EP1891020A2 - Verfahren zur herstellung von azoxystrobin unter verwendung von dabco als katalysator, und neue zwischenprodukte, die in diesen verfahren zum einsatz kommen - Google Patents
Verfahren zur herstellung von azoxystrobin unter verwendung von dabco als katalysator, und neue zwischenprodukte, die in diesen verfahren zum einsatz kommenInfo
- Publication number
- EP1891020A2 EP1891020A2 EP06726760A EP06726760A EP1891020A2 EP 1891020 A2 EP1891020 A2 EP 1891020A2 EP 06726760 A EP06726760 A EP 06726760A EP 06726760 A EP06726760 A EP 06726760A EP 1891020 A2 EP1891020 A2 EP 1891020A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- methyl
- compound
- formula
- phenyl
- yloxy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 title claims abstract description 83
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000008569 process Effects 0.000 title claims description 36
- WFDXOXNFNRHQEC-GHRIWEEISA-N azoxystrobin Chemical compound CO\C=C(\C(=O)OC)C1=CC=CC=C1OC1=CC(OC=2C(=CC=CC=2)C#N)=NC=N1 WFDXOXNFNRHQEC-GHRIWEEISA-N 0.000 title description 43
- 239000005730 Azoxystrobin Substances 0.000 title description 25
- 238000002360 preparation method Methods 0.000 title description 11
- 239000003054 catalyst Substances 0.000 title description 9
- 239000000543 intermediate Substances 0.000 title description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims abstract description 125
- 150000001875 compounds Chemical class 0.000 claims abstract description 67
- 239000000203 mixture Substances 0.000 claims abstract description 67
- CHZCERSEMVWNHL-UHFFFAOYSA-N 2-hydroxybenzonitrile Chemical compound OC1=CC=CC=C1C#N CHZCERSEMVWNHL-UHFFFAOYSA-N 0.000 claims abstract description 59
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical group CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 claims abstract description 28
- QVCUKHQDEZNNOC-UHFFFAOYSA-N 1,2-diazabicyclo[2.2.2]octane Chemical compound C1CC2CCN1NC2 QVCUKHQDEZNNOC-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 150000003839 salts Chemical class 0.000 claims abstract description 8
- ZMXDDKWLCZADIW-UHFFFAOYSA-N dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 67
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical group [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 65
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 42
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 claims description 39
- 238000006243 chemical reaction Methods 0.000 claims description 35
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 32
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 claims description 31
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 claims description 30
- 229940011051 isopropyl acetate Drugs 0.000 claims description 30
- WOADFQRFAAYIKX-UHFFFAOYSA-M potassium;2-cyanophenolate Chemical compound [K+].[O-]C1=CC=CC=C1C#N WOADFQRFAAYIKX-UHFFFAOYSA-M 0.000 claims description 15
- -1 compound methyl 2- {2-[6-(2- cyanophenoxy)pyrimidin-4-yloxy]phenyl } -3 ,3 -dimethoxypropanoate Chemical class 0.000 claims description 14
- 239000002253 acid Substances 0.000 claims description 9
- 150000002576 ketones Chemical class 0.000 claims description 9
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 6
- INGAKHMWBZJAPU-UHFFFAOYSA-N phenyl 3,3-dimethoxypropanoate Chemical compound COC(OC)CC(=O)OC1=CC=CC=C1 INGAKHMWBZJAPU-UHFFFAOYSA-N 0.000 claims description 5
- 125000006239 protecting group Chemical group 0.000 claims description 5
- 239000003701 inert diluent Substances 0.000 claims description 4
- 239000012442 inert solvent Substances 0.000 claims description 4
- 239000003153 chemical reaction reagent Substances 0.000 claims description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 2
- 241000237519 Bivalvia Species 0.000 claims 1
- 235000020639 clam Nutrition 0.000 claims 1
- 239000002243 precursor Substances 0.000 abstract description 3
- 239000012973 diazabicyclooctane Substances 0.000 description 77
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 60
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 45
- 239000000243 solution Substances 0.000 description 42
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 34
- 235000011181 potassium carbonates Nutrition 0.000 description 31
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 28
- 230000008878 coupling Effects 0.000 description 24
- 238000010168 coupling process Methods 0.000 description 24
- 238000005859 coupling reaction Methods 0.000 description 24
- 239000008346 aqueous phase Substances 0.000 description 22
- YRYZZSRRDCTETP-DHZHZOJOSA-N methyl (e)-2-[2-(6-chloropyrimidin-4-yl)oxyphenyl]-3-methoxyprop-2-enoate Chemical compound CO\C=C(\C(=O)OC)C1=CC=CC=C1OC1=CC(Cl)=NC=N1 YRYZZSRRDCTETP-DHZHZOJOSA-N 0.000 description 17
- 239000002904 solvent Substances 0.000 description 17
- 239000003085 diluting agent Substances 0.000 description 16
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 15
- 239000002002 slurry Substances 0.000 description 14
- 238000002474 experimental method Methods 0.000 description 12
- 238000004821 distillation Methods 0.000 description 11
- 238000005292 vacuum distillation Methods 0.000 description 10
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- 239000002585 base Substances 0.000 description 9
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 9
- 239000000370 acceptor Substances 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- NUNQWODPVJYIDK-UHFFFAOYSA-N phenyl 3-methoxyprop-2-enoate Chemical compound COC=CC(=O)OC1=CC=CC=C1 NUNQWODPVJYIDK-UHFFFAOYSA-N 0.000 description 7
- 239000011541 reaction mixture Substances 0.000 description 7
- 238000010992 reflux Methods 0.000 description 7
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 6
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 6
- UCUILAKBJKOVIQ-UHFFFAOYSA-N methyl 2-[2-(6-chloropyrimidin-4-yl)oxyphenyl]-3,3-dimethoxypropanoate Chemical compound COC(OC)C(C(=O)OC)C1=CC=CC=C1OC1=CC(Cl)=NC=N1 UCUILAKBJKOVIQ-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 239000012074 organic phase Substances 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 150000003512 tertiary amines Chemical class 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000005160 1H NMR spectroscopy Methods 0.000 description 3
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- VGOQCZYRVRBHQN-UHFFFAOYSA-N methyl 2-[2-[6-(2-cyanophenoxy)pyrimidin-4-yl]oxyphenyl]-3,3-dimethoxypropanoate Chemical compound COC(OC)C(C(=O)OC)C1=CC=CC=C1OC1=CC(OC=2C(=CC=CC=2)C#N)=NC=N1 VGOQCZYRVRBHQN-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- YDHPXCHZYXPZIS-VURMDHGXSA-N (3z)-3-(methoxymethylidene)-1-benzofuran-2-one Chemical compound C1=CC=C2C(=C/OC)/C(=O)OC2=C1 YDHPXCHZYXPZIS-VURMDHGXSA-N 0.000 description 2
- SCZNXLWKYFICFV-UHFFFAOYSA-N 1,2,3,4,5,7,8,9-octahydropyrido[1,2-b]diazepine Chemical compound C1CCCNN2CCCC=C21 SCZNXLWKYFICFV-UHFFFAOYSA-N 0.000 description 2
