EP1804968A1 - Selektivhydrierkatalysator - Google Patents

Selektivhydrierkatalysator

Info

Publication number
EP1804968A1
EP1804968A1 EP05795758A EP05795758A EP1804968A1 EP 1804968 A1 EP1804968 A1 EP 1804968A1 EP 05795758 A EP05795758 A EP 05795758A EP 05795758 A EP05795758 A EP 05795758A EP 1804968 A1 EP1804968 A1 EP 1804968A1
Authority
EP
European Patent Office
Prior art keywords
catalyst
hydrogenation
metal
periodic table
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP05795758A
Other languages
English (en)
French (fr)
Inventor
Thomas Hill
Hermann Petersen
Germain Kons
Henrik Junicke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1804968A1 publication Critical patent/EP1804968A1/de
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/96Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J35/19
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/148Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • C07C7/163Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/148Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • C07C7/163Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation
    • C07C7/167Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation for removal of compounds containing a triple carbon-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • C10G45/40Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J35/393
    • B01J35/396
    • B01J35/397
    • B01J35/399
    • B01J35/613

Definitions

  • the present invention relates to hydrogenation catalysts which contain metals of Group VIII of the Periodic Table of the Elements on a support material, and to processes for the selective hydrogenation of unsaturated compounds in hydrocarbon streams containing them using these catalysts.
  • hydrocarbon streams are produced, stored and processed to a large extent.
  • unsaturated compounds are frequently present whose presence, in particular during processing and / or storage, leads to problems or which are not the desired product of value and are therefore undesirable components of the corresponding hydrocarbon streams.
  • the components to be hydrogenated are propyne (methyl acetylene, MA) and propadiene (Allen, PD).
  • 1,3-butadiene can be the desired product.
  • 1,3-butadiene is extracted and the remaining C4 cut, raffinate I, must be freed by a selective hydrogenation of butadiene traces by selectively hydrogenating the butadiene to butenes.
  • hydrocarbon streams are therefore generally unsaturated compounds having triple bonds (alkynes) and / or diunsaturated compounds (dienes) and / or diunsaturated or polyunsaturated compounds (polyenes, amides, alkynenes) and / or aromatic compounds with one or more unsatured substituents (phenylalkenes and phenylalkynes) in order to obtain the desired th products, such as ethylene, propylene, 1-butene, isobutene, 1, 3-butadiene, aromatics or carburetor to obtain the required quality.
  • unsaturated compound is always an undesirable component to be removed from the hydrocarbon stream in question. For example, 1, 3-butadiene, as mentioned above, depending on the application, an undesirable secondary component or the desired value product.
  • the removal of undesired unsaturated compounds from hydrocarbon streams containing them is frequently carried out by selective hydrogenation of some or all of the undesired unsaturated compounds in the corresponding hydrocarbon stream, preferably by selective hydrogenation to non-interfering, higher-saturated compounds and in a particularly preferred manner to the products of value depicting components of the hydrocarbon stream.
  • propyne and propadiene are hydrogenated to propene and in C4 streams butyne to butenes, vinyl acetylene to 1,3-butadiene and / or 1,3-butadiene to butenes.
  • noble metal supported catalysts are used for the hydrogenation, in which the noble metal is deposited on a catalyst support.
  • Palladium is often used as a noble metal, the support generally being a porous inorganic oxide, for example silica, aluminosilicate, titanium dioxide, zirconium dioxide, zinc aluminate, zinc titanate and / or a mixture of such supports.
  • alumina is used as the carrier material.
  • EP 0 992 284 A2 describes catalysts for the selective hydrogenation of unsaturated compounds in hydrocarbon streams which consist of noble metal or noble metal compounds on a special Al 2 O 3 support , the catalyst being defined by a specific X-ray diffraction pattern. This X-ray diffraction pattern is predominantly determined by the carrier.
  • DE 31 19 850 A1 describes a process for the selective hydrogenation of a diolefin in a hydrocarbon mixture having at least four carbon atoms, which contains an ⁇ -olefin, using a catalyst which simultaneously contains palladium or a palladium compound and silver or a silver compound and the palladium content of the catalyst is 0.05-0.5% by weight and the silver content is 0.05-1% by weight.
  • EP 780 155 A1 describes a selective hydrogenation catalyst in which aluminum oxide in the ⁇ -modification is used as carrier material.
  • the supported catalyst is coated with the hydrogenation-active metals palladium and silver, the content of palladium being 0.01-0.5% by weight and the content of silver being 0.001-0.1% by weight.
  • At least 30% of the metal particles of the catalyst are palladium and / or silver.
  • the ratio of palladium to silver is 0.33-2.50.
  • 80% of the palladium and silver are present in the profile with a maximum thickness of 0.2 r.
  • EP 0 686 615 A1 relates to a supported catalyst which comprises ⁇ -aluminum oxide as carrier material and palladium and silver as hydrogenation-active metals.
  • the content of palladium is 0.01-0.5% by weight and the content of silver is 0.001-0.02% by weight.
  • 80% of the palladium and silver are in the profile of thickness 0.2 r, with the ratio of palladium to silver 2.50-20.
  • No. 4,404,124 relates to a supported catalyst comprising the support material ⁇ -alumina and the hydrogenation-active metals palladium and silver.
  • the palladium content is 0.01-0.25% by weight, while the silver content is 0.02-0.05% by weight. This gives a ratio of palladium to silver of not more than 0.5.
  • the palladium in the shell of the catalyst material is present up to 300 ⁇ m, while the silver is present in at least 90% of the catalyst pellets in the entire cross section of the catalyst material.
  • US 2002/0165092 A1 relates to a supported catalyst of aluminum oxide, which contains palladium and silver as the hydrogenation metal.
  • the palladium content is 0.002-1.0% by weight. This results in a ratio of palladium to silver of 1 - 20.
  • the silver and the palladium are uniform in profile present, the penetration depth in the profile is more than 300 microns. In preferred embodiments, the penetration depth of the palladium and the silver is between 500 and 1000 ⁇ m.
  • the known catalysts generally have the disadvantage of too low olefin selectivity and pronounced green oil formation, the olefin selectivity being understood to mean the ratio ⁇ Olefine / ⁇ Alkine. - A -
  • the solution to this problem is based on a catalyst comprising at least one metal of VIII.
  • Group of the Periodic Table of the Elements as hydrogenation metal and additionally a promoter on an oxidic support.
  • the catalyst according to the invention is then characterized in that at least 80% of the metal of group VIII of the Periodic Table of the Elements is present in a layer between the surface of the catalyst and a penetration depth not exceeding 80% of the radius of the catalyst, calculated from the surface of the catalyst, corresponds substantially homogeneously and the promoter is substantially homogeneously distributed over the entire cross-section of the catalyst.
  • the catalyst has a diameter of 2.5 to 10 mm, wherein at least 80% of the metal of the VIII.
  • a catalyst in which the metal of group VIII of the Periodic Table of the Elements forms a shell structure in the catalyst while the promoter is saturated.
  • the designation of the groups of the periodic system of the elements takes place according to the CAS nomenclature (chemical abstracts service).
  • the catalyst of the invention has a diameter of 2.5 to 10 mm. In preferred embodiments of the catalyst according to the invention, the diameter is 2.5 to 5 mm, in particular 2.5 to 3.5 mm.
  • At least 80%, preferably at least 90%, particularly preferably at least 95%, in particular at least 98%, especially 100%, of the metal of Group VIII of the Periodic Table of the Elements are present in a layer between the surface of the Catalyst and a penetration depth of at most 1000 microns, calculated from the surface of the catalyst, substantially homogeneously distributed before.
