EP1853807B1 - Verfahren zur spannungsgesteuerten leistungseinstellung der heizung einer abgassonde - Google Patents

Verfahren zur spannungsgesteuerten leistungseinstellung der heizung einer abgassonde Download PDF

Info

Publication number
EP1853807B1
EP1853807B1 EP06707876.6A EP06707876A EP1853807B1 EP 1853807 B1 EP1853807 B1 EP 1853807B1 EP 06707876 A EP06707876 A EP 06707876A EP 1853807 B1 EP1853807 B1 EP 1853807B1
Authority
EP
European Patent Office
Prior art keywords
heating
voltage
probe
engine start
heating power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06707876.6A
Other languages
English (en)
French (fr)
Other versions
EP1853807A1 (de
Inventor
Thomas Wahl
Walter Strassner
Lothar Diehl
Stefan Rodewald
Jürgen Sindel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1853807A1 publication Critical patent/EP1853807A1/de
Application granted granted Critical
Publication of EP1853807B1 publication Critical patent/EP1853807B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1494Control of sensor heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the mixture regulation of internal combustion engines today takes place as a function of the combustion and the resulting composition of the exhaust gas.
  • one or more probes are arranged in the exhaust gas of the internal combustion engine, which typically determine the residual oxygen content of the exhaust gas. Based on this measurement, the quality of the combustion can be determined. Via a control unit, this measurement signal, along with other parameters such as speed, air flow or throttle angle, the fuel metering.
  • Such a method for power adjustment of a probe heater in the exhaust system of an internal combustion engine is in the US 2002/0078938 A1 shown.
  • the electrical power supplied to the heater is brought very quickly to a high value and then controlled according to a target heating power.
  • the probe Like from the DE 28 05 805 As is known, the probe must have a sufficient operating temperature. In the warm-up phase of the probe, for example, after the engine start, the probe signal is therefore not available. Until a sufficient probe temperature is reached, therefore, the fuel control is replaced by a fuel control. This has the consequence that in this time no optimal combustion values are achieved. In order to minimize the time to reach a sufficient operating temperature of the probe they are equipped with electric booster heaters. The control of the heating power is designed so that the operating temperature is reached as quickly as possible without damaging or destroying the probe. Critical factors related to damage to the probe include strong temperature gradients within the probe which can lead to stress cracking due to the resulting differential thermal expansion of the probe body.
  • the heater is located inside the probe and is isolated from the sensor element by an Al 2 O 3 layer or an Al 2 O 3 insulating film.
  • the probe is heated from the inside out. If an excessively high heating rate is selected, the temperature gradient from the interior of the probe to the probe surface becomes so great that cracks can arise from the probe surface under tension.
  • the heating voltage when switching on as a ramp from a suitable starting voltage, for example from 10V, to the full heating voltage, for example, 13V, controlled. In this case, the ramp is only started when the dew point is exceeded in the exhaust system, since otherwise moisture impinging on the probe strongly cools the probe surface and thus leads to large temperature gradients with the described effects.
  • From the DE 40 19 067 is a device for controlling and regulating a heater, in particular the heating of a probe in the exhaust gas of an internal combustion engine, known, in which the switch-on signal for the heating is triggered by a temporally lying before the ignition lock operation.
  • This process may be, for example, the opening of a vehicle door or triggered by a contact in the driver's seat.
  • the probe After the engine has started, the probe no longer has to pass through the entire temperature range from cold to operating temperature, but is already preheated, as a result of which the heating ramp described can be passed through correspondingly faster. Nevertheless, the described disadvantage remains that the greatest mechanical stresses occur at the end of the ramp, which limits the maximum permissible rate of increase of the heating power.
  • a preferred variant provides that the reduction of the heating voltage is preferably carried out in steps between 0.1 V / s and 0.3 V / s. This results in lower tensile stresses in the surface, because the maximum possible temperature difference between the surface and the interior of the lambda probe is lowered.
  • the invention has the advantage that the reduction takes place up to a predetermined constant value or until the probe heating is completely switched off.
  • the ramp-shaped heating voltage is designed so that the resulting tensile stresses in the surface of the probe assume an approximately constant value during the heating phase which is less than the material-specific strength of the surface material of the probe.