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 2
- XJPZKYIHCLDXST-UHFFFAOYSA-N 4,6-dichloropyrimidine Chemical compound ClC1=CC(Cl)=NC=N1 XJPZKYIHCLDXST-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 125000000714 pyrimidinyl group Chemical group 0.000 description 2
- 235000017550 sodium carbonate Nutrition 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 description 1
- IELHIACVIURUJP-JXMROGBWSA-N (e)-2-[2-(6-chloropyrimidin-4-yl)oxyphenyl]-3-methoxyprop-2-enoic acid Chemical compound CO\C=C(\C(O)=O)C1=CC=CC=C1OC1=CC(Cl)=NC=N1 IELHIACVIURUJP-JXMROGBWSA-N 0.000 description 1
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- HXBMIQJOSHZCFX-UHFFFAOYSA-N 1-(bromomethyl)-2-nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1CBr HXBMIQJOSHZCFX-UHFFFAOYSA-N 0.000 description 1
- ACZGCWSMSTYWDQ-UHFFFAOYSA-N 3h-1-benzofuran-2-one Chemical compound C1=CC=C2OC(=O)CC2=C1 ACZGCWSMSTYWDQ-UHFFFAOYSA-N 0.000 description 1
- CSDQQAQKBAQLLE-UHFFFAOYSA-N 4-(4-chlorophenyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine Chemical compound C1=CC(Cl)=CC=C1C1C(C=CS2)=C2CCN1 CSDQQAQKBAQLLE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 1
- 238000005684 Liebig rearrangement reaction Methods 0.000 description 1
- SVYKKECYCPFKGB-UHFFFAOYSA-N N,N-dimethylcyclohexylamine Chemical compound CN(C)C1CCCCC1 SVYKKECYCPFKGB-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 229930182692 Strobilurin Natural products 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 238000005574 benzylation reaction Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 125000002243 cyclohexanonyl group Chemical group *C1(*)C(=O)C(*)(*)C(*)(*)C(*)(*)C1(*)* 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000000855 fungicidal effect Effects 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 150000002357 guanidines Chemical class 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- NTTOTNSKUYCDAV-UHFFFAOYSA-N potassium hydride Chemical compound [KH] NTTOTNSKUYCDAV-UHFFFAOYSA-N 0.000 description 1
- 229910000105 potassium hydride Inorganic materials 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- 229910000104 sodium hydride Inorganic materials 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- HVZJRWJGKQPSFL-UHFFFAOYSA-N tert-Amyl methyl ether Chemical compound CCC(C)(C)OC HVZJRWJGKQPSFL-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- 238000001665 trituration Methods 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D239/00—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
- C07D239/02—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
- C07D239/24—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
- C07D239/28—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
- C07D239/46—Two or more oxygen, sulphur or nitrogen atoms
- C07D239/52—Two oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/66—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
- C07C69/73—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
- C07C69/734—Ethers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/30—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
- C07C67/31—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of functional groups containing oxygen only in singly bound form
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/30—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
- C07C67/317—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
- C07C67/327—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups by elimination of functional groups containing oxygen only in singly bound form
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Definitions
- the present invention relates to a process for preparing the strobilurin fungicide methyl (E)-2- ⁇ 2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl ⁇ -3-methoxyacrylate (azoxystrobin) and a novel precursor thereof.
- azoxystrobin is prepared by reacting 2-cyanophenol with methyl (ZT)-2-[2-(6-chloro- pyrimidin-4-yloxy)phenyl]-3-methoxyacrylate.
- a high-yielding method for producing asymmetrical 4,6-bis(aryloxy)pyrimidine derivatives is disclosed in WO 01/72719 in which a 6-chloro-4-aryloxypyrimidine is reacted with a phenol, optionally in the presence of a solvent and/or a base, with the addition of from 2 to 40 mol % of l,4-diazabicyclo[2.2.2]octane (DABCO).
- DABCO l,4-diazabicyclo[2.2.2]octane
- the present invention is based on the discovery that, when preparing azoxystrobin or a novel acetal precursor of azoxystrobin using DABCO as a catalyst, significantly smaller amounts of this relatively expensive catalyst may be used than are contemplated in WO 01/72719 without compromising the yield. Apart from reducing the cost of manufacture, this has the added environmental benefit of reducing the quantity of catalyst discharged in the aqueous process effluent.
- W has the meaning given above, with 2-cyanophenol, or a salt thereof (suitably potassium 2-cyanophenoxide) in the presence of between 0.1 and 2 mol % of 1,4- diazabicyclo[2.2.2]octane, or (b) reacting the compound of formula (III):
- the process of invention comprises reacting a compound of formula (II):
- W has the meaning given above, with 2-cyanophenol, or a salt thereof (suitably potassium 2-cyanophenoxide) in the presence of between 0.1 and 2 mol % of 1,4- diazabicyclo[2.2.2]octane.
- the compound of formula (I) where W is the methyl 2-(3,3-dimethoxy)propanoate group C(CO 2 CH 3 )CH(OCH 3 ) 2 [that is, the compound methyl 2- ⁇ 2-[6-(2-cyanophenoxy) pyrimidin-4-yloxy]phenyl ⁇ -3,3-dimethoxypropanoate (hereinafter referred to as 'azoxystrobin acetal')], is a novel compound and forms part of the present invention.
- the invention includes isolated azoxystrobin acetal in substantially pure form [that is in an isolated form which comprises from 85 to 100 weight %, preferably from 90 to 100 weight %, of azoxystrobin acetal].
- the product obtained may include a proportion of the compound of formula (I) where W is the methyl (E)-2-(3- methoxy)acrylate group. This may happen because it is possible that methanol is eliminated from the methyl 2-(3,3-dimethoxy)propanoate group under the conditions of the process.
- the process is carried out using a compound of formula (II) or a compound of formula (IV) where W is a mixture of the methyl 2-(3,3-dimethoxy)propanoate group and the methyl (E)-2-(3-methoxy)acrylate group (and the invention includes such a process)
- the product obtained will be a compound of formula (I) where W is a mixture of the methyl 2-(3,3-dimethoxy)propanoate group and the methyl (£) ⁇ 2-(3-methoxy)acrylate group; however, the product may have a higher proportion of the compound of formula (I) where W is the methyl (E)-2-(3-methoxy)acrylate group than expected from the proportion of (E)-2-(3- methoxy)acrylate group in the mixed starting material due to this potential elimination of methanol.
- the process of the invention is carried out in a suitable inert solvent or diluent.
