EP1866989A1 - Interkonnektor für hochtemperaturbrennstoffzellen - Google Patents
Interkonnektor für hochtemperaturbrennstoffzellenInfo
- Publication number
- EP1866989A1 EP1866989A1 EP06722490A EP06722490A EP1866989A1 EP 1866989 A1 EP1866989 A1 EP 1866989A1 EP 06722490 A EP06722490 A EP 06722490A EP 06722490 A EP06722490 A EP 06722490A EP 1866989 A1 EP1866989 A1 EP 1866989A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- interconnector
- resilient
- anode
- electrically conductive
- side edges
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
- H01M8/0245—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0247—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention relates to an interconnector for high-temperature fuel cells.
- a fuel cell has a cathode, an electrolyte and an anode.
- the cathode is an oxidizing agent, z. B. air and the anode is a fuel, for. B. hydrogen supplied.
- the SOFC fuel cell is also called high-temperature fuel cell, since its operating temperature can be up to 1000 0 C.
- oxygen ions are formed in the presence of the oxidant.
- the oxygen ions diffuse through the electrolyte and recombine on the anode side with the fuel-derived hydrogen to water. Recombination releases electrons, generating electrical energy.
- interconnecting elements also called interconnectors.
- interconnectors By means of interconnectors arise stacked, electrically connected in series fuel cells. This arrangement is called a fuel cell stack.
- the fuel cell Stacks consist of the interconnectors and the electrode-electrolyte units.
- Interconnectors regularly have gas distribution structures in addition to the electrical and mechanical properties. This is realized by webs and grooves (DE 44 10 711 Cl). Gas distribution structures cause the resources to be distributed evenly in the electrode spaces (spaces where the electrodes are located).
- Metallic interconnectors with high aluminum content form Al 2 O 3 cover layers, which act disadvantageously like an electrical insulator.
- the object of the invention is therefore to provide an interconnector for a high-temperature fuel cell, which ensures long-term stable mechanical-electrical contacting between the anode and the interconnector.
- This object is achieved by an interconnector for a high-temperature fuel cell according to claim 1. It is characterized by an interconnector whose side edges are electrically conductively contacted to the anode by means of an electrically conductive means and whose anode is mounted via resilient elements in the interconnector. This configuration of the interconnector, it is possible to achieve a decoupling of sealing and contacting force. While according to the previously known state of the art z. B.
- an electrically conductive means was responsible for both the stable electrical contact and for a stable mechanical contacting and sealing, this object is divided by the present invention on two device elements: resilient elements, which provide a stable mechanical contacting and sealing of the fuel cell and an electrically conductive means, which is contacted via the side edges of the interconnector with the anode and thus ensures the stable electrical contact.
- the resilient elements no longer need to transmit power.
- the current no longer flows directly vertically between anode and interconnector. Instead, the current is redirected across the side edges of the interconnector.
- the resilient elements consist for example of individual elements, with a circular, C-shaped or S-shaped cross-section or of a resilient layer or resilient strips.
- the stripes may be made of mica.
- Mica refers to a group in the monoclinic crystal system of crystallizing silicate minerals with the complex chemical composition
- the bracketed atoms can be represented in any mixture, but always in the same ratio to the other atomic groups (Wikipedia: Wikipedia).
- the circular, C-shaped or S-shaped individual elements may for example consist of high temperature resistant steel tubes, profiled bars or steel sheets.
- the resilient individual elements may have a height of 1-2 mm, to ensure sufficient suspension and compensate for relative movements. About the arbitrary stiffness of the resilient individual elements, the contacting force can be adjusted specifically. Mica is less resilient than the circular, C-shaped or S-shaped elements, but has a higher temperature stability and is less expensive. Within the group of circular, C-shaped or S-shaped individual elements, the circular elements have a greater rigidity compared to the C- or S-shaped configured elements.
- the device advantageously comprises an electrically conductive agent consisting of nickel, gold, platinum or silver.
- an electrically conductive agent consisting of nickel, gold, platinum or silver.
- a nickel mesh can be used which has a wire diameter of 0.6 mm and a wire spacing of 2.6 mm.
- the electrically conductive means may be electrically conductive at the side edges of the interconnector with this z. For example, they can be joined by high-temperature soldering / welding or they can be caulked or soldered into prefabricated grooves of the interconnec margin.