  • the catalyst of the invention contains a metal of the VIII.
  • Group of Perioden ⁇ system of the elements Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt. In a preferred embodiment of the present invention, it is palladium.
  • the catalyst according to the invention additionally contains at least one promoter.
  • these may be further metals of VIII., IB. and IIB.
  • Group of the Periodic Table of the Elements act (Cu, Ag, Au, Zn, Cd, Hg).
  • the catalysts according to the invention contain, in addition to the metal of VIII.
  • Group of the Periodic Table of the Elements at least one metal from IB.
  • Group of the Periodic Table of the Elements. Particularly preferred here is silver.
  • the catalyst according to the invention contains palladium and silver.
  • the catalyst according to the invention may have any shapes, for example strands, hollow strands, tablets, rings, spherical particles or spheres. It is preferred if the catalyst according to the invention is formed as a strand.
  • the metals can be present in pure metallic form, but also in the form of compounds, for example in the form of metal oxides. Under the operating conditions of a hydrogenation process, they are generally in the form of metals.
  • the conversion of any oxides into metals can be carried out in a manner known to those skilled in the art prior to use of the catalyst in a hydrogenation in or outside a Hydrier ⁇ , for example by prereduction and, if necessary for manipulations with the prereduced catalyst or advantageous, subsequent surface passivation ,
  • the content of metal or metals of group VIII of the periodic system, in particular palladium, of the catalyst is preferably at least 0.01% by weight. especially preferably at least 0.1% by weight, in particular at least 0.15% by weight. Preferably, this content is at most 5 wt .-%, more preferably at most 1 wt .-%, in particular at most 0.6 wt .-%. Lower and higher contents are possible, but usually unsatisfactory because of too low activity or too high raw material costs. In a particularly preferred embodiment, only one hydrogenation metal, in particular palladium, is used.
  • Group of the Periodic Table of the Elements and additives or dopants is a parameter to be optimized in individual cases.
  • Group of the Periodic Table of the Elements, more preferably palladium, to the promoter more preferably silver, preferably 0.1 to 10, particularly preferably 2 to 7, in particular 2.5 to 6.
  • the oxidic support of the hydrogenation catalyst according to the invention is preferably aluminum oxide, more preferably in a mixture of ⁇ -, ⁇ - and ⁇ -alumina.
  • the carrier may contain, in addition to unavoidable impurities, other additives to some extent.
  • other inorganic oxides such as oxides of metals of IIA., HIB., IVB., IHA. and IVA.
  • Group of the Periodic Table of the Elements in particular silicon dioxide, titanium dioxide, zirconium dioxide, Zink ⁇ oxide, magnesium oxide, sodium oxide and calcium oxide.
  • the maximum content of the support to such oxides other than alumina depends on the oxide actually present, but in individual cases to be determined on the basis of the X-ray diffraction diagram of the Hyd ⁇ rierkatalysators, since a change in the structure associated with a significant change of the X-ray diffraction pattern.
  • the content of such, other than alumina oxides below 50 wt .-%, preferably below 30 wt .-%, more preferably below 10 wt .-%.
  • the purity of the alumina is preferably higher than 99%.
  • a suitable aluminum-containing raw material preferably boehmite
  • a peptizer such as water, dilute acid or dilute base.
  • a peptizer such as water, dilute acid or dilute base.
  • the acid for example, a mineral acid such as nitric acid or an organic acid such as formic acid is used.
  • an inorganic base such as ammonia is preferably used.
  • the acid or base is generally dissolved in water.
  • the peptizer used is water or dilute aqueous nitric acid.
  • the concentration of the nonaqueous fraction in the peptizing agent is generally 0-10% by weight, preferably 0-7% by weight, more preferably 0-5% by weight.
  • Boehmite ( ⁇ -AIO (OH)) is a common commercial product, but can also in a known manner immediately before the actual carrier preparation by precipitation from a Lö ⁇ solution of an aluminum salt, for example aluminum nitrate, with a base, Abtren ⁇ nen, washing, drying and Calcining the precipitated solid can be produced.
  • boehmite is used in the form of a powder.
  • a suitable commercial boehmite powder is, for example Versal ® 250, available from UOP.
  • the boehmite is treated with the peptizer by moistening it with the peptizer and mixing it thoroughly, for example in a kneader, mixer or pug mill.
  • the peptization is continued until the mass is readily malleable.
  • the mass is deformed by conventional methods to the desired carrier carrier bodies, for example by extrusion, extrusion, tabletting or agglomeration.
  • any known method is suitable.
  • additives are extruding or tableting aids, such as polyglycols or graphite.
  • the shaped bodies are dried in a customary manner, generally at a temperature above 60 ° C., preferably above 80 ° C., more preferably above 100 ° C., in particular at a temperature in the range from 120 to 300 ° C. Drying is continued until water present in moldings has escaped substantially completely from the moldings, which is generally the case after a few hours. Typical drying times are in the range from 1 to 30 hours and depend on the set drying temperature, with a higher temperature shortening the drying time.
  • the Trock ⁇ voltage can be further accelerated by applying a negative pressure.
  • the calcination temperature is generally in the range of 900 - 1150 ° C, preferably in the range of 1000 - 1120 0 C, more preferably in
  • the calcination time is generally between 0.5 and 5 hours, preferably between 1 and 4 hours, more preferably between 1, 5 and 3 hours.
  • the calcination takes place in a conventional oven, for example in a rotary kiln, in a tunnel kiln, in a belt calciner or in a chamber kiln.
  • the calcination can be followed directly by the drying without intermediate cooling of the moldings.
  • the catalysts according to the invention thus obtained have a specific surface area (BET, Brunauer-Emmet plate, determined in accordance with DIN 66131 by nitrogen adsorption at 77 K) of 20-250 m 2 / g, preferably 50-150 m 2 / g, in particular 60 - 90 m 2 / g, on.
  • the surface can be varied by known methods, in particular use of finely divided or coarser starting materials, calcination time and calcination temperature.
  • the pore volume can also be varied in a known manner; in general it is determined by means of mercury porosity in a range of 0.3-1.0 ml / g, preferably in a range of 0, 4 - 0.9 ml / g, more preferably 0.5 - 0.8 ml / g.
  • the active composition and, if appropriate, further additives are deposited on the carrier produced in this way.
  • X-ray diffraction diagram is determined as described in EP 0 992 284 A2 on page 9, lines 6 to 9.
  • X-ray diffraction patterns are characteristic of the specific structure of the investigated material.
  • the structure of the catalyst according to the invention is sufficiently defined by the occurrence of the above-mentioned reflexes.
  • one or more reflections of any intensity for the interplanar spacings 3.48; 2.55; 2.38; 2.09; 1, 78; 1, 74; 1, 62; 1, 60; 1, 57; 1, 42; 1, 40 and / or 1, 37 all in unit [A].
  • any further reflections can occur in the X-ray diffraction diagram of the catalyst according to the invention.
  • the active compound and optionally further additives can be deposited on the support of the catalyst according to the invention thus obtained.
  • the metals, additives and / or dopants to be deposited on the carrier can be applied to the carrier by any known method, for example by coating from the gas phase ⁇ chemical or physical vapor deposition) or impregnation of the carrier material in a solution which separates them Contains substances and / or compounds.
  • the preferred method is impregnation with a solution of the substances and / or compounds to be deposited, which convert into the substances to be separated in the course of further catalyst preparation.
  • the substances to be deposited can be deposited individually and / or in partial quantities in several process steps or together and completely in one process step.
  • the co-deposition is in a impregnation step.