- suitable inert solvent or diluent include, for example, aliphatic, alicyclic and aromatic hydrocarbons, such as petroleum ether, hexane, heptane, cyclohexane, methylcyclohexane, benzene, toluene, xylene and decalin; halogenated hydrocarbons, such as chlorobenzene, dichlorobenzene, dichloromethane, chloroform, carbon tetrachloride, dichloroethane and trichloroethane; heteroaromatic solvents such as pyridine or a substituted pyridine, for example, 2,6-dimethylpyridine; ethers, such as diethyl ether, dizsopropylether, methyl-tert-butyl ether, methyl-tert-amyl ether, dioxane,
- Particularly suitable diluents are ketones [such as methyl wobutyl ketone and cyclohexanone], esters [such as isopropyl acetate], tertiary amines [such as [N,7V-dizsopropylethylamine (H ⁇ nig's base)] and amides [such as ⁇ N-dimethylformamide].
- ketones such as methyl wobutyl ketone and cyclohexanone
- esters such as isopropyl acetate
- tertiary amines such as [N,7V-dizsopropylethylamine (H ⁇ nig's base)
- amides such as ⁇ N-dimethylformamide.
- methyl ⁇ obutyl ketone is used as diluent.
- cyclohexanone is used as diluent
- isopropyl acetate is used as diluent.
- iV,iV-dirnethylformamide is used as diluent.
- N,N-diwopropylethylamine H ⁇ nig's base
- the diluent used in the present invention is N, N-dimethylformamide.
- the process is carried out in aqueous two phase solvent system.
- the 2-cyanophenol is present as a salt.
- the salt is potassium 2-cyanophenoxide.
- the water is removed throughout the reaction.
- Suitable co-solvents for use in such an aqueous process are solvents which are at least partially water immiscible solvents such as cyclohexanone, methyl zs ⁇ butyl ketone and isopropyl acetate.
- solvents which are at least partially water immiscible solvents such as cyclohexanone, methyl zs ⁇ butyl ketone and isopropyl acetate.
- the salt of 2- cyanophenol is potassium 2-cyanophenoxide and the diluent is cyclohexanone, methyl isobv ⁇ yl ketone or isopropyl acetate. It is noted that when the 2-cyanophenol is added to the process as an aqueous solution of potassium 2-cyanophenoxide it is possible to reduce the quantity of acid acceptor (see below) used.
- Suitable acid acceptors are all customary inorganic and organic bases. These include, for example, alkaline earth metal and alkali metal hydroxides, acetates, carbonates, bicarbonates and hydrides [such as sodium hydroxide, potassium hydroxide, sodium acetate, potassium acetate, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, calcium hydride, sodium hydride and potassium hydride], guanidines, phosphazines (see, for example, Liebigs Ann.
- acid acceptors are the alkaline earth metal and alkali metal carbonates, especially potassium carbonate and sodium carbonate and the tertiary amines l,5-diazabicyclo[4.3.0]non-5-ene and 1,8- diazabicyclo[5.4.0]undec-7-ene. More suitably, the acid acceptor is potassium carbonate.
- the present invention is carried out in the presence of methyl isobutyl ketone, cyclohexanone, isopropyl acetate, 7V,N-diwopropylethylamine (Hiinig's base) or N,N-dimethylformarnide with potassium carbonate as the acid acceptor.
- the process of the invention is carried out in the presence of between 0.1 and 2 mol% of 1 ,4-diazabicyclo[2.2.2]octane (DABCO), that is more than 0.1 but less than 2 mol% of DABCO.
- DABCO 1 ,4-diazabicyclo[2.2.2]octane
- it is carried out in the presence of between 0.2 and 2 mol% of DABCO.
- Any amount of DABCO between 0.1 or 0.2 and 2, 0.1 or 0.2 and 1.9, 0.1 or 0.2 and 1.8, 0.1 or 0.2 and 1.7, 0.1 or 0.2 and 1.6 and 0.1 or 0.2 and 1.5 mol% is suitable, but the invention is of especial benefit in that the amount of DABCO used may be between 0.2 and 1.4 mol%. Normally it will be between 0.5 and 1.4 mol %, typically between 0.8 and 1.2 mol%, for example, about 1 mol%.
- the process is carried out in the presence of about 1 mol% DABCO with methyl isobutyl ketone, cyclohexanone, isopropyl acetate, N,N-diwopropylethylamine (Hiinig's base), orN,N-dimethylforrnamide as diluent.
- the diluent is N,iV-dimethylformamide.
- the acid acceptor will be potassium carbonate.
- the reaction temperature can be varied within a relatively wide range.
- the temperature chosen will depend on the nature of the solvent or diluent, for example on its boiling point and/or its effectiveness for promoting the desired reaction, and on the speed at which the reaction is to be carried out. In any given solvent or diluent, the reaction will tend to progress more slowly at lower temperatures.
- the reaction may be carried out at a temperature of from 0 to 12O 0 C, suitably at a temperature of from 40 to 100 0 C, and typically at a temperature of from 45 to 95 0 C, for example, from 60 to 85 0 C.
- the process of the invention is carried out by mixing one of the components of the reaction, preferably in the presence of a solvent or diluent, with a base.
- the other component is then added, if appropriate in the presence of a solvent or diluent, and the mixture is stirred, normally at an elevated temperature.
- the DABCO catalyst may be added at any stage but is preferably added as the last component, as this tends to promote higher product yields.
- the reaction mixture is worked up and the product is isolated using conventional techniques well known to a skilled chemist.
- 2-Cyanophenol is a commercially available material.
- the compound of formula (II), where W is the methyl (E)-2-(3-methoxy)acrylate group C(CO 2 CH 3 ) CHOCH 3
- the compound of formula (II) where W is the methyl 2-(3,3-dimethoxy)propanoate group C(CO 2 CH 3 )CH(OCH 3 ) 2 may be prepared as described in WO 92/08703 from the reaction of 3-( ⁇ -methoxy)methylenebenzofuran-2(3H)-one (derived from benzofuran-2(3H)-one) with 4,6-dichloropyrimidine.
- the compound of formula (II), where W is the methyl (E)-2-(3-methoxy)acrylate group may also be prepared by eliminating methanol from (that is, by the demethanolysis of) the compound of formula (II) where W is the methyl 2-(3,3-dimethoxy)propanoate group, as described in WO 92/08703 or WO 98/07707.
- the compound of formula (II), where W is the methyl 2-(3,3-dimethoxy)propanoate group may be prepared as described in GB-A-2291874 by reacting a compound of formula (FV), where W is the methyl 2-(3,3-dimethoxy)propanoate group, with 4,6-dichloropyrimidine. It may be purified before use by known techniques or may be used in an unpurified state from a previous reaction, for example, in a 'one-pot' reaction.
- the compound of formula (IV), where W is the methyl 2-(3,3-dimethoxy)propanoate group may be prepared as described in GB-A-2291874 from 3-( ⁇ -methoxy)methylene- benzofuran-2(3H)-one.
