EP1850942A1 - Verfahren zum reinigen von abgasen eines sinterprozesses von erzen und/oder anderen metallhaltigen materialien in der metallerzeugung - Google Patents

Verfahren zum reinigen von abgasen eines sinterprozesses von erzen und/oder anderen metallhaltigen materialien in der metallerzeugung

Info

Publication number
EP1850942A1
EP1850942A1 EP06706727A EP06706727A EP1850942A1 EP 1850942 A1 EP1850942 A1 EP 1850942A1 EP 06706727 A EP06706727 A EP 06706727A EP 06706727 A EP06706727 A EP 06706727A EP 1850942 A1 EP1850942 A1 EP 1850942A1
Authority
EP
European Patent Office
Prior art keywords
moving bed
components
sintering
bed reactor
absorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP06706727A
Other languages
German (de)
English (en)
French (fr)
Inventor
Horst Grochowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1850942A1 publication Critical patent/EP1850942A1/de
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/30Particle separators, e.g. dust precipitators, using loose filtering material
    • B01D46/32Particle separators, e.g. dust precipitators, using loose filtering material the material moving during filtering
    • B01D46/34Particle separators, e.g. dust precipitators, using loose filtering material the material moving during filtering not horizontally, e.g. using shoots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/08Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds according to the "moving bed" method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/704Solvents not covered by groups B01D2257/702 - B01D2257/7027
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/025Other waste gases from metallurgy plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40077Direction of flow
    • B01D2259/40081Counter-current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • B01D2259/4141Further details for adsorption processes and devices using different types of adsorbents within a single bed
    • B01D2259/4145Further details for adsorption processes and devices using different types of adsorbents within a single bed arranged in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/09Reaction techniques
    • Y10S423/16Fluidization