  • the supported catalyst is dried and converted into the ready-to-use catalyst by calcination and, if appropriate, other known aftertreatment methods, for example activation and subsequent surface passivation.
  • Impregnation processes for the separation of active components, additives and / or dopants on a carrier are known.
  • the carrier is impregnated with a solution of salts of the components to be separated, the volume of the solution being measured so that the solution is absorbed almost completely by the pore volume of the carrier ("incipient wetness" method)
  • the solution is so dimensioned that after impregnation and conversion of the supported catalyst to the finished catalyst, the components to be deposited are present in the desired concentration on the catalyst
  • the salts are chosen such that they are not used in catalyst preparation or its subsequent use. leave disturbing residues. In most cases, nitrates or ammonium salts are used.
  • the preparation of the catalyst according to the invention is preferably carried out by single-stage impregnation of the support according to the incipient wetness method of a salperic acid solution of the nitrates of the metals to be deposited.
  • an impregnation solution containing palladium nitrate and nitrite side by side is used.
  • the impregnation solution still contains the metal of the IB.
  • Group of the Periodic Table of Elements preferably silver nitrate, before.
  • the pH of the impregnation solution is at most 5, preferably at most 2, more preferably at most 1, in particular at most 0.5.
  • the lower limit of the pH is generally 0.2, preferably 0.3, more preferably 0.5.
  • a particularly preferred pH range is 0.3 to 0.5.
  • the impregnated support is dried in a conventional manner, my are generally employed at a temperature above 60 0 C, preferably above 80 ° C, especially above preferably 100 ° C, in particular at a temperature in the range from 120 Be ⁇ - 300 0 C. drying is continued, has escaped to sator in the impregnated Kataly ⁇ water present essentially what are generally employed after a few hours the case. Typical drying times are in the range of 1 to 30 hours and are dependent on the set drying temperature, with a higher drying temperature shortens the drying time. The drying can be further accelerated by applying a negative pressure.
  • the drying of the impregnated catalyst takes place with simultaneous movement of the impregnated carrier material, for example in a rotary kiln oven.
  • the air stream used for Trock ⁇ tion is passed in countercurrent through the rotary tube.
  • the catalyst is produced in a customary manner by calcination.
  • This calcination essentially serves to convert the impregnated salts in the components to be deposited or precursors of such Kom ⁇ components and thus differs from the previously described calcination, which serves for the preparation of the support material and the support structure.
  • this calcination essentially decomposes the nitrates into metals and / or metal oxides which remain in the catalyst and into nitrous gases which escape.
  • the calcination temperature is generally from 200 to 900 0 C, preferably from 280 to 800 0 C, particularly preferably 300-700 0 C.
  • the calcination time is generally between 0.5 and 20 hours, preferably between 0.5 and 10 hours, particularly preferably between 0.5 and 5 hours.
  • the calcination takes place in a conventional oven, for example in a rotary kiln oven, in a belt calciner or in a kiln.
  • the calcination may be followed directly by the drying without intermediate cooling of the supported and dried support.
  • the drying and the calcination of the catalyst are combined in a rotary kiln.
  • the catalyst After calcination, the catalyst is in principle ready for use. If required or desired, it is activated by pre-reduction in a known manner prior to incorporation into the hydrogenation reactor and, if appropriate, also passivated on the surface again.
  • the reduction of the hydrogenation catalyst usually takes place only in the hydrogenation reactor itself. This is done by a manner known to those skilled in the art by initial inertization with nitrogen or another inert gas. The reduction is carried out with a hydrogen-containing gas as pure gas phase or under inert circulation.
  • the temperature at which this prereduction is carried out is generally at 5-200 0 C, preferably 20-150 0 C.
  • regeneration of the catalyst of this invention is non- or semi inner ⁇ of the hydrogenation reactor at temperatures of 15 to 500 0 C.
  • a further subject of the present invention are the hydrogenation catalysts obtainable by this process.
  • the present invention further relates to the use of erfindungsge ⁇ MAESSEN catalysts for the hydrogenation of unsaturated compounds and corresponding hydrogenation.
  • the selective hydrogenation processes according to the invention are distinguished by the use of the catalyst according to the invention.
  • the hydrogenation process according to the invention is generally carried out in the same way as the known, heterogeneously catalyzed hydrogenation processes which serve the same purpose. They can be used as heterogeneously catalyzed gas phase processes in which both the hydrocarbon stream and the hydrogenating hydrogen are in the gas phase, or as heterogeneously catalyzed gas / liquid phase processes in which the hydrocarbon stream is at least partly in the liquid phase and hydrogen in the gas phase Gas phase and / or in dissolved form in the liquid phase, are performed.
  • the parameters to be set such as throughput of hydrocarbon stream, expressed in space velocity in the unit [m 3 / m 3 (kat) h] or mass velocity [t / m 3 (kat) h], based on the catalyst volume, temperature and pressure selected analogously to those known terann process.
  • the inlet temperature is usually in the range of 0 to 100 0 C and the pressure in the range of 2 to 50 bar.
  • the hydrogenation can be carried out in one or more reaction stages, wherein a catalyst according to the invention is used in at least one reaction stage.
  • the amount of hydrogen used is dependent on the content of the hydrocarbon stream of undesirable unsaturated compounds and their nature. In general, the amount of hydrogen in an amount of 0.4 to 5 times stoichiometrically Complete hydrogen conversion during the reactor passage zugege ⁇ Ben required amount.
  • the hydrogenation of triple bonds usually proceeds faster than the conjugated double bonds, which in turn is faster than the unconjugated double bonds. This allows a corresponding control of the process on the hand of the added amount of hydrogen. In special cases, for example if a high isomerization of 1-butene to cis- or trans-2-butene is desired, a higher hydrogen excess, for example a 10-fold excess of hydrogen, can also be used.
  • the hydrogen may contain inert gases, for example noble gases such as helium, neon or argon, nitrogen, carbon dioxide and / or lower alkanes such as methane, ethane, propane and / or butane.
  • inert gases for example noble gases such as helium, neon or argon, nitrogen, carbon dioxide and / or lower alkanes such as methane, ethane, propane and / or butane.
  • noble gases such as helium, neon or argon
  • nitrogen such as methane, ethane, propane and / or butane.
  • carbon dioxide such as methane, ethane, propane and / or butane.
  • lower alkanes such as methane, ethane, propane and / or butane.
  • the hydrogen is substantially free of carbon monoxide.
  • the processes can be carried out in one or more reactors connected in parallel or in series, in each case in a single pass or in circulation mode.
  • the hydrocarbon stream after passing through a reactor, is usually freed from gases in a separator and a portion of the liquid obtained is returned to the reactor.
  • the ratio between recirculated and first fed into the reactor Reak ⁇ hydrocarbon stream, the so-called reflux ratio is adjusted so that under the other reaction conditions, such as pressure, inlet temperature, throughput and amount of hydrogen, the adiabatic temperature increase is not too large.
  • Areas of use of the process according to the invention are, for example, the hydrogenation of ethyne in C2 streams, in particular of propyne and / or propadiene to propene in C3 streams, in particular of 1,3-butadiene to butenes in C4 streams and / or of alkynes, dienes and Styrene in C5 + streams (pyrolysis gasoline).
  • the catalysts according to the invention are suitable, for example, for use in a process for the selective hydrogenation of unsaturated hydrocarbons from alkene- and / or alkadiene-containing liquid hydrocarbon mixtures whose main constituents contain three carbon atoms in the molecule, the catalyst according to the invention having the hydrocarbon flowing, for example under the conditions described above, is brought into contact.
