WO2006049980A2 - High temperature corrosion inhibitor - Google Patents

High temperature corrosion inhibitor Download PDF

Info

Publication number
WO2006049980A2
WO2006049980A2 PCT/US2005/038522 US2005038522W WO2006049980A2 WO 2006049980 A2 WO2006049980 A2 WO 2006049980A2 US 2005038522 W US2005038522 W US 2005038522W WO 2006049980 A2 WO2006049980 A2 WO 2006049980A2
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
recited
corrosion inhibitor
acid
crude oil
Prior art date
Application number
PCT/US2005/038522
Other languages
English (en)
French (fr)
Other versions
WO2006049980A3 (en
Inventor
Scott E. Lehrer
S. Blake Pruett
Liliana V. Minevski
James G. Edmondson
Alan E. Goliaszewski
Feng Shao
Original Assignee
General Electric Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Company filed Critical General Electric Company
Priority to DE602005025679T priority Critical patent/DE602005025679D1/de
Priority to AT05820782T priority patent/ATE493485T1/de
Priority to CN2005800376682A priority patent/CN101052698B/zh
Priority to CA002585491A priority patent/CA2585491A1/en
Priority to JP2007540345A priority patent/JP4870679B2/ja
Priority to EP05820782A priority patent/EP1814965B1/en
Priority to BRPI0516923-2A priority patent/BRPI0516923A/pt
Publication of WO2006049980A2 publication Critical patent/WO2006049980A2/en
Publication of WO2006049980A3 publication Critical patent/WO2006049980A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • C10G7/10Inhibiting corrosion during distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/16Preventing or removing incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/189Carboxylic acids; metal salts thereof having at least one carboxyl group bound to an aromatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/189Carboxylic acids; metal salts thereof having at least one carboxyl group bound to an aromatic carbon atom
    • C10L1/1895Carboxylic acids; metal salts thereof having at least one carboxyl group bound to an aromatic carbon atom polycarboxylic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • C10L1/1905Esters ester radical containing compounds; ester ethers; carbonic acid esters of di- or polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/26Organic compounds containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1033Oil well production fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • C10G2300/203Naphthenic acids, TAN
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/207Acid gases, e.g. H2S, COS, SO2, HCN
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4075Limiting deterioration of equipment