Definitions

  • the invention relates to a method for purifying exhaust gases of a sintering process of ores in metal production according to the preamble of claim 1.
  • this material mixed with a small-particle, carbonaceous solid, is placed on a sintering belt and transported during the progressive transport on the sintering belt with at least partial burning of the solid to a discharge end.
  • the starting material is pelleted or briquetted and then sintered. Combustion air is supplied.
  • the feedstock undergoes a smoldering and at least partially combustion process whereby the feedstock material is agglomerated into larger pieces, ie, sintered.
  • the sintered belt exhaust gas flowed through the particle layer of the counterflow moving bed reactor, for example activated carbon, so that the sintering belt exhaust gas pre-cleaned in the flow stream phase now underwent adsorption cleaning.
  • the flow stream cleaning process preceding the moving bed reactor requires the use of a second particulate cleaning agent without this already the adverse catalyst damage was prevented in the moving bed.
  • the object of the invention is to reduce or substantially eliminate the catalyst-damaging effect of other pollutant components, in particular SO2 and / or condensable hydrocarbons, while simultaneously simplifying the process and in purifying sintered exhaust gases, in particular NO x .
  • a method with the features of claim 1 is proposed.
  • the invention is based on the idea of carrying out a two-stage exhaust gas purification process in one and the same moving bed reactor in which the first stage is carried out in the inlet area and the second stage of purification in the subsequent layers of the adsorption and / or absorption medium.
  • a two-stage purification process in a single moving bed for sintering exhaust gases is possible even if sintered exhaust gas contains or contains significant concentrations of SO 2 and / or HCl on entering the inflow bottom of the preferably countercurrent moving bed reactor plant. It is therefore not necessary to make a possible pre-purification stage for SO 2 and HCl particularly expensive and to deposit almost all of the SO 2 and HCl from the sintered waste gas beforehand.
  • the bed depth required for the first cleaning stage can be optimally adjusted.
  • it can be adapted to current conditions, such as the amount of dust and / or the amount of catalyst poisons to be removed in the sintering offgas in the first stage.
  • To control the layer thickness of the first cleaning stage is preferably the fürströmungstikiner that suffers the sintering exhaust gas on the flow depth or a depth in the moving bed. It is also possible to keep this layer depth constant, if desired.
  • the migration speed of the adsorption and / or absorption medium is determined by the wall bed reactor system increases or decreases.
  • a control corresponding to the damage of the adsorption and / or absorption medium by the catalyst-damaging components can be carried out.
  • a bag filter or an electrostatic precipitator and / or an exhaust gas scrubber is preferably used.
  • finely divided reaction and / or absorption agents such as lime dust and / or activated coke dust can be added to the sintering waste gas in order to free the sintering waste gas from at least part of the pollutant components SO 2 and HCl before it enters the moving bed reactor plant.
  • the precleaned sintered exhaust gas when entering the moving bed reactor plant contains an SO 2 content of less than 100 mg per standard cubic meter, preferably not more than 5 mg per standard cubic meter.
  • adsorption is understood to be a process in which one or more components are adsorbed directly from the exhaust gas.
  • absorption is understood to mean that substances originating from the exhaust gas to be purified first undergo a chemical reaction and are subsequently adsorbed.
  • adsorption and / or absorption means depending on the composition of the sintering waste gas - e.g. Activated coke (undoped or doped) or mixtures of carbonaceous, undoped or doped adsorbent and / or absorbent, in particular activated carbon and a reagent for acidic pollutant components, such as lime, are preferred.
  • the sorption process can be carried out in different modes of operation, regardless of the adsorbent and / or absorbent used:
  • the solids in particular the dust loads of the fluid, are comparatively high and / or the stoichiometric factor of the sorbent is less favorable
  • several cycles of the sorbent can also be carried out through the sorption reactor. After each cycle, the sorbent may then be subjected to a treatment for further use.
  • This treatment may e.g. be:,
  • composition of the sorbent is dependent on the task in the exhaust gas purification of sintered belt systems:
  • Dioxins / Furans, SO2, HCl, Dust and NOx To Absch ⁇ idung of dioxins / furans serves activated coke.
  • HCl acidic pollutant components
  • the doping serves with a means improving the catalytic properties.
  • Mixtures of carbon-containing, undoped or doped adsorption and / or absorbent, in particular activated carbon and a reagent for acidic pollutant components can be achieved in the moving bed reactor by layered structure, but also by the fact that particulate sorbents are used in the form of a granules, which a mixture of at least two sorbents.
  • one of these sorbents is an adsorbent, in particular carbonaceous, such as hearth furnace coke (brown lignite) or coal coke (charcoal) or a corresponding activated carbon / coke, or else a noncarbonated adsorbent, such as clay minerals or zeolites.
  • At least one other sorbent is a chemisorbent and preferably contains a calcium, magnesium, potassium and / or sodium compound, with calcium hydroxide being particularly preferred.
  • Preferred starting materials are limy or dolomitic lime hydrates.
  • Lime-based hydrated limes also contain CaCO 3 and CaO.
  • Dolomite-based hydrated limes contain not only Ca compounds but also Mg, Na and / or K compounds.
  • the basic composition of the sorbents consists of carbonaceous absorbent / adsorbent and calcium hydroxide.
  • a high or low proportion of activated carbon or activated carbon is selected in the selection of the granules.
  • Preferred mixing ratios in the granulate particles between the chemisorption and the Adsorbents can z. B. between 65 to 90 wt .-% chemisorption and 35 to 10 wt .-% adsorbents are. In some cases, these limits may be extended to 20 to 95% chemisorptive and 80 to 5% adsorbents. It turned out to be proven to use 10 to 65% adsorbent and 90 to 35 wt .-% chemical sorbent.
