EP1851168A2 - Verfahren zur sauerstoffanreicherung in gasen, daf]r geeignete anlagen sowie deren verwendung - Google Patents

Verfahren zur sauerstoffanreicherung in gasen, daf]r geeignete anlagen sowie deren verwendung

Info

Publication number
EP1851168A2
EP1851168A2 EP06722979A EP06722979A EP1851168A2 EP 1851168 A2 EP1851168 A2 EP 1851168A2 EP 06722979 A EP06722979 A EP 06722979A EP 06722979 A EP06722979 A EP 06722979A EP 1851168 A2 EP1851168 A2 EP 1851168A2
Authority
EP
European Patent Office
Prior art keywords
oxygen
gas
permeate
chamber
cations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06722979A
Other languages
German (de)
English (en)
French (fr)
Inventor
Steffen Werth
Bärbel Kolbe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Borsig Process Heat Exchanger GmbH
ThyssenKrupp Industrial Solutions AG
Original Assignee
Uhde GmbH
Borsig Process Heat Exchanger GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uhde GmbH, Borsig Process Heat Exchanger GmbH filed Critical Uhde GmbH
Publication of EP1851168A2 publication Critical patent/EP1851168A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/0271Perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/087Single membrane modules
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/025Preparation or purification of gas mixtures for ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/04Elements in parallel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/068Ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen

