EP1814965B1 - High temperature corrosion inhibitor - Google Patents
High temperature corrosion inhibitor Download PDFInfo
- Publication number
- EP1814965B1 EP1814965B1 EP05820782A EP05820782A EP1814965B1 EP 1814965 B1 EP1814965 B1 EP 1814965B1 EP 05820782 A EP05820782 A EP 05820782A EP 05820782 A EP05820782 A EP 05820782A EP 1814965 B1 EP1814965 B1 EP 1814965B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- corrosion
- recited
- corrosion inhibitor
- acid
- crude oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G7/00—Distillation of hydrocarbon oils
- C10G7/10—Inhibiting corrosion during distillation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G9/00—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G9/14—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
- C10G9/16—Preventing or removing incrustation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/188—Carboxylic acids; metal salts thereof
- C10L1/189—Carboxylic acids; metal salts thereof having at least one carboxyl group bound to an aromatic carbon atom
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/188—Carboxylic acids; metal salts thereof
- C10L1/189—Carboxylic acids; metal salts thereof having at least one carboxyl group bound to an aromatic carbon atom
- C10L1/1895—Carboxylic acids; metal salts thereof having at least one carboxyl group bound to an aromatic carbon atom polycarboxylic acid
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/19—Esters ester radical containing compounds; ester ethers; carbonic acid esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/19—Esters ester radical containing compounds; ester ethers; carbonic acid esters
- C10L1/1905—Esters ester radical containing compounds; ester ethers; carbonic acid esters of di- or polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/26—Organic compounds containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/04—Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1033—Oil well production fluids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/202—Heteroatoms content, i.e. S, N, O, P
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/202—Heteroatoms content, i.e. S, N, O, P
- C10G2300/203—Naphthenic acids, TAN
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/207—Acid gases, e.g. H2S, COS, SO2, HCN
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4006—Temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4075—Limiting deterioration of equipment
Definitions
- This invention relates generally to a process for inhibiting corrosion in refining operations. It is specifically directed toward the inhibition of corrosion caused by naphthenic acids which are present in the crude oil.
- Corrosion problems in petroleum refining operations associated with naphthenic acid constituents in crude oils have been recognized for many years. Such corrosion is particularly severe in atmospheric and vacuum distillation units at temperatures of between about 180°C (350°F) and 420°C (790°F).
- Other factors that contribute to the corrosivity of crudes containing naphthenic acids include the amount of naphthenic acid present, the concentration of sulfur compounds, the velocity and turbulence of the flow stream in the units, and the location in the unit (e.g., liquid/vapor interface).
- the crude oil is passed successively through a furnace and one or more fractionators such as an atmospheric tower and a vacuum tower.
- one or more fractionators such as an atmospheric tower and a vacuum tower.
- naphthenic acid corrosion is not a problem at temperatures below about 180°C (350°F).
- Traditional nitrogen-based filming corrosion inhibitors are not effective at temperatures above 180°C (350°F), and the other approaches for preventing naphthenic acid corrosion such as neutralization present operational problems or are not effective.
- naphthenic acid includes mono- and di-basic carboxylic acids and generally constitutes about 50% by weight of the total acidic components in crude oil.
- Many of the naphthenic acids may be represented by the following formula: where R is an alkyl or cycloalkyl group and n ranges generally from 2 to 10.
- alkyl organic acids within the class of naphthenic acids.
- Naphthenic acids are corrosive between the range of about 350°F (180°C) to about 790°F (420°C). At the higher temperatures, the naphthenic acids are in the vapor phase and the rate of decarboxylation increases. At the lower temperatures, the corrosion rate is not serious.
- the corrosivity of crude oils and distillates is also affected by the presence of Sulfide compounds, such as hydrogen sulfide, mercaptans, elemental sulfur, sulfides, disulfides, polysulfides and thiophenols. Corrosion due to sulfur compounds becomes significant at temperatures as low as 450°F.
- the catalytic generation of hydrogen sulfide by thermal decomposition of mercaptans has been identified as a cause of sulfidic corrosion.
- Atmospheric and vacuum distillation systems are subject to naphthenic acid corrosion when processing certain crude oils.
- Currently used treatments are thermally reactive at use temperatures.