  • At least one agent improving the catalytic properties is added to this base composition by doping, if the required cutting rates are high and the efficiency of the exhaust gas purification process is thereby improved.
  • the doping may e.g. with vanadium pentoxide, titanium oxide, Woiframtagenen, u.a. respectively. It can be carried out on the individual components activated carbon or calcium hydroxide or the doping takes place during the production of the granulate (for example in the case of pelleting). Furthermore, the doping can also be achieved after the preparation of the granulate by treatment with a suspension in which the catalytic agent is present. Or the dopant is applied dust-like, because the granules used has excellent properties to adhere such dusts.
  • This doping can also take place before and / or during the gas purification in the moving bed reactor and / or supplemented. This also in the sense of controlling the catalytic properties of the moving bed.
  • These doping methods are - independently of the sintering process - of independent inventive importance as used in other gas treatment processes advantageous.
  • the mixed granules according to the invention have a surprisingly high mechanical property
  • Calcium hydroxide as the sorbent component has, because of its high reaction ability to sulfur and chlorine compounds proved to be particularly favorable. In this case, the particle strength even increases during the sorption process when, for example, carbon dioxide is present in the fluid to be purified and calcium carbonate is thereby formed from Ca (OH) 2 .
  • Inventive sorbent from several sorbent ingredients have also proven to be particularly favorable in terms of manufacturability.
  • granule production is facilitated by the simultaneous presence of calcium hydroxide and activated coke.
  • the sorbents can generally be used as they come from granulation, e.g. with a grain size between 1 and 8 mm, with preferred grain sizes between 2 and 6 mm.
  • a particular advantage of the sorption material according to the invention is that in the finished granules, the pore surface of the granules behaves approximately additive to the pore surfaces of the individual components of this material.
  • the exhaust gas accumulating on a sintering belt is fed via a pipeline 11 to a known electrostatic precipitator.
  • the resulting dust is returned via a pipe 12 to the sintering belt.
  • the effluent from the electrostatic precipitator exhaust gas is fed via a pipe 13 to a per se known bag filter 30, wherein calcium hydroxide is the exhaust gas of the pipeline 13 to form a Flugstaubwolke supplied to largely bind SO 2 and HCl to the calcium hydroxide.
  • the filter cake growing on the filter bags can be used after recovery, in particular for improving the stoichiometry ratio, by being recirculated and partially reused for the formation of the fly ash cloud.
  • a blower 14 downstream of the gas outlet from the bag filter 30 ensures sufficient pressure increase for the operation of the plant.
  • the sintered exhaust gas leaving through pipe 15 is mixed in a manner known per se with NH 3 before it is fed into a countercurrent moving bed reactor plant 50 to the inlet plate there.
  • the latter is preferably designed as in European Patent 257 653 B1.
  • the purified gas exiting via pipe 16 is directly supplied to the exhaust stack 60 and discharged to the atmosphere.
  • the formed in the moving bed reactor plant 50 bulk material layer 54 consists for example of activated carbon particles. Since SO 2 , HCl and dusts are already largely separated in the bag filter 30, only residues of SO 2 and HCl, for example 5 mg per standard cubic meter, are to be separated in the moving bed reactor 50. Likewise residues of dust that has also passed through the bag filter 30 - including mercury and other heavy metals. The abovementioned pollutants are deposited adsorptively, absorptively or adhesively directly in the inflow region, ie in the region of the inflow bottom 52 and an immediately above particle layer (step I).
  • the sintered exhaust gas contains essentially only NO x , dioxins / furans and any other pollutant constituents, such as PCBs and / or PAHs, which now on the coming from above fresh or regenerated adsorbent or absorbent be bound.
  • water vapor and nitrogen are essentially formed from NO x and NH 3 under the catalytic effect of the activated coke.
  • the activated coke is in this embodiment, after deduction from the Wanderbettre- actuator 50 via pipe 17, 17 'partially abandoned the sintering belt 10 to serve as fuel in the sintering process, and otherwise supplied via pipe 17, 17 "a known regeneration stage 70, from which the regenerated adsorbent is returned to the storage bunker 56 of the moving bed reactor via pipe 18.
  • a tube 17 the spent activated coke is fed to a screening device 80, from which the screened fine grain is fed to the sintering belt via the pipe 17 ', while the resulting Coarse grain is supplied via the pipe 17 "of the reaction stage 70, so that undersize does not get back into the moving bed reactor plant.
  • the spent activated coke accumulating in the discharge device 58 is supplied via pipes 17 and 17 'in their entirety to the sintering belt for combustion.
  • the pollutants to be removed in stages 20, 90 and 50 are substantially the same as in the first embodiment in stages 20, 30 and 50.
  • a second pre-cleaning stage bag filter or wet scrubber
  • An upstream purification stage for acidic components such as SO 2 , HCl and HF is therefore eliminated.
  • a special adsorption or absorption agent is used in the moving bed reactor, which consists of a granulate of a mixture of lime and activated coke, as described above. This makes it possible to remove all of the resulting SO 2 and HCl in stage I, so that stage II is not catalyzed by these components.
  • the temperature of the exhaust gas in the stage I and II is usually from 100 0 C to 15O 0 C.
  • a typical exhaust gas composition before and after the exhaust gas purification is shown in the table.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Treating Waste Gases (AREA)
  • Manufacture And Refinement Of Metals (AREA)
EP06706727A 2005-02-08 2006-02-08 Verfahren zum reinigen von abgasen eines sinterprozesses von erzen und/oder anderen metallhaltigen materialien in der metallerzeugung Ceased EP1850942A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005005818A DE102005005818A1 (de) 2005-02-08 2005-02-08 Verfahren zum Reinigen von Abgasen eines Sinterprozesses von Erzen in der Metallerzeugung
PCT/EP2006/001083 WO2006084671A1 (de) 2005-02-08 2006-02-08 Verfahren zum reinigen von abgasen eines sinterprozesses von erzen und/oder anderen metallhaltigen materialien in der metallerzeugung