  • a disadvantage of this process using pure palladium catalysts is that the use of pure palladium catalysts easily leads to overhydrogenation and to green oil formation. This has a fast coking result and thus requires short lifetimes of the catalyst used.
  • the preferred silver-containing catalyst according to the invention is used in a hydrogenation process for the hydrogenation of C3 streams.
  • the overhydration and green oil formation is reduced.
  • the palladium used must be located in a certain peripheral zone of the catalyst in order to have sufficient hydrogenation activity for the C3 streams. This is fulfilled by the catalysts of the invention, which have a penetration depth of palladium of up to 1000 microns.
  • the silver used is also distributed substantially homogeneously over the entire profile of the catalyst.
  • a green oil formation by the catalyst reduced or avoided.
  • the catalysts according to the invention which have distributed silver substantially homogeneously over the entire strand cross-section.
  • the process according to the invention for the hydrogenation of the C3 streams essentially serves for the selective hydrogenation of propynes and / or propadiene contained in these hydrocarbon mixtures to give propene with minimal formation of propane.
  • the hydrogenation takes place in one stage.
  • the hydrogenation can also be carried out in two process stages.
  • the C3 stream thus obtained then has the following contents, for example, before the respective hydrogenation stages:
  • the C3 hydrogenation is preferably carried out with a predominantly liquid C3 phase and a hydrogen gas phase.
  • the pressure is preferably 9 to 30 barg, particularly preferably 10 to 25 barg, in particular 10 to 16 barg.
  • the inlet temperature is preferably 0 to 50 0 C 1 particularly preferably 0 to 40 0 C, in particular 20 to 30 0 C.
  • the increase Temperatur ⁇ is preferably 0 to 60 0 C, particularly preferably 0 to 40 0 C, more particularly 0 to sondere 5 0 C.
  • the load (WHSV) is preferably from 3 lh to 30 kg /, particularly preferably 5 lh to 25 kg /, preferably 8 to 15 kg / lh.
  • the void space velocity is preferably 0.2 to 20 cm / s, particularly preferably 0.5 to 10 cm / s, in particular 1 to 5 cm / s.
  • the ratio of hydrogen to methylacetylene and propadiene is preferably from 0.9 to 2, particularly preferably from 1:01 to 2.
  • the C3 hydrogenation takes place in one stage. Alter ⁇ natively, a hydrogenation in two stages is possible.
  • reaction is carried out in a manner known per se to the person skilled in the art, for example adiabatically, with evaporative cooling or isothermally, preferably isothermally and Particularly preferred in the isothermal reaction regime is the use of a coolant, for example ammonia.
  • a coolant for example ammonia.
  • Another object of the present invention is the use of the hydrogenation catalysts according to the invention in processes for the hydrogenation of C4 streams.
  • EP 0 523 482 B1 describes a process for the selective hydrogenation of butadiene to butenes in the liquid or trickle phase on fixed noble metal supported catalysts.
  • a butadiene-rich C4 stream with butadiene contents of 20 - 80 wt .-%, based on the C4 stream, hydrogenated in two successive reaction zones so that the hydrogenation product of the first reaction zone 0.1 to 20 wt .-% and the hydrogenation product of the second reaction zone 0.005 - 1 wt .-% residual butadiene, based on the C4 stream containing.
  • the C 4 -hydrocarbon mixtures to be used in the present inventive hydrogenation arise mainly in the steam cracking of mineral oil-derived hydrocarbons, e.g. Naphtha.
  • these hydrocarbon mixtures may also contain small amounts of compounds with cumulative double bonds and / or acetylenic triple bonds.
  • the composition of the crude C4 cut from the steam cracker can vary widely (see Table 1).
  • Table 1 Typical composition of a C4 cut of a steam cracker, expressed in weight%.
  • Total C5-Souren ⁇ 1 The composition is essentially dependent on the feedstock and the cracking conditions of the steam cracker. Normally, 35 to 50% by weight of butadiene are contained in the crude C4 cut.
  • the process according to the invention is expediently carried out in the liquid or trickle phase, the hydrogen being dispersed in a manner known per se in the liquid C4 stream.
  • the selective hydrogenation of the butadiene in the trickle phase is preferably carried out from top to bottom with fixed hydrogenation catalysts. An implementation from bottom to top is possible.
  • the process according to the invention for the hydrogenation of C4 streams takes place in two or three stages.
  • the two reaction zones must be separated from each other so that hydrogen can be metered in between them and finely distributed.
  • the reaction zones are preferably in the form of separate hydrogenation reactors.
  • the hydrogen is added in the simple to double the amount stoichiometrically necessary for the calculated conversion (based on the overall process (all stages)), preferably the stoichiometrically required amount is added up to an excess of hydrogen in a 1, 2-fold amount.
  • the hydrogen used for the hydrogenation may contain up to 30% by volume of inert gas, e.g. Methane, without thereby hydrogenation is significantly impaired.
  • the hydrogen used for the process according to the invention should preferably be CO-free; however, small amounts of CO ( ⁇ 5 ppm) do not disturb.
  • the reaction conditions in each of the reactors can be varied within wide limits.
  • the inventive process runs at reactor inlet temperature of 20 to 100 0 C, preferably 30 to 90 0 C, wherein the temperature increase vorzugswei ⁇ se 10 to 60 0 C.
  • the pressure is preferably 5 to 50 barg, more preferably 5 to 30 bar.
  • the related to the G4-use liquid Kunststoffzeitgeschwindig- ness "liquid hourly space velocity" (Ihsv) is preferably from 1 to 30 h " ⁇ vorzugswei ⁇ se from 2 to 15 h -1.
  • the fresh feed load (WHSV) is preferably from 0.5 up to 15 kg / lh.
  • the ratio of cycle stream to fresh feed is preferably from 2 to 20.
  • the ratio of hydrogen to butadiene is preferably from 1 to 1.5.
  • the maximum possible content of 1-butene is achieved with a low leaving content of 1,3-butadiene of preferably 10 to 1000 ppm, whereby a high 1-butene selectivity is achieved.
  • the 1-butene content is in the hydrogenated
  • C4 stream preferably 30%, particularly preferably 40%, in particular 50% (according to
  • the catalyst of the invention is preferably used in the first reaction stage, a 1- butene selectivity of preferably greater than 60% being achieved.
  • the inventive method has a number of advantages.
  • the butadiene contained in the starting material is hydrogenated virtually quantitatively with very high selectivity. Despite the very high butadiene conversion, a butene selectivity S of at least 96% is achieved.
  • the hydrogenation is selective over a very wide range up to extremely high butadiene conversions.
  • the isomerization of butene-1 to butene-2 is significantly lower by the choice of the catalyst according to the invention in the first stage than in the Stan ⁇ dard compiler and isobutene is not substantially converted to isobutane.
  • No special purity requirements are imposed on hydrogen unless irreversible catalyst poisons such as lead or arsenic are included.
  • the hydrogen dosing can be regulated with automatic analysis methods.
  • the heat removal is simply controlled by a sufficient amount of liquid recycle of hydrogenated product.
  • the circulation stream contains a heat exchanger.
  • the catalysts are prepared by the "incipient wetness" method known to the person skilled in the art.
  • the palladium content of the impregnation solution is adjusted to the respective value by diluting a nitric acid palladium-containing stock solution. This is based on a stock solution with approximately 11% palladium, essentially present as nitrate, with a content of from 2 to 6% by weight of nitrite in the stock solution.
  • catalyst support extrudates with a diameter of 3 mm are used.
  • Al 2 O 3 strands having a surface area of 60-90 m 2 / g are impregnated with an impregnation solution containing palladium nitrate and palladium nitrite, which has been acidified to a pH of 0.2 to 2 with nitric acid.