Definitions

  • the present invention relates to an improved process for oxygenation and an improved plant therefor.
  • Oxygen transfer membranes are ceramics of particular composition and lattice structure which exhibit the ability to conduct oxygen at higher temperatures, thus allowing oxygen to be selectively separated from air, for example Transition of the oxygen from one side to the other on the membrane is the different oxygen partial pressure on the two sides.
  • Oxygen permeation increases exponentially with increasing temperature and, in the case of an exothermic reaction, there is the danger of a "runaway" reaction.
  • a fundamental circumvention of the safety problems set out above and a simplification of the reaction technique results from the separation of mass transport through the membrane and the actual oxidation reaction.
  • the separation takes place the oxygen from the permeate side of the membrane by a purge gas (sweep gas), which receives the oxygen and in a further, physically separate reactor (part) in contact with the medium to be oxidized.
  • Another object of the present invention was to provide an improved process for recovering oxygen from oxygen Gases that can be operated for a long time without replacing the membrane and which has a high fault tolerance in terms of leaks in the membrane or the composite metal seal / ceramic.
  • the present invention relates to a method for enriching the content of oxygen in oxygen and nitrogen-containing gases in a separator having an internal space divided by an oxygen-conducting ceramic membrane into a substrate chamber and a permeate chamber, comprising the steps of: a) Compressing and heating an oxygen-containing gas to a
  • Feed gas b) introducing the compressed and heated feed gas into the substrate chamber of the separator, c) introducing a purge gas containing oxygen and nitrogen into the permeate chamber of the separator, d) adjusting such a pressure in the substrate chamber, the oxygen partial pressure of the feed gas transporting causing oxygen to pass through the oxygen-conducting ceramic membrane into the permeate chamber; e) discharging the oxygen-depleted feed gas from the substrate chamber; and f) discharging the oxygen-enriched purge gas from the permeate chamber.
  • nitrogen in the sweep gas may well be used, giving the opportunity to purge the permeate side with oxygen and nitrogen-containing gas, preferably air, and thereby generate the driving force of oxygen permeation in that the gas pressure on the feed side of the membrane is higher than on the permeate side of the membrane Membrane.
  • oxygen and nitrogen-containing gas preferably air
  • This method has a number of advantages over the previously proposed systems.
  • the system has intrinsic security. If a membrane breaks, oxygen-containing gas mixes with oxygen-containing gas.
  • the degree of enrichment of the oxygen-containing gas can be very elegantly regulated. For example, it would be possible to tolerate individual broken membrane pieces. Although nitrogen would then flow through these break points on the permeate side, and reduce the accumulation. However, this could be compensated for by simply increasing the pressure on the oxygen-providing side. This would increase the flow of oxygen through the undamaged parts of the membrane and achieve the same total enrichment as before. Defects occurring during operation of the membrane could therefore be tolerated to a limited extent.
  • any oxygen-containing gases can be used. These preferably additionally contain nitrogen and in particular no oxidizable components. Air is particularly preferably used as feed gas.
  • the Oxygen content of the feed gas is typically at least 5 vol.%, Preferably at least 10 vol.%, Particularly preferably 10-30 vol.%.
  • any oxygen and nitrogen-containing gases can be used. These preferably contain no oxidizable components.
  • the oxygen content of the purge gas is typically at least 5% by volume, preferably at least 10% by volume, particularly preferably 10-30% by volume.
  • the nitrogen content of the purge gas is typically at least 15% by volume, preferably at least 35% by volume, more preferably 35-80% by volume.
  • the purge gas may optionally contain other inert components, such as water vapor and / or carbon dioxide. Air is particularly preferably used as purge gas.
  • Any oxygen-conducting ceramic membranes which are selective for oxygen can be used in the process according to the invention.
  • the oxygen-transporting ceramic materials used according to the invention are known per se.
  • These ceramics may consist of oxygen anions and electron-conducting materials.
  • it is also possible to use combinations of very different ceramics or of ceramic and non-ceramic materials for example combinations of oxygen anions-conducting ceramics and electron-conducting ceramics or combinations of different ceramics, which each conduct oxygen anions and electrons or not all components of which have an oxygen conduction or combinations of oxygen-conducting ceramic materials with non-ceramic materials, such as metals.