Publications (1)

Publication Number Publication Date
EP1850942A1 true EP1850942A1 (de) 2007-11-07

Family

ID=36571988

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06706727A Ceased EP1850942A1 (de) 2005-02-08 2006-02-08 Verfahren zum reinigen von abgasen eines sinterprozesses von erzen und/oder anderen metallhaltigen materialien in der metallerzeugung

Country Status (8)

Country Link
US (1) US7666374B2 (zh)
EP (1) EP1850942A1 (zh)
JP (1) JP5198875B2 (zh)
KR (1) KR101250702B1 (zh)
CN (1) CN101128247B (zh)
DE (1) DE102005005818A1 (zh)
TW (1) TWI323182B (zh)
WO (1) WO2006084671A1 (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8528029B2 (en) * 2005-09-12 2013-09-03 Qualcomm Incorporated Apparatus and methods of open and closed package subscription
WO2008071215A1 (de) 2006-12-14 2008-06-19 Horst Grochowski Verfahren und vorrichtung zum reinigen von abgasen eines sinterprozesses von erzen und/oder anderen metallhaltigen materialien in der metallerzeugung
CA2705749C (en) * 2007-11-15 2016-08-02 Richard E. Riman Method of hydrothermal liquid phase sintering of ceramic materials and products derived therefrom
KR101566098B1 (ko) 2007-11-15 2015-11-05 러트거즈,더스테이트유니버시티오브뉴저지 가스를 포획 및 격리하기 위한 시스템
CN101254394B (zh) * 2008-04-25 2010-10-06 武汉凯迪电力环保有限公司 烧结机烟气多污染物脱除工艺及其系统
IT1392725B1 (it) * 2008-12-10 2012-03-16 Ghirarduzzi S R L Sistema e procedimento per l abbattimento del cov cot, in impianti di depolverazione a secco dei fumi prodotti da forni elettrici o a combustione per la produzione di metalli
DE102009025680A1 (de) * 2009-06-20 2010-12-23 Haliotis Asia Pte. Ltd. Filtervorrichtung
JP2011062663A (ja) * 2009-09-18 2011-03-31 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd 排ガス処理方法
US20110182799A1 (en) * 2010-01-22 2011-07-28 Rutgers, The State University Of New Jersey Sequestration of a gas emitted by an industrial plant
KR101237084B1 (ko) * 2010-11-29 2013-02-25 현대제철 주식회사 소결기용 배출가스 처리장치 및 그 처리방법
UA113844C2 (xx) 2011-03-05 2017-03-27 Зв'язуючий елемент, зв'язуюча матриця і композитний матеріал, що має зв'язуючий елемент, та спосіб його виготовлення
US9352270B2 (en) 2011-04-11 2016-05-31 ADA-ES, Inc. Fluidized bed and method and system for gas component capture
CA2837832C (en) 2011-06-09 2020-01-14 Rutgers, The State University Of New Jersey Synthetic formulations and methods of manufacturing and using thereof
KR101298711B1 (ko) * 2011-09-29 2013-08-21 현대제철 주식회사 소결기용 배출가스 처리장치
AU2013237816B8 (en) * 2012-03-30 2016-07-07 Fuel Tech, Inc. Dry processes, apparatus, compositions and systems for reducing sulfur oxides and HCI
US9802154B2 (en) 2012-03-30 2017-10-31 Fuel Tech, Inc. Process for sulfur dioxide, hydrochloric acid and mercury mediation
CN102716643B (zh) * 2012-05-31 2014-06-11 东南大学 一种高温脱除垃圾焚烧烟气中酸性气体的装置及其方法
US20130330257A1 (en) 2012-06-11 2013-12-12 Calgon Carbon Corporation Sorbents for removal of mercury
AU2013317997B2 (en) 2012-09-20 2016-04-07 ADA-ES, Inc. Method and system to reclaim functional sites on a sorbent contaminated by heat stable salts
US20140199218A1 (en) * 2013-01-11 2014-07-17 Samuel M. Sami Method and apparatus for zero emission combined heat and power
US9393518B2 (en) 2013-02-27 2016-07-19 Fuel Tech, Inc. Processes, apparatus, compositions and systems for reducing emissions of HCI and/or sulfur oxides