  • the moist strands are dried at 200 ° C. and calcined at 600 ° C.
  • a comparative catalyst I is obtained with 0.3 wt .-% palladium.
  • Nitrate is the major part of the anions.
  • Comparative catalyst II is prepared analogously to the example for the preparation of comparative catalyst I, the pH being less than 0.2 and, by using less palladium and more silver in the impregnation solution, a catalyst having 0.2 wt. % Palladium and 0.1% by weight silver.
  • the palladium is not present in a shell up to 1000 microns,. but, like silver, is distributed substantially homogeneously over the entire cross section of the catalyst.
  • the preparation of the catalyst III according to the invention is carried out analogously to the preparation of the comparative catalyst II (pH 0.2 to 2).
  • the result is a catalyst with 0.2 wt .-% palladium and 0.1 wt .-% silver.
  • the catalyst IV according to the invention is prepared analogously to the novel catalyst III, but a catalyst containing 0.5% by weight of palladium and 0.1% by weight of silver is obtained by using more palladium nitrate and nitrite.
  • the catalysts thus prepared are used in a hydrogenation of a C3 stream.
  • the hydrogenation takes place in a reactor.
  • the reactor is equipped with: - quantities of controlled educt supply,
  • the input and output analyzes are performed using an online GC chromatograph.
  • the hydrogenation is carried out under the following conditions:
  • the catalysts are prepared by the "incipient wetness" method known to the person skilled in the art.
  • the palladium content of the impregnation solution for the catalysts I, III, IV and V is adjusted to the respective value by diluting a nitric acid palladium-containing stock solution. This is based on a stock solution containing about 11% palladium, essentially present as nitrate, with a content of 2 to 6 wt .-% nitrite in the stock solution.
  • catalyst support extrudates with a diameter of 3 mm are used.
  • Al 2 O 3 strands having a surface area of 60-90 m 2 / g are impregnated with an impregnation solution containing palladium nitrate, palladium nitrite and silver nitrate, which has been acidified to a pH of 0.2 to 2 with nitric acid.
  • the wet strands are calcined at 200 0 C and dried at 600 ° C.
  • a catalyst is obtained which contains 0.3% by weight of palladium and 0.1% by weight of silver, the weight ratio of palladium to silver being 3.
  • the comparative catalyst II is prepared as the catalyst I according to the invention, wherein another palladium nitrate stock solution with 0.06 wt .-% NO 2 " instead of 2 to 6 wt .-% NO 2 " is used.
  • the final impregnation solution thus contains 0.0024% by weight NO 2 " .
  • Comparative catalyst III is prepared in accordance with the hydrogenation catalyst I according to the invention, but without silver.
  • the hydrogenation catalyst IV according to the invention is prepared according to the hydrogenation catalyst I according to the invention, but a catalyst results which has a ratio of palladium to silver of 6 with 0.05% silver.
  • the hydrogenation catalyst V according to the invention is prepared according to the hydrogenation catalyst I according to the invention, the weight ratio of palladium to silver being 3.5 and the proportion of silver 0.085%.
  • the catalysts thus obtained are tested in a selective hydrogenation of a crude C4 cut.
  • the experiments are carried out in a pilot plant, which is equipped with an electrically heatable fixed bed reactor of 16 mm diameter and 2 m in length, a Vor carving ⁇ stretch, a separator, a cooler for the reactor discharge and a liquid keitsniklauf.
  • the amount of catalyst used is 200 ml.
  • the crude C4 cut is metered via a feed pump and mixed at a mixing point with the quantity-controlled supplied hydrogen.
  • the separator the reaction discharge is separated into gas and liquid phase. Most of the liquid phase is recirculated to the reactor. A smaller part corresponding to the amount of the crude C4 cut fed to the reactor is withdrawn continuously from the separator as product.
  • the analyzes are carried out by means of a gas chromatograph.
  • the catalytic converters Prior to the initial feed of hydrocarbon in the reactor, the catalytic converters are factors for 12 hours at 120 0 C and treated with hydrogen pressure bar. 5 Subsequently, the plant is filled with already selectively hydrogenated C4 cut, heated to 50 0 C and put into operation. After reaching the operating conditions (pressure, temperature, throughput), the crude C4 cut and hydrogen are fed.

Abstract

Beschrieben wird ein Katalysator auf einem oxidischen Träger und Verfahren zur Selektivhydrierung ungesättigter Verbindungen in diesen enthaltenden Kohlenwasserstoffströmen unter Verwendung dieser Katalysatoren.

Description

Selektivhydrierkatalysator
Beschreibung
Die vorliegende Erfindung betrifft Hydrierkatalysatoren, die Metalle der VIII. Gruppe des Periodensystems der Elemente auf einem Trägermaterial enthalten, und Verfahren zur Selektivhydrierung ungesättigter Verbindungen in diese enthaltenden Kohlenwas¬ serstoffströmen unter Verwendung dieser Katalysatoren.
In Raffinerien und petrochemischen Anlagen werden in großem Umfang Kohlenwas¬ serstoffströme erzeugt, gelagert und verarbeitet. In diesen Kohlenwasserstoffströmen sind häufig ungesättigte Verbindungen vorhanden, deren Anwesenheit insbesondere bei Verarbeitung und/oder Lagerung bekanntermaßen zu Problemen führt oder die nicht das gewünschte Wertprodukt darstellen und die daher unerwünschte Komponen- ten der entsprechenden Kohlenwasserstoffströme sind.
Üblicherweise sind in C3-Strömen die zu hydrierenden Komponenten Propin (Methyl- acetylen, MA) und Propadien (Allen, PD).
In C4-Strömen kann 1 ,3-Butadien das Wertprodukt darstellen. In diesem Falle wird 1 ,3- Butadien extrahiert und der verbleibende C4-Schnitt, das Raffinat I, muss durch eine Selektivhydrierung von Butadien-Spuren befreit werden, indem das Butadien selektiv zu Butenen hydriert wird.
Existiert jedoch keine Verwendung für reines Butadien, aber ein hoher Bedarf an Bute¬ nen, so kann der hohe Anteil des 1 ,3-Butadiens aus dem Roh-C4-Strom des Steamc- rackers selektiv zu Butenen hydriert werden. Weiterhin können aus diesem Roh-C4- Schnitt 1 ,2-Butadien, Butenin (Vinylacetylen), Butin (Ethylacetylen) sowie Spuren von destillativ nicht abgetrenntem Propadien hydriert werden.
Für manche Folgeprozesse (z.B. Metathese mit Ethen zu Propen) wird ein hoher Ge¬ halt an 2-Butenen benötigt. Da die 2-Butene bei den Reaktionstemperaturen thermo- dynamisch deutlich gegenüber 1 -Buten bevorzugt sind, fallen diese bei der Hydrierung in der Regel im Überschuss an. Ist jedoch 1 -Buten das Wertprodukt, bedarf es folglich besonderer Katalysatoren, um überwiegend 1 -Buten zu erhalten.
Im Allgemeinen sind daher aus Kohlenwasserstoffströmen zumeist ungesättigte Ver¬ bindungen mit Dreifachbindungen (Alkine) und/oder zweifach ungesättigte Verbindun¬ gen (Diene) und/oder zwei- oder mehrfach ungesättigte Verbindungen (Polyene, AIIe- ne, Alkinene) und/oder aromatische Verbindungen mit einem oder mehreren ungesät¬ tigten Substituenten (Phenylalkene und Phenylalkine) zu entfernen, um die gewünsch- ten Produkte, wie Ethylen, Propylen, 1 -Buten, Isobuten, 1 ,3-Butadien, Aromaten oder Vergaserkraftstoff in der geforderten Qualität zu erhalten. Nicht jede ungesättigte Ver¬ bindung ist jedoch immer eine unerwünschte Komponente, die aus dem fraglichen Kohlenwasserstoffstrom zu entfernen ist. Beispielsweise ist 1 ,3-Butadien, wie oben bereits erwähnt, je nach Anwendungsfall eine unerwünschte Nebenkomponente oder das gewünschte Wertprodukt.
