EP1866989A1 - Interkonnektor für hochtemperaturbrennstoffzellen - Google Patents

Interkonnektor für hochtemperaturbrennstoffzellen

Info

Publication number
EP1866989A1
EP1866989A1 EP06722490A EP06722490A EP1866989A1 EP 1866989 A1 EP1866989 A1 EP 1866989A1 EP 06722490 A EP06722490 A EP 06722490A EP 06722490 A EP06722490 A EP 06722490A EP 1866989 A1 EP1866989 A1 EP 1866989A1
Authority
EP
European Patent Office
Prior art keywords
interconnector
resilient
anode
electrically conductive
side edges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06722490A
Other languages
German (de)
English (en)
French (fr)
Inventor
Helmut Ringel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP1866989A1 publication Critical patent/EP1866989A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to an interconnector for high-temperature fuel cells.
  • a fuel cell has a cathode, an electrolyte and an anode.
  • the cathode is an oxidizing agent, z. B. air and the anode is a fuel, for. B. hydrogen supplied.
  • the SOFC fuel cell is also called high-temperature fuel cell, since its operating temperature can be up to 1000 0 C.
  • oxygen ions are formed in the presence of the oxidant.
  • the oxygen ions diffuse through the electrolyte and recombine on the anode side with the fuel-derived hydrogen to water. Recombination releases electrons, generating electrical energy.
  • interconnecting elements also called interconnectors.
  • interconnectors By means of interconnectors arise stacked, electrically connected in series fuel cells. This arrangement is called a fuel cell stack.
  • the fuel cell Stacks consist of the interconnectors and the electrode-electrolyte units.
  • Interconnectors regularly have gas distribution structures in addition to the electrical and mechanical properties. This is realized by webs and grooves (DE 44 10 711 Cl). Gas distribution structures cause the resources to be distributed evenly in the electrode spaces (spaces where the electrodes are located).
  • Metallic interconnectors with high aluminum content form Al 2 O 3 cover layers, which act disadvantageously like an electrical insulator.
  • the object of the invention is therefore to provide an interconnector for a high-temperature fuel cell, which ensures long-term stable mechanical-electrical contacting between the anode and the interconnector.
  • This object is achieved by an interconnector for a high-temperature fuel cell according to claim 1. It is characterized by an interconnector whose side edges are electrically conductively contacted to the anode by means of an electrically conductive means and whose anode is mounted via resilient elements in the interconnector. This configuration of the interconnector, it is possible to achieve a decoupling of sealing and contacting force. While according to the previously known state of the art z. B.
  • an electrically conductive means was responsible for both the stable electrical contact and for a stable mechanical contacting and sealing, this object is divided by the present invention on two device elements: resilient elements, which provide a stable mechanical contacting and sealing of the fuel cell and an electrically conductive means, which is contacted via the side edges of the interconnector with the anode and thus ensures the stable electrical contact.
  • the resilient elements no longer need to transmit power.
  • the current no longer flows directly vertically between anode and interconnector. Instead, the current is redirected across the side edges of the interconnector.
  • the resilient elements consist for example of individual elements, with a circular, C-shaped or S-shaped cross-section or of a resilient layer or resilient strips.
  • the stripes may be made of mica.
  • Mica refers to a group in the monoclinic crystal system of crystallizing silicate minerals with the complex chemical composition
  • the bracketed atoms can be represented in any mixture, but always in the same ratio to the other atomic groups (Wikipedia: Wikipedia).
  • the circular, C-shaped or S-shaped individual elements may for example consist of high temperature resistant steel tubes, profiled bars or steel sheets.
