EP1894300A1 - Systeme de source de courant et procede pour faire fonctionner une charge electrique - Google Patents

Systeme de source de courant et procede pour faire fonctionner une charge electrique

Info

Publication number
EP1894300A1
EP1894300A1 EP06743161A EP06743161A EP1894300A1 EP 1894300 A1 EP1894300 A1 EP 1894300A1 EP 06743161 A EP06743161 A EP 06743161A EP 06743161 A EP06743161 A EP 06743161A EP 1894300 A1 EP1894300 A1 EP 1894300A1
Authority
EP
European Patent Office
Prior art keywords
current source
voltage
electrical load
transistor
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06743161A
Other languages
German (de)
English (en)
Other versions
EP1894300B1 (fr
Inventor
Peter Trattler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams AG
Original Assignee
Austriamicrosystems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Austriamicrosystems AG filed Critical Austriamicrosystems AG
Publication of EP1894300A1 publication Critical patent/EP1894300A1/fr
Application granted granted Critical
Publication of EP1894300B1 publication Critical patent/EP1894300B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/46Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices

Definitions

  • the present invention relates to a power source arrangement, the use thereof, and a method for operating an electrical load.
  • Power source arrangements serve, for example, to supply one or more electrical loads with electrical energy.
  • a plurality of series circuits each comprising a current source and an associated load, may be provided. If the branches connected in parallel are supplied with a common supply voltage, it may be desirable to regulate the supply voltage.
  • the voltage drop across each current sink voltage can be measured and then the minimum of the current sink voltages can be determined. This lowest current sink voltage is compared with a desired value and depending on the comparison result, the supply voltage is varied. This ensures that the minimum voltage drop across the current sink corresponds at least to the threshold value. As a result, all power sources work in a predetermined voltage range.
  • the object of the present invention is to provide a current source arrangement and a method for operating an electrical load, in which a simple Heidelbergungsauf- construction with good efficiency is possible. According to the invention the object is achieved with respect to the device by a current source arrangement having the features of patent claim 1.
  • the proposed power source arrangement includes a power source and associated means for connecting an electrical load.
  • the current source and the means for connecting an electrical load are connected to one another such that a common current path is formed when the electrical load is connected.
  • a voltage tap node is coupled to the means for connecting an electrical load. This is designed such that a voltage dropping across the electrical load and / or the current source or a signal derived therefrom can be tapped off.
  • a comparator is connected at its first input to the tap node.
  • a second input of the comparator is arranged to supply a reference threshold.
  • An output of the comparator is connected to a control input of a transistor.
  • the transistor has a controlled path, which is connected between a signal line and a reference potential connection.
  • a DC voltage regulator for example a DC / DC converter, is designed at an input for supplying an input voltage.
  • An output of the DC regulator is connected to the means for connecting the electrical load.
  • a feedback input of the DC regulator is connected to the signal line. If too low a voltage drops above the power source, the signal line is pulled down. Thus, the feedback input of the DC regulator is pulled down. As a result, the DC regulator compensates for this by increasing its output voltage to regain the correct feedback voltage at the feedback input.
  • each branch comprising a means for connecting an electrical load and an associated current source, each associated with a comparator with downstream transistor.
  • each branch comprising a means for connecting an electrical load and an associated current source, each associated with a comparator with downstream transistor.
  • common to all branches is the signal line and the DC voltage regulator.
  • At least one further current source and at least one further means for connecting an electrical load is provided, which is connected to the at least one further current source.
  • At least one further voltage tapping node is coupled to the at least one further means for connecting an electrical load.
  • At least one further comparator with a first input, which is connected to the at least one further tap node, and with a second input configured for supplying at least one further reference source is provided.
  • At least one further transistor is connected to it, which is connected on the load side to the common signal line.
  • the proposed principle is characterized in particular by a high efficiency.
  • the proposed circuit can be realized in a simple manner and in a small size. Furthermore, it is characterized by the fact that it can be easily extended, cascaded and configured almost arbitrarily. Any number of power sources can be added without the need for additional circuitry, even across different semiconductor chips. Between several power sources, only a single line is required, namely the designated here as a signal line line. If in each case a plurality of different load types are to be controlled, for example red, green and blue (RGB) light-emitting diodes, abbreviated LEDs, the current sources can preferably be arranged in groups such that a common signal line is provided for each load type.
  • RGB red, green and blue
  • the reference thresholds may be the same or different.
  • the electrical loads each comprise at least one light emitting diode or a series connection of a plurality of light emitting diodes.
  • the branches each comprising a current source and a means for connecting an electrical load, may be grouped together such that there is a means between the tap nodes of such a group and the comparator is switched to select a minimum input voltage.
  • the types of loads may be light emitting diodes of different colors, such as red, green and blue light emitting diodes.