- the compound of formula (IV), where W is the methyl (E)-2-(3- methoxy)acrylate group may be prepared by the demethano lysis of the compound of formula (IV) where W is the methyl 2-(3,3-dimethoxy)propanoate group. In this case the phenolic group needs to be protected by, for example, benzylation before demethanolysis and then de-protected afterwards.
- the present invention includes a process for preparing a compound of formula (IV) where W is the methyl (E)-2-(3-methoxy)acrylate group, which comprises the steps of:
- step (ii) eliminating methanol from the hydroxyl-protected compound formed in step (i); and (iii) removing the hydroxyl-protecting group formed in step (i) to form a compound of • formula (IV) where W is the methyl (E)-2-(3-methoxy)acrylate group.
- step (i) of the process the compound of formula (IV) where W is the methyl 2-(3,3-dimethoxy)propanoate group is reacted with a standard protecting reagent, such as a benzyl halide or a substituted benzyl halide [such as a 2-nitrobenzyl halide], for example, benzyl bromide or 2-nitrobenzyl bromide, conveniently in a suitable solvent, such as N, iV-dimethylformamide, and a suitable base, such as potassium carbonate, to form a compound of formula (V):
- a standard protecting reagent such as a benzyl halide or a substituted benzyl halide [such as a 2-nitrobenzyl halide], for example, benzyl bromide or 2-nitrobenzyl bromide
- a suitable solvent such as N, iV-dimethylformamide
- a suitable base such as potassium carbonate
- Q is a protecting group, such as benzyl or 2-nitrobenzyl.
- step (ii) of the process methanol is eliminated by any suitable physical or chemical means, for example, as described in WO 92/08703 or WO 98/07707. Conveniently, it is eliminated by treating a compound of formula (V) with methanesulphonic acid in the presence of acetic anhydride at a temperature in the range of, for instance, from 2O 0 C to
- the protecting group may be removed by any standard technique for removing protecting groups, for example, by a reduction technique using hydrogen with a 10% palladium/carbon catalyst in ethyl acetate at ambient temperature.
- the invention also includes novel intermediates of formula (V) where Q is a protecting group, and particularly the intermediate of formula (V) where Q is benzyl [that is, the compound methyl 2-(2-benzyloxy)phenyl-3,3-dimethoxypropanoate]. More particularly, the invention includes isolated methyl 2-(2-benzyloxy)phenyl-3,3-dimethoxypropanoate in substantially pure form [that is, in an isolated form which comprises from 85 to 100 weight %, preferably from 90 to 100 weight %, of methyl 2-(2-benzyloxy)phenyl-3,3-dimethoxy- propanoate].
- This example describes a sequence of experiments designed to show the effect of decreasing the concentration of DABCO.
- Toluene (160ml) and water (265mls) were added to the distillation residues and the two phase mixture heated to 70-80 0 C. The mixture was stirred for 40 minutes then settled and the lower aqueous phase separated.
- the toluene solution (237.8g) contained methyl (E)-2- ⁇ 2-[6-(2-cyanophenoxy)pyrimidm-4-yloxy]phenyl ⁇ -3- methoxyacrylate (41.3%w/w) 97.5% of theory.
- Toluene (160ml) and water (265mls) were added to the distillation residues and the two phase mixture heated to 70-80 0 C. The mixture was stirred for 40 minutes then settled and the lower aqueous phase separated.
- the toluene solution (227.9g) contained methyl (£)-2- ⁇ 2-[6-(2-cyanophenoxy)pyrirnidin-4-yloxy]phenyl ⁇ -3- methoxyacrylate (43.6%w/w) 98.7% of theory.
- Toluene (160ml) and water (265mls) at 6O 0 C were added to the distillation residues and the two phase mixture heated to 70-80 0 C. The mixture was stirred for 40 minutes then settled and the lower aqueous phase separated.
- the toluene solution (243.Ig) contained methyl (E)-2- ⁇ 2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl ⁇ -3- methoxyacrylate (38.6%w/w), 93.1% of theory.
- Toluene 160ml was added to the distillation residues, maintaining the temperature between 70-80 0 C, followed by water (265mls) which had been heated to 6O 0 C. The mixture was stirred for 40 minutes at 8O 0 C and then settled and the lower aqueous phase separated.
- the toluene solution 226.7g was contained methyl (E)-2 ⁇ 2-[6-(2- cyanophenoxy)pyrirnidin-4-yloxy]phenyl ⁇ -3-methoxyacrylate (41.5%w/w), 93.4% of theory.
- Toluene 160ml was added to the distillation residues, maintaining the temperature between 60-70 0 C, followed by water (265mls) which had been heated to 6O 0 C, again maintaining the temperature between 60-70 0 C. The mixture was stirred for 40 minutes at 80 0 C and then settled and the lower aqueous phase separated.
- the toluene solution 223.3g was contained methyl (E)-2- ⁇ 2-[6-(2-cyanophenoxy)pyrimidin-4- yloxy] ⁇ henyl ⁇ -3-methoxyacrylate (38.8%w/w) 86.6% of theory.
- the yield of azoxystrobin formed in the process did not decrease greatly when the DABCO concentration was decreased below 2 mol%: even concentrations of DABCO of as low as 0.1mol% were sufficient to give a yield of 93.4% of theory.
- the experiment containing no DABCO give a much lower yield, it also required 8 hours to reach this point compared to 5 hours for 0.1 mol% and .
- 0.2 mol% DABCO and 60 minutes for 1.0 mol% and 2.0 mol% DABCO in this respect, it is also noted that the experiment containing 1.0 mol% DABCO surprisingly gave the a similar yield in the same time as the experiment containing 2.0 mol% DABCO).
- Example 2c characterising data for methyl 2- ⁇ 2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl ⁇ -3,3- dimethoxypropanoate are given.
- Toluene (165.8g) was charged to the distillation residues and the temperature brought to 75 0 C before adding hot water (318.6g) and stirring for 30 minutes at 8O 0 C. The aqueous phase was removed and then the toluene layer was sampled and analysed. The solution yield of methyl (E)- 2- ⁇ 2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl ⁇ -3-methoxyacrylate (azoxystrobin) was 90.0%. The toluene was distilled off under vacuum.
- ArH are hydrogens bonded to phenyl rings; Hydrogens shown in bold in the assignment column are those which relate to that particular signal;
- 'm' means multiplet signals; individual hydrogen signals are not fully resolved; 'd' means doublets; 's' means singlets;
- Integrals indicates the number of hydrogens associated with the signal
- Pyrimidine hydrogens are denoted as PyHx where x refers to the position of attachment of the hydrogen to the pyrimidine ring.
- Methyl (E)-2- ⁇ 2-[6-chloropyrimidin-4-yloxy] ⁇ henyl ⁇ -3-methoxyacrylate (2Og at 97.1% strength; prepared as described in WO 92/08703) was added to MIBK (77ml) and water (1 ImI), followed by 2-cyanophenol (8.Og), DABCO (0.07g) and potassium carbonate (14.Ig). The reaction was heated to 8O 0 C and monitored for the end of the reaction (complete after 8 hours). The reaction mixture was washed with water at 8O 0 C. Analysis of the MIBK layer revealed a 95.7% yield of methyl (E)-2- ⁇ 2-[6-(2-cyanophenoxy)pyrimidin-4- yloxy]phenyl ⁇ -3-methoxyacrylate (azoxystrobin).