  • Examples of preferred multiphase membrane systems are mixtures of ceramics with ion conductivity and another material with electron conductivity, in particular a metal. These include in particular combinations of materials with fluorite structures or fluorite-related structures with electron-conducting Materials, for example combinations of ZrO 2 or CeO 2 , which are optionally doped with CaO or Y 2 O 3 with metals, such as palladium.
  • preferred multiphase membrane systems are mixed structures having a partial perovskite structure, i. Mixed systems, of which there are different crystal structures in the solid, and at least one of them is a perovskite structure or a perovskite-related structure.
  • porous ceramic membranes which preferably conduct oxygen on account of the pore morphology, for example porous Al 2 O 3 and / or porous SiO 2 .
  • oxygen-transporting materials are oxide ceramics, of which those with perovskite structure or with Brownmillerit Jardin or Aurivillius Kunststoff are particularly preferred.
  • Perovskites used according to the present invention typically have the structure ABO 3-5 , wherein A represents bivalent cations and B represents trivalent or higher valent cations, the ionic radius of A is greater than the ionic radius of B, and ⁇ is a number between 0.001 and 1.5 is between 0.01 and 0.9, and more preferably between 0.01 and 0.5, to produce the electroneutrality of the material.
  • A represents bivalent cations
  • B represents trivalent or higher valent cations
  • is a number between 0.001 and 1.5 is between 0.01 and 0.9, and more preferably between 0.01 and 0.5, to produce the electroneutrality of the material.
  • the perovskites used according to the invention it is also possible for mixtures of different cations A and / or cations B to be present.
  • Brownmillerites used according to the invention typically have the structure
  • Cations B can preferably occur in several oxidation states. However, a part or all of the cations of type B can also be trivalent or higher cations with a constant oxidation state.
  • Particularly preferably used oxide ceramics contain type A cations which are selected from cations of the second main group, the first subgroup, the second subgroup, the lanthanides or mixtures of these cations, preferably of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2 + , Cu 2+ , Ag 2+ , Zn 2+ , Cd 2+ and / or the lanthanides.
  • Particularly preferably used oxide ceramics contain type B cations which are selected from cations of the groups HIB to VIIIB of the Periodic Table and / or the lanthanide group, the metals of the third to fifth main group or mixtures of these cations, preferably Fe 3+ , Fe 4+ 1 Ti 3+ , Ti 4+ , Zr 3+ , Zr 4+ , Ce 3+ , Ce 4+ , Mn 3+ , Mn 4+ , Co 2+ , Co 3+ , Nd 3+ , Nd 4+ , Gd 3+ , Gd 4+ , Sm 3+ , Sm 4+ , Dy 3+ , Dy 4+ , Ga 3+ , Yb 3+ , Al 3+ , Bi 4+ or mixtures of these cations.
  • type B cations which are selected from cations of the groups HIB to VIIIB of the Periodic Table and / or the lanthanide group, the metals of the third to fifth main group
  • Still further particularly preferably used oxide ceramics contain type B cations which are selected from Sn 2+ , Pb 2+ , Ni 2+ , Pd 2+ , lanthanides or mixtures of these cations.
  • Aurivillites used according to the invention typically have the structural element (Bi 2 O 2 ) 2 "1" (VO 3,5 [] o, 5 ) 2 * or related structural elements, where [] denotes an oxygen vacancy.
  • the pressure of the feed gas in the substrate chamber can vary within wide ranges.
  • the pressure is chosen in a particular case so that the oxygen partial pressure on the feed side of the membrane is greater than on the permeate side.
  • Typical pressures in the substrate chamber are in the range between 10 "2 and 100 bar, preferably between 1 and 80 bar, and in particular between 2 and 10 bar.
  • the gas pressure in the permeate chamber may also vary within wide limits and is in each individual case by Typical pressures in the permeate chamber are in the range between 10 '3 and 100 bar, preferably between 0.5 and 80 bar, and in particular between 0.8 and 10 bar.
  • the temperature in the separator is to be chosen so that the highest possible separation efficiency can be achieved.
  • the temperature to be selected in the individual case depends on the type of membrane and can be determined by the expert by routine experimentation. For ceramic membranes are typical operating temperatures in the range of 300 to 1500 0 C, preferably from 650 to 1200 0 C.
  • the oxygen-enriched purge gas derived from the permeate chamber is used to produce synthesis gas.
  • a hydrocarbon mixture preferably natural gas, or a pure hydrocarbon, preferably methane
  • the oxygen-enriched purge gas optionally converted together with water vapor in a reformer in a conventional manner into hydrogen and carbon oxides.
  • This synthesis gas can optionally be used after further treatment steps to remove the carbon oxides in the Fischer-Tropsch synthesis or in particular in the ammonia synthesis.
  • the purge gas is typically enriched to about 35% to 45% oxygen content, and fed directly into a preferably autothermal reformer ("ATR").
  • ATR autothermal reformer