  • the voltage tap node may be coupled to the means for connecting an electrical load such that the voltage tap node is formed at a control terminal of a current source transistor, wherein the controlled path of the current source transistor is formed in a common current path with the means for connecting the electrical load.
  • the comparator may comprise an operational amplifier.
  • the combination of comparator and downstream transistor is preferably designed so that at different input levels at the input of the comparator not a rapid tilting of the output level to an extreme value, but rather that at the output to the difference at the input proportional signal is provided. This means that preferably a finite amplification is provided. This gain can be expressed in amperes per volt (current output to voltage input).
  • the DC voltage regulator preferably comprises a so-called DC / DC converter. This is preferably designed as a so-called inductive Bück converter or down converter, Boost Converter or boost converter, buck / boost converter, capacitive charge pump, LDO (linear regulator) or the like.
  • a low-pass filter is preferably provided.
  • Minimum and maximum limits for the output voltage of the DC-DC converter can be set exactly by resistor divider ratios. This can be achieved with advantage that even if an electrical load fails, the supply voltage at the output of the DC voltage converter always remains within the specified limits for this output voltage.
  • the proposed principle is preferably generally suitable for lighting applications.
  • the proposed principle for the backlighting of liquid crystal displays, LCD is suitable.
  • the proposed principle can be used in such lighting applications in which a plurality of LED series circuits or chains are provided.
  • FIG. 1 shows an embodiment of a current source arrangement according to the proposed principle based on a circuit diagram
  • FIG. 2 shows a further exemplary embodiment of a current source arrangement according to the proposed principle on the basis of a circuit diagram
  • FIG. 4 shows a further exemplary embodiment of a current source arrangement according to the proposed principle
  • FIG. 5 shows another embodiment of a current source arrangement according to the proposed principle
  • FIG. 6 shows an exemplary embodiment of a current source arrangement according to the proposed principle with different load types
  • FIG. 7 shows a first exemplary embodiment of a comparator transistor arrangement
  • FIG. 8 shows another embodiment of a comparator transistor arrangement
  • FIG. 9 shows a still further embodiment of a comparison transistor arrangement for use in a circuit according to one of the figures 1, 2, 4 to 6, and
  • FIG 10 shows an exemplary embodiment of a voltage tap formed on the control input of the current source transistor according to the proposed principle.
  • FIG. 1 shows a current source arrangement according to the proposed principle.
  • a power source 1 is in a common Current path connected to a means 2 for connecting an electrical load 3. Between the power source 1 and the electrical load 3, a voltage tap node 4 is formed.
  • the voltage tap node 4 is connected to an inverting input of a comparator 5.
  • Another input of the comparator 5 is provided with reference numeral 6, non-inverting and designed to supply a reference threshold V c .
  • the output of the comparator 5 is connected to the control input of an associated transistor 7.
  • Transistor 7 may be a MOSFET or bipolar transistor.
  • the controlled path of the transistor 7 is connected between a common signal line 8 and a reference potential connection 9.
  • the signal line 8 is connected to a feedback input of a DC voltage regulator 10 for its control.
  • the DC voltage regulator 10 has a
  • Input 11 for supplying an input voltage and an output 12 for providing a supply voltage VDD as a function of the input voltage and the level of the common signal line 8.
  • This output 12 of the DC voltage regulator 10 is connected to another terminal of the terminal 2 for connecting the electrical load 3rd connected.
  • the signal UV of the common signal line controls the supply voltage VDD. If one of the current sources 1, 20, 21 has too low a voltage (a voltage below the comparison potential V c ), the line 8 is pulled slightly downward with respect to the voltage UV. Thus, the voltage at the feedback input of the DC regulator 10 is pulled down. This is compensated by the DC voltage controller 10 in that the voltage VDD at the output 12 is increased. The voltage VDD at the output is increased until the correct voltage UV is present at the feedback input.
  • the DC voltage regulator 10 can be any adjustable DC / DC
  • the voltage regulator 10 may be an inductive buck, boost, buck / boost regulator or a capacitive charge pump or a simple series regulator.
  • the circuit according to FIG. 1 has a simple circuit structure, which can be implemented in particular in integrated circuit technology with a small area requirement.
  • the circuit can be easily extended, cascaded and configured with additional branches. Any number of power sources can be added, requiring no additional circuitry.
  • An advantageous feature of the circuit of Figure 1 is that only one line, namely the common signal line 8, is required for coupling the individual power source branches together.
  • FIG. 2 shows a further exemplary embodiment of a current source arrangement according to the proposed principle, which largely coincides with the circuit according to FIG. 1 in the components used and their advantageous interconnection. In that regard, the description of the circuit will not be repeated here.
  • the electrical loads 3, 13, 23 are each in Figure 2 as a series circuit of a plurality of light-emitting diodes, LEDs 30, 31; 32, 33; 34, 35 executed.
  • the current sources 1, 20, 21 are each implemented in FIG. 2 with a respective current source transistor 36, the controlled path of which is connected between the respective tap nodes 4, 14, 24 and a resistor 37 connected to reference potential.
  • the control input of the current source transistor 36 is connected to the output of a differential amplifier 38 having two inputs. One input is formed as a terminal for supplying a reference threshold, while the other input is connected to the load terminal of the transistor 36, which is connected to the resistor 37.
