC 80 Ethylhexyl Methoxycinnamate
6,00 Miglyol 812 Caprylic/Capric Triglyceride
5,00 Arlacel P 135 PEG-30 Dipolyhydroxystearate
2,00 Ganex V 216 PVP/Hexadecene Copolymer
2,00 Elfacos ST 9 PEG-45/Dodecyl Glycol Copolymer
B 3,00 1 ,2-Propylenglykol Care Propylene Glycol
0,10 Edeta BD Disodium EDTA
1 ,00 Magnesiumsulfat-7-hydrat Magnesium Sulfate
59,85 Wasser dem. Aqua dem.
0,05% Mikroverkapseltes Retinol 15 D q.s. Konservierungsmittel
Figure imgf000131_0001
Figure imgf000132_0001
Figure imgf000132_0002
Figure imgf000132_0003
Figure imgf000133_0001
Figure imgf000133_0002
Figure imgf000133_0003
B 5,00 T-Lite SF-S Titanium Dioxide, Silica Hydrate, Alumina Hydrate, Methicone/Dimethicone Copolymer
C 3,00 1 ,2-Propylenglykol Care Propylene Glycol
0,30 Abiol Imidazolidinyl Urea
1 ,00 Magnesiumsulfat-7-hydrat Magnesium Sulfate
0,5% O/W-Dispersion enthaltend mikrover- kapseltes Retinol 15 D
Ad 100 Wasser dem. Aqua dem. q.s. Konservierungsmittel
Figure imgf000134_0001
Figure imgf000134_0002
D 5,00 1 ,2-Propylenglykol Care Propylene Glycol
0,50 Cremophor A 25 Ceteareth-25
0,05% O/W-Dispersion enthaltend mikroverkapseltes Retinol 15 D
20,00 Ethanol 96% Alcohol
Figure imgf000135_0001
Figure imgf000135_0002
Figure imgf000136_0001
Figure imgf000137_0001
Figure imgf000138_0001
Figure imgf000139_0001
Figure imgf000140_0001
Figure imgf000141_0001
Figure imgf000142_0001
Figure imgf000143_0001
Figure imgf000144_0001
Figure imgf000144_0002
Figure imgf000144_0003
Figure imgf000145_0001
Figure imgf000146_0001
Figure imgf000147_0001
Figure imgf000148_0001
Figure imgf000149_0001
Figure imgf000150_0001
Figure imgf000151_0001
Figure imgf000152_0001
Figure imgf000152_0002
Figure imgf000152_0003
Figure imgf000153_0001
Figure imgf000154_0001
Figure imgf000155_0001
Figure imgf000156_0001
Figure imgf000156_0002
Figure imgf000156_0003
Figure imgf000157_0001
Figure imgf000157_0002
Figure imgf000157_0003
Figure imgf000158_0001
Figure imgf000159_0001
Figure imgf000159_0002
Figure imgf000159_0003
Figure imgf000160_0001
Figure imgf000160_0002
Figure imgf000160_0003
Figure imgf000161_0001
Figure imgf000161_0002
Figure imgf000161_0003
Figure imgf000162_0001
Figure imgf000163_0001
Figure imgf000164_0001
Figure imgf000164_0002
Figure imgf000164_0003
Figure imgf000165_0001
Figure imgf000166_0001
Figure imgf000167_0001
Figure imgf000168_0001
Figure imgf000168_0002