Die Entfernung unerwünschter ungesättigter Verbindungen aus diese enthaltenden Kohlenwasserstoffströmen geschieht häufig durch Selektivhydrierung einiger oder aller der unerwünschten ungesättigten Verbindungen im entsprechenden Kohlenwasser¬ stoffstrom, vorzugsweise durch Selektivhydrierung zu nicht störenden, höher gesättig¬ ten Verbindungen und in besonders bevorzugter Weise zu den Wertprodukte darstel¬ lenden Komponenten des Kohlenwasserstoffstroms. Beispielsweise wird in C3- Strömen Propin und Propadien zu Propen und in C4-Strömen Butin zu Butenen, Vinyl- acetylen zu 1 ,3-Butadien und/oder 1 ,3-Butadien zu Butenen hydriert.
Typischerweise sind solche unerwünschten Verbindungen bis auf Restgehalte von wenigen Gew.-ppm zu entfernen. Die („Über"-)Hydrierung zu Verbindungen, die höher gesättigt sind als das gewünschte Wertprodukt, und/oder die parallele Hydrierung ei- nes eine oder mehrere Mehrfachbindungen enthaltenden Wertprodukts zur entspre¬ chenden höher oder vollständig gesättigten Verbindung sollen aufgrund des damit ver¬ bundenen Wertverlusts jedoch möglichst vermieden werden. Die Selektivität der Hyd¬ rierung der unerwünschten ungesättigten Verbindungen muss daher möglichst hoch sein. Zusätzlich sind im Allgemeinen eine ausreichend hohe Aktivität des Katalysators und eine lange Standzeit erwünscht. Gleichzeitig soll der Katalysator möglichst auch keine anderen unerwünschten Nebenreaktionen bewirken. So ist beispielsweise eine Katalyse der Doppelbindungsisomerisierung von 1 -Buten zu 2-Buten zu vermeiden, wenn 1 -Buten das Wertprodukt darstellt.
Üblicherweise werden zur Hydrierung Edelmetall-Trägerkatalysatoren eingesetzt, in denen das Edelmetall auf einem Katalysatorträger abgeschieden ist. Häufig wird Palla¬ dium als Edelmetall verwendet, wobei der Träger im Allgemeinen ein poröses anorga¬ nisches Oxid, beispielsweise Kieselerde, Alumosilikat, Titandioxid, Zirkoniumdioxid, Zinkaluminat, Zinktitanat und/oder eine Mischung solcher Träger ist. Zumeist wird als Trägermaterial Aluminiumoxid verwendet.
EP 0 992 284 A2 beschreibt Katalysatoren zur selektiven Hydrierung ungesättigter Verbindungen in Kohlenwasserstoffströmen, die aus Edelmetall oder Edelmetallverbin¬ dungen auf einem speziellen AI2O3-Träger bestehen, wobei der Katalysator durch ein bestimmtes Röntgenbeugungsmuster definiert ist. Dieses Röntgenbeugungsmuster wird überwiegend durch den Träger bestimmt. DE 31 19 850 A1 beschreibt ein Verfahren zur selektiven Hydrierung eines Diolefins in einem Kohlenwasserstoffgemisch mit mindestens vier Kohlenstoffatomen, das ein α- Olefin enthält, wobei ein Katalysator verwendet wird, der gleichzeitig Palladium oder eine Palladium-Verbindung und Silber oder eine Silber-Verbindung enthält und der Palladium-Gehalt des Katalysators 0,05 - 0,5 Gew.-% und der Silber-Gehalt 0,05 - 1 Gew.-% beträgt.
EP 780 155 A1 beschreibt einen Selektivhydrierkatalysator, bei dem Aluminiumoxid in der α-Modifikation als Trägermaterial verwendet wird. Der Trägerkatalysator ist mit den hydrieraktiven Metallen Palladium und Silber beschichtet, wobei der Gehalt an Palladi¬ um 0,01 - 0,5 Gew.-% und der Gehalt an Silber 0,001 - 0,1 Gew.-% beträgt. Mindes¬ tens 30 % der Metallteilchen des Katalysators sind Palladium und/oder Silber. Dabei beträgt das Verhältnis von Palladium zu Silber 0,33 - 2,50. Femer liegen 80 % des PaI- ladiums und des Silbers im Profil der Dicke von maximal 0,2 r vor.
EP 0 686 615 A1 betrifft einen Trägerkatalysator, der als Trägermaterial α-Aluminium- oxid und als hydrieraktive Metalle Palladium und Silber umfasst. Der Gehalt an Palladi¬ um beträgt 0,01 - 0,5 Gew.-% und der Gehalt an Silber beträgt 0,001 - 0,02 Gew.-%. 80 % des Palladiums und des Silbers liegen im Profil der Dicke von 0,2 r vor, wobei das Verhältnis von Palladium zu Silber 2,50 - 20 beträgt.
US 4,404,124 betrifft einen Trägerkatalysator mit dem Trägermaterial α-Aluminiumoxid und den hydrieraktiven Metallen Palladium und Silber. Der Palladium-Gehalt beträgt 0,01 - 0,25 Gew.-%, während der Silber-Gehalt 0,02 - 0,05 Gew.-% beträgt. Damit er¬ gibt sich ein Verhältnis von Palladium zu Silber von maximal 0,5. Ferner ist das Palla¬ dium in der Schale des Katalysatormaterials bis 300 μm vorhanden, während das Sil¬ ber im ganzen Querschnitt des Katalysatormaterials in mindestens 90 % der Katalysa¬ tor-Pellets vorliegt.
US 2002/0165092 A1 betrifft einen Trägerkatalysator aus Aluminiumoxid, der als Hyd¬ riermetall Palladium und Silber enthält. Der Palladium-Gehalt beträgt 0,002 - 1 ,0 Gew.- %. Dabei ergibt sich ein Verhältnis von Palladium zu Silber von 1 - 20. Das Silber und das Palladium sind gleichförmig im Profil vorhanden, wobei die Eindringtiefe in das Profil mehr als 300 μm beträgt. In bevorzugten Ausführungsformen liegt die Eindring¬ tiefe des Palladiums und des Silbers zwischen 500 und 1000 μm.
Die bekannten Katalysatoren weisen im Allgemeinen den Nachteil einer zu geringen Olefinselektivität sowie einer ausgeprägten Grünölbildung auf, wobei unter der Olefin- Selektivität das Verhältnis ΔOIefine/ΔAIkine verstanden wird. - A -
Die Anforderungen an Katalysatoren und Verfahren zur selektiven Hydrierung uner¬ wünschter ungesättigter Verbindungen in diese enthaltenden Kohlenwasserströmen im Hinblick auf die Verringerung des Restgehalts an unerwünschten ungesättigten Ver¬ bindungen nach der Hydrierung und auf die Erhöhung der Selektivität steigen ständig. Die bekannten Verfahren und Katalysatoren arbeiten zwar schon auf sehr hohem tech¬ nischen Stand, sind aber angesichts der steigenden Anforderungen immer noch unbe¬ friedigend. Es besteht daher die Aufgabe, einen verbesserten Katalysator und ein ver¬ bessertes Verfahren zur selektiven Hydrierung ungesättigter Verbindungen in diese enthaltenden Kohlenwasserstoffströmen zu finden, wobei der Fokus auf die Bereitstel- lung von Katalysatoren mit hoher Hydrieraktivität, hoher Olefinselektivität, insbesonde¬ re hoher 1 -Buten-Selektivität im Falle der C4-Hydrierung, sowie geringer Grünölbildung und damit verbundener langer Lebenszeit gerichtet ist. Insbesondere im Fall der Hyd¬ rierungen von C4-Strömen sollten die Katalysatoren weiterhin eine geringe Doppelbin- dungsisomierungstendenz aufweisen, sodass es nicht zu einer wesentlichen Katalyse der Isomerisierung von 1 -Buten zu 2-Buten kommt.