- the inner glass solder seal is connected via a resilient element with the adjacent interconnector. Bending stresses that occur in the edge region of the fuel cell can thereby be reduced and thus prevent a risk of breakage of the fuel cell.
- This resilient element can be, for example, an aluminum strip that is circular, C-shaped or S-shaped.
- metallic seals can be used which are not electrically insulated and able to relative movements at the edges ⁇ of the interconnectors, which are connected to each other to compensate.
- the electrical insulation of the metallic seal can be effected by a ceramic layer on the interconnector edge or a coating of the metallic seal with a ceramic layer (eg zirconium oxide layer).
- the object is further achieved by a method for producing the interconnector according to the invention.
- FIG. 1 shows a schematic cross section through a stack of fuel cells, which are connected to one another by the interconnectors 1 according to the invention.
- FIG. 2 shows a schematic cross section through a stack of fuel cells, which are interconnected by the interconnectors 1 according to the invention and additional resilient elements
- FIG. 1 schematically shows a cross section through three fuel cells 5, each consisting of anode 2, cathode 4 and electrolyte 3, which are connected to one another by the interconnectors 1 according to the invention.
- the interconnectors contain gas channels 6 and webs 7.
- an electrically conductive means 8 is arranged, which is electrically conductively connected to the side edges 9 of the interconnector 1.
- Interconnector 1 and electrically conductive means 8, the resilient elements 11, consisting of individual elements IIa, IIb, 11c are arranged. These may, for example, have a circular IIa or C-shaped IIb cross section or consist of a layer / strip of mica 11c.
- the resilient individual elements IIa, IIb, llc be connected to a sheet 10a, 10b.
- the sheet 10a, 10b may be loosely floating 10a or fixed 10b connected to the interconnector 1.
- glass ceramics such. B. glass solder used.
- the cathode compartment may be sealed by an inner glass solder seal 12 opposite the anode compartment.
- an outer glass solder seal 13 is possible.
- FIG. 2 schematically shows a cross section through two fuel cells 5, each consisting of anode 2, cathode 4 and electrolyte 3, which are connected by the interconnectors 1 according to the invention.
- the interconnectors 1 have additional resilient elements 14 and 15.
- a further resilient element 14 may be applied, which is connected to the adjacent interconnector 1 and can compensate for relative movements of the fuel cell.
- a resilient, metallic seal (15) can be used, which is not electrically insulated and can compensate for relative movements at the edges of the interconnectors 1, which are interconnected.
- the electrical insulation between the interconnectors 1 is achieved by ceramic layers 16, the z. B. be applied by plasma coating on the interconnectors 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102005014077A DE102005014077B4 (de) | 2005-03-23 | 2005-03-23 | Interkonnektor für Hochtemperaturbrennstoffzellen und Verfahren zu dessen Herstellung und Verfahren zum Betreiben einer Brennstoffzelle |
| PCT/DE2006/000277 WO2006099830A1 (de) | 2005-03-23 | 2006-02-16 | Interkonnektor für hochtemperaturbrennstoffzellen |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP1866989A1 true EP1866989A1 (de) | 2007-12-19 |
Family
ID=36201526
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP06722490A Withdrawn EP1866989A1 (de) | 2005-03-23 | 2006-02-16 | Interkonnektor für hochtemperaturbrennstoffzellen |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US8153327B2 (enExample) |