  • the DC voltage regulator 10 is not shown in FIG. 2 for reasons of clarity.
  • the current source 36, 37, 38 according to FIG. 2 is particularly advantageous with regard to stability and adjustability.
  • FIG. 3 shows another exemplary embodiment of a DC-DC converter for use in the circuits according to FIGS. 1 or 2.
  • the actual DC / DC converter 39 has an input 40 for supplying an input voltage which drops with respect to reference potential 41. At the output 42, the supply voltage VDD is provided.
  • the common signal line 8 is not directly connected to the feedback input 43 of the DC-DC converter. Rather, a low-pass filter, comprising a series resistor 44 and a downstream capacitance 45 connected to reference potential. This low-pass filter 44, 45 is connected via a coupling resistor 46 to the actual feedback input 43.
  • a voltage divider 49 is provided which comprises a first resistor 47 and a second resistor 48. The first resistor 47 is connected between the output 42 and the feedback input 43.
  • the second resistor 48 is connected between the feedback input 43 and a reference potential.
  • the resistors 47, 48 have resistance values Rl, R2.
  • the resistor 44 of the low-pass filter has the resistance R4.
  • the capacity 45 of the low-pass filter has the capacitance value Cl.
  • the coupling resistor 46 has the resistance value R3.
  • the low-pass filter comprising the components 44, 45 is used. These form the dominant pole in the transfer function of the control loop.
  • the minimum output voltage VDD MIN at the output 42 is set by the ratio of the resistance values Rl, R2.
  • the maximum output voltage VDD MAX at the output 42 is set by the values of the resistors Rl to R4.
  • Vref is the voltage at node 43 that the DC / DC converter keeps constant.
  • VDD MIN Vref - -
  • Figure 4 shows another embodiment of the circuit of Figure 2. This corresponds to that largely in structure and advantageous interconnection and will not be described at this point again.
  • the current branches each comprising a current source, a comparator and a transistor, are each formed in pairs in FIG. 4 in pairs on common monolithically integrated chips 50, 51, 52.
  • a common signal line 8 can nevertheless be provided. There are no additional circuits needed.
  • FIG. 5 shows a development of the circuit of Figure 4, in which the proposed principle is combined with the principle of selecting a minimum voltage.
  • a minimum selection circuit 53, 54, 55 is provided on each of the chips 50 ', 51', 52 ', whose inputs are connected to the tap nodes of all branches on the respective chip.
  • the output of the minimum selector 53, 54, 55 is connected to a common comparator 56, 57, 58 on each chip, whose output in turn drives a common transistor 59, 60, 61 on each chip.
  • a load terminal of this transistor 59, 60, 61 is in turn connected to a common signal line 8 all chips 50 ', 51', 52 '.
  • the flexibility can be further increased.
  • FIG. 6 shows another development of the circuit of FIG. 4 with an example.
  • Each of the chips 50 'to 52' is configured to drive different types of electrical loads, for example, red diodes 62r, blue diodes 62b, and green diodes 62g.
  • those branches which are designed to drive the red light-emitting diodes 62r are connected to a first common signal line 8r, while those branches which are designed to drive the blue diodes 62b are each connected to a second common signal line 8b via different chips , Those branches which are designed to drive the green LEDs 62g are connected to a third common signal line 8g.
  • the red, blue and green diodes 62r, 62b and 62g are supply voltage side to each one associated supply voltage line, different for each type, for guiding different supply voltages
  • VDDB, VDDR, VDDG connected.
  • Figure 7 shows the embodiment of the comparator 5 with downstream transistor 7 according to Figures 1, 2 and 4 to 6.
  • this combination of comparator and transistor can in the figures 1, 2 and 4 to 6, for example, an arrangement according to Figure 8, 9 or 10 be turned on.
  • the comparator formed as OTA (operational transconductance amplifier-transconductance amplifier) 64 with a downstream current mirror 65 whose output transistor corresponds to the transistor 7 of FIG. 7 is characterized in particular by the small chip area requirement.
  • OTA operational transconductance amplifier-transconductance amplifier
  • a drain current is only delivered to the output 66, ie to the common signal line, if the voltage at the negative input 67 is smaller than that at the positive input 68. This is exactly the desired behavior of the control principle.
  • FIG. 9 shows a further development of the circuit of FIG. 8, likewise with an OTA 64 and a current mirror 65.
  • additional current mirrors 69, 70, 71 are provided for their coupling to one another, resulting in an improved amplification factor and a better driver capability for the output transistor 72 to lead.
  • the transistor 65 may optionally be removed - as in the embodiment according to FIG. 8.
  • the voltage tap may also be provided at the control input of the current source transistor 36 instead of at the load terminal of the current source transistor 36.
  • the circuit of Figure 10 is thus also an alternative to the formation of the current sources of Figures 2 and 4 to 6.
  • the sampling of the voltage at the gate of the current source transistor as the tap node has the advantage that the gate voltage This transistor is monitored and is within a predetermined limited range, namely limited by the reference voltage Vg at the input of the comparator 5. This is particularly advantageous in view of manufacturing variations of the current source transistors. It should be noted that the inputs of the comparator 5 must be replaced. All circuit arrangements according to FIGS. 7 to 10 can, as shown in field effect transistor technology, eg. B. as MOSFETs, or alternatively be executed in bipolar technology.
  • the proposed principle is particularly advantageous for driving LED arrays in RGB or single colors.
  • the principle can be used in the following fields of application, namely general illumination, backlighting of liquid crystal display, LCD RGB