- phosphorus-based inhibitors these are thought to lead to a metal phosphate surface film that is more resistant to naphthenic acid corrosion than the base steel.
- These inhibitors are relatively volatile and exhibit fairly narrow distillation ranges. They are fed into a column above or below the point of corrosion depending on the temperature range.
- Polysulfide inhibitors decompose into complex mixtures of higher and lower polysulfides and perhaps, elemental sulfur and mercaptans. Thus, the volatility and protection offered is not predictable.
- the present invention provides a method for inhibiting the corrosion of the internal metallic surfaces of the equipment used in processing crude oil or the high temperature petroleum distillates derived therefrom. It comprises adding to the crude oil or distillate an effective amount, sufficient to inhibit corrosion, of a tetra functional substituted aromatic compound (I) and/or a trimellitic acid ester or trimellitic anhydride (II).
- the tetra functional substituted aromatic compounds (I) as defined above may be represented by the general formula: wherein W, X., Y, and Z are all present and may be the same or different and are individually selected from the groups consisting of (OH); (COOH); and COOR 1 , with the proviso that vicinal pairs of W, X, Y, Z can be i.e., anhydride function.
- R 1 in the formula is an alkyl moiety having from about 1 to about 16 carbon atoms;
- Ar is an aromatic moiety.
- esters or anhydrides of trimellitic acid (II) are represented by the formula (II) wherein R 2 and R 3 are with the proviso that when one of R 2 or R 3 is then the other is either or sufficient to form an anhydride group i.e., linking the 1 and 2 position on the aromatic moiety; R 2 and R 3 may also be COOR 5 wherein each R 5 is independently selected from alkyl groups of from about 1 to about 16 carbon atoms.
- R 4 is COOR 6 wherein R 6 is a C 1 -C 16 alkyl group.
- Representative compounds falling within formula I above include propyl gallate, gallic acid, pyromellitic acid (i.e., 1,2,4,5- benzenetetracarboxylic acid); 1,2,4,5 - benezenetetracarboxylic dianhydride; octyl gallate;, and tetra octyl pyromellitate.
- pyromellitic acid i.e., 1,2,4,5- benzenetetracarboxylic acid
- 1,2,4,5 - benezenetetracarboxylic dianhydride octyl gallate
- tetra octyl pyromellitate tetra octyl pyromellitate.
- Pyromellitic acid is presently preferred.
- the treatment i.e., compounds I and/or II above may be fed directly to the crude change, e.g., and provide protection in the lower crude tower and vacuum column.
- the inhibition treatment can be fed anywhere to the process stream wherein it will be brought into contact with the process medium, e.g., crude or distillate fraction thereof.
- the most effective amount of the corrosion inhibitor to be used in accordance with this invention can vary, depending on the local operating conditions and the particular hydrocarbon being processed.
- the temperature and other characteristics of the acid corrosion system can have a bearing on the amount of the inhibitor or mixture of inhibitors to be used.
- the concentration of the corrosion inhibitor added to the crude oil may range from about 1 ppm to 5000 ppm, by volume.
- the inhibitor it is preferred to add the inhibitor at a relatively high initial dosage rate of 2000-3000 ppm and to maintain this level for a relatively short period of time until the presence of the inhibitor induces the build-up of a corrosion protective coating on the metal surfaces.
- the corrosion inhibitor may be added either neat or diluted. Once the protective surface is established, the dosage rate needed to maintain the protection maybe reduced to a normal operational range of about 100-1500 ppm without substantial sacrifice of protection.
- a weight loss coupon autoclave test was used to evaluate compounds for naphthenic acid corrosion. Test specimens were cleaned, preweighed, mild steel or 5Cr corrosion coupons that were provided with a glass bead surface finish. A paraffinic hydrocarbon oil was dosed with naphthenic acids to give a Total Acid Number of 6.0 and placed into the test autoclave. Candidate treatments, which were solids at room temperature, were added to the autoclaves and mixed. The oil was deareated with argon.
- the effect of sulfide on corrosion and inhibition was determined by the addition of a sulfur containing compound, namely n-dodecylmethylsulfide in Example 2 and dibutylsulfide in Example 5, which resulted in 0.5% sulfide in those experiments.