US9289721B2 (en) 2013-02-27 2016-03-22 Fuel Tech, Inc. Process and apparatus for improving the operation of wet scrubbers
TWI484995B (zh) * 2013-04-01 2015-05-21 Fuel Tech Inc 用於減少硫氧化物及氯化氫之乾式方法、裝置、組合物及系統
US9399597B2 (en) 2013-04-01 2016-07-26 Fuel Tech, Inc. Ash compositions recovered from coal combustion gases having reduced emissions of HCI and/or mercury
US9718025B2 (en) 2013-04-01 2017-08-01 Fuel Tech, Inc. Reducing hydrochloric acid in cement kilns
KR101436936B1 (ko) * 2013-06-05 2014-09-03 한국기계연구원 고체 암모늄염 반응기, 그 제어방법 및 고체 암모늄염과 선택적 환원촉매를 이용한 질소산화물 정화시스템
CN105378122A (zh) * 2013-06-19 2016-03-02 卡尔冈碳素公司 减少重金属从活性炭浸出的方法
DE102013106677A1 (de) * 2013-06-26 2014-12-31 Karlsruher Institut für Technologie Kleinfeuerungsanlage, Verfahren zu deren Betrieb und Brennstoff hierzu
FR3008322A1 (fr) * 2013-07-12 2015-01-16 Lab Sa Procede d'epuration de fumees de combustion
FR3011749B1 (fr) * 2013-10-16 2016-01-08 Lab Sa Procede d'epuration de fumees de combustion
CN104226064B (zh) * 2014-09-24 2016-06-22 神木县三江煤化工有限责任公司 一种含尘干馏气除尘装置
CN105861816B (zh) * 2015-01-22 2017-08-25 安徽工业大学 一种基于添加固体抑制剂的烧结过程so2、二噁英协同减排方法
US10220369B2 (en) 2015-08-11 2019-03-05 Calgon Carbon Corporation Enhanced sorbent formulation for removal of mercury from flue gas
AT520926B1 (de) * 2018-08-17 2019-09-15 Integral Eng Und Umwelttechnik Gmbh Adsorber zur Reinigung von Abgasen und Verfahren dafür
JP7364328B2 (ja) * 2018-10-24 2023-10-18 三菱重工業株式会社 ガス浄化装置及びこれを備えた船舶並びにガス浄化方法
CN109482052A (zh) * 2018-12-06 2019-03-19 中国科学院过程工程研究所 一种净化烧结烟气中CO和NOx的装置及方法
WO2021142076A1 (en) * 2020-01-07 2021-07-15 Environmental Energy Services, Inc. Amended silicates for scavenging and destroying dioxins/furans and other organics in industrial process streams and effluents
CN117563384B (zh) * 2024-01-17 2024-04-05 江苏三吉利化工股份有限公司 一种呋喃酚有机废气高效回收工艺及装备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252533A (ja) * 2000-03-14 2001-09-18 Sumitomo Heavy Ind Ltd 排ガス処理方法及び装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2519874A (en) * 1947-05-29 1950-08-22 Union Oil Co Adsorption process and apparatus
JPS5092858A (zh) * 1973-12-20 1975-07-24
DE3342508A1 (de) * 1983-11-24 1985-06-05 Heinrich Dr.rer.nat. 8032 Gräfelfing Frühbuss Verfahren zur herstellung von vanadinoxyd-katalysatoren
JPS60129127A (ja) * 1983-12-17 1985-07-10 Ishikawajima Harima Heavy Ind Co Ltd 排ガスの脱硫脱硝方法
DE3732567A1 (de) 1987-05-07 1988-11-24 Horst Dr Grochowski Anstroemboden fuer wanderbettreaktoren sowie verfahren zum betreiben dieser vorrichtung
DE4004911C2 (de) * 1990-02-16 1999-09-23 Horst Grochowski Verfahren und Vorrichtung zum Behandeln von wenigstens einem Fluid mittels eines als Schüttgut vorliegenden Feststoffes in einem Wanderbettreaktor
JPH0779943B2 (ja) * 1991-03-01 1995-08-30 住友重機械工業株式会社 都市ゴミ焼却炉の排ガス処理装置
JPH07163832A (ja) * 1993-12-14 1995-06-27 Sumitomo Heavy Ind Ltd 排ガスの処理方法
JPH1147536A (ja) * 1997-08-01 1999-02-23 Sumitomo Heavy Ind Ltd 排ガス処理方法
JPH11104458A (ja) * 1997-10-01 1999-04-20 Sumitomo Heavy Ind Ltd ゴミ焼却炉の排ガス処理装置における粉塵処理方法
DK175450B1 (da) * 1999-09-06 2004-11-01 Lego As Legetöjsbyggesæt med et fleksibelt, pladeformet legetöjsbyggeelement
EP1529561B1 (de) * 1999-09-06 2016-02-03 Horst Grochowski Verfahren, Vorrichtung und Anlage zum Behandeln von Fluiden an mindestens einer Schüttgutschicht