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

L'invention concerne un système de source de courant présentant au moins une branche comprenant une source de courant (1) et des moyens (2) pour raccorder une charge électrique (3). Un comparateur (5) est raccordé à un noeud de prise de tension (4) de cette branche, un transistor (7) étant monté en aval de ce comparateur (5). Ledit transistor (7) est relié à une ligne de signaux commune (8) qui est elle-même raccordée à une entrée de rétroaction d'un régulateur de tension continue (10). Un nombre voulu de branches complémentaires peuvent être ajoutées au système avec la même ligne de signaux commune (8). Ce système de source de courant peut être utilisé en particulier pour alimenter plusieurs faisceaux de DEL pour des applications d'éclairage et des dispositifs d'affichage.
EP06743161A 2005-06-20 2006-06-14 Systeme de source de courant et procede pour faire fonctionner une charge electrique Expired - Fee Related EP1894300B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005028403A DE102005028403B4 (de) 2005-06-20 2005-06-20 Stromquellenanordnung und Verfahren zum Betreiben einer elektrischen Last
PCT/EP2006/005749 WO2006136321A1 (fr) 2005-06-20 2006-06-14 Systeme de source de courant et procede pour faire fonctionner une charge electrique

Publications (2)

Publication Number Publication Date
EP1894300A1 true EP1894300A1 (fr) 2008-03-05
EP1894300B1 EP1894300B1 (fr) 2008-10-01

Family

ID=36862021

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06743161A Expired - Fee Related EP1894300B1 (fr) 2005-06-20 2006-06-14 Systeme de source de courant et procede pour faire fonctionner une charge electrique

Country Status (6)