Claims

Patentansprüche
1. Verfahren zur Herstellung einer Mikrokapseldispersion durch Grenzflächen- Polyaddition, indem in einem ersten Schritt, durch Dispersion einer den zu ver- kapselnden lipophilen Wirkstoff enthaltenden Ölphase und eines Di- und/oder
Poly-Isocyanats in einer Wasserphase, eine Öl-in-Wasser Emulsion hergestellt wird, und in einem zweiten Schritt der so erzeugten Öl-in-Wasser Emulsion der zur Polyaddition benötigte Reaktionspartner zugesetzt wird, dadurch gekennzeichnet, dass es sich bei dem zur Polyaddition benötigten Reaktionspartner um zwei verschiedene Aminvernetzer handelt.
2. Verfahren nach Anspruch 1 , wobei die verwendeten Aminvernetzer als Mischung oder nacheinander der Öl-in-Wasser Emulsion zugesetzt werden.
3. Verfahren nach Anspruch 1 , wobei es sich bei mindestens einem der verwendeten Aminvernetzer um ein polymeres Amin handelt.
4. Verfahren nach Anspruch 3, wobei als polymere Aminvernetzer Polyethyleni- min- oder Polyvinylamin-Derivate verwendet werden.
5. Verfahren nach Anspruch 1 , wobei das verwendete Isocyanats ein Oligo und/oder Polyisocyanat ist, das Urethan-, Isocyanurat-, Allophanat-, Harnstoff- und/oder Biuret-Strukturen aufweist.
6. Verfahren nach Anspruch 5, wobei das Di-, Oligo- und/oder Polyisocyanat ausgewählt ist aus der Gruppe enthaltend Tetramethylendiisocyanat, Hexamethy- lendiisocyanat, Dodecamethylendiisocyanat, 1 ,4-Diisocyanato-cyclohexan, 4,4'- Di-(isocyanatocyclohexyl)-methan, Trimethylhexandiiso-cyanat, Tetramethylhe- xandiisocyanat, 1-lsocyanato-3,3,5-trimethyl-5-(iso-cyanatomethyl)cyclohexan (IPDI), 2,4- Toluylendiisocyanat und 2,6-Toluylendiisocyanat, Tetramethylxyly- lendiisocyanat, 2,4'- Diisocyanatodiphenylmethan und 4,4'-Diisocyanato- diphenylmethan.
7. Verfahren nach einem der Ansprüche 1 bis 6, wobei man eine Nachbehandlung der primär gebildeten Mikrokaspeln mit mindestens einer Verbindung aus der
Gruppe Amine, Alkohole und Aminoalkohole durchführt.
8. Verfahren nach den Ansprüchen 1 bis 7, wobei die Wasserphase ein Schutzkolloid enthält.
9. Verfahren nach Anspruch 8, wobei das Schutzkolloid ein Polyol ist.
10. Verfahren nach Anspruch 9, wobei das Schutzkolloid Methylhydroxypropylcellu- lose ist.
1 1. Verfahren nach einem der Ansprüche 1 bis 10, wobei die den lipophilen Wirk- stoff enthaltende Ölphase besteht aus
a. 1-100% des lipophilen Wirkstoffes, b. 0-99% eines Trägeröls, und c. 0-10% eines stabilisierenden Additivs
12. Verfahren nach Anspruch 1 1 , wobei der lipophile Wirkstoff ausgewählt ist aus der Gruppe enthaltend Vitamine A, D, E, K, Ubichinonderivate und ß-Carotin o- der Mischungen derselben.
13. Verfahren nach Anspruch 12, wobei der lipophile Wirkstoff Vitamin A ist.
14. Verfahren nach Anspruch 1 1 , wobei der lipophile Wirkstoff ausgewählt ist aus der Gruppe lipophiler UV-Schutzmittel enthaltend 4-Aminobenzoesäurederivate, Ester der Zimtsäure, Ester der Salicylsäure, Derivate des Benzophenons, Ester der Benzalmalonsäure und Triazinderivate oder Mischungen derselben.
15. Verfahren nach einem der vorstehend genannten Ansprüche, wobei die erhaltenen Mikrokapseln durch ein Sprühtrocknungsverfahren isoliert werden.
16. Mikrokapseln gewonnen nach den Verfahren gemäß Anspruch 15.
17. O/W Mikrokapseldispersion hergestellt gemäß einem der Ansprüche 1 bis 15.
18. Verwendung der Mikrokapseln gemäß Anspruch 16 oder O/W Mikrokapseldis- persionen gemäß Anspruch 17 in Dermokosmetika.
19. Verwendung gemäß Anspruch 18, wobei es sich bei dem Dermokosmetika um ein Hautschutzmittel, Hautpflegemittel, Hautreinigungsmittel, Haarschutzmittel, Haarpflegemittel, Haarreinigungsmittel, Haarfärbemittel, Nagelpflegemittel oder eine dekorative Kosmetik handelt.
20. Dermokosmetische Zubereitungen enthaltend Mikrokapseln gemäß Anspruch 16 oder O/W Dispersionen gemäß Anspruch 17.
PCT/EP2007/052781 2006-03-28 2007-03-23 Verkapselung lipophiler wirkstoffe WO2007110383A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06111837 2006-03-28
EP06111837.8 2006-03-28

Publications (1)

Publication Number Publication Date
WO2007110383A1 true WO2007110383A1 (de) 2007-10-04

Family

ID=38231475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/052781 WO2007110383A1 (de) 2006-03-28 2007-03-23 Verkapselung lipophiler wirkstoffe

Country Status (1)