- the autoclaves were heated to the desired test temperature of either 316°C (600°F) or 260°C (500°F). After 20 hours exposure, the coupons were removed, cleaned, and reweighed. Test results are shown below. In the experiments with n-dodecylmethylsulfide, corrosion inhibition was only determined with the mild steel coupons since corrosion rates were quite low, ⁇ 10 mpy, with the 5Cr coupons.
- a high temperature autoclave was used to evaluate a number of comparative and prospective corrosion inhibitors in a dearated HVG0 derived from a Venezuelan crude oil.
- One static carbon steel coupon was hung in the vapor space.
- Two carbon steel coupons were rotated at about 2 fps in the liquid phase.
- Liquid phase temperature was controlled at 316°C (600°F) for approximately 20 hours.
- the weight loss, surface area, and exposure time were used to calculate the general corrosion rate in mpy for untreated and treated coupons. Results are shown below.
- Test compound identification above having a C letter prefix designates a comparative example.
- the tetra acidic aromatic compounds (I) and trimellitic acid esters and anhydrides II are effective in reducing corrosion of metallic surfaces in contact with high temperature crudes, particularly naphthenic acid containing crudes.
- the treatments of the invention also do not contain phosphorous or sulfide moieties which have proven problematic with regard to possible catalyst poisoning and thermal instability respectively.
- the treatments of the invention are effective corrosion inhibitors in those crude oil and petroleum distillate containing systems in which both naphthenic acids and sulfur compounds are present.
- naphthenic acid corrosion appears to be exceptionally serious in the presence of sulfur compounds, especially hydrogen sulfide.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/979,913 US20060091044A1 (en) | 2004-11-02 | 2004-11-02 | High temperature corrosion inhibitor |
PCT/US2005/038522 WO2006049980A2 (en) | 2004-11-02 | 2005-10-25 | High temperature corrosion inhibitor |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1814965A2 EP1814965A2 (en) | 2007-08-08 |
EP1814965B1 true EP1814965B1 (en) | 2010-12-29 |
Family
ID=35789023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05820782A Not-in-force EP1814965B1 (en) | 2004-11-02 | 2005-10-25 | High temperature corrosion inhibitor |
Country Status (15)
Country | Link |
---|---|
US (1) | US20060091044A1 (zh) |
EP (1) | EP1814965B1 (zh) |
JP (1) | JP4870679B2 (zh) |
KR (1) | KR20070088667A (zh) |
CN (1) | CN101052698B (zh) |
AR (1) | AR052783A1 (zh) |
AT (1) | ATE493485T1 (zh) |
BR (1) | BRPI0516923A (zh) |
CA (1) | CA2585491A1 (zh) |
DE (1) | DE602005025679D1 (zh) |
MY (1) | MY143236A (zh) |
RU (1) | RU2377276C2 (zh) |
SG (1) | SG157366A1 (zh) |
TW (1) | TWI408220B (zh) |
WO (1) | WO2006049980A2 (zh) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101581215B1 (ko) | 2007-03-30 | 2015-12-30 | 도르프 케탈 케미칼즈 (인디아) 프라이비트 리미티드 | 유기인계 황 화합물을 포함하는 나프텐산 부식 억제 조성물, 및 이를 이용한 고온 나프텐산 부식 억제 방법 및 황 부식 억제 방법 |
CA2682656C (en) | 2007-04-04 | 2015-05-26 | Dorf Ketal Chemicals (I) Private Limited | Naphthenic acid corrosion inhibition using new synergetic combination of phosphorus compounds |
MY151257A (en) | 2007-09-14 | 2014-04-30 | Dorf Ketal Chemicals I Private Ltd | A novel additive for naphthenic acid corrosion inhibition and method of using the same |
WO2009053971A1 (en) * | 2007-10-22 | 2009-04-30 | Oil Refineries Ltd | Process for inhibiting naphthenic acid corrosion |
JP5410528B2 (ja) | 2008-08-26 | 2014-02-05 | ドルフ ケタール ケミカルズ(I) プライベート リミテッド | ナフテン酸腐食を防止する効果的な新規ポリマー性の添加物及びその使用方法 |
JP5846911B2 (ja) | 2008-08-26 | 2016-01-20 | ドルフ ケタール ケミカルズ(I) プライベート リミテッド | 酸腐食防止のための新規添加物及び前記新規添加物の使用方法 |
KR100933308B1 (ko) * | 2009-03-17 | 2009-12-22 | 재원산업 주식회사 | 기회원유의 정제장치 및 방법 |
DE102009021774A1 (de) * | 2009-05-18 | 2010-11-25 | Abb Technology Ag | Verfahren und Einrichtung zur Identifikation von Korrelationen zwischen Alarmmeldungen oder zwischen Alarmmeldungen und Bedieneingriffen |