Country Link
US (1) US8063585B2 (fr)
EP (1) EP1894300B1 (fr)
JP (1) JP4955672B2 (fr)
KR (2) KR101159931B1 (fr)
DE (2) DE202005021665U1 (fr)
WO (1) WO2006136321A1 (fr)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7821023B2 (en) 2005-01-10 2010-10-26 Cree, Inc. Solid state lighting component
US9070850B2 (en) 2007-10-31 2015-06-30 Cree, Inc. Light emitting diode package and method for fabricating same
US9793247B2 (en) 2005-01-10 2017-10-17 Cree, Inc. Solid state lighting component
US9335006B2 (en) 2006-04-18 2016-05-10 Cree, Inc. Saturated yellow phosphor converted LED and blue converted red LED
US10295147B2 (en) 2006-11-09 2019-05-21 Cree, Inc. LED array and method for fabricating same
DE102006059355A1 (de) * 2006-12-15 2008-06-19 Robert Bosch Gmbh Ansteuerungseinrichtung und Verfahren zum Betrieb wenigstens einer Reihenschaltung von Leuchtdioden
DE102007004877A1 (de) * 2007-01-31 2008-08-14 Infineon Technologies Austria Ag Schaltungsanordnung zur Ansteuerung von Leuchtdioden
DE102007045777A1 (de) * 2007-09-25 2009-04-09 Continental Automotive Gmbh Skalierbare LED-Ansteuerung mit minimierter Verlustleistung
DE102007051793B4 (de) * 2007-10-30 2009-08-27 Texas Instruments Deutschland Gmbh LED-Treiber mit adaptivem Algorithmus für Speicherkondensatorvorladung
KR101614304B1 (ko) 2007-11-16 2016-04-21 알레그로 마이크로시스템스, 엘엘씨 직렬 연결된 발광 다이오드 열들을 구동하는 전자 회로들
US8319448B2 (en) 2007-12-20 2012-11-27 Osram Ag Driver arrangement for light emitting diodes
DE102008030365A1 (de) * 2008-06-26 2009-08-20 Continental Automotive Gmbh Einrichtung zur Ansteuerung von in einem Array angeordneten Einzellichtquellen
US9425172B2 (en) 2008-10-24 2016-08-23 Cree, Inc. Light emitter array
KR100925565B1 (ko) * 2009-04-15 2009-11-05 (주)다윈텍 전류원 배열 에너지 공급 시스템과 전류피드백 회로장치
KR100941509B1 (ko) 2009-06-30 2010-02-10 주식회사 실리콘마이터스 기준 전압 생성 장치, 이를 포함하는 제어 장치 및 제어 장치를 이용하는 led 발광 장치
KR100942234B1 (ko) * 2009-07-23 2010-02-12 (주)로그인디지탈 발광다이오드 조명장치
EP2293165B1 (fr) 2009-09-02 2018-01-17 ams AG Plusieurs sources actuelles et procédé de régulation du courant
KR100949779B1 (ko) * 2009-11-12 2010-03-30 (주)다윈텍 전류원 배열 에너지 공급 회로
DE102010006865B4 (de) 2010-02-04 2018-10-11 Austriamicrosystems Ag Stromquelle, Stromquellenanordnung und deren Verwendung
DE102010015088A1 (de) * 2010-03-19 2011-09-22 Dilitronics Gmbh Schaltungsanordnung zur Reduzierung der Verlustleistung linearer Stromtreiber für lichtemittierende Dioden
CN102065601B (zh) * 2010-03-23 2014-03-12 成都芯源系统有限公司 驱动多串发光二极管的装置、方法及其液晶显示设备
KR101054878B1 (ko) * 2010-04-15 2011-08-05 (주)다윈텍 정전류원 회로
US8350498B2 (en) * 2010-04-28 2013-01-08 National Semiconductor Corporation Dynamic current equalization for light emitting diode (LED) and other applications
KR101154837B1 (ko) * 2010-05-10 2012-06-18 주식회사 실리콘웍스 전기적부하의 구동회로 및 그 구동방법
DE102010033640B4 (de) 2010-08-06 2018-07-12 Austriamicrosystems Ag Schaltungsanordnung und Verfahren zum Betreiben von Leuchtdioden sowie Beleuchtungsanordnung
DE102010045389B4 (de) 2010-09-15 2012-12-06 Austriamicrosystems Ag Spannungsversorgungsanordnung und Verfahren zur Spannungsversorgung einer elektrischen Last
US8692482B2 (en) 2010-12-13 2014-04-08 Allegro Microsystems, Llc Circuitry to control a switching regulator