Definitions

  • This invention relates generally to a process for inhibiting corrosion in refining operations. It is specifically directed toward the inhibition of corrosion caused by naphthenic acids which are present in the crude oil.
  • Corrosion problems in petroleum refining operations associated with naphthenic acid constituents in crude oils have been recognized for many years. Such corrosion is particularly severe in atmospheric and vacuum distillation units at temperatures of between about 350 0 F and 79O 0 F.
  • Other factors that contribute to the corrosivity of crudes containing naphthenic acids include the amount of naphthenic acid present, the concentration of sulfur compounds, the velocity and turbulence of the flow stream in the units, and the location in the unit (e.g., liquid/vapor interface).
  • the crude oil is passed successively through a furnace and one or more fractionators such as an atmospheric tower and a vacuum tower.
  • one or more fractionators such as an atmospheric tower and a vacuum tower.
  • naphthenic acid corrosion is not a problem at temperatures below about 350 0 F.
  • Traditional nitrogen-based filming corrosion inhibitors are not effective at temperatures above 35O 0 F, and the other approaches for preventing naphthenic acid corrosion such as neutralization present operational problems or are not effective.
  • naphthenic acid includes mono- and di-basic carboxylic acids and generally constitutes about 50% by weight of the total acidic components in crude oil. Many of the naphthenic acids may be represented by the following formula:
  • R is an alkyl or cycloalkyl group and n ranges generally from 2 to 10.
  • alkyl organic acids within the class of naphthenic acids.
  • Naphthenic acids are corrosive between the range of about 350°F (180 0 C) to about 790 0 F (420°C). At the higher temperatures, the naphthenic acids are in the vapor phase and the rate of decarboxylation increases. At the lower temperatures, the corrosion rate is not serious.
  • the corrosivity of crude oils and distillates is also affected by the presence of sulfide compounds, such as hydrogen sulfide, mercaptans, elemental sulfur, sulfides, disulfides, polysulf ⁇ des and thiophenols. Corrosion due to sulfur compounds becomes significant at temperatures as low as 450°F.
  • the catalytic generation of hydrogen sulfide by thermal decomposition of mercaptans has been identified as a cause of sulfidic corrosion.
  • Atmospheric and vacuum distillation systems are subject to naphthenic acid corrosion when processing certain crude oils.
  • Currently used treatments are thermally reactive at use temperatures.
  • phosphorus-based inhibitors these are thought to lead to a metal phosphate surface film that is more resistant to naphthenic acid corrosion than the base steel.
  • These inhibitors are relatively volatile and exhibit fairly narrow distillation ranges. They are fed into a column above or below the point of corrosion depending on the temperature range.
  • Poly sulfide inhibitors decompose into complex mixtures of higher and lower polysulfides and perhaps, elemental sulfur and mercaptans. Thus, the volatility and protection offered is not predictable.
  • the present invention provides a method for inhibiting the corrosion of the internal metallic surfaces of the equipment used in processing crude oil or the high temperature petroleum distillates derived therefrom. It comprises adding to the crude oil or distillate an effective amount, sufficient to inhibit corrosion, of a tetra functional substituted aromatic compound (I) and/or a trimellitic acid ester or trimellitic anhydride (II).
  • the tetra functional substituted aromatic compounds (I) as defined above may be represented by the general formula: I.
  • W, X., Y, and Z are all present and may be the same or different and are individually selected from the groups consisting of (OH); (COOH); and COORi, with the proviso that vicinal pairs of W, X, Y, Z can be
  • Ri in the formula is an alkyl moiety having from about 1 to about 16 carbon atoms; Ar is an aromatic moiety.
  • esters or anhydrides of trimellitic acid (II) are represented by the formula (II)
  • R2 and R3 are - (-C-)- or - (-C-O-)- with the proviso that when one of O O O
  • R 2 or R 3 is -(-C-)- or -(-C-O-)- then the other is either -(-C-)- or O O O
  • R 2 and R 3 may also be COOR 5 wherein each R 5 is independently selected from alkyl groups of from about 1 to about 16 carbon atoms.
  • R 4 is COOR 6 wherein R 6 is a Ci -Ci 6 alkyl group.
  • Representative compounds falling within formula I above include propyl gallate, gallic acid, pyromellitic acid (i.e., 1,2,4,5 - benzenetetracarboxylic acid); 1,2,4,5 - benezenetetracarboxylic dianhydride; octyl gallate;, and tetra octyl pyromellitate.
  • pyromellitic acid i.e., 1,2,4,5 - benzenetetracarboxylic acid
  • 1,2,4,5 - benezenetetracarboxylic dianhydride octyl gallate
  • tetra octyl pyromellitate tetra octyl pyromellitate.
  • Pyromellitic acid is presently preferred.
  • the treatment i.e., compounds I and/or II above may be fed directly to the crude charge, e.g., and provide protection in the lower crude tower and vacuum column.
  • the inhibition treatment can be fed anywhere to the process stream wherein it will be brought into contact with the process medium, e.g., crude or distillate fraction thereof.
  • the most effective amount of the corrosion inhibitor to be used in accordance with this invention can vary, depending on the local operating conditions and the particular hydrocarbon being processed.
  • the temperature and other characteristics of the acid corrosion system can have a bearing on the amount of the inhibitor or mixture of inhibitors to be used.
  • the concentration of the corrosion inhibitor added to the crude oil may range from about 1 ppm to 5000 ppm, by volume.
  • the inhibitor it is preferred to add the inhibitor at a relatively high initial dosage rate of 2000-3000 ppm and to maintain this level for a relatively short period of time until the presence of the inhibitor induces the build-up of a corrosion protective coating on the metal surfaces.
  • the corrosion inhibitor may be added either neat or diluted. Once the protective surface is established, the dosage rate needed to maintain the protection maybe reduced to a normal operational range of about 100-1500 ppm without substantial sacrifice of protection.
  • a weight loss coupon autoclave test was used to evaluate compounds for naphthenic acid corrosion. Test specimens were cleaned, preweighed, mild steel or 5Cr corrosion coupons that were provided with a glass bead surface finish. A paraffinic hydrocarbon oil was dosed with naphthenic acids to give a Total Acid Number of 6.0 and placed into the test autoclave. Candidate treatments, which were solids at room temperature, were added to the autoclaves and mixed. The oil was deareated with argon.
  • a high temperature autoclave was used to evaluate a number of comparative and prospective corrosion inhibitors in a dearated HVGO derived from a Venezuelan crude oil.
  • One static carbon steel coupon was hung in the vapor space.
  • Two carbon steel coupons were rotated at about 2 fps in the liquid phase.
  • Liquid phase temperature was controlled at 600 0 F for approximately 20 hours.
  • the weight loss, surface area, and exposure time were used to calculate the general corrosion rate in mpy for untreated and treated coupons. Results are shown below.
  • Test compound identification above having a C letter prefix designates a comparative example.
  • the tetra acidic aromatic compounds (I) and trimellitic acid esters and anhydrides II are effective in reducing corrosion of metallic surfaces in contact with high temperature crudes, particularly naphthenic acid containing crudes.
  • the treatments of the invention also do not contain phosphorous or sulfide moieties which have proven problematic with regard to possible catalyst poisoning and thermal instability respectively.
  • the treatments of the invention are effective corrosion inhibitors in those crude oil and petroleum distillate containing systems in which both naphthenic acids and sulfur compounds are present.
  • naphthenic acid corrosion appears to be exceptionally serious in the presence of sulfur compounds, especially hydrogen sulfide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
PCT/US2005/038522 2004-11-02 2005-10-25 High temperature corrosion inhibitor WO2006049980A2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE602005025679T DE602005025679D1 (de) 2004-11-02 2005-10-25 Hochtemperaturkorrosionsinhibitor
AT05820782T ATE493485T1 (de) 2004-11-02 2005-10-25 Hochtemperaturkorrosionsinhibitor
CN2005800376682A CN101052698B (zh) 2004-11-02 2005-10-25 高温腐蚀抑制剂
CA002585491A CA2585491A1 (en) 2004-11-02 2005-10-25 High temperature corrosion inhibitor
JP2007540345A JP4870679B2 (ja) 2004-11-02 2005-10-25 高温腐食抑制剤
EP05820782A EP1814965B1 (en) 2004-11-02 2005-10-25 High temperature corrosion inhibitor
BRPI0516923-2A BRPI0516923A (pt) 2004-11-02 2005-10-25 inibidor de corrosão a alta temperatura