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252533A (ja) * 2000-03-14 2001-09-18 Sumitomo Heavy Ind Ltd 排ガス処理方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2006084671A1 *

Also Published As

Publication number Publication date
TW200702039A (en) 2007-01-16
WO2006084671A1 (de) 2006-08-17
JP2008531244A (ja) 2008-08-14
CN101128247B (zh) 2011-04-20
US20080219908A1 (en) 2008-09-11
JP5198875B2 (ja) 2013-05-15
CN101128247A (zh) 2008-02-20
KR20070110079A (ko) 2007-11-15
KR101250702B1 (ko) 2013-04-03
DE102005005818A1 (de) 2006-08-17
TWI323182B (en) 2010-04-11
US7666374B2 (en) 2010-02-23

Similar Documents

Publication Publication Date Title
EP1850942A1 (de) Verfahren zum reinigen von abgasen eines sinterprozesses von erzen und/oder anderen metallhaltigen materialien in der metallerzeugung
EP2125169B1 (de) Verfahren und vorrichtung zum reinigen von abgasen eines sinterprozesses von erzen und/oder anderen metallhaltigen materialien in der metallerzeugung
US5575982A (en) Process of purifying exhaust gases produced by combustion of waste materials
US7722843B1 (en) System and method for sequestration and separation of mercury in combustion exhaust gas aqueous scrubber systems
EP1275430B1 (de) Verfahren und Vorrichtung zur Reinigung von Verbrennungsabgasen
EP0666098B1 (de) Verfahren zur Reinigung von Verbrennungsabgasen
DE102009045278B4 (de) Mineralisches, granuliertes Entschwefelungsmittel auf Basis von Calciumhydroxid, Verfahren zu seiner Herstellung sowie seine Verwendung
WO2006084539A1 (de) Verfahren zum reinigen von abgasen eines glasschmelzprozesses, insbesondere für gläser für lcd-bildschirme
EP0172588B1 (de) Verfahren zur Abtrennung von NOx und SO2 aus Rauchgasen
DE3235559A1 (de) Verfahren zur entfernung von schwefeloxiden aus rauchgas
DD296217A5 (de) Verfahren zur reinigung von rauchgasen aus verbrennungsanlagen
WO1991016122A1 (de) Verfahren zur reinigung von abgasen, insbesondere aus abfallverbrennungsanlagen
US11975291B2 (en) Magnetic adsorbents and methods of their use for removal of contaminants
WO2010105646A1 (de) Verfahren und anlage zur separaten vorabscheidung von schadstoffen und schadgasen aus rauch- und abgasen durch schüttschichtfilter und nassgaswäscher
EP1537905B1 (de) Verfahren und Vorrichtung zur Sorption von Schadstoffen aus Verbrennungsabgasen mittels einer fluidisierenden Wirbelschicht
EP0748766B1 (de) Granulat auf Basis von Erdalkalikarbonaten mit ab- und adsorptiven Substanzen
DE2924585C2 (de) Feste Absorptionsmasse für die trockene Enthalogenierung von Gasströmen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE3605589A1 (de) Verfahren zur entfernung von schwefeldioxid und stickstoffoxiden aus abgasen
EP2340885A1 (de) Verfahren und Anlage zur Rauchgas-Reinigung
AT389825B (de) Verfahren und sorptionsbett zur trockenen abgas- oder abluftreinigung
DE19709095A1 (de) Verfahren zur Abscheidung von Schadstoffen aus Verbrennungsabgasen
DD248290A1 (de) Verfahren zur aufbereitung von abprodukten zu sorptionsmaterialien
DD248289A1 (de) Verfahren zur trockenen rauchgasreinigung
DD266973A1 (de) Verfahren zu einer umfassenden trockenen gasreinigung
WO1997040922A1 (de) Verfahren zur adsorption von kohlenwasserstoffen aus rauchgasen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070824

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1115344

Country of ref document: HK

17Q First examination report despatched

Effective date: 20090730

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20161206

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1115344

Country of ref document: HK