  • the introduced heating power as a heat source can reach the sensor element surface at an early stage and lower the maximum temperature gradient between the surface and the interior of the probe. This has a positive effect on the life of the probe.
  • the invention provides that the application of the high heating voltage and the subsequent reduction of the heating voltage with the engine start. As a result, the voltage conditions in the sensor element are reversed. The resulting compressive stresses of the rapidly heated heater environment produce only small tensile stresses on the sensor element surface.
  • the probe is preheated even when the signal is present before the engine start, preferably when the driver's door is opened or when the ignition key is inserted.
  • the preheating takes place at a low effective heating voltage, preferably at 2 V.
  • the preheating is chosen so that any amount of water can not lead to destruction of the sensor element.
  • a particularly simple embodiment provides that the preheating is performed staggered. This has the advantage that the waiting time before the engine start is considerably shortened. It is provided that at a first time before the engine start signal lying a first heating power with a small fraction of the full heating power and a subsequent second before the engine start signal a second higher heating power is set with a larger fraction of the full heating power.
  • An embodiment of the invention provides that after the engine start the heating power is reduced compared to the Einschalt essence. This is due to the fact that as soon as the engine starts the risk of water transport in the exhaust system increases. The stress conditions are reversed in the sensor element and the resulting compressive stresses thus generate small tensile stresses on the sensor element surface.
  • FIG. 1 illustrates a heating ramp according to the prior art. It can be seen that when the heating voltage is switched on, it is ramped up from a suitable starting voltage (here: 10 V) to the full available heating voltage (here: 13 V). The heating ramp is only started when the dew point is exceeded in the exhaust system, as otherwise possible moisture strongly cools the probe surface and thus cracking can occur. As soon as the engine starts, the heating power is reduced again. This is done according to the prior art in that the target internal resistance of the Nernst cell indicates the reaching of the operating temperature. The voltage conditions in the sensor element are reversed and no tensile stresses are generated on the sensor element surface more. Furthermore, in FIG. 1 on the right hand side, the tensile stress is given in MPa. The course of the tension shows that although the voltage is reduced, at the same time a fast light - off is possible.
  • a suitable starting voltage here: 10 V
  • 13 V full available heating voltage
  • FIG. 2 shows an initially concentrated heating ramp starting at full operating voltages.
  • the heating voltage is lowered at a slow rate along a ramp.
  • the ramp is again designed so that the simulated tensile stress in the surface of the sensor element is built up as early as possible.
  • the tensile stress then remains constant at a value resulting from the material-specific strength and a safety factor.
  • the internal resistance of the Nernst cell is used to reach the operating temperature.
  • FIG. 3 is the preheating when plugging the ignition key into the ignition or opening the driver's door represents.
  • the probe is clocked with a low effective heating voltage.
  • the sensor element is heated by the low heating voltage to about 200 ° C.Diese temperature is chosen according to the material composition so that any amounts of water can not lead to destruction of the sensor element.
  • the tensile stresses behave similarly. Due to the low warming and the tensile stresses increase only slightly. If the engine is then started, the tensile stresses behave analogously to those in FIG. 2 ,
  • FIG. 4 describes the further heating when switching on the ignition. Since switching on the ignition announces the imminent engine start, is heated with increased heating power in still air. If the engine is now started, the heater jumps to its maximum value and then regulates itself, according to the internal resistance of the Nernst cell, to the operating temperature and thus to the operating voltage. The control again follows the previously described heating ramp. Again, the tensile stresses increase slowly according to the different heat outputs, which has a positive effect on the life of the sensor element.
  • FIG. 5 shows the reduction of heating power at engine start.
  • the risk of water transport in the exhaust system increases extremely as soon as the engine is started.
  • the heating power is again reduced along a ramp.
  • the voltage conditions in the sensor element are reversed.
  • the heater environment heats up very quickly and a compressive stress forms which, however, can no longer produce damaging tensile stresses on the sensor element surface. This is also reflected in the marked course of the tensile stresses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