CN101987973B (zh) * | 2009-07-30 | 2015-04-29 | 中国石油化工股份有限公司 | 一种降低含酸烃油腐蚀性的方法 |
CN102888246B (zh) * | 2011-07-20 | 2014-12-10 | 武汉润尔华科技有限公司 | 一种用于糠醛精制装置的缓蚀阻焦剂 |
WO2013019631A2 (en) | 2011-07-29 | 2013-02-07 | Saudi Arabian Oil Company | Process for reducing the total acid number in refinery feedstocks |
CN102559263B (zh) * | 2011-12-13 | 2014-03-12 | 浙江杭化科技有限公司 | 一种炼油装置用高温缓蚀剂 |
CN102559334B (zh) * | 2011-12-14 | 2013-10-23 | 山西华顿实业有限公司 | 一种醇醚燃料用腐蚀抑制剂及其制备方法 |
CN102643663B (zh) * | 2012-03-31 | 2016-08-17 | 中国石油大学(华东) | 一种用于高温下减缓腐蚀的助剂 |
SG11201502518QA (en) * | 2012-11-06 | 2015-05-28 | Exxonmobil Res & Eng Co | Method for identifying layers providing corrosion protection in crude oil fractions |
WO2021199439A1 (ja) * | 2020-04-03 | 2021-10-07 | 株式会社片山化学工業研究所 | 石油プロセスにおける熱交換器の汚れ防止方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL234783A (zh) * | 1958-01-02 | |||
US5019341A (en) * | 1986-08-11 | 1991-05-28 | Betz Laboratories, Inc. | Method of inhibiting corrosion of metal surfaces in contact with a corrosive hydrocarbon containing medium |
KR0124937B1 (ko) * | 1988-12-21 | 1997-11-26 | 월터 클리웨인, 한스-피터 위트린 | 부식 억제 도료 조성물 |
US5182013A (en) * | 1990-12-21 | 1993-01-26 | Exxon Chemical Patents Inc. | Naphthenic acid corrosion inhibitors |
US5252254A (en) * | 1992-12-30 | 1993-10-12 | Nalco Chemical Company | Naphthenic acid corrosion inhibitor |
US5500107A (en) * | 1994-03-15 | 1996-03-19 | Betz Laboratories, Inc. | High temperature corrosion inhibitor |
US5464525A (en) * | 1994-12-13 | 1995-11-07 | Betz Laboratories, Inc. | High temperature corrosion inhibitor |
US5556451A (en) * | 1995-07-20 | 1996-09-17 | Betz Laboratories, Inc. | Oxygen induced corrosion inhibitor compositions |
US6679987B1 (en) * | 1995-08-25 | 2004-01-20 | Exxonmobil Research And Engineering Company | Process for decreasing the acid content and corrosivity of crudes |
US5683626A (en) * | 1995-08-25 | 1997-11-04 | Exxon Research And Engineering Company | Process for neutralization of petroleum acids |
CN1177912C (zh) * | 1995-08-25 | 2004-12-01 | 埃克森研究工程公司 | 降低原油酸含量和腐蚀性的方法 |
JP4049916B2 (ja) * | 1998-12-25 | 2008-02-20 | 出光興産株式会社 | 高温用潤滑油組成物 |
US6849581B1 (en) * | 1999-03-30 | 2005-02-01 | Bj Services Company | Gelled hydrocarbon compositions and methods for use thereof |
US6559104B2 (en) * | 2001-07-13 | 2003-05-06 | Exxonmobil Research And Engineering Co. | Method for inhibiting corrosion using certain aromatic acidic species |
-
2004
- 2004-11-02 US US10/979,913 patent/US20060091044A1/en not_active Abandoned
-
2005
- 2005-10-25 CN CN2005800376682A patent/CN101052698B/zh not_active Expired - Fee Related
- 2005-10-25 JP JP2007540345A patent/JP4870679B2/ja not_active Expired - Fee Related
- 2005-10-25 WO PCT/US2005/038522 patent/WO2006049980A2/en active Application Filing
- 2005-10-25 AT AT05820782T patent/ATE493485T1/de not_active IP Right Cessation
- 2005-10-25 SG SG200907335-4A patent/SG157366A1/en unknown
- 2005-10-25 DE DE602005025679T patent/DE602005025679D1/de active Active
- 2005-10-25 EP EP05820782A patent/EP1814965B1/en not_active Not-in-force
- 2005-10-25 BR BRPI0516923-2A patent/BRPI0516923A/pt not_active Application Discontinuation
- 2005-10-25 KR KR1020077012350A patent/KR20070088667A/ko not_active Application Discontinuation
- 2005-10-25 CA CA002585491A patent/CA2585491A1/en not_active Abandoned
- 2005-10-25 RU RU2007120589/04A patent/RU2377276C2/ru not_active IP Right Cessation
- 2005-10-27 MY MYPI20055061A patent/MY143236A/en unknown
- 2005-11-01 AR ARP050104575A patent/AR052783A1/es unknown
- 2005-11-02 TW TW094138495A patent/TWI408220B/zh not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
WO2006049980A3 (en) | 2006-07-27 |
RU2377276C2 (ru) | 2009-12-27 |
JP2008519166A (ja) | 2008-06-05 |
CN101052698B (zh) | 2011-07-06 |
DE602005025679D1 (de) | 2011-02-10 |
SG157366A1 (en) | 2009-12-29 |
KR20070088667A (ko) | 2007-08-29 |
CN101052698A (zh) | 2007-10-10 |
MY143236A (en) | 2011-04-15 |