Country Link
WO (1) WO2007110383A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2361311A1 (es) * 2011-04-14 2011-06-16 Ecopol Tech, S.L. Procedimiento para la fabricación de un microencapsulado de un principio activo hidrófobo y microencapsulado y composiciones correspondientes.
DE102012211790A1 (de) * 2012-07-06 2014-01-09 Beiersdorf Ag Lichtstabile kosmetische Zubereitung
DE102012218620A1 (de) 2012-10-12 2014-04-17 Schaeffler Technologies Gmbh & Co. Kg Käfig für ein Wälzlager
CN114206488A (zh) * 2019-08-06 2022-03-18 微胶囊科技公司 包含亲脂性活性成分的微胶囊的制造方法、由所述方法制备的微胶囊及其用途
CN114515554A (zh) * 2022-01-18 2022-05-20 国家石油天然气管网集团有限公司 一种聚α-烯烃减阻高分子聚合物微胶囊的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045036A1 (en) * 1997-04-07 1998-10-15 Minnesota Mining And Manufacturing Company Encapsulation process and encapsulated products
EP1199100A2 (de) * 2000-10-16 2002-04-24 Bayer Ag Mikrokapseln mit Wänden aus Polyharnstoff
WO2004098767A1 (en) * 2003-05-11 2004-11-18 Ben Gurion University Of The Negev Research And Development Authority Encapsulated essential oils
WO2006013165A1 (en) * 2004-08-04 2006-02-09 Ciba Specialty Chemicals Holding Inc. Functionalized particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045036A1 (en) * 1997-04-07 1998-10-15 Minnesota Mining And Manufacturing Company Encapsulation process and encapsulated products
EP1199100A2 (de) * 2000-10-16 2002-04-24 Bayer Ag Mikrokapseln mit Wänden aus Polyharnstoff
WO2004098767A1 (en) * 2003-05-11 2004-11-18 Ben Gurion University Of The Negev Research And Development Authority Encapsulated essential oils
WO2006013165A1 (en) * 2004-08-04 2006-02-09 Ciba Specialty Chemicals Holding Inc. Functionalized particles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2361311A1 (es) * 2011-04-14 2011-06-16 Ecopol Tech, S.L. Procedimiento para la fabricación de un microencapsulado de un principio activo hidrófobo y microencapsulado y composiciones correspondientes.
DE102012211790A1 (de) * 2012-07-06 2014-01-09 Beiersdorf Ag Lichtstabile kosmetische Zubereitung
DE102012218620A1 (de) 2012-10-12 2014-04-17 Schaeffler Technologies Gmbh & Co. Kg Käfig für ein Wälzlager
CN114206488A (zh) * 2019-08-06 2022-03-18 微胶囊科技公司 包含亲脂性活性成分的微胶囊的制造方法、由所述方法制备的微胶囊及其用途
CN114515554A (zh) * 2022-01-18 2022-05-20 国家石油天然气管网集团有限公司 一种聚α-烯烃减阻高分子聚合物微胶囊的制备方法

Similar Documents

Publication Publication Date Title
EP1915122B1 (de) Copolymere für kosmetische anwendungen
WO2008034764A2 (de) Kosmetische zubereitungen auf basis molekular geprägter polymere
EP1909747A1 (de) Dermokosmetische zubereitungen
EP1773906B1 (de) Vernetzte polytetrahydrofuran-haltige polyurethane
EP1843742A1 (de) Verwendung von wasser-in-wasser-emulsionspolymerisaten als verdicker in kosmetischen zubereitungen
WO2008025755A1 (de) Verwendung von n-haltigen heterozyklen in dermokosmetika
WO2004058837A2 (de) Ampholytisches copolymer und dessen verwendung
JP2009503174A (ja) シリコーン基を含有するコポリマー、その製造及び使用
EP1868690A2 (de) Verwendung von polyisobuten enthaltenden copolymerisaten in kosmetischen zusammensetzungen
WO2004055088A1 (de) Allylgruppen-haltiges polyetherurethan
WO2005095479A1 (de) Diallylamine enthaltende polymerisate
WO2007017441A1 (de) Vernetzte methylmethacrylat-copolymere für kosmetische anwendungen
WO2006106114A1 (de) Verwendung von polyisobuten enthaltenden copolymerisaten in lichtschutzmitteln
EP1455739B1 (de) Kosmetisches mittel enthaltend wenigstens ein copolymer mit n-vinyllactameinheiten
WO2007110383A1 (de) Verkapselung lipophiler wirkstoffe
EP1937732B1 (de) Haarfestiger auf basis von t-butylacrylat und hydroxyalkylmethacrylat
EP1363585A2 (de) Kosmetisches oder pharmazeutisches mittel
DE102004051647A1 (de) Kosmetische Zubereitungen enthaltend Ethylmethacrylat-Copolymere
EP1915124B1 (de) Festigerpolymere auf basis von polyesteracrylaten
EP1642561A1 (de) Kosmetische Mittel enthaltend sulfonierte, Sulfongruppen enthaltende Polymere

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07727255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07727255

Country of ref document: EP

Kind code of ref document: A1