  • the nitrogen-containing oxygen-enriched purge gas derived from the permeate chamber is used to carry out oxidation reactions, in particular in the production of nitric acid or in the oxidative dehydrogenation of hydrocarbons, such as propane.
  • the nitrogen-containing oxygen-depleted feed gas derived from the substrate chamber is used to carry out oxidation reactions, in particular for the regeneration of coke-laden catalysts.
  • the invention also relates to specially designed plants for the enrichment of oxygen in gases.
  • a separation device in the interior of which a plurality of mutually parallel hollow fibers of oxygen-conducting ceramic material are arranged, wherein the interiors of the hollow fibers form a permeate chamber of the separation device and the outer environment of the hollow fibers forms a substrate chamber of the separation device,
  • Discharge for diverting the oxygen depleted feed gas from the substrate chamber.
  • a " separation device in the interior of which a plurality of mutually parallel hollow fibers of oxygen-conducting ceramic material are arranged, wherein the interiors of the hollow fibers form a substrate chamber of the separation device and the outer environment of the hollow fibers a
  • Permeate chamber of the separator forms, B 1 ) at least one component which consists of a plurality of hollow fibers, which at the
  • End faces are connected to a supply line for an oxygen-containing feed gas and with a discharge for an oxygen-depleted feed gas, wherein supply and discharge for the feed gas and the depleted feed gas are not connected to the permeate chamber, C ' ) at least one opening into the permeate chamber of the separator
  • the individual hollow fibers in the components B) and B ' ) can be spatially separated from each other or even touch each other.
  • the hollow fibers are connected via a distributor unit and a collector purity with the inlet and outlet for the gas to be transported through the hollow fibers.
  • the separation devices A) and A ' ) can be passively heated by the temperature of the gas to be introduced.
  • the separators A) and A " ) may be equipped with a heater.
  • F represent a part of the spaces Permeatkammem and forms the other part of the spaces substrate chambers, and at least one dimension of the spaces in the range of less than 10 mm, preferably less than 2 mm moves, wherein the oxygen transport between the substrate and Permeatkammem by at least one common room wall is made, which is characterized by a common plate
  • Oxygen conductive ceramic material is formed
  • Substrate chambers which are connected to at least one collector unit, wherein the collector unit communicates with a discharge for the oxygen depleted feed gas
  • Permeatkammem which are connected to at least one collector unit, wherein the collector unit is connected to a discharge for the oxygen-enriched purge gas, and wherein K) Permeatkammem and substrate chambers are not in communication.
  • spacer elements are provided in all rooms.
  • the supply lines to the substrate chamber and / or the permeate chamber are connected to compressors, by means of which the gas pressure in the chambers can be adjusted independently.
  • the supply line to the permeate chamber is connected to a container, from which the system oxygen and nitrogen-containing purge gas is supplied.
  • Another object of the invention is the use of oxygen-enriched and from a separator with oxygen-conducting membrane originating gas for the production of synthesis gas, preferably for use in the Fischer Tropsch synthesis or in the ammonia synthesis.
  • Yet another object of the invention is the use of oxygen-enriched gas derived from an oxygen-conducting membrane separator in nitric acid production.
  • Figure 1 shows the experimental apparatus.
  • a hollow fiber (4) made of oxygen-conducting ceramic material is clamped in a heatable apparatus.
  • the ends of the hollow fiber (4) are sealed with silicone gaskets (5).
  • the inside and the outside of the hollow fiber (4) can be exposed to different gases and / or experimental conditions.
  • the purge gas (“sweep gas") introduced into the apparatus through the supply line (1) and flowing in the permeate chamber (3) absorbs oxygen at appropriate partial pressures from the inside of the hollow fiber (4) ("substrate chamber”).
  • the oxygen-enriched gas can then be analyzed by gas chromatography.
  • the permeated amount of oxygen can then be determined.
  • the ceramic hollow fiber was supplied with air as sweep gas and as oxygen-lean gas.
  • air as sweep gas
  • oxygen-lean gas oxygen-lean gas
  • the inside (core-side) the hollow fiber was subjected to an increased air pressure, while the air pressure on the outside (shell-side) was each left at 1.2 bar.
EP06722979A 2005-02-11 2006-01-23 Verfahren zur sauerstoffanreicherung in gasen, daf]r geeignete anlagen sowie deren verwendung Withdrawn EP1851168A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005006571A DE102005006571A1 (de) 2005-02-11 2005-02-11 Verfahren zur Sauerstoffanreicherung in Gasen, dafür geeignete Anlagen sowie deren Verwendung
PCT/EP2006/000545 WO2006084563A2 (de) 2005-02-11 2006-01-23 Verfahren zur sauerstoffanreicherung in gasen, dafür geeignete anlagen sowie deren verwendung