    Stand der Technik
  • Die Gemischregulierung von Brennkraftmaschinen erfolgt heute in Abhängigkeit von der Verbrennung und der daraus resultierenden Zusammensetzung des Abgases. Dazu sind im Abgas der Brenn-kraftmaschine eine oder mehrere Sonden angeordnet, die typischerweise den Restsauerstoffgehalt des Abgases bestimmen. Auf Basis dieser Messung lässt sich die Qualität der Verbrennung ermitteln. Über eine Steuer- oder Regeleinheit dient dieses Messsignal, zusammen mit anderen Kenngrößen wie Drehzahl, Luftdurchsatz oder Drosselklappenwinkel, der Kraftstoffzumessung.
  • Ein derartiges Verfahren zur Leistungseinstellung einer Sondenheizung im Abgassystem einer Brennkraftmaschine ist in der US 2002/0078938 A1 gezeigt. Hierbei wird in der Aufheizphase der Heizung die der Heizung zugeführte elektrische Leistung sehr schnell auf einen hohen Wert gebracht und anschließend entsprechend einer Ziel-Heizleistung gesteuert.
  • Wie aus der DE 28 05 805 bekannt, muss die Sonde eine ausreichende Betriebstemperatur aufweisen. In der Aufwärmphase der Sonde, zum Beispiel nach dem Motorstart, steht das Sondensignal daher nicht zur Verfügung. Bis zum Erreichen einer ausreichenden Sondentemperatur wird daher die Kraftstoffregelung durch eine Kraftstoffsteuerung ersetzt. Dies hat zur Folge, dass in dieser Zeit keine optimalen Verbrennungswerte erreicht werden.
    Um die Zeit bis zum Erreichen einer ausreichenden Betriebstemperatur der Sonde zu minimieren sind diese mit elektrischen Zusatzheizungen ausgestattet. Die Steuerung der Heizleistung ist dabei so auszulegen, dass die Betriebstemperatur möglichst schnell erreicht wird, ohne dabei die Sonde zu beschädigen oder zu zerstören.
    Als kritische Faktoren in Bezug auf eine Beschädigung der Sonde sind starke Temperaturgradienten innerhalb der Sonde zu sehen, die aufgrund der daraus resultierenden unterschiedlichen thermischen Dehnung des Sondenkörpers zu Spannungsrissen führen können.
  • Bei planaren Breitband-Lambdasonden liegt zum Beispiel der Heizer im Inneren der Sonde und ist durch eine Al2O3-Schicht oder eine Al2O3-Isolationsfolie von dem Sensorelement isoliert. Die Sonde wird so von innen heraus erwärmt. Wird dabei eine zu hohe Heizrate gewählt, dann wird der Temperaturgradient vom Inneren der Sonde zur Sondenoberfläche so groß, dass Risse von der unter Zugspannung stehenden Sondenoberfläche ausgehen können.
    Um dies zu vermeiden, wird die Heizspannung beim Einschalten als Rampe von einer geeigneten Startspannung, beispielsweise von 10V, auf die volle Heizspannung, beispielsweise von 13V, gesteuert. Dabei wird die Rampe erst dann gestartet, wenn im Abgassystem der Taupunkt überschritten ist, da ansonsten auf die Sonde auftreffende Feuchtigkeit die Sondenoberfläche stark abkühlt und so zu großen Temperaturgradienten mit den beschriebenen Auswirkungen führt.
  • Bei dieser Form der Sondenheizung hat es sich als nachteilig erwiesen, dass, bedingt durch die Rampe und durch die Taupunktverzögerung, die Betriebstemperatur der Sonde erst relativ spät erreicht wird. Bei einer möglichst schnellen Sondenaufheizung und somit kurzen Rampe zeigen der Temperaturgradient und damit die mechanische Spannung in der Sensoroberfläche bei Erreichen der maximalen Heizspannung ein Maximum. Die Rampe ist so auszulegen, dass diese maximale mechanische Spannung sicher unter der Eigenfestigkeit des Sondenmaterials liegt.
  • Aus der DE 40 19 067 ist eine Einrichtung zur Steuerung und Regelung einer Heizung, insbesondere der Heizung einer Sonde im Abgas einer Brennkraftmaschine, bekannt, bei der das Einschaltsignal für die Heizung durch einen zeitlich vor der Zündschlossbetätigung liegenden Vorgang ausgelöst wird. Dieser Vorgang kann beispielsweise das Öffnen einer Fahrzeugtür sein oder durch einen Kontakt im Fahrersitz ausgelöst werden.