Die Lösung dieser Aufgabe geht aus von einem Katalysator, der mindestens ein Metall der VIII. Gruppe des Periodensystems der Elemente als Hydriermetall und zusätzlich einen Promotor auf einem oxidischen Träger umfasst.
Der erfindungsgemäße Katalysator ist dann dadurch gekennzeichnet, dass mindestens 80 % des Metalls der VIII. Gruppe des Periodensystems der Elemente in einer Schicht zwischen der Oberfläche des Katalysators und einer Eindringtiefe, die maximal 80 % des Radius des Katalysators, gerechnet von der Oberfläche des Katalysators, ent- spricht, im Wesentlichen homogen und der Promotor über den gesamten Querschnitt des Katalysators im Wesentlichen homogen verteilt vorliegt.
In einer bevorzugten Ausführungsform weist der Katalysator einen Durchmesser von 2,5 bis 10 mm auf, wobei mindestens 80 % des Metalls der VIII. Gruppe des Perioden- Systems der Elemente in einer Schicht zwischen der Oberfläche des Katalysators und einer Eindringtiefe von maximal 1000 μm, gerechnet von der Oberfläche des Katalysa¬ tors, im Wesentlichen homogen und der Promotor über den gesamten Querschnitt im Wesentlichen homogen verteilt vorliegt.
Erfindungsgemäß ist somit ein Katalysator vorgesehen, bei dem das Metall der VIII. Gruppe des Periodensystems der Elemente eine Schalenstruktur in dem Katalysator ausbildet, während der Promotor durchgetränkt ist.
Die Bezeichnung der Gruppen des Periodensystems der Elemente erfolgt gemäß der CAS-Nomenklatur (chemical abstracts Service). Der erfindungsgemäße Katalysator weist einen Durchmesser von 2,5 bis 10 mm auf. In bevorzugten Ausführungsformen des erfindungsgemäßen Katalysators beträgt der Durchmesser 2,5 bis 5 mm, insbesondere 2,5 bis 3,5 mm.
In dem erfindungsgemäßen Katalysator liegen mindestens 80%, vorzugsweise mindes¬ tens 90%, besonders bevorzugt mindestens 95%, insbesondere mindestens 98%, spe¬ ziell 100%, des Metalls der VIII. Gruppe des Periodensystems der Elemente in einer Schicht zwischen der Oberfläche des Katalysators und einer Eindringtiefe von maximal 1000 μm, gerechnet von der Oberfläche des Katalysators, im Wesentlichen homogen verteilt vor.
Der erfindungsgemäße Katalysator enthält ein Metall der VIII. Gruppe des Perioden¬ systems der Elemente (Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt). In einer bevorzugten Aus¬ führungsform der vorliegenden Erfindung handelt es sich um Palladium.
Der erfindungsgemäße Katalysator enthält darüber hinaus mindestens einen Promotor. Beispielsweise kann es sich hierbei um weitere Metalle der VIII., IB. und IIB. Gruppe des Periodensystems der Elemente handeln (Cu, Ag, Au, Zn, Cd, Hg). In einer bevor¬ zugten Ausführungsform enthalten die erfindungsgemäßen Katalysatoren neben dem Metall der VIII. Gruppe des Periodensystems der Elemente noch mindestens ein Metall aus der IB. Gruppe des Periodensystems der Elemente. Besonders bevorzugt ist hier¬ bei Silber.
In einer besonders bevorzugten Ausführungsform enthält der erfindungsgemäße Kata- lysator Palladium und Silber.
Der erfindungsgemäße Katalysator kann beliebige Formen, beispielsweise Stränge, Hohlstränge, Tabletten, Ringe, sphärische Teilchen oder Kugeln, aufweisen. Bevorzugt ist es, wenn der erfindungsgemäße Katalysator als Strang ausgebildet ist.
Die Metalle können in reiner metallischer Form vorliegen, aber auch in Form von Ver¬ bindungen, beispielsweise in Form von Metalloxiden. Unter den Betriebsbedingungen eines Hydrierverfahrens liegen sie im Allgemeinen in Form von Metallen vor. Die Um¬ wandlung etwaiger Oxide in Metalle kann auf dem Fachmann bekannte Weise vor dem Einsatz des Katalysators in einem Hydrierverfahren in oder außerhalb eines Hydrier¬ reaktors, beispielsweise durch Vorreduzierung und, falls für Manipulationen mit dem vorreduzierten Katalysator erforderlich oder vorteilhaft, anschließende oberflächliche Passivierung erfolgen.
Der Gehalt des Katalysators an Metall oder Metallen der VIII. Gruppe des Periodensys¬ tems, insbesondere Palladium, beträgt vorzugsweise mindestens 0,01 Gew.-%, be- sonders bevorzugt mindestens 0,1 Gew.-%, insbesondere mindestens 0,15 Gew.-%. Vorzugsweise liegt dieser Gehalt bei höchstens 5 Gew.-%, besonders bevorzugt höchstens 1 Gew.-%, insbesondere höchstens 0,6 Gew.-%. Niedrigere und höhere Gehalte sind zwar möglich, aber im Normalfall wegen zu niedriger Aktivität oder zu hohen Rohstoffkosten wirtschaftlich unbefriedigend. In einer besonders bevorzugten Ausführungsform wird nur ein Hydriermetall, insbesondere Palladium, verwendet.
Das Verhältnis der Mengen von Hydriermetall der VIII. Gruppe des Periodensystems der Elemente und Zusatz- oder Dotierstoffen ist ein im Einzelfall zu optimierender Pa- rameter. Vorzugsweise beträgt das Atomverhältnis von Metall der VIII. Gruppe des Periodensystems der Elemente, besonders bevorzugt Palladium, zu dem Promotor, besonders bevorzugt Silber, vorzugsweise 0,1 - 10, besonders bevorzugt 2 - 7, insbe¬ sondere 2,5 - 6.
Der oxidische Träger des erfindungsgemäßen Hydrierkatalysators ist bevorzugt Alu¬ miniumoxid, besonders bevorzugt in einer Mischung aus δ-, θ- und α-Aluminiumoxid. Der Träger kann neben unvermeidbaren Verunreinigungen in gewissem Umfang auch andere Zusätze enthalten. Beispielsweise können andere anorganische Oxide wie Oxide von Metallen der IIA., HIB., IVB., IHA. und IVA. Gruppe des Periodensystems der Elemente enthalten sein, insbesondere Siliziumdioxid, Titandioxid, Zirkondioxid, Zink¬ oxid, Magnesiumoxid, Natriumoxid und Kalziumoxid. Der maximale Gehalt des Trägers an solchen von Aluminiumoxid verschiedenen Oxiden ist vom tatsächlich vorhandenen Oxid abhängig, aber im Einzelfall anhand des Röntgenbeugungsdiagramms des Hyd¬ rierkatalysators zu ermitteln, da eine Änderung der Struktur mit einer signifikanten Än- derung des Röntgenbeugungsdiagramms einher geht. Im Allgemeinen liegt der Gehalt an solchen, von Aluminiumoxid verschiedenen Oxiden, unterhalb von 50 Gew.-%, vor¬ zugsweise unterhalb von 30 Gew.-%, besonders bevorzugt unterhalb von 10 Gew.-%. Der Reinheitsgrad des Aluminiumoxids liegt vorzugsweise höher als 99%.