US9786811B2 (en) 2011-02-04 2017-10-10 Cree, Inc. Tilted emission LED array
CN102752899B (zh) 2011-04-02 2015-11-25 英飞特电子(杭州)股份有限公司 一种调整led电流的电路
US10842016B2 (en) 2011-07-06 2020-11-17 Cree, Inc. Compact optically efficient solid state light source with integrated thermal management
US9265104B2 (en) 2011-07-06 2016-02-16 Allegro Microsystems, Llc Electronic circuits and techniques for maintaining a consistent power delivered to a load
US9155156B2 (en) 2011-07-06 2015-10-06 Allegro Microsystems, Llc Electronic circuits and techniques for improving a short duty cycle behavior of a DC-DC converter driving a load
DE102011107089B4 (de) 2011-07-11 2013-06-06 Austriamicrosystems Ag Spannungsversorgungsanordnung und Verfahren zur Spannungsversorgung einer elektrischen Last
KR101940780B1 (ko) * 2011-09-16 2019-01-22 서울반도체 주식회사 반도체 발광 소자를 적용한 조명 장치
US20130187560A1 (en) * 2012-01-23 2013-07-25 National Chung Cheng University Light source apparatus for detecting pathological change in an oral cavity
JP5408281B2 (ja) * 2012-04-18 2014-02-05 ミツミ電機株式会社 電源制御用半導体集積回路
US9144126B2 (en) 2012-08-22 2015-09-22 Allegro Microsystems, Llc LED driver having priority queue to track dominant LED channel
TWI559812B (zh) 2015-02-12 2016-11-21 聯詠科技股份有限公司 定電流驅動裝置之回授裝置及回授方法
DE102017119853B4 (de) 2016-08-29 2023-12-28 Elmos Semiconductor Se Verfahren zur drahtlosen Regelung der Betriebsspannung für LED Beleuchtungen
DE102017119850B4 (de) 2016-08-29 2023-12-28 Elmos Semiconductor Se Verfahren zur Power-Line basierenden Regelung der Versorgungsspannung von LEDs
DE102016116487A1 (de) 2016-08-29 2017-10-05 Elmos Semiconductor Aktiengesellschaft Vorrichtung zur fehlerrobusten Energieversorgung von LEDs basierend auf den Spannungsabfällen über die LEDs
DE102017119849B4 (de) 2016-08-29 2023-12-28 Elmos Semiconductor Se Verfahren zur fehlerrobusten und energieeffizienten Energieversorgung für LEDs
DE102017119847B4 (de) 2016-08-29 2023-12-28 Elmos Semiconductor Se Fehlerrobuste und energieeffiziente Energieversorgung Vorrichtung zur Versorgung einer Mehrzahl von LED-Gruppen mit elektrischer Energie basierend auf der Erfassung der Spannungsabfälle über deren Stromquellen
DE102017119848B4 (de) 2016-08-29 2023-12-28 Elmos Semiconductor Se Fehlerrobuste und energieeffiziente Vorrichtung zur Versorgung einer Mehrzahl von LED-Gruppen mit elektrischer Energie basierend auf der Erfassung der Spannungsabfälle über die LEDs
DE102017119851B4 (de) 2016-08-29 2023-12-28 Elmos Semiconductor Se Verfahren zur drahtlosen Regelung der Betriebsspannung für Verbraucher mit verbraucherbedingter fester Betriebsspannung (insbes. LEDs)
DE102017119852B4 (de) 2016-08-29 2023-12-28 Elmos Semiconductor Se Verfahren zur Power-Line basierenden Regelung der Betriebsspannung für Verbraucher mit verbraucherbedingter fester Betriebsspannung (insbes. LEDs)
US11051382B2 (en) * 2017-11-10 2021-06-29 Lumileds Llc Driver of an LED array
TWI735865B (zh) 2018-04-18 2021-08-11 聯詠科技股份有限公司 發光二極體驅動系統及發光二極體驅動裝置
DE102019113864B4 (de) * 2019-05-23 2023-06-15 Elmos Semiconductor Se Verfahren zur Regelung der Ausgangsspannung eines Spannungsreglers
DE102019113858A1 (de) * 2019-05-23 2020-11-26 Elmos Semiconductor Se Verfahren und Vorrichtungen zur Regelung der Ausgangsspannung eines Spannungsreglers