    Die Sonde muss so nach dem Motorstart nicht mehr den gesamten Temperaturbereich von kalt bis auf Betriebstemperatur durchfahren sondern ist bereits vorgeheizt, wodurch die beschriebene Heizrampe entsprechend schneller durchfahren werden kann. Dennoch bleibt der beschriebene Nachteil, dass die größten mechanischen Spannungen am Ende der Rampe auftreten, was die maximal zulässige Anstiegsgeschwindigkeit der Heizleistung begrenzt.
  • Es ist Aufgabe der Erfindung, ein Verfahren zur Heizung einer Sonde im Abgas einer Brennkraftmaschine bereitzustellen, bei dem die Betriebstemperatur der Sonde in kürzester Zeit erreicht wird, ohne dass die Sonde dabei beschädigt wird.
  • Vorteile der Erfindung
  • Die das Verfahren betreffende Aufgabe wird wie im Anspruch 1 gelöst.
  • Eine bevorzugte Variante sieht vor, dass die Reduzierung der Heizspannung vorzugsweise in Schritten zwischen 0,1 V/s und 0,3 V/s erfolgt. Dadurch entstehen kleinere Zugspannungen in der Oberfläche, weil der maximal mögliche Temperaturunterschied zwischen Oberfläche und dem Inneren der Lambda - Sonde gesenkt wird.
  • Bei Sensorelementen mit hoher Wärmekapazität hat die Erfindung den Vorteil, dass die Reduzierung bis zu einem vorgegebenen konstanten Wert oder bis zum völligen Ausschalten der Sondenheizung erfolgt.
  • Eine Ausführungsform sieht vor, dass die rampenförmige Heizspannung so ausgelegt wird, dass die entstehenden Zugspannungen in der Oberfläche der Sonde über die Aufheizphase einen annähernd konstanten Wert annehmen, der geringer ist als die materialspezifische Festigkeit des Oberflächenmaterials der Sonde. Dadurch kann die eingebrachte Heizleistung als Wärmequelle frühzeitig die Sensorelementoberfläche erreichen und den maximalen Temperaturgradient zwischen Oberfläche und Innerem der Sonde absenken. Dies wirkt sich positiv auf die Lebensdauer der Sonde aus.
  • Da die Gefahr von Wassertransport im Abgassystem extrem steigt, wenn der Motor gestartet wird, sieht die Erfindung vor, dass das Anlegen der hohen Heizspannung und die darauffolgende Reduzierung der Heizspannung mit dem Motorstart erfolgt. Dadurch kehren sich die Spannungsverhältnisse im Sensorelement um. Die entstehenden Druckspannungen der schnell erwärmten Heizerumgebung erzeugen nur noch kleine Zugspannungen auf der Sensorelementoberfläche.
  • Damit sich das Sensorelement durch die geringe Heizleistung auf etwa 200°C erwärmen kann, ist vorgesehen, dass die Sonde bereits bei einem zeitlich vor dem Motorstart liegendem Signal, vorzugsweise dem Öffnen der Fahrertür oder dem Einstecken des Zündschlüssels, vorgeheizt wird.
  • Eine Ausführungsform sieht vor, dass die Vorheizung bei einer geringen effektiven Heizspannung, vorzugsweise bei 2 V, erfolgt. Die Vorheizung ist so gewählt, dass beliebige Wassermengen nicht zu einer Zerstörung des Sensorelementes führen können.
  • Eine besonders einfache Ausführungsform sieht vor, dass die Vorheizung gestaffelt durchgeführt wird. Dies hat den Vorteil, dass die Wartezeit vor dem Motorstart erheblich verkürzt wird. Dabei ist vorgesehen, dass bei einem ersten zeitlich vor dem Motorstart liegenden Signal eine erste Heizleistung mit einem kleinen Bruchteil der vollen Heizleistung und bei einem nachfolgendem zweiten vor dem Motorstart liegenden Signal eine zweite höhere Heizleistung mit einem größeren Bruchteil der vollen Heizleistung eingestellt wird.
  • Eine Ausgestaltung der Erfindung sieht vor, dass nach dem Motorstart die Heizleistung gegenüber der Einschaltleistung reduziert wird. Dies begründet sich darin, dass sobald der Motor startet die Gefahr von Wassertransport im Abgassystem steigt. Die Spannungsverhältnisse kehren sich im Sensorelement um und die entstehenden Druckspannungen erzeugen somit kleine Zugspannungen auf der Sensorelementoberfläche.
  • Zeichnung
  • Die Erfindung wird im Folgenden anhand eines in den Figuren dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:
    • Figur 1 eine Heizrampe und ein Zugspannungsverlauf gemäß dem Stand der Technik
    • Figur 2 eine anfangskonzentrierte Heizrampe sowie der zugehörige Zugspannungsverlauf