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/979,913 US20060091044A1 (en) 2004-11-02 2004-11-02 High temperature corrosion inhibitor
US10/979,913 2004-11-02

Publications (2)

Publication Number Publication Date
WO2006049980A2 true WO2006049980A2 (en) 2006-05-11
WO2006049980A3 WO2006049980A3 (en) 2006-07-27

Family

ID=35789023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/038522 WO2006049980A2 (en) 2004-11-02 2005-10-25 High temperature corrosion inhibitor

Country Status (15)

Country Link
US (1) US20060091044A1 (zh)
EP (1) EP1814965B1 (zh)
JP (1) JP4870679B2 (zh)
KR (1) KR20070088667A (zh)
CN (1) CN101052698B (zh)
AR (1) AR052783A1 (zh)
AT (1) ATE493485T1 (zh)
BR (1) BRPI0516923A (zh)
CA (1) CA2585491A1 (zh)
DE (1) DE602005025679D1 (zh)
MY (1) MY143236A (zh)
RU (1) RU2377276C2 (zh)
SG (1) SG157366A1 (zh)
TW (1) TWI408220B (zh)
WO (1) WO2006049980A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010023628A1 (en) 2008-08-26 2010-03-04 Dorf Ketal Chemicals (I) Pvt. Ltd. An effective novel polymeric additive for inhibiting napthenic acid corrosion and method of using the same
US9090837B2 (en) 2007-03-30 2015-07-28 Dorf Ketal Chemicals (I) Private Limited High temperature naphthenic acid corrosion inhibition using organophosphorous sulphur compounds and combinations thereof
US9115319B2 (en) 2007-09-14 2015-08-25 Dorf Ketal Chemicals (I) Private Limited Additive for naphthenic acid corrosion inhibition and method of using the same
US9228142B2 (en) 2007-04-04 2016-01-05 Dorf Ketal Chemicals (I) Private Limited Naphthenic acid corrosion inhibition using new synergetic combination of phosphorus compounds
US9890339B2 (en) 2008-08-26 2018-02-13 Dorf Ketal Chemicals (I) Private Limited Additive for inhibiting acid corrosion and method of using the new additive