  • the resilient individual elements may have a height of 1-2 mm, to ensure sufficient suspension and compensate for relative movements. About the arbitrary stiffness of the resilient individual elements, the contacting force can be adjusted specifically. Mica is less resilient than the circular, C-shaped or S-shaped elements, but has a higher temperature stability and is less expensive. Within the group of circular, C-shaped or S-shaped individual elements, the circular elements have a greater rigidity compared to the C- or S-shaped configured elements.
  • the device advantageously comprises an electrically conductive agent consisting of nickel, gold, platinum or silver.
  • an electrically conductive agent consisting of nickel, gold, platinum or silver.
  • a nickel mesh can be used which has a wire diameter of 0.6 mm and a wire spacing of 2.6 mm.
  • the electrically conductive means may be electrically conductive at the side edges of the interconnector with this z. For example, they can be joined by high-temperature soldering / welding or they can be caulked or soldered into prefabricated grooves of the interconnec margin.
  • the inner glass solder seal is connected via a resilient element with the adjacent interconnector. Bending stresses that occur in the edge region of the fuel cell can thereby be reduced and thus prevent a risk of breakage of the fuel cell.
  • This resilient element can be, for example, an aluminum strip that is circular, C-shaped or S-shaped.
  • metallic seals can be used which are not electrically insulated and able to relative movements at the edges ⁇ of the interconnectors, which are connected to each other to compensate.
  • the electrical insulation of the metallic seal can be effected by a ceramic layer on the interconnector edge or a coating of the metallic seal with a ceramic layer (eg zirconium oxide layer).
  • the object is further achieved by a method for producing the interconnector according to the invention.
  • FIG. 1 shows a schematic cross section through a stack of fuel cells, which are connected to one another by the interconnectors 1 according to the invention.
  • FIG. 2 shows a schematic cross section through a stack of fuel cells, which are interconnected by the interconnectors 1 according to the invention and additional resilient elements
  • FIG. 1 schematically shows a cross section through three fuel cells 5, each consisting of anode 2, cathode 4 and electrolyte 3, which are connected to one another by the interconnectors 1 according to the invention.
  • the interconnectors contain gas channels 6 and webs 7.
  • an electrically conductive means 8 is arranged, which is electrically conductively connected to the side edges 9 of the interconnector 1.
  • Interconnector 1 and electrically conductive means 8, the resilient elements 11, consisting of individual elements IIa, IIb, 11c are arranged. These may, for example, have a circular IIa or C-shaped IIb cross section or consist of a layer / strip of mica 11c.
  • the resilient individual elements IIa, IIb, llc be connected to a sheet 10a, 10b.
  • the sheet 10a, 10b may be loosely floating 10a or fixed 10b connected to the interconnector 1.
  • glass ceramics such. B. glass solder used.
  • the cathode compartment may be sealed by an inner glass solder seal 12 opposite the anode compartment.
  • an outer glass solder seal 13 is possible.
  • FIG. 2 schematically shows a cross section through two fuel cells 5, each consisting of anode 2, cathode 4 and electrolyte 3, which are connected by the interconnectors 1 according to the invention.
  • the interconnectors 1 have additional resilient elements 14 and 15.
  • a further resilient element 14 may be applied, which is connected to the adjacent interconnector 1 and can compensate for relative movements of the fuel cell.
  • a resilient, metallic seal (15) can be used, which is not electrically insulated and can compensate for relative movements at the edges of the interconnectors 1, which are interconnected.
  • the electrical insulation between the interconnectors 1 is achieved by ceramic layers 16, the z. B. be applied by plasma coating on the interconnectors 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
EP06722490A 2005-03-23 2006-02-16 Interkonnektor für hochtemperaturbrennstoffzellen Withdrawn EP1866989A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005014077A DE102005014077B4 (de) 2005-03-23 2005-03-23 Interkonnektor für Hochtemperaturbrennstoffzellen und Verfahren zu dessen Herstellung und Verfahren zum Betreiben einer Brennstoffzelle
PCT/DE2006/000277 WO2006099830A1 (de) 2005-03-23 2006-02-16 Interkonnektor für hochtemperaturbrennstoffzellen