    • Figur 3 eine Darstellung des Vorheizens und des Zugspannungsverlaufs beim Einstecken des Zündschlüssels
    • Figur 4 eine Darstellung für das weitere Aufheizen bei eingeschalteter Zündung sowie der zugehörige Verlauf der Zugspannungen
    • Figur 5 eine Darstellung der Reduktion der Heizleistung beim Motorstart und Zugspannungsverlauf
    Beschreibung der Ausführungsbeispiele
  • Figur 1 veranschaulicht eine Heizrampe gemäß dem Stand der Technik. Dabei ist zu erkennen, dass beim Einschalten der Heizspannung diese von einer geeigneten Startspannung (hier: 10 V) stetig auf die volle zur Verfügung stehende Heizspannung (hier: 13 V) hochgefahren wird. Die Heizrampe wird dabei erst dann gestartet, wenn im Abgassystem der Taupunkt überschritten ist, da sonst eventuelle Feuchtigkeit die Sondenoberfläche stark abkühlt und es so zur Rissbildung kommen kann. Sobald der Motor startet wird die Heizleistung wieder reduziert. Dies geschieht gemäß dem Stand der Technik dadurch, dass der Zielinnenwiderstand der Nernstzelle das Erreichen der Betriebstemperatur anzeigt. Die Spannungsverhältnisse im Sensorelement kehren sich dabei um und es werden keine Zugspannungen auf der Sensorelementoberfläche mehr erzeugt.
    Weiterhin ist in Figur 1 auf der rechten Seite die Zugspannung in MPa angegeben. Der Verlauf der Zugspannung zeigt, dass, obwohl die Spannung reduziert wird, gleichzeitig auch ein Fast - Light - off möglich ist.
  • Figur 2 zeigt eine anfangskonzentrierte Heizrampe, die mit voller Betriebsspannungen beginnt. Die Heizspannung wird mit einer geringen Rate entlang einer Rampe abgesenkt. Auch hier ist die Rampe wieder so ausgelegt, dass die simulierte Zugspannung in der Oberfläche des Sensorelementes möglichst früh aufgebaut wird. Die Zugspannung bleibt dann konstant auf einem Wert, der sich aus der materialspezifischen Festigkeit und einem Sicherheitsfaktor ergibt. Auch hier wird der Innenwiderstand der Nernstzelle zum Erreichen der Betriebstemperatur genutzt.
  • In Figur 3 ist das Vorheizen beim Einstecken des Zündschlüssels ins Zündschloss bzw. das Öffnen der Fahrertür darstellt. Bereits bei diesen Vorgängen wird die Sonde mit einer geringen effektiven Heizspannung getaktet. Dadurch erwärmt sich das Sensorelement durch die geringe Heizspannung auf etwa 200°C.Diese Temperatur wird entsprechend der Materialzusammensetzung so gewählt, dass auch beliebige Wassermengen nicht zu einer Zerstörung des Sensorelementes führen können.
    Die Zugspannungen verhalten sich dabei ähnlich. Durch die geringe Erwärmung steigen auch die Zugspannungen nur gering an. Wird der Motor dann gestartet, verhalten sich die Zugspannungen analog zu denen in Figur 2.
  • Figur 4 beschreibt das weitere Aufheizen beim Einschalten der Zündung. Da das Einschalten der Zündung den baldigen Motorstart ankündigt, wird mit erhöhter Heizleistung an ruhender Luft geheizt. Wird der Motor nun gestartet, so springt die Heizung auf ihren maximalen Wert und regelt sich dann, gemäß dem Innenwiderstand der Nernstzelle, auf die Betriebstemperatur und damit auf die Betriebsspannung ein. Die Regelung folgt dabei wieder der vorher beschriebenen Heizrampe. Auch hier steigen die Zugspannungen entsprechend den verschiedenen Heizleistungen nur langsam an, was sich auf die Lebensdauer des Sensorelementes positiv auswirkt.
  • In Figur 5 ist die Reduktion der Heizleistung beim Motorstart gezeigt. Die Gefahr von Wassertransport im Abgassystem steigt extrem an, sobald der Motor gestartet wird. Um das Sensorelement vor Zugspannungen zu schützen, wird die Heizleistung wieder entlang einer Rampe reduziert. Dadurch kehren sich die Spannungsverhältnisse im Sensorelement um. Die Heizerumgebung erwärmt sich sehr schnell und es bildet sich eine Druckspannung aus, die jedoch auf der Sensorelementoberfläche keine schädigenden Zugspannungen mehr erzeugen kann. Dies zeigt sich auch im eingezeichneten Verlauf der Zugspannungen.