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009053971A1 (en) * 2007-10-22 2009-04-30 Oil Refineries Ltd Process for inhibiting naphthenic acid corrosion
KR100933308B1 (ko) * 2009-03-17 2009-12-22 재원산업 주식회사 기회원유의 정제장치 및 방법
DE102009021774A1 (de) * 2009-05-18 2010-11-25 Abb Technology Ag Verfahren und Einrichtung zur Identifikation von Korrelationen zwischen Alarmmeldungen oder zwischen Alarmmeldungen und Bedieneingriffen
CN101987973B (zh) * 2009-07-30 2015-04-29 中国石油化工股份有限公司 一种降低含酸烃油腐蚀性的方法
CN102888246B (zh) * 2011-07-20 2014-12-10 武汉润尔华科技有限公司 一种用于糠醛精制装置的缓蚀阻焦剂
KR101916207B1 (ko) 2011-07-29 2018-11-08 사우디 아라비안 오일 컴퍼니 정제 공급원료 내의 총 산가를 감소시키는 방법
CN102559263B (zh) * 2011-12-13 2014-03-12 浙江杭化科技有限公司 一种炼油装置用高温缓蚀剂
CN102559334B (zh) * 2011-12-14 2013-10-23 山西华顿实业有限公司 一种醇醚燃料用腐蚀抑制剂及其制备方法
CN102643663B (zh) * 2012-03-31 2016-08-17 中国石油大学(华东) 一种用于高温下减缓腐蚀的助剂
EP2917722B1 (en) * 2012-11-06 2019-12-25 ExxonMobil Research and Engineering Company Method for identifying layers providing corrosion protection in crude oil fractions
JPWO2021199439A1 (zh) * 2020-04-03 2021-10-07

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0375614A1 (en) * 1988-12-21 1990-06-27 Ciba-Geigy Ag Corrosion-inhibiting coating compositions
EP0607640A1 (en) * 1990-12-21 1994-07-27 Exxon Chemical Patents Inc. Naphtenic acid corrosion inhibitors
EP0672744A1 (en) * 1994-03-15 1995-09-20 Betz Europe, Inc. High temperature corrosion inhibitor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL234783A (zh) * 1958-01-02
US5019341A (en) * 1986-08-11 1991-05-28 Betz Laboratories, Inc. Method of inhibiting corrosion of metal surfaces in contact with a corrosive hydrocarbon containing medium
US5252254A (en) * 1992-12-30 1993-10-12 Nalco Chemical Company Naphthenic acid corrosion inhibitor
US5464525A (en) * 1994-12-13 1995-11-07 Betz Laboratories, Inc. High temperature corrosion inhibitor
US5556451A (en) * 1995-07-20 1996-09-17 Betz Laboratories, Inc. Oxygen induced corrosion inhibitor compositions
US6679987B1 (en) * 1995-08-25 2004-01-20 Exxonmobil Research And Engineering Company Process for decreasing the acid content and corrosivity of crudes
DE69626324T2 (de) * 1995-08-25 2003-08-28 Exxonmobil Res & Eng Co Prozess zur verminderung des säuregehaltes und der korrosivität von rohöl
US5683626A (en) * 1995-08-25 1997-11-04 Exxon Research And Engineering Company Process for neutralization of petroleum acids
JP4049916B2 (ja) * 1998-12-25 2008-02-20 出光興産株式会社 高温用潤滑油組成物
US6849581B1 (en) * 1999-03-30 2005-02-01 Bj Services Company Gelled hydrocarbon compositions and methods for use thereof
US6559104B2 (en) * 2001-07-13 2003-05-06 Exxonmobil Research And Engineering Co. Method for inhibiting corrosion using certain aromatic acidic species