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4237405A (en) * 1978-03-10 1980-12-02 Lear Siegler, Inc. Method and apparatus for conserving energy
US4302726A (en) * 1979-07-10 1981-11-24 The General Electric Company Limited Current sources
CA1247568A (fr) 1984-01-13 1988-12-28 Greg E. Lowe Methode et monture pour l'adaptation de sangles reglables d'un sac a dos
JPH0622817Y2 (ja) * 1988-08-31 1994-06-15 タキロン株式会社 Lcd用バックライト
US5329210A (en) 1991-11-13 1994-07-12 At&T Bell Laboratories High-speed driver for an LED communication system or the like
DE4443469C2 (de) 1994-12-07 1997-10-23 Telefunken Microelectron Schaltungsanordnung mit einem Bipolartransistor
JP2003158300A (ja) 1997-07-09 2003-05-30 Nichia Chem Ind Ltd Led表示装置及び半導体装置
CA2225004A1 (fr) * 1997-12-17 1999-06-17 Martin Malenfant Survolteur pour activer le regulateur du facteur de puissance d'un voyant del lorsqu'il y a basse alimentation en continu ou en alternatif
JP3729630B2 (ja) 1998-01-26 2005-12-21 松下電器産業株式会社 スイッチングレギュレータ装置
DE19841270A1 (de) * 1998-09-09 2000-03-16 Siemens Ag Ansteuerschaltung zum Erzeugen eines konstanten Stromes durch zumindest eine Leuchtdiode
FI106770B (fi) * 1999-01-22 2001-03-30 Nokia Mobile Phones Ltd Valaiseva elektroninen laite ja valaisumenetelmä
JP2000347613A (ja) * 1999-06-03 2000-12-15 Mitsubishi Electric Corp 発光ダイオードの駆動回路
US6160354A (en) * 1999-07-22 2000-12-12 3Com Corporation LED matrix current control system
JP3594119B2 (ja) 1999-08-26 2004-11-24 シャープ株式会社 直流安定化電源装置
JP4461576B2 (ja) * 2000-06-19 2010-05-12 東芝ライテック株式会社 Led光源装置
JP3529718B2 (ja) * 2000-10-03 2004-05-24 ローム株式会社 携帯形電話機の発光装置およびその駆動ic
DE10115388A1 (de) * 2001-03-28 2002-10-10 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Ansteuerschaltung für ein LED-Array
US6586890B2 (en) * 2001-12-05 2003-07-01 Koninklijke Philips Electronics N.V. LED driver circuit with PWM output
CN100373416C (zh) 2002-02-18 2008-03-05 富士通株式会社 安全提供方法和安全提供装置
JP2003332623A (ja) * 2002-05-07 2003-11-21 Rohm Co Ltd 発光素子駆動装置及び、発光素子を備えた電子機器
JP4177022B2 (ja) * 2002-05-07 2008-11-05 ローム株式会社 発光素子駆動装置、及び発光素子を備えた電子機器
US6690146B2 (en) 2002-06-20 2004-02-10 Fairchild Semiconductor Corporation High efficiency LED driver
JP4017960B2 (ja) * 2002-10-24 2007-12-05 日本テキサス・インスツルメンツ株式会社 駆動回路
EP1447950A1 (fr) * 2003-02-14 2004-08-18 Vrije Universiteit Brussel Egalisateur adaptatif à basse tension
DE10318780A1 (de) * 2003-04-23 2004-12-09 Fachhochschule Südwestfalen Verfahren und Vorrichtung zur wirkungsgrad-optimierten Ansteuerung von LEDs bei geringem schaltungstechnischem Aufwand
WO2004100614A1 (fr) * 2003-05-07 2004-11-18 Koninklijke Philips Electronics N.V. Procede et circuit de regulation de courant pour diodes electroluminescentes
US6836157B2 (en) * 2003-05-09 2004-12-28 Semtech Corporation Method and apparatus for driving LEDs
JP2005011895A (ja) 2003-06-17 2005-01-13 Nintendo Co Ltd Led駆動回路
US6897622B2 (en) * 2003-06-30 2005-05-24 Mattel, Inc. Incremental color blending illumination system using LEDs
DE602004008840T2 (de) * 2003-07-07 2008-06-19 Rohm Co., Ltd., Kyoto Lasttreibervorrichtung und tragbare Vorrichtung, die solche Lasttreibervorrichtung verwendet
JP3755770B2 (ja) * 2003-07-07 2006-03-15 ローム株式会社 負荷駆動装置及び携帯機器
US7057359B2 (en) * 2003-10-28 2006-06-06 Au Optronics Corporation Method and apparatus for controlling driving current of illumination source in a display system
JP2005160241A (ja) 2003-11-27 2005-06-16 Noritz Corp 電源装置
US20050128168A1 (en) * 2003-12-08 2005-06-16 D'angelo Kevin P. Topology for increasing LED driver efficiency
US7276861B1 (en) * 2004-09-21 2007-10-02 Exclara, Inc. System and method for driving LED
JP4429868B2 (ja) * 2004-10-14 2010-03-10 シャープ株式会社 スイッチング電源回路及びそれを用いた電子機器
JP2006278304A (ja) 2005-03-25 2006-10-12 Sanee Denki Kk Led照明装置
US7622871B2 (en) * 2007-10-01 2009-11-24 Micrel, Incorporated Light emitting diode driver circuit with shunt switch