- Methyl (E)-2- ⁇ 2-[6-chloropyrimidin-4-yloxy]phenyl ⁇ -3-methoxyacrylate (98.4g at 97.7% strength; prepared as described in WO 92/08703) was added to MIBK (21Og) and water (38.3g) and heated to 45-5O 0 C.
- 2-Cyanophenol (40.Ig), potassium carbonate (63.4g) and DABCO (0.5Ig) were added and the temperature was raised to 8O 0 C and held for 5.5 hours.
- Water (316g) was added and agitation continued for 30 minutes before settling and separating the aqueous layer.
- the dried solid contained methyl 2-[2-[6-(2-cyanophenoxy)- pyrimidin-4-yloxy]phenyl]-3,3-dimethoxy propanoate (90.8%w/w), 74.1% of theory ' and methyl (E)- 2- ⁇ 2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl ⁇ -3-methoxyacrylate (2.41%w/w), 2.1% of theory.
- the isopropyl acetate filtrates contained methyl 2-[2-[6-(2- cyanophenoxy)-pyrimidin-4-yloxy]phenyl]-3,3-dimethoxy propanoate (3.44%w/w), 8.75% of theory and methyl (E)- 2- ⁇ 2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl ⁇ -3- methoxyacrylate (1.8%w/w), 4.95% of theory.
- the resulting slurry was filtered, sucked dry on the filter and then dried in vacuo (45 0 C, 400mbar).
- the dried solid contained methyl 2-[2-[6-(2-cyanophenoxy)-pyrimidin-4-yloxy]phenyl]-3,3- dimethoxy propanoate (81.19%w/w), 74.0% of theory and methyl (E)- 2- ⁇ 2-[6-(2- cyanophenoxy)pyrimidin-4-yloxy]phenyl ⁇ -3-methoxyacrylate (18.55%w/w), 18.3% of theory.
- the mixture was stirred at this temperature until the reaction was complete (3 hours).
- the solvent was removed by vacuum distillation to 9O 0 C.
- Toluene 130ml was added to the distillation residues, maintaining the temperature between 70-80 0 C, followed by water (21OmIs), maintaining the temperature as before.
- the mixture was stirred for 10 minutes at 8O 0 C and then settled and the lower aqueous phase separated.
- the toluene solution (180.2g) contained methyl (E)-2- ⁇ 2-[6-(2- cyanophenoxy)pyrimidin-4-yloxy]phenyl ⁇ -3-methoxyacrylate (39.1%w/w) 87.4% of theory.
- a slurry containing methyl (£)-2- ⁇ 2-[6-chloropyrimidin-4-yloxy]phenyl ⁇ -3-methoxyacrylate (80.9g at 99%, 0.25mols), potassium carbonate (52.8g at 98%, 0.375mols) and 2- cyanophenol (33.6g at 97.5%, 0.275mols) in isopropyl acetate (13OmIs) was heated to approximately 6O 0 C.
- a solution of DABCO (0.28g, 0.0025mols) in isopropyl acetate (1 OmIs) was added. The mixture was heated to 8O 0 C and held at this temperature for 360 minutes.
- the isopropyl acetate was removed by vacuum distillation to a maximum temperature of 8O 0 C.
- Toluene 160ml was added to the distillation residues, maintaining the temperature between 60-70 0 C, followed by water (265mls) which had been heated to 6O 0 C, again maintaining the temperature between 60-70 0 C.
- the mixture was stirred for 40 minutes at 8O 0 C and then settled and the lower aqueous phase separated.
- the toluene solution (229.8g) contained methyl (E)-2- ⁇ 2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl ⁇ -3- methoxyacrylate (41.2%w/w) 94.2% of theory.
- the washed organic phase (201.6g) contained methyl 2-[2-[6-(2-cyanophenoxy)-pyrimidin-4-yloxy]phenyl]-3,3-dimethoxypropanoate (22.5%w/w), 91.45% of theory and methyl (E)- 2- ⁇ 2-[6-(2-cyanophenoxy)pyrimidin-4- yloxy]phenyl ⁇ -3-methoxyacrylate (1.00%w/w), 4.4% of theory.
- This example concerns experiments carried out to investigate whether the order of addition of the components makes a difference to the yield of azoxystrobin obtained. In particular, this example investigates whether yields are greater if the DABCO is added as the last component. a) Coupling of methyl (£ r )-2- ⁇ 2-[6-chloropyrimidin-4-yloxylphenyli-3-methoxyacrylate with 2-cyanophenol in MIBK with lmol% DABCO added after the 2-cyanophenol,, that is, last.
- the mixture was stirred for 70 minutes then settled and the lower aqueous phase separated.
- the MIBK solution (235.3g) contained methyl (E)-2- ⁇ 2-[6-(2-cyanophenoxy)pyrimidin-4- yloxyjphenyl ⁇ -3-methoxyacrylate (41.0%w/w) 95.8% of theory.
- the M ⁇ BK solution (237.5g) contained methyl (E)-2- ⁇ 2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl ⁇ -3-methoxyacrylate (39.0%w/w) 91.9% of theory.
- the MIBK solution (237.Ig) contained methyl (E)-2- ⁇ 2-[6-(2- " cyanophenoxy)pyrimidin-4-yloxy]phenyl ⁇ -3-methoxyacrylate (38.7%w/w) 89.1% of theory.
- Example 3e gives an indication of the yield expected when higher concentrations of DABCO are used (2 mol%):
- the mixture was heated to approximately 6O 0 C and then 2-cyanophenol (33.6g at 97.5%, 0.275mols) was charged. The mixture was heated to 8O 0 C and held at this temperature for 280 minutes. Water (30OmIs) was charged to the reaction, maintaining the temperature in the range 70-80 0 C. The mixture was stirred for 40 minutes then settled and the lower aqueous phase separated.
- the MIBK solution (237.Og) contained methyl (E)-2- ⁇ 2-[6- (2-cyanophenoxy)pyrimidin-4-yloxy]phenyl ⁇ -3-methoxyacrylate (40.2%w/w) 94.5% of theory.
- Example 3e 2.0 mol% DABCO
- Examples 3a and 3b 1.0 mol% DABCO
- DMF solvent
- This example concerns experiments carried out in an aqueous system.
- the mixture was stirred at 75 0 C for 30 minutes, settled and the aqueous phase removed.
- the organic phase (353.Ig) contained methyl 2-[2-[6-(2-cyanophenoxy)-pyrimidin-4-yloxy]phenyl]-3 ,3-dimethoxy propanoate (22.8%w/w) 72.6% of theory and methyl (E)- 2- ⁇ 2-[6-(2-cyanophenoxy)pyrimidin-4- yloxy]phenyl ⁇ -3-methoxyacrylate (4.47%w/w) 15.4% of theory.