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0375614A1 (en) * 1988-12-21 1990-06-27 Ciba-Geigy Ag Corrosion-inhibiting coating compositions
EP0607640A1 (en) * 1990-12-21 1994-07-27 Exxon Chemical Patents Inc. Naphtenic acid corrosion inhibitors
EP0672744A1 (en) * 1994-03-15 1995-09-20 Betz Europe, Inc. High temperature corrosion inhibitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9090837B2 (en) 2007-03-30 2015-07-28 Dorf Ketal Chemicals (I) Private Limited High temperature naphthenic acid corrosion inhibition using organophosphorous sulphur compounds and combinations thereof
US9228142B2 (en) 2007-04-04 2016-01-05 Dorf Ketal Chemicals (I) Private Limited Naphthenic acid corrosion inhibition using new synergetic combination of phosphorus compounds
US9115319B2 (en) 2007-09-14 2015-08-25 Dorf Ketal Chemicals (I) Private Limited Additive for naphthenic acid corrosion inhibition and method of using the same
WO2010023628A1 (en) 2008-08-26 2010-03-04 Dorf Ketal Chemicals (I) Pvt. Ltd. An effective novel polymeric additive for inhibiting napthenic acid corrosion and method of using the same
US9890339B2 (en) 2008-08-26 2018-02-13 Dorf Ketal Chemicals (I) Private Limited Additive for inhibiting acid corrosion and method of using the new additive
US10787619B2 (en) 2008-08-26 2020-09-29 Dorf Ketal Chemicals (India) Private Limited Effective novel polymeric additive for inhibiting napthenic acid corrosion and method of using the same

Also Published As

Publication number Publication date
MY143236A (en) 2011-04-15
TWI408220B (zh) 2013-09-11
DE602005025679D1 (de) 2011-02-10
AR052783A1 (es) 2007-04-04
JP4870679B2 (ja) 2012-02-08
CA2585491A1 (en) 2006-05-11
CN101052698A (zh) 2007-10-10
RU2007120589A (ru) 2008-12-10
SG157366A1 (en) 2009-12-29
KR20070088667A (ko) 2007-08-29
EP1814965A2 (en) 2007-08-08
US20060091044A1 (en) 2006-05-04
RU2377276C2 (ru) 2009-12-27
JP2008519166A (ja) 2008-06-05
EP1814965B1 (en) 2010-12-29
BRPI0516923A (pt) 2008-09-23
CN101052698B (zh) 2011-07-06
ATE493485T1 (de) 2011-01-15
WO2006049980A3 (en) 2006-07-27
TW200632089A (en) 2006-09-16

Similar Documents

Publication Publication Date Title
EP1814965B1 (en) High temperature corrosion inhibitor
US5500107A (en) High temperature corrosion inhibitor
JP2971691B2 (ja) ナフテン酸腐食の防止剤
EP2142617B1 (en) Naphthenic acid corrosion inhibition using new synergetic combination of phosphorus compounds
JPH06280062A (ja) ナフテン酸による腐食の抑制剤及び抑制方法
US5314643A (en) High temperature corrosion inhibitor
EP2419491B1 (en) Method of using an effective non - polymeric and non - fouling additive for inhibiting high - temperature naphthenic acid corrosion
US6593278B2 (en) Method for inhibiting corrosion using certain phosphorus and sulfur-free compounds
US5464525A (en) High temperature corrosion inhibitor
US6559104B2 (en) Method for inhibiting corrosion using certain aromatic acidic species
TWI314952B (en) Use of organic polysulphides against corrosion by acidic crudes
US6583091B2 (en) Method for inhibiting corrosion using 4-sulfophthalic acid
JP2007520611A (ja) 酸性粗生成物による精製ユニットの腐食抑制のための方法
US6537950B2 (en) Method for inhibiting corrosion using triphenylstibine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005820782

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2585491

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 3188/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200580037668.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007540345

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077012350

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007120589

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005820782

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0516923

Country of ref document: BR