Publications (1)

Publication Number Publication Date
EP1851168A2 true EP1851168A2 (de) 2007-11-07

Family

ID=36228751

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06722979A Withdrawn EP1851168A2 (de) 2005-02-11 2006-01-23 Verfahren zur sauerstoffanreicherung in gasen, daf]r geeignete anlagen sowie deren verwendung

Country Status (18)

Country Link
US (1) US20090272266A1 (zh)
EP (1) EP1851168A2 (zh)
JP (1) JP2008529944A (zh)
KR (1) KR20070112135A (zh)
CN (1) CN101115678A (zh)
AU (1) AU2006212562A1 (zh)
BR (1) BRPI0608232A2 (zh)
CA (1) CA2597603A1 (zh)
DE (1) DE102005006571A1 (zh)
HR (1) HRP20070341A2 (zh)
MA (1) MA29283B1 (zh)
MX (1) MX2007009693A (zh)
NO (1) NO20074568L (zh)
RU (1) RU2007133812A (zh)
TN (1) TNSN07269A1 (zh)
TW (1) TW200638984A (zh)
WO (1) WO2006084563A2 (zh)
ZA (1) ZA200705855B (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008013292A1 (de) 2008-03-07 2009-09-10 Borsig Process Heat Exchanger Gmbh Verfahren zum Regenerieren von Sauerstoff-leitenden keramischen Membranen sowie Reaktor
DE102009038814A1 (de) 2009-08-31 2011-03-10 Uhde Gmbh Verfahren zur Pottung keramischer Kapillarmembranen
DE102009039149A1 (de) 2009-08-31 2011-03-03 Uhde Gmbh Katalytische Membranmaterial-Beschichtung
DE102009038812A1 (de) 2009-08-31 2011-03-10 Uhde Gmbh Hochtemperatur-beständige kristallisierende Glaslote
DE102009060489A1 (de) 2009-12-29 2011-06-30 Uhde GmbH, 44141 Vorrichtung und Verfahren zur Regelung der Sauerstoffpermeation durch nicht-poröse Sauerstoffanionen leitende keramische Membranen und deren Verwendung
JP2016505501A (ja) 2012-12-19 2016-02-25 プラクスエア・テクノロジー・インコーポレイテッド 酸素輸送膜集合体をシールするための方法
US20140219884A1 (en) * 2013-01-07 2014-08-07 Sean M. Kelly High emissivity and high temperature diffusion barrier coatings for an oxygen transport membrane assembly
US9212113B2 (en) 2013-04-26 2015-12-15 Praxair Technology, Inc. Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming and auxiliary heat source
US9611144B2 (en) 2013-04-26 2017-04-04 Praxair Technology, Inc. Method and system for producing a synthesis gas in an oxygen transport membrane based reforming system that is free of metal dusting corrosion
US9938145B2 (en) 2013-04-26 2018-04-10 Praxair Technology, Inc. Method and system for adjusting synthesis gas module in an oxygen transport membrane based reforming system
US9296671B2 (en) 2013-04-26 2016-03-29 Praxair Technology, Inc. Method and system for producing methanol using an integrated oxygen transport membrane based reforming system
RU2680048C2 (ru) 2013-10-07 2019-02-14 Праксайр Текнолоджи, Инк. Реактор с комплектом керамических транспортирующих кислород мембран и способ риформинга
US10822234B2 (en) 2014-04-16 2020-11-03 Praxair Technology, Inc. Method and system for oxygen transport membrane enhanced integrated gasifier combined cycle (IGCC)
US9797054B2 (en) 2014-07-09 2017-10-24 Carleton Life Support Systems Inc. Pressure driven ceramic oxygen generation system with integrated manifold and tubes
WO2016057164A1 (en) 2014-10-07 2016-04-14 Praxair Technology, Inc Composite oxygen ion transport membrane
US10441922B2 (en) 2015-06-29 2019-10-15 Praxair Technology, Inc. Dual function composite oxygen transport membrane
DE102015116021A1 (de) * 2015-09-22 2017-03-23 Thyssenkrupp Ag Verfahren zur Herstellung von Synthesegas mit autothermer Reformierung und Membranstufe zur Bereitstellung von sauerstoffangereicherter Luft
US10118823B2 (en) 2015-12-15 2018-11-06 Praxair Technology, Inc. Method of thermally-stabilizing an oxygen transport membrane-based reforming system
US9938146B2 (en) 2015-12-28 2018-04-10 Praxair Technology, Inc. High aspect ratio catalytic reactor and catalyst inserts therefor
JP2019513081A (ja) 2016-04-01 2019-05-23 プラクスエア・テクノロジー・インコーポレイテッド 触媒含有酸素輸送膜
EP3797085A1 (en) 2018-05-21 2021-03-31 Praxair Technology, Inc. Otm syngas panel with gas heated reformer