| EP (1) | EP1866989A1 (enExample) |
| JP (1) | JP2008535149A (enExample) |
| DE (1) | DE102005014077B4 (enExample) |
| WO (1) | WO2006099830A1 (enExample) |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102006056251B4 (de) * | 2006-11-27 | 2009-04-09 | Bayerische Motoren Werke Aktiengesellschaft | Hochtemperaturbrennstoffzelle mit ferritischer Komponente und Verfahren zum Betreiben derselben |
| JP5591743B2 (ja) * | 2011-03-11 | 2014-09-17 | 日本特殊陶業株式会社 | 固体酸化物形燃料電池 |
| JP5607561B2 (ja) * | 2011-03-11 | 2014-10-15 | 日本特殊陶業株式会社 | 固体酸化物形燃料電池 |
| DE102015205944B4 (de) | 2015-03-30 | 2021-02-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Anordnung elektrochemischer Zellen mit Dichtungslagen sowie deren Verwendung |
| JP7236675B2 (ja) * | 2018-08-01 | 2023-03-10 | パナソニックIpマネジメント株式会社 | 固体酸化物形燃料電池セル、及び電気化学セル |
| KR102666059B1 (ko) * | 2021-11-19 | 2024-05-14 | 테라릭스 주식회사 | 연료전지 매니폴드 가스켓 |
| JP2023081743A (ja) * | 2021-12-01 | 2023-06-13 | 森村Sofcテクノロジー株式会社 | 電気化学反応単位 |
| JP2023081742A (ja) * | 2021-12-01 | 2023-06-13 | 森村Sofcテクノロジー株式会社 | 電気化学反応単位および電気化学反応セルスタック |
| TW202441827A (zh) * | 2022-12-20 | 2024-10-16 | 丹麥商托普索公司 | 包括結合的流量分配器和接觸促進器的固態氧化物電池堆疊 |
Family Cites Families (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US121334A (en) * | 1871-11-28 | Improvement in upright pianos | ||
| DE1033898B (de) | 1952-03-20 | 1958-07-10 | Atlas Powder Co | Verfahren zur Herstellung von thermoplastischen, pulverigen, haertbaren Polyesterharzen |
| DE4016157A1 (de) * | 1989-06-08 | 1990-12-13 | Asea Brown Boveri | Vorrichtung zur umwandlung von chemischer energie in elektrische energie mittels in serie geschalteter flacher, ebener hochtemperatur-brennstoffzellen |
| EP0446680A1 (de) | 1990-03-15 | 1991-09-18 | Asea Brown Boveri Ag | Stromkollektor zur Stromführung zwischen benachbarten stapelförmig angeordneten Hochtemperatur-Brennstoffzellen |
| DE4410711C1 (de) | 1994-03-28 | 1995-09-07 | Forschungszentrum Juelich Gmbh | Metallische bipolare Platte für HT-Brennstoffzellen und Verfahren zur Herstellung desselben |
| DE4430958C1 (de) | 1994-08-31 | 1995-10-19 | Forschungszentrum Juelich Gmbh | Feststoffelektrolyt-Hochtemperatur-Brennstoffzelle und Brennstoffzellen-Anordnung |
| DE19531852C1 (de) | 1995-08-30 | 1996-12-19 | Forschungszentrum Juelich Gmbh | Brennstoffzelle mit Entwässerungssystem |
| AU5572500A (en) | 1999-07-01 | 2001-01-22 | Taisho Pharmaceutical Co., Ltd. | Vegf receptor antagonists |
| WO2001004981A1 (de) * | 1999-07-09 | 2001-01-18 | Siemens Aktiengesellschaft | Oxidationsgeschützte elektrische kontaktierung auf der brenngasseite der hochtemperatur-brennstoffzelle |
| DE10033897A1 (de) | 2000-07-12 | 2002-01-31 | Forschungszentrum Juelich Gmbh | Aluminiumhaltiger Interkonnektor für Brennstoffzellen |
| DE10033898B4 (de) * | 2000-07-12 | 2009-06-18 | Forschungszentrum Jülich GmbH | Hochtemperaturbrennstoffzelle und Brennstoffzellenstapel |
| US7222406B2 (en) * | 2002-04-26 | 2007-05-29 | Battelle Memorial Institute | Methods for making a multi-layer seal for electrochemical devices |
| US8048587B2 (en) * | 2002-11-27 | 2011-11-01 | Delphi Technologies, Inc. | Compliant current collector for fuel cell anode and cathode |
| JP4639583B2 (ja) * | 2003-03-06 | 2011-02-23 | トヨタ自動車株式会社 | 燃料電池 |
| DE10317361A1 (de) | 2003-04-15 | 2004-11-04 | Bayerische Motoren Werke Ag | Brennstoffzelle und/oder Elektrolyseur sowie Verfahren zu deren/dessen Herstellung |
| DE10317388B4 (de) * | 2003-04-15 | 2009-06-10 | Bayerische Motoren Werke Aktiengesellschaft | Brennstoffzelle und/oder Elektrolyseur sowie Verfahren zu deren/dessen Herstellung |