Publications (1)

Publication Number Publication Date
EP1866989A1 true EP1866989A1 (de) 2007-12-19

Family

ID=36201526

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06722490A Withdrawn EP1866989A1 (de) 2005-03-23 2006-02-16 Interkonnektor für hochtemperaturbrennstoffzellen

Country Status (5)

Country Link
US (1) US8153327B2 (enExample)
EP (1) EP1866989A1 (enExample)
JP (1) JP2008535149A (enExample)
DE (1) DE102005014077B4 (enExample)
WO (1) WO2006099830A1 (enExample)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006056251B4 (de) * 2006-11-27 2009-04-09 Bayerische Motoren Werke Aktiengesellschaft Hochtemperaturbrennstoffzelle mit ferritischer Komponente und Verfahren zum Betreiben derselben
JP5591743B2 (ja) * 2011-03-11 2014-09-17 日本特殊陶業株式会社 固体酸化物形燃料電池
JP5607561B2 (ja) * 2011-03-11 2014-10-15 日本特殊陶業株式会社 固体酸化物形燃料電池
DE102015205944B4 (de) 2015-03-30 2021-02-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anordnung elektrochemischer Zellen mit Dichtungslagen sowie deren Verwendung
JP7236675B2 (ja) * 2018-08-01 2023-03-10 パナソニックIpマネジメント株式会社 固体酸化物形燃料電池セル、及び電気化学セル
KR102666059B1 (ko) * 2021-11-19 2024-05-14 테라릭스 주식회사 연료전지 매니폴드 가스켓
JP2023081743A (ja) * 2021-12-01 2023-06-13 森村Sofcテクノロジー株式会社 電気化学反応単位
JP2023081742A (ja) * 2021-12-01 2023-06-13 森村Sofcテクノロジー株式会社 電気化学反応単位および電気化学反応セルスタック
TW202441827A (zh) * 2022-12-20 2024-10-16 丹麥商托普索公司 包括結合的流量分配器和接觸促進器的固態氧化物電池堆疊

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US121334A (en) * 1871-11-28 Improvement in upright pianos
DE1033898B (de) 1952-03-20 1958-07-10 Atlas Powder Co Verfahren zur Herstellung von thermoplastischen, pulverigen, haertbaren Polyesterharzen
DE4016157A1 (de) * 1989-06-08 1990-12-13 Asea Brown Boveri Vorrichtung zur umwandlung von chemischer energie in elektrische energie mittels in serie geschalteter flacher, ebener hochtemperatur-brennstoffzellen
EP0446680A1 (de) 1990-03-15 1991-09-18 Asea Brown Boveri Ag Stromkollektor zur Stromführung zwischen benachbarten stapelförmig angeordneten Hochtemperatur-Brennstoffzellen
DE4410711C1 (de) 1994-03-28 1995-09-07 Forschungszentrum Juelich Gmbh Metallische bipolare Platte für HT-Brennstoffzellen und Verfahren zur Herstellung desselben
DE4430958C1 (de) 1994-08-31 1995-10-19 Forschungszentrum Juelich Gmbh Feststoffelektrolyt-Hochtemperatur-Brennstoffzelle und Brennstoffzellen-Anordnung
DE19531852C1 (de) 1995-08-30 1996-12-19 Forschungszentrum Juelich Gmbh Brennstoffzelle mit Entwässerungssystem
AU5572500A (en) 1999-07-01 2001-01-22 Taisho Pharmaceutical Co., Ltd. Vegf receptor antagonists
WO2001004981A1 (de) * 1999-07-09 2001-01-18 Siemens Aktiengesellschaft Oxidationsgeschützte elektrische kontaktierung auf der brenngasseite der hochtemperatur-brennstoffzelle
DE10033897A1 (de) 2000-07-12 2002-01-31 Forschungszentrum Juelich Gmbh Aluminiumhaltiger Interkonnektor für Brennstoffzellen
DE10033898B4 (de) * 2000-07-12 2009-06-18 Forschungszentrum Jülich GmbH Hochtemperaturbrennstoffzelle und Brennstoffzellenstapel
US7222406B2 (en) * 2002-04-26 2007-05-29 Battelle Memorial Institute Methods for making a multi-layer seal for electrochemical devices
US8048587B2 (en) * 2002-11-27 2011-11-01 Delphi Technologies, Inc. Compliant current collector for fuel cell anode and cathode
JP4639583B2 (ja) * 2003-03-06 2011-02-23 トヨタ自動車株式会社 燃料電池
DE10317361A1 (de) 2003-04-15 2004-11-04 Bayerische Motoren Werke Ag Brennstoffzelle und/oder Elektrolyseur sowie Verfahren zu deren/dessen Herstellung
DE10317388B4 (de) * 2003-04-15 2009-06-10 Bayerische Motoren Werke Aktiengesellschaft Brennstoffzelle und/oder Elektrolyseur sowie Verfahren zu deren/dessen Herstellung
US20050136312A1 (en) * 2003-12-22 2005-06-23 General Electric Company Compliant fuel cell system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006099830A1 *