- the organic phase (233.Ig) contained methyl 2-[2- [6-(2-cyanophenoxy)-pyrimidin-4-yloxy]phenyl]-3,3-dimethoxy propanoate (25.09%w/w), 73% of theory and methyl (E)- 2- ⁇ 2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl ⁇ -3- methoxyacrylate (4.96%w/w), 15.6% of theory.
- the organic phase (373.2g) contained methyl 2-[2-[6-(2-cyanophenoxy)- pyrimidin-4-yloxy]phenyl]-3,3-dimethoxy propanoate (20.8%w/w) 68% of theory and methyl (E)- 2- ⁇ 2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl ⁇ -3-methoxyacrylate (3.52%w/w) 12.4% of theory.
- Example 3 the surprising result seen in Example 3, with respect to the order of addition of DABCO, is also seen in the aqueous system - adding DABCO after the 2-cyanophenol (in the form of potassium 2-cyanophenoxide), that is, last, provides a higher yield than adding it before.
- Step 1 The preparation of methyl 2-[(2-benzyloxy)phenyl]-(3,3-dimethoxy)propanoate.
- Step 2 The preparation of methyl (E)-2-(2-benzyloxy)phenyl-3-methoxyacrylate.
- a solution of methyl 2-[(2-benzyloxy)phenyl]-(3,3-dimethoxy) ⁇ ropanoate (5g; from Step 1) in acetic anhydride (7.Og) was heated to 4O 0 C and methanesulphonic acid (0.33g) added. After 90 minutes the mixture was allowed to cool to room temperature and toluene (25ml) was added. The resulting solution was washed with water (3x75ml) and then the toluene was evaporated in vacuo to give a liquid. After standing overnight crystals formed. These were isolated by filtration. A second crop was isolated from the filtrates after further concentration and trituration with ethanol. The combined yield of methyl (E)-2-(2-benzyloxy)phenyl-3-methoxyacrylate was 44%.
- Step 3 The preparation of methyl (E)-2-(2-hydroxy)phenyl-3-methoxyacrylate.
- Hydrogens shown in bold in the assignment column are those which relate to that particular signal
- Integrals indicates the number of hydrogens associated with the signal.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Plural Heterocyclic Compounds (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL06726760T PL1891020T3 (pl) | 2005-04-26 | 2006-04-13 | Sposoby wytwarzania azoksystrobiny z zastosowaniem DABCO jako katalizatora oraz nowe związki pośrednie stosowane w tych sposobach |
PL10013918T PL2308825T3 (pl) | 2005-04-26 | 2006-04-13 | Sposób otrzymywania półproduktu azoksystrobiny |
EP10013918.7A EP2308825B1 (de) | 2005-04-26 | 2006-04-13 | Verfahren zur Herstellung eines Zwischenprodukts für Azoxystrobin |
SI200631638T SI1891020T1 (sl) | 2005-04-26 | 2006-04-13 | Postopki za pripravo azoksistrobina z uporabo katalizatorja DABCO in v postopkih uporabljene nove vmesne spojine |
CY20131100716T CY1114548T1 (el) | 2005-04-26 | 2013-08-21 | Διεργασιες για την παρασκευη azoxystrobin με τη χρηση dabco ως καταλυτη και νεα ενδιαμεσα που χρησιμοποιουνται στις διεργασιες |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0508422.3A GB0508422D0 (en) | 2005-04-26 | 2005-04-26 | Chemical process |
PCT/GB2006/001361 WO2006114572A2 (en) | 2005-04-26 | 2006-04-13 | Processes for the preparation of azoxystrobin using dabco as a catalyst and novel intermediates used in the processes |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10013918.7A Division EP2308825B1 (de) | 2005-04-26 | 2006-04-13 | Verfahren zur Herstellung eines Zwischenprodukts für Azoxystrobin |
EP10013918.7 Division-Into | 2010-10-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1891020A2 true EP1891020A2 (de) | 2008-02-27 |
EP1891020B1 EP1891020B1 (de) | 2013-06-05 |
Family
ID=34640147
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06726760.9A Active EP1891020B1 (de) | 2005-04-26 | 2006-04-13 | Verfahren zur herstellung von azoxystrobin unter verwendung von dabco als katalysator, und neue zwischenprodukte, die in diesen verfahren zum einsatz kommen |
EP10013918.7A Active EP2308825B1 (de) | 2005-04-26 | 2006-04-13 | Verfahren zur Herstellung eines Zwischenprodukts für Azoxystrobin |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10013918.7A Active EP2308825B1 (de) | 2005-04-26 | 2006-04-13 | Verfahren zur Herstellung eines Zwischenprodukts für Azoxystrobin |
Country Status (30)
Country | Link |
---|---|
US (1) | US8124761B2 (de) |
EP (2) | EP1891020B1 (de) |
JP (2) | JP5107901B2 (de) |
KR (1) | KR101320492B1 (de) |
CN (2) | CN101163682B (de) |
AR (1) | AR055779A1 (de) |
AU (2) | AU2006238984B2 (de) |
BR (1) | BRPI0610381B1 (de) |
CA (2) | CA2808289C (de) |
CL (1) | CL2009001200A1 (de) |
CY (1) | CY1114548T1 (de) |
DK (1) | DK1891020T3 (de) |
EA (1) | EA013635B1 (de) |
ES (2) | ES2482144T3 (de) |
GB (1) | GB0508422D0 (de) |
GE (2) | GEP20115276B (de) |
GT (1) | GT200600171A (de) |
HK (1) | HK1119435A1 (de) |
IL (2) | IL186231A (de) |
JO (1) | JO2893B1 (de) |
MY (2) | MY145298A (de) |
NZ (2) | NZ561937A (de) |
PL (2) | PL2308825T3 (de) |
PT (2) | PT2308825E (de) |
SI (1) | SI1891020T1 (de) |
TW (2) | TWI385147B (de) |
UA (2) | UA107443C2 (de) |
UY (2) | UY29500A1 (de) |
WO (1) | WO2006114572A2 (de) |
ZA (1) | ZA200708582B (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3660005A1 (de) | 2018-11-28 | 2020-06-03 | Sinon Corporation | Verfahren zur herstellung von azoxystrobin |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0619941D0 (en) * | 2006-10-09 | 2006-11-15 | Syngenta Ltd | Chemical process |
IL180134A0 (en) | 2006-12-17 | 2007-07-04 | David Ovadia | Process for the preparation of substituted cyanophenoxy-pyrimidinyloxy -phenyl acrylate derivatives |
IL181125A0 (en) * | 2007-02-01 | 2007-07-04 | Maktheshim Chemical Works Ltd | Polymorphs of 3-(e)-2-{2-[6-(2- |