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591315A (en) * 1987-03-13 1997-01-07 The Standard Oil Company Solid-component membranes electrochemical reactor components electrochemical reactors use of membranes reactor components and reactor for oxidation reactions
DE3879082T2 (de) * 1987-10-23 1993-10-07 Teijin Ltd Modul und Vorrichtung zur Anreicherung von Sauerstoff.
US4981676A (en) * 1989-11-13 1991-01-01 Minet Ronald G Catalytic ceramic membrane steam/hydrocarbon reformer
US5245110A (en) * 1991-09-19 1993-09-14 Starchem, Inc. Process for producing and utilizing an oxygen enriched gas
US5240480A (en) * 1992-09-15 1993-08-31 Air Products And Chemicals, Inc. Composite mixed conductor membranes for producing oxygen
US5380433A (en) * 1993-06-01 1995-01-10 E. I. Du Pont De Nemours And Company Hollow fiber membrane separation device with a housing made from a flexible material
US5562754A (en) * 1995-06-07 1996-10-08 Air Products And Chemicals, Inc. Production of oxygen by ion transport membranes with steam utilization
US5693230A (en) * 1996-01-25 1997-12-02 Gas Research Institute Hollow fiber contactor and process
US5820655A (en) * 1997-04-29 1998-10-13 Praxair Technology, Inc. Solid Electrolyte ionic conductor reactor design
US6149714A (en) * 1997-06-05 2000-11-21 Praxair Technology, Inc. Process for enriched combustion using solid electrolyte ionic conductor systems
US6010614A (en) * 1998-06-03 2000-01-04 Praxair Technology, Inc. Temperature control in a ceramic membrane reactor
JP3876561B2 (ja) * 1999-03-15 2007-01-31 宇部興産株式会社 ガス分離膜モジュールおよびガス分離方法
US6224763B1 (en) * 1999-05-05 2001-05-01 Alberta Res Council Hollow-fiber membrane device including a split disk tube sheet support
US6537465B2 (en) * 2000-12-29 2003-03-25 Praxair Technology, Inc. Low pressure steam purged chemical reactor including an oxygen transport membrane
DE10220452B4 (de) * 2002-05-07 2006-10-19 Gkss-Forschungszentrum Geesthacht Gmbh Vorrichtung zur Abtrennung einer Komponente aus einem Gasgemisch
JP4181128B2 (ja) * 2002-12-19 2008-11-12 エクソンモービル アップストリーム リサーチ カンパニー 流体分離用の膜モジュール
DE10300141A1 (de) * 2003-01-07 2004-07-15 Blue Membranes Gmbh Verfahren und Vorrichtung zur Sauerstoffanreicherung von Luft bei gleichzeitiger Abreicherung von Kohlendioxid
US7179323B2 (en) * 2003-08-06 2007-02-20 Air Products And Chemicals, Inc. Ion transport membrane module and vessel system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006084563A2 *

Also Published As

Publication number Publication date
WO2006084563A2 (de) 2006-08-17
KR20070112135A (ko) 2007-11-22
US20090272266A1 (en) 2009-11-05
HRP20070341A2 (en) 2007-10-31
ZA200705855B (en) 2008-09-25
MA29283B1 (fr) 2008-02-01
CN101115678A (zh) 2008-01-30
BRPI0608232A2 (pt) 2009-11-24
CA2597603A1 (en) 2006-08-17
NO20074568L (no) 2007-10-24
DE102005006571A1 (de) 2006-08-17
TW200638984A (en) 2006-11-16
RU2007133812A (ru) 2009-03-20
MX2007009693A (es) 2007-11-12
WO2006084563A3 (de) 2006-12-07
TNSN07269A1 (en) 2008-12-31
JP2008529944A (ja) 2008-08-07
AU2006212562A1 (en) 2006-08-17