Also Published As

Publication number Publication date
DE102005014077A1 (de) 2006-10-05
DE102005014077B4 (de) 2012-05-24
US20090061300A1 (en) 2009-03-05
WO2006099830A1 (de) 2006-09-28
JP2008535149A (ja) 2008-08-28
US8153327B2 (en) 2012-04-10

Similar Documents

Publication Publication Date Title
DE4237602A1 (de) Hochtemperatur-Brennstoffzellen-Stapel und Verfahren zu seiner Herstellung
DE102004038870A1 (de) Feststoffoxidbrennstoffzellenpaket
EP1576685A2 (de) Hochtemperaturbeständige dichtung
EP1314217B1 (de) Hochtemperaturbrennstoffzelle
DE60224250T2 (de) Brennstoffzellenstapel mit Folienverbindungen und Verbundabstandhaltern
DE102011000180A1 (de) Anoden-Gestützte Flachrohr-SOFC und deren Herstellungsverfahren
DE102005014077B4 (de) Interkonnektor für Hochtemperaturbrennstoffzellen und Verfahren zu dessen Herstellung und Verfahren zum Betreiben einer Brennstoffzelle
EP1844513B1 (de) Interkonnektor für hochtemperaturbrennstoffzellen
DE102021112993A1 (de) Elektrochemischer Reaktionszellenstapel
EP1981108B1 (de) Interkonnektoranordnung und Verfahren zur Herstellung einer Kontaktanordnung für einen Brennstoffzellenstapel
DE102005005117B4 (de) Hochtemperaturbrennstoffzelle, Brennstoffzellenstapel, Verfahren zur Herstellung eines Interkonnektors
DE112017005905T5 (de) Verfahren zur Herstellung von Brennstoffzellen und Brennstoffzelle
DE19819453A1 (de) SOFC-Brennstoffzelle mit einer Anodenzwischenschicht
DE112010002963B4 (de) Verfahren zur Herstellung eines elektrochemischen Energiewandlers und der elektrochemische Energiewandler
EP1665431A1 (de) Interkonnektor für hochtemperatur-brennstoffzelleneinheit
DE10342493B4 (de) Brennstoffzellenmodul und Brennstoffzellenbatterie
DE10301404B4 (de) Brennstoffzelle, Brennstoffzellenstapel sowie dessen Herstellungsverfahren
DE102021117551A1 (de) Elektrochemischer Reaktionszellenstapel
DE10350478A1 (de) Brennstoffzelleneinheit
DE19808859C2 (de) Brennstoffzellenstapel mit Stromleiter
DE102011051440A1 (de) Verfahren zur Herstellung eines Interkonnektors für eine Hochtemperatur-Brennstoffzelle, Interkonnektor sowie Hochtemperatur-Brennstoffzelle
EP1301957B1 (de) Aluminiumhaltiger interkonnektor für brennstoffzellen
DE102021131474A1 (de) Elektrochemische Reaktionseinzelzelle und elektrochemischer Reaktionszellenstapel
DE102022113662A1 (de) Elektrochemische Reaktionseinzelzelle und elektrochemischer Reaktionszellenstapel
DE112019007178T5 (de) Elektrochemischer Reaktionszellenstapel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070905

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20101207

R17C First examination report despatched (corrected)

Effective date: 20101208

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20120926