CN102276538B (zh) * | 2011-08-12 | 2015-01-28 | 河北威远生化农药有限公司 | 嘧菌酯及其关键中间体的制备方法 |
JP2015083541A (ja) * | 2012-02-03 | 2015-04-30 | アグロカネショウ株式会社 | 対称性4,6−ビス(アリールオキシ)ピリミジン化合物の製造方法 |
KR20130136671A (ko) | 2012-06-05 | 2013-12-13 | 삼성디스플레이 주식회사 | 정전 용량 방식의 터치 패널 센서 및 이를 포함하는 터치 패널 표시 장치 |
CN102690237A (zh) * | 2012-06-11 | 2012-09-26 | 江西中科合臣实业有限公司 | 一种合成高纯度嘧菌酯的方法 |
CN103214423B (zh) * | 2013-03-20 | 2016-03-16 | 北京颖泰嘉和生物科技股份有限公司 | 一种丙烯酸酯类化合物的制备方法 |
CN103265496B (zh) * | 2013-05-16 | 2015-02-25 | 北京颖泰嘉和生物科技有限公司 | 一种嘧菌酯的制备方法 |
TWI621614B (zh) | 2013-05-28 | 2018-04-21 | 科麥農股份有限公司 | 4,6-雙(芳氧基)嘧啶衍生物的製備方法 |
WO2014203270A2 (en) * | 2013-06-19 | 2014-12-24 | Bhagiradha Chemicals & Industries Limited | Process for the preparation of acrylate derivatives |
CN103467387B (zh) * | 2013-09-05 | 2016-03-16 | 北京颖泰嘉和生物科技股份有限公司 | 一种制备嘧菌酯及其中间体的方法 |
CN104672146A (zh) * | 2013-11-26 | 2015-06-03 | 上海泰禾化工有限公司 | 一种新的高产率制备嘧菌酯的方法 |
WO2015102016A1 (en) * | 2013-12-31 | 2015-07-09 | Bhagiradha Chemicals & Industries Limited | Process for the preparation of methyl 2-[2-(6-chloropyrimidin-4-yloxy) phenyl]-3,3- dimethoxypropionate |
CN104292102A (zh) * | 2014-07-29 | 2015-01-21 | 浙江颖欣化工有限公司 | 一种嘧菌酯中间体的制备方法 |
CN104230822B (zh) * | 2014-09-16 | 2017-03-08 | 重庆紫光国际化工有限责任公司 | 嘧菌酯的合成方法 |
CN104230821B (zh) * | 2014-09-16 | 2016-07-06 | 重庆紫光国际化工有限责任公司 | 嘧菌酯的合成方法 |
CN104230819B (zh) * | 2014-09-16 | 2017-05-03 | 重庆紫光国际化工有限责任公司 | 嘧菌酯的合成方法 |
CN104230820B (zh) * | 2014-09-16 | 2016-09-28 | 重庆紫光国际化工有限责任公司 | 嘧菌酯的合成方法 |
CN104974097B (zh) * | 2015-05-29 | 2018-04-17 | 重庆紫光化工股份有限公司 | 一种嘧菌酯的合成方法 |
CN107235920A (zh) * | 2017-07-29 | 2017-10-10 | 江苏绿叶农化有限公司 | 一种嘧菌酯的合成方法 |
CN109721548B (zh) * | 2017-10-31 | 2020-11-13 | 南通泰禾化工股份有限公司 | 一种嘧菌酯的制备方法 |
CN110294716B (zh) | 2018-03-23 | 2021-05-07 | 帕潘纳(北京)科技有限公司 | 一种嘧菌酯及其中间体的制备方法 |
BR112020020549A8 (pt) * | 2018-04-23 | 2023-02-07 | Msd Werthenstein Biopharma Gmbh | Novo processo para síntese de um composto fenoxi diaminopirimidina |
CN109529928B (zh) * | 2018-11-16 | 2021-06-29 | 河北威远生物化工有限公司 | 一种催化剂体系及利用其制备嘧菌酯或其中间体的方法 |
CN113767093A (zh) * | 2019-04-18 | 2021-12-07 | Upl有限公司 | 用于制备嘧菌酯及其中间体的方法 |
KR102683529B1 (ko) * | 2019-08-23 | 2024-07-09 | 주식회사 엘지화학 | 아족시스트로빈의 제조방법 |
CN114685376B (zh) * | 2020-12-28 | 2024-06-07 | 北京颖泰嘉和生物科技股份有限公司 | 嘧菌酯中间体的制备方法 |
CN114685377B (zh) * | 2020-12-31 | 2024-05-31 | 北京颖泰嘉和生物科技股份有限公司 | 嘧菌酯类化合物的制备方法 |
CN118084806A (zh) | 2022-05-26 | 2024-05-28 | 安徽广信农化股份有限公司 | 一种制备嘧菌酯及其中间体的方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NZ213630A (en) * | 1984-10-19 | 1990-02-26 | Ici Plc | Acrylic acid derivatives and fungicidal compositions |
EP0387923B1 (de) * | 1986-04-17 | 1994-02-16 | Zeneca Limited | Fungizide |
GB9122430D0 (en) * | 1990-11-16 | 1991-12-04 | Ici Plc | Chemical process |
GB2255092A (en) * | 1991-04-23 | 1992-10-28 | Ici Plc | 1,2,3-triazine fungicides |
GB9415291D0 (en) | 1994-07-28 | 1994-09-21 | Zeneca Ltd | Chemical process |
GB9617351D0 (en) * | 1996-08-19 | 1996-10-02 | Zeneca Ltd | Chemical process |
GB9622345D0 (en) * | 1996-10-28 | 1997-01-08 | Zeneca Ltd | Chemical process |
JP2000191554A (ja) * | 1998-12-29 | 2000-07-11 | Nippon Soda Co Ltd | 反応活性の高い官能基を有するアクリル酸誘導体の製造方法 |
DE10014607A1 (de) * | 2000-03-24 | 2001-09-27 | Bayer Ag | Verfahren zur Herstellung von unsymmetrischen 4,6-Bis(aryloxy pyrimidin-Derivaten |
-
2005
- 2005-04-26 GB GBGB0508422.3A patent/GB0508422D0/en not_active Ceased
-
2006
- 2006-04-13 ES ES10013918.7T patent/ES2482144T3/es active Active
- 2006-04-13 GE GEAP200610383A patent/GEP20115276B/en unknown
- 2006-04-13 GE GEAP200611957A patent/GEP20135956B/en unknown
- 2006-04-13 EP EP06726760.9A patent/EP1891020B1/de active Active
- 2006-04-13 CN CN2006800130460A patent/CN101163682B/zh active Active
- 2006-04-13 SI SI200631638T patent/SI1891020T1/sl unknown
- 2006-04-13 UA UAA201000777A patent/UA107443C2/uk unknown
- 2006-04-13 PT PT100139187T patent/PT2308825E/pt unknown
- 2006-04-13 UA UAA200712943A patent/UA90898C2/ru unknown
- 2006-04-13 EP EP10013918.7A patent/EP2308825B1/de active Active
- 2006-04-13 WO PCT/GB2006/001361 patent/WO2006114572A2/en active Application Filing
- 2006-04-13 NZ NZ561937A patent/NZ561937A/en unknown
- 2006-04-13 CA CA2808289A patent/CA2808289C/en active Active
- 2006-04-13 AU AU2006238984A patent/AU2006238984B2/en active Active
- 2006-04-13 KR KR1020077024497A patent/KR101320492B1/ko active IP Right Grant
- 2006-04-13 PL PL10013918T patent/PL2308825T3/pl unknown
- 2006-04-13 EA EA200702331A patent/EA013635B1/ru not_active IP Right Cessation
- 2006-04-13 ES ES06726760T patent/ES2425367T3/es active Active
- 2006-04-13 BR BRPI0610381-2A patent/BRPI0610381B1/pt active IP Right Grant
- 2006-04-13 DK DK06726760.9T patent/DK1891020T3/da active
- 2006-04-13 PT PT67267609T patent/PT1891020E/pt unknown
- 2006-04-13 JP JP2008508278A patent/JP5107901B2/ja active Active
- 2006-04-13 CA CA2605323A patent/CA2605323C/en active Active
- 2006-04-13 US US11/912,675 patent/US8124761B2/en active Active
- 2006-04-13 NZ NZ586772A patent/NZ586772A/en unknown
- 2006-04-13 CN CN2010105838017A patent/CN102126955B/zh active Active
- 2006-04-13 PL PL06726760T patent/PL1891020T3/pl unknown
- 2006-04-20 TW TW095114163A patent/TWI385147B/zh active
- 2006-04-20 TW TW101101853A patent/TW201217331A/zh unknown
- 2006-04-23 JO JO2006113A patent/JO2893B1/en active
- 2006-04-24 AR ARP060101622A patent/AR055779A1/es active IP Right Grant
- 2006-04-24 MY MYPI20093459A patent/MY145298A/en unknown
- 2006-04-24 MY MYPI20061879A patent/MY144016A/en unknown
- 2006-04-26 GT GT200600171A patent/GT200600171A/es unknown
- 2006-04-26 UY UY29500A patent/UY29500A1/es active IP Right Grant