Claims (8)

  1. Verfahren zur spannungsgesteuerten Leistungseinstellung einer Sondenheizung im Abgassystem einer Brennkraftmaschine, wobei in der Aufheizphase die Heizspannung sehr schnell bezüglich einer Nachfolgephase oder sprunghaft auf einen hohen Wert, vorzugsweise die volle Betriebsspannung, gebracht wird und anschließend die Heizspannung kontinuierlich oder quasi kontinuierlich bis zu einem vorgegebenen konstanten Wert oder bis zum völligen Ausschalten der Sondenheizung reduziert wird,
    dadurch gekennzeichnet,
    dass die Sonde bereits bei einem zeitlich vor dem Motorstart liegenden Signal, vorzugsweise dem Öffnen der Fahrzeugtür oder dem Einstecken des Zündschlüssels, vorgeheizt wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Reduzierung der Heizspannung vorzugsweise in Schritten zwischen etwa 0,1 V/s und 0,3 V/s erfolgt.
  3. Verfahren nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet,
    dass die rampenförmige Heizspannung so ausgelegt wird, dass die entstehenden Zugspannungen in der Oberfläche der Sonde über die Aufheizphase einen annähernd konstanten Wert annehmen, der geringer ist als die materialspezifische Festigkeit des Oberflächenmaterials der Sonde.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass das Anlegen der hohen Heizspannung und die darauf folgende Reduzierung der Heizspannung mit dem Motorstart erfolgen.
  5. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Vorheizung mit einer geringen effektiven Heizspannung, vorzugsweise bei 2V, erfolgt.
  6. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Vorheizung gestaffelt durchgeführt wird.
  7. Verfahren nach Anspruch 6,
    dadurch gekennzeichnet,
    dass bei einem ersten zeitlich vor dem Motorstart liegenden Signal eine erste Heizleistung, mit einem kleineren Bruchteil vorzugsweise ⅛ der vollen Heizleistung und bei einem nachfolgenden zweiten vor dem Motorstart liegenden Signal eine zweite höhere Heizleistung, mit einem größeren Bruchteil ¼ der vollen Heizleistung eingestellt wird.
  8. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass nach dem Motorstart die Heizleistung gegenüber der Einschaltleistung reduziert wird.
EP06707876.6A 2005-02-15 2006-01-27 Verfahren zur spannungsgesteuerten leistungseinstellung der heizung einer abgassonde Active EP1853807B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005006760A DE102005006760A1 (de) 2005-02-15 2005-02-15 Verfahren zur spannungsgesteuerten Leistungseinstellung der Heizung einer Abgassonde
PCT/EP2006/050495 WO2006087261A1 (de) 2005-02-15 2006-01-27 Verfahren zur spannungsgesteuerten leistungseinstellung der heizung einer abgassonde