RU2007120589A (ru) | 2008-12-10 |
AR052783A1 (es) | 2007-04-04 |
CA2585491A1 (en) | 2006-05-11 |
WO2006049980A2 (en) | 2006-05-11 |
TW200632089A (en) | 2006-09-16 |
TWI408220B (zh) | 2013-09-11 |
JP4870679B2 (ja) | 2012-02-08 |
ATE493485T1 (de) | 2011-01-15 |
BRPI0516923A (pt) | 2008-09-23 |
US20060091044A1 (en) | 2006-05-04 |
EP1814965A2 (en) | 2007-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1814965B1 (en) | High temperature corrosion inhibitor | |
US5500107A (en) | High temperature corrosion inhibitor | |
US5182013A (en) | Naphthenic acid corrosion inhibitors | |
EP2142617B1 (en) | Naphthenic acid corrosion inhibition using new synergetic combination of phosphorus compounds | |
US5314643A (en) | High temperature corrosion inhibitor | |
JPH06280062A (ja) | ナフテン酸による腐食の抑制剤及び抑制方法 | |
EP2419491B1 (en) | Method of using an effective non - polymeric and non - fouling additive for inhibiting high - temperature naphthenic acid corrosion | |
US6593278B2 (en) | Method for inhibiting corrosion using certain phosphorus and sulfur-free compounds | |
US5464525A (en) | High temperature corrosion inhibitor | |
US6559104B2 (en) | Method for inhibiting corrosion using certain aromatic acidic species | |
TWI314952B (en) | Use of organic polysulphides against corrosion by acidic crudes | |
US6583091B2 (en) | Method for inhibiting corrosion using 4-sulfophthalic acid | |
JP2007520611A (ja) | 酸性粗生成物による精製ユニットの腐食抑制のための方法 | |
US20030012682A1 (en) | Method for inhibiting corrosion using triphenylstibine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070604 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602005025679 Country of ref document: DE Date of ref document: 20110210 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602005025679 Country of ref document: DE Effective date: 20110210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101229 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20101229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101229 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101229 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101229 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110329 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101229 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101229 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101229 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110409 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110429 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110429 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101229 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101229 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101229 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101229 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101229 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20110930 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602005025679 Country of ref document: DE Effective date: 20110930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101229 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111031 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111031 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101229 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20131029 Year of fee payment: 9 Ref country code: FR Payment date: 20131017 Year of fee payment: 9 Ref country code: GB Payment date: 20131028 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20131026 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602005025679 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20150501 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20141025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150501 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141025 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141031 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150501 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230521 |