Similar Documents

Publication Publication Date Title
EP1851168A2 (de) Verfahren zur sauerstoffanreicherung in gasen, daf]r geeignete anlagen sowie deren verwendung
EP1968738B1 (de) Oxidationsreaktor und oxidationsverfahren
DE60103911T3 (de) Zusammengesetzte leitende membranen für die synthesegas produktion
DE69928707T2 (de) Vorrichtung zur Fluidabtrennung mit einem Gemisch-leitenden Membran aus Mehrkomponentmetalloxiden
DE60037062T2 (de) Verfahren zur Teiloxidation von Kohlenwasserstoff
CA2236446C (en) Method of producing hydrogen using solid electrolyte membrane
DE69824620T2 (de) Katalytischer membranreaktor mit einem drei-dimensionalen katalysator in der oxidationszone
DE69935101T2 (de) Synthesegasherstellung mittels leitender Mischmembranen mit integrierter Konvertierung zu flüssigen Produkten
EP0053837B1 (de) Adsorptionsverfahren und Anlage zur Durchführung des Verfahrens
DE102009039149A1 (de) Katalytische Membranmaterial-Beschichtung
DE69819809T2 (de) Verfahren mit fester elektrolytischer Membran zur Herstellung von Sauerstoff mit kontrollierter Reinheit
DE69830349T2 (de) Verfahren zum Betreiben eines Membranreaktors und dafür verwendeter Membranreaktor
EP3835258A1 (de) Verfahren und anlage zum herstellen eines synthesegasproduktstroms mit einstellbarem h2/co-verhältnis und eines reinwasserstoffstroms
DE102008031092A1 (de) Verfahren und Vorrichtung zur Erzeugung von Wasserstoff
DE69819210T2 (de) Membrane und ihre anwendung
DE60211275T2 (de) Schwefelkontrolle in ionenleitenden Membrananlagen
DE69721072T2 (de) Verfahren zur durchführung von katalytische oder nichtkatalytische verfahren, mit einem mit sauerstoff angereichertem reaktant
DE69834283T2 (de) Vorrichtung zur Zurückgewinnung, Raffination und Speicherung von Wasserstoffgas
DE69600851T3 (de) Neue Zusammensetzungen mit der Fähigkeit zu funktionieren unter hohem Kohlendioxidpartialdrucken zur Verwendung in Feststoffvorrichtungen zur Herstellung von Sauerstoff
WO1999054948A1 (de) Verfahren und anlage zur entfernung von kohlenmonoxid aus einem wasserstoffhaltigen reformatgasstrom
DE102009060489A1 (de) Vorrichtung und Verfahren zur Regelung der Sauerstoffpermeation durch nicht-poröse Sauerstoffanionen leitende keramische Membranen und deren Verwendung
DE102019128882B3 (de) Verfahren zur prozessintegrierten Sauerstoff-Versorgung eines Wasserstoff-Kreislaufmotors mit Kreislaufführung eines Edelgases
DE10211942A1 (de) Verfahren zur Steuerung einer Kohlenmonoxidkonzentration aus einem Reaktor für selektive Oxidation während eines Abschaltens unter Verwendung einer gestuften Luftzuführung über mehrere Durchlässe
WO2009109294A1 (de) Verfahren zum regenerieren von sauerstoff-leitenden keramischen membranen sowie reaktor
DE19954981C1 (de) Reaktoranlage zur Umsetzung eines Einsatzstoffs unter Sauerstoffbeteiligung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070911

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP UHDE GMBH

Owner name: BORSIG PROCESS HEAT EXCHANGER GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110802