Publications (2)

Publication Number Publication Date
EP1853807A1 EP1853807A1 (de) 2007-11-14
EP1853807B1 true EP1853807B1 (de) 2014-01-08

Family

ID=36218695

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06707876.6A Active EP1853807B1 (de) 2005-02-15 2006-01-27 Verfahren zur spannungsgesteuerten leistungseinstellung der heizung einer abgassonde

Country Status (6)

Country Link
US (1) US8240127B2 (de)
EP (1) EP1853807B1 (de)
JP (1) JP4825224B2 (de)
KR (1) KR101092812B1 (de)
DE (1) DE102005006760A1 (de)
WO (1) WO2006087261A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7536999B2 (en) * 2007-01-12 2009-05-26 Nissan Motor Co., Ltd. Air-fuel ratio control apparatus
DE102007035188B4 (de) * 2007-07-27 2009-12-24 Continental Automotive Gmbh Verfahren zum Aufheizen eines Gassensors
DE102008038583B4 (de) 2007-08-23 2024-02-08 Ngk Spark Plug Co., Ltd. Gassensorsteuervorrichtung mit zwei Widerstandssollwerten zur Verkürzung der Aktivierungszeit des Gassensorelements
JP4819838B2 (ja) * 2007-08-23 2011-11-24 日本特殊陶業株式会社 ガスセンサ制御装置
DE102008013515A1 (de) * 2008-03-07 2009-09-10 Volkswagen Ag Verfahren zum Betreiben einer Lambdasonde während der Aufwärmphase
US8448511B2 (en) * 2009-09-02 2013-05-28 Ford Global Technologies, Llc Method for evaluating degradation of a particulate matter sensor after an engine start
DE102009055041B4 (de) * 2009-12-21 2021-12-09 Robert Bosch Gmbh Verfahren zum schnellen Erreichen der Betriebsbereitschaft einer beheizbaren Abgassonde
DE102010038153B3 (de) 2010-10-13 2012-03-08 Ford Global Technologies, Llc. Partikelsensor, Abgassystem und Verfahren zum Schutz von Komponenten eines turbogeladenen Motors mit Abgasrückführung
US8490476B2 (en) 2011-03-08 2013-07-23 Ford Global Technologies, Llc Method for diagnosing operation of a particulate matter sensor
DE102012203401A1 (de) 2012-03-05 2013-09-05 Volkswagen Aktiengesellschaft Verfahren zur Steuerung einer Heizeinrichtung zur Beheizung eines Bauteils, Steuervorrichtung sowie Kraftfahrzeug mit einer solchen
US9797849B2 (en) * 2013-03-29 2017-10-24 Rosemount Analytical Inc. Method of operation an in SITU process probe
DE102016209075A1 (de) * 2016-05-25 2017-06-08 Continental Automotive Gmbh Gassensor mit Leistungsbegrenzung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2805805C2 (de) 1978-02-11 1989-07-20 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und Einrichtung zum Betrieb einer Kraftstoffversorgungsanlage mit Lambda-Regelung
DE4019067A1 (de) 1990-06-15 1991-12-19 Bosch Gmbh Robert Einrichtung zum einschalten einer abgassondenheizung
JP3104362B2 (ja) * 1992-01-27 2000-10-30 株式会社デンソー 内燃機関の空燃比制御装置
JP3487009B2 (ja) * 1994-08-05 2004-01-13 株式会社デンソー 酸素センサのヒータ制御装置
JP3436611B2 (ja) * 1995-04-28 2003-08-11 日本特殊陶業株式会社 酸素センサ用ヒータの通電制御方法及び装置
DE69720647T2 (de) * 1996-11-06 2003-10-30 Ngk Spark Plug Co Verfahren und Vorrichtung zum Feststellen der Verschlechterung des Betriebs einer Lambda-Sonde mit grossem Messbereich
JP3385893B2 (ja) * 1997-02-21 2003-03-10 トヨタ自動車株式会社 内燃機関用空燃比センサのヒータ制御装置
EP1026501B1 (de) * 1999-02-03 2010-10-06 Denso Corporation Vorrichtung zur Gaskonzentrationsmessung mit Fehlerkompensation des Ausgangssignals
JP2002004934A (ja) * 2000-06-22 2002-01-09 Unisia Jecs Corp 空燃比センサのヒータ制御装置
JP3800068B2 (ja) * 2000-12-27 2006-07-19 株式会社デンソー ガス濃度センサのヒータ制御装置
JP4344486B2 (ja) * 2001-03-09 2009-10-14 日本碍子株式会社 ガスセンサ
JP4110874B2 (ja) * 2002-08-09 2008-07-02 株式会社デンソー 内燃機関のガスセンサの加熱制御装置
JP3824984B2 (ja) * 2002-09-06 2006-09-20 三菱電機株式会社 排気ガスセンサの温度制御装置
JP4093919B2 (ja) 2003-06-03 2008-06-04 株式会社日立製作所 ヒータ付き排気ガスセンサを備えた内燃機関の制御装置