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006136321A1 *

Also Published As

Publication number Publication date
EP1894300B1 (fr) 2008-10-01
KR101159931B1 (ko) 2012-06-25
US20090212717A1 (en) 2009-08-27
DE202005021665U1 (de) 2009-04-02
DE102005028403B4 (de) 2013-11-21
JP4955672B2 (ja) 2012-06-20
KR20100018074A (ko) 2010-02-16
US8063585B2 (en) 2011-11-22
DE102005028403A1 (de) 2006-12-28
KR100989021B1 (ko) 2010-10-20
KR20080032090A (ko) 2008-04-14
WO2006136321A1 (fr) 2006-12-28
JP2008547368A (ja) 2008-12-25

Similar Documents

Publication Publication Date Title
DE102005028403B4 (de) Stromquellenanordnung und Verfahren zum Betreiben einer elektrischen Last
DE19841490B4 (de) Schaltungsanordnung zum Schutz einer Serienschaltung aus mindestens zwei Leuchdioden vor dem Ausfall
DE102007063965B3 (de) Vorrichtung und Verfahren zum Treiben einer LED
DE60109796T2 (de) Verbesserte einstellungsauflösung einer spannungs- und helligkeitsgeregelten led ansteuerschaltung
DE10013215B4 (de) Ansteuerschaltung für Leuchtdioden
EP2123130B1 (fr) Module d'activation et procédé de fonctionnement d'au moins un circuit de diodes électroluminescentes en série
DE202013104998U1 (de) LED-Treiber mit einem Schutz gegen Stromunterbrechung und einer Verstellmöglichkeit der Farbtemperatur und der Lichtstärke
DE112012006338T5 (de) LED-Hintergrundbeleuchtungssystem und Anzeigevorrichtung
DE102010006865B4 (de) Stromquelle, Stromquellenanordnung und deren Verwendung
EP3973745B1 (fr) Procédé et dispositifs pour réguler la tension de sortie d'un régulateur de tension
DE102005056338B4 (de) Spannungskonverter und Verfahren zur Spannungskonversion
EP3973746B1 (fr) Procédé et dispositifs pour réguler la tension de sortie d'un régulateur de tension
DE102018126317B4 (de) LED-Treiber und Ansteuerverfahren
EP3473060B1 (fr) Dispositif et procédé de fonctionnement de del
DE112015007243B4 (de) Festkörperbeleuchtungsanordnung
EP1945006A2 (fr) Agencement de commutation à diodes luminescentes
DE102008056748A1 (de) Spannungskonverter
DE112012005777T5 (de) Verfahren und Vorrichtung zum Antrieb von LED basierten Beleuchtungseinheiten
DE102019107039B4 (de) LED-Treiber mit gesteuertem Spannungsvervielfacher
WO2012010591A2 (fr) Convertisseur abaisseur de tension pour fournir un courant pour au moins une del
DE102008003976A1 (de) Konstantstromregler mit Stromrückkopplung
DE202023101487U1 (de) Schaltungsanordnung zum versorgungsspannungsabhängigen Betreiben einer Halbleiterlichtquelle
DE102014226495B4 (de) Gestapelte Energieversorgung für einen reduzierten Stromverbrauch
DE102008005792B4 (de) Elektronische Schaltung sowie Verfahren zum Betrieb mehrerer Gasentladungslampen an einer gemeinsamen Spannungsquelle
WO2005104623A1 (fr) Dispositif d'alimentation en courant pour del

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): FR GB

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090702

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130620

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130703

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140614

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140614