-
2007
- 2007-09-24 IL IL186231A patent/IL186231A/en active IP Right Grant
- 2007-10-08 ZA ZA200708582A patent/ZA200708582B/xx unknown
-
2008
- 2008-10-09 HK HK08111203.2A patent/HK1119435A1/xx unknown
-
2009
- 2009-05-15 CL CL2009001200A patent/CL2009001200A1/es unknown
-
2010
- 2010-10-12 IL IL208667A patent/IL208667A/en active IP Right Grant
-
2011
- 2011-03-11 AU AU2011201115A patent/AU2011201115B2/en active Active
-
2012
- 2012-07-25 JP JP2012164910A patent/JP5491589B2/ja active Active
-
2013
- 2013-08-21 CY CY20131100716T patent/CY1114548T1/el unknown
-
2017
- 2017-09-11 UY UY0001037399A patent/UY37399A/es not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO2006114572A2 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3660005A1 (de) | 2018-11-28 | 2020-06-03 | Sinon Corporation | Verfahren zur herstellung von azoxystrobin |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006114572A2 (en) | Processes for the preparation of azoxystrobin using dabco as a catalyst and novel intermediates used in the processes | |
EP2076498A1 (de) | Herstellung von azoxystrobin | |
US20130060031A1 (en) | Process for the preparation of highly pure ambrisentan | |
US6849762B2 (en) | Process for preparing a trifluoroethoxy-substituted benzoic acid | |
US6593488B1 (en) | 4-fluoro-3-oxocarboxylic esters and process for producing the same | |
EP3956317A1 (de) | Verfahren zur herstellung von azoxystrobin und zwischenprodukten davon | |
EP3303312B1 (de) | Verfahren zur herstellung von (e)-(5,6-dihydro-1,4,2-dioxazin-3-yl)(2-hydroxyphenyl)-methanon-o-methyloxim | |
JP2000327629A (ja) | フェニル酢酸誘導体、ベンゾニトリル誘導体、およびその製造方法 | |
JP2000327622A (ja) | フェニル酢酸誘導体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20071126 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17Q | First examination report despatched |
Effective date: 20081028 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C07C 67/327 20060101ALI20130108BHEP Ipc: C07C 59/64 20060101ALI20130108BHEP Ipc: C07C 67/31 20060101ALI20130108BHEP Ipc: C07C 69/734 20060101ALI20130108BHEP Ipc: C07D 239/52 20060101AFI20130108BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 615619 Country of ref document: AT Kind code of ref document: T Effective date: 20130615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602006036658 Country of ref document: DE Effective date: 20130801 |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20130827 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: EE Ref legal event code: FG4A Ref document number: E008251 Country of ref document: EE Effective date: 20130822 Ref country code: ES Ref legal event code: FG2A Ref document number: 2425367 Country of ref document: ES Kind code of ref document: T3 Effective date: 20131015 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 14590 Country of ref document: SK |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20130401839 Country of ref document: GR Effective date: 20131015 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E018483 Country of ref document: HU |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20140306 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602006036658 Country of ref document: DE Effective date: 20140306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130605 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140413 |
|
REG | Reference to a national code |
Ref country code: EE Ref legal event code: MM4A Ref document number: E008251 Country of ref document: EE Effective date: 20140430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140413 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141031 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CA Effective date: 20180315 Ref country code: FR Ref legal event code: CD Owner name: SYNGENTA JEALOTT'S HILL INTERNATIONAL RESEARCH, GB Effective date: 20180315 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: RM Effective date: 20180420 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20240326 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LT Payment date: 20240318 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240319 Year of fee payment: 19 Ref country code: IE Payment date: 20240326 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20240327 Year of fee payment: 19 Ref country code: CZ Payment date: 20240320 Year of fee payment: 19 Ref country code: BG Payment date: 20240321 Year of fee payment: 19 Ref country code: PT Payment date: 20240326 Year of fee payment: 19 Ref country code: GB Payment date: 20240314 Year of fee payment: 19 Ref country code: SK Payment date: 20240315 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240318 Year of fee payment: 19 Ref country code: PL Payment date: 20240319 Year of fee payment: 19 Ref country code: LV Payment date: 20240318 Year of fee payment: 19 Ref country code: FR Payment date: 20240315 Year of fee payment: 19 Ref country code: DK Payment date: 20240327 Year of fee payment: 19 Ref country code: BE Payment date: 20240319 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240315 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240501 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240510 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240326 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20240408 Year of fee payment: 19 Ref country code: IT Payment date: 20240411 Year of fee payment: 19 Ref country code: SI Payment date: 20240319 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240408 Year of fee payment: 19 Ref country code: HU Payment date: 20240327 Year of fee payment: 19 |