Also Published As

Publication number Publication date
EP1853807A1 (de) 2007-11-14
KR101092812B1 (ko) 2011-12-12
JP4825224B2 (ja) 2011-11-30
WO2006087261A1 (de) 2006-08-24
DE102005006760A1 (de) 2006-08-17
KR20070110851A (ko) 2007-11-20
US20080087005A1 (en) 2008-04-17
US8240127B2 (en) 2012-08-14
JP2008530542A (ja) 2008-08-07

Similar Documents

Publication Publication Date Title
EP1853807B1 (de) Verfahren zur spannungsgesteuerten leistungseinstellung der heizung einer abgassonde
DE4300530C2 (de) System zum Betreiben eines Heizelements für einen keramischen Sensor in einem Kraftfahrzeug
EP2260195B1 (de) Verfahren zum betreiben einer lambdasonde während der aufwärmphase
EP1880200A1 (de) Vorrichtung und verfahren zum betreiben eines messfühlers für gase, insbesondere einer lambdasonde
DE102013001043B3 (de) Verfahren zum Betreiben einer Brennkraftmaschine sowie entsprechende Brennkraftmaschine
DE102008005110A1 (de) Verfahren und Steuerung zum Betreiben und Einstellen einer Lambda-Sonde
WO2012113653A1 (de) Verfahren und steuergerät zur einstellung einer temperatur einer glühstiftkerze
DE102010027778B4 (de) Verfahren und Vorrichtung zum Betreiben eines Klappenstellers zum Steuern eines Massenstromes sowie einen Klappensteller
DE102005005764A1 (de) Verfahren zur Leistungseinstellung der Heizung einer Abgassonde
EP2823171B1 (de) Verfahren zur steuerung einer heizeinrichtung zur beheizung eines bauteils, steuervorrichtung sowie kraftfahrzeug mit einer solchen
DE19608340A1 (de) Verfahren zur Bestimmung, ob vor dem Starten einer Brennkraftmaschine eine Brennkraftmaschinen-Vorheizung erfolgt ist
DE102009045367A1 (de) Verfahren zum Betreiben eines Sensors
DE102007058540B4 (de) Verfahren und Vorrichtung zum Laden und Entladen eines piezoelektrischen Elements
DE102009055041B4 (de) Verfahren zum schnellen Erreichen der Betriebsbereitschaft einer beheizbaren Abgassonde
EP3224464A1 (de) Verfahren zur erkennung eines spannungsoffsets zumindest in einem bereich bei einer spannungs-lambda-kennlinie
DE102019216042A1 (de) Verfahren zum Betreiben eines Abgassensors
EP1444425B1 (de) Verfahren zur steuerung der sekundärluftmenge
DE102017218333A1 (de) Verfahren und Vorrichtung zur Ansteuerung eines Nockenwellenverstellers
DE102011002856A1 (de) Verfahren zur Erfassung mindestens eines Parameters eines Gases
DE102010001662B4 (de) Verfahren und Vorrichtung zum Betreiben einer Glühkerze in einer Brennkraftmaschine eines Kraftfahrzeuges
DE102009028288A1 (de) Verfahren zum Betreiben der Heizung einer Abgassonde
DE102012206224A1 (de) Verfahren und Vorrichtung zur Regelung einer Temperatur einer Glühstiftkerze in einer Brennkraftmaschine
DE102019218181A1 (de) Verfahren zum Betreiben eines Abgassensors
DE102007023547B3 (de) Verfahren und Vorrichtung zum Ermitteln einer Irreversibilität einer Längenänderung eines Piezokristalls
DE19505407A1 (de) Verfahren zur Beheizung eines Drosselklappenstutzens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070917

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090325

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131018

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006013488

Country of ref document: DE

Effective date: 20140220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006013488

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20141009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006013488

Country of ref document: DE

Effective date: 20141009

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190225

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502006013488

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230324

Year of fee payment: 18