| US20050136312A1 (en) * | 2003-12-22 | 2005-06-23 | General Electric Company | Compliant fuel cell system |
-
2005
- 2005-03-23 DE DE102005014077A patent/DE102005014077B4/de not_active Expired - Fee Related
-
2006
- 2006-02-16 US US11/887,154 patent/US8153327B2/en not_active Expired - Fee Related
- 2006-02-16 WO PCT/DE2006/000277 patent/WO2006099830A1/de not_active Ceased
- 2006-02-16 JP JP2008502233A patent/JP2008535149A/ja not_active Withdrawn
- 2006-02-16 EP EP06722490A patent/EP1866989A1/de not_active Withdrawn
Non-Patent Citations (1)
| Title |
|---|
| See references of WO2006099830A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| DE102005014077A1 (de) | 2006-10-05 |
| DE102005014077B4 (de) | 2012-05-24 |
| US20090061300A1 (en) | 2009-03-05 |
| WO2006099830A1 (de) | 2006-09-28 |
| JP2008535149A (ja) | 2008-08-28 |
| US8153327B2 (en) | 2012-04-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE4237602A1 (de) | Hochtemperatur-Brennstoffzellen-Stapel und Verfahren zu seiner Herstellung | |
| DE102004038870A1 (de) | Feststoffoxidbrennstoffzellenpaket | |
| EP1576685A2 (de) | Hochtemperaturbeständige dichtung | |
| EP1314217B1 (de) | Hochtemperaturbrennstoffzelle | |
| DE60224250T2 (de) | Brennstoffzellenstapel mit Folienverbindungen und Verbundabstandhaltern | |
| DE102011000180A1 (de) | Anoden-Gestützte Flachrohr-SOFC und deren Herstellungsverfahren | |
| DE102005014077B4 (de) | Interkonnektor für Hochtemperaturbrennstoffzellen und Verfahren zu dessen Herstellung und Verfahren zum Betreiben einer Brennstoffzelle | |
| EP1844513B1 (de) | Interkonnektor für hochtemperaturbrennstoffzellen | |
| DE102021112993A1 (de) | Elektrochemischer Reaktionszellenstapel | |
| EP1981108B1 (de) | Interkonnektoranordnung und Verfahren zur Herstellung einer Kontaktanordnung für einen Brennstoffzellenstapel | |
| DE102005005117B4 (de) | Hochtemperaturbrennstoffzelle, Brennstoffzellenstapel, Verfahren zur Herstellung eines Interkonnektors | |
| DE112017005905T5 (de) | Verfahren zur Herstellung von Brennstoffzellen und Brennstoffzelle | |
| DE19819453A1 (de) | SOFC-Brennstoffzelle mit einer Anodenzwischenschicht | |
| DE112010002963B4 (de) | Verfahren zur Herstellung eines elektrochemischen Energiewandlers und der elektrochemische Energiewandler | |
| EP1665431A1 (de) | Interkonnektor für hochtemperatur-brennstoffzelleneinheit | |
| DE10342493B4 (de) | Brennstoffzellenmodul und Brennstoffzellenbatterie | |
| DE10301404B4 (de) | Brennstoffzelle, Brennstoffzellenstapel sowie dessen Herstellungsverfahren | |
| DE102021117551A1 (de) | Elektrochemischer Reaktionszellenstapel | |
| DE10350478A1 (de) | Brennstoffzelleneinheit | |
| DE19808859C2 (de) | Brennstoffzellenstapel mit Stromleiter | |
| DE102011051440A1 (de) | Verfahren zur Herstellung eines Interkonnektors für eine Hochtemperatur-Brennstoffzelle, Interkonnektor sowie Hochtemperatur-Brennstoffzelle | |
| EP1301957B1 (de) | Aluminiumhaltiger interkonnektor für brennstoffzellen | |
| DE102021131474A1 (de) | Elektrochemische Reaktionseinzelzelle und elektrochemischer Reaktionszellenstapel | |
| DE102022113662A1 (de) | Elektrochemische Reaktionseinzelzelle und elektrochemischer Reaktionszellenstapel | |
| DE112019007178T5 (de) | Elektrochemischer Reaktionszellenstapel |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20070905 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
| DAX | Request for extension of the european patent (deleted) | ||
| 17Q | First examination report despatched |
Effective date: 20101207 |
|
| R17C | First examination report despatched (corrected) |
Effective date: 20101208 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
| 18W | Application withdrawn |
Effective date: 20120926 |