Zur Herstellung des Trägers wird ein geeigneter aluminiumhaltiger Rohstoff, vorzugs¬ weise Böhmit, mit einem Peptisierungsmittel, wie Wasser, verdünnter Säure oder ver¬ dünnter Base, peptisiert. Als Säure wird beispielsweise eine Mineralsäure, wie etwa Salpetersäure, oder eine organische Säure, wie etwa Ameisensäure, verwendet. Als Base wird vorzugsweise eine anorganische Base, wie etwa Ammoniak, verwendet. Die Säure oder Base wird im Allgemeinen in Wasser gelöst. Vorzugsweise werden als Peptisierungsmittel Wasser oder verdünnte wässerige Salpetersäure verwendet. Die Konzentration des nicht-wässerigen Anteils im Peptisierungsmittel beträgt im Allgemei¬ nen 0 - 10 Gew.-%, vorzugsweise 0 - 7 Gew.-%, besonders bevorzugt 0 - 5 Gew.-%. Im Anschluss an die Peptisierung wird der Träger verformt, getrocknet und kalziniert. Böhmit (γ-AIO(OH)) ist ein verbreitetes Handelsprodukt, kann aber auch in bekannter Weise unmittelbar vor der eigentlichen Trägerherstellung durch Fällung aus einer Lö¬ sung eines Aluminiumsalzes, beispielsweise Aluminiumnitrat, mit einer Base, Abtren¬ nen, Waschen, Trocknen und Kalzinieren des gefällten Feststoffes hergestellt werden. Vorteilhafterweise wird Böhmit in der Form eines Pulvers verwendet. Ein geeignetes handelsübliches Böhmit-Pulver ist beispielsweise Versal® 250, das von UOP erhältlich ist. Der Böhmit wird mit dem Peptisierungsmittel behandelt, indem er mit dem Peptisie- rungsmittel angefeuchtet und intensiv durchmischt wird, beispielsweise in einem Kne¬ ter, Mischer oder Kollergang. Die Peptisierung wird fortgesetzt, bis die Masse gut ver- formbar ist. Anschließend wird die Masse mittels üblicher Methoden zu den gewünsch¬ ten Trägerformkörpern verformt, beispielsweise durch Strangpressen, Extrudieren, Tablettieren oder Agglomerieren. Zur Verformung ist jede bekannte Methode geeignet. Falls erforderlich oder vorteilhaft können übliche Zusätze verwendet werden. Beispiele für solche Zusätze sind Extrudier- oder Tablettierhilfsmittel, wie Polyglykole oder Gra- phit.
Es ist ferner möglich, der Trägerrohmasse vor der Verformung Zusätze beizumischen, die in bekannter Weise als Ausbrennstoffe die Porenstruktur des Trägers nach der KaI- zination beeinflussen, beispielsweise Polymere, Faserstoffe, natürliche Ausbrennstoffe, wie Nussschalenmehle, oder andere übliche Zusätze. Bevorzugt ist die Verwendung von Böhmit in einer Korngrößenverteilung und die Zugabe von Ausbrennstoffen, die zu einer Porenradienverteilung des fertigen Trägers führt, bei der 50 - 90 Vol.-% des ge¬ samten Porenvolumens in Form von Poren mit einem mittleren Durchmesser im Be¬ reich von 0,01 - 0,1 μm und 10 - 50 Vol.-% des gesamten Porenvolumens in Form von Poren mit einem mittleren Durchmesser im Bereich von 0,1 - 1 μm vorliegen. Die hier¬ zu notwendigen Maßnahmen sind dem Fachmann an sich bekannt.
Im Anschluss an die Verformung werden die Formkörper in üblicher Weise getrocknet, im Allgemeinen bei einer Temperatur oberhalb von 60 0C, vorzugsweise oberhalb von 80 0C, besonders bevorzugt oberhalb von 100 0C, insbesondere bei einer Temperatur im Bereich von 120 - 300 0C. Die Trocknung wird fortgesetzt, bis in Formkörpern vor¬ handenes Wasser im Wesentlichen vollständig aus den Formkörpern entwichen ist, was im Allgemeinen nach einigen Stunden der Fall ist. Übliche Trocknungsdauern lie¬ gen im Bereich von 1 bis 30 Stunden und sind von der eingestellten Trocknungstempe- ratur abhängig, wobei eine höhere Temperatur die Trocknungszeit verkürzt. Die Trock¬ nung kann durch Anwenden eines Unterdrucks weiter beschleunigt werden.
Im Anschluss an die Trocknung werden die Formkörper durch Kalzination zum fertigen
Träger umgewandelt. Die Kalzinationstemperatur liegt im Allgemeinen im Bereich von 900 - 1150 °C, vorzugsweise im Bereich von 1000 - 1120 0C, besonders bevorzugt im
Bereich von 1050 - 1100 0C. Die Kalzinationsdauer liegt im Allgemeinen zwischen 0,5 und 5 Stunden, vorzugsweise zwischen 1 und 4 Stunden, besonders bevorzugt zwi¬ schen 1 ,5 und 3 Stunden. Die Kalzination erfolgt in einem üblichen Ofen, beispielswei¬ se in einem Drehofen, in einem Tunnelofen, in einem Bandkalzinierer oder in einem Kammerofen. Die Kalzination kann sich ohne zwischenzeitliche Abkühlung der Form- körper direkt an die Trocknung anschließen.
Die so erhaltenen erfindungsgemäßen Katalysatoren weisen eine spezifische Oberflä¬ che (BET, Brunauer - Emmet - Teller, bestimmt gemäß DIN 66131 durch Stickstoffad¬ sorption bei 77 K) von 20 - 250 m2/g, vorzugsweise 50 - 150 m2/g, insbesondere 60 - 90 m2/g, auf. Die Oberfläche kann durch bekannte Methoden, insbesondere Verwen¬ dung feinteiliger oder gröberer Ausgangsstoffe, Kalzinationsdauer und Kalzinati- onstemperatur, variiert werden. Wie die BET-Oberfläche kann auch das Porenvolumen auf bekannte Weise variiert werden, im Allgemeinen liegt es, mittels Quecksilberporo- symmetrie bestimmt, in einem Bereich von 0,3 - 1 ,0 ml/g, vorzugsweise in einem Be- reich von 0,4 - 0,9 ml/g, besonders bevorzugt 0,5 - 0,8 ml/g.
Nach der Kalzination werden auf dem so hergestellten Träger die Aktivmasse und ge¬ gebenenfalls weitere Zusatzstoffe abgeschieden.
Der Träger des erfindungsgemäßen Katalysators ist vorzugsweise durch folgendes Röntgenbeugungsdiagramm charakterisiert:
Netzebenenabstand Winkel relative Intensität
Angstrom [Ä] 2-Theta [°] [%] d = 4,552 19,483 5 - 15 d = 2,857 31 ,278 35 - 50 d = 2,730 32,775 65 - 80 d = 2,449 36,671 45 - 55 d = 2,317 38,842 35 - 45 d = 2,260 39,861 35 - 45 d = 2,022 44,790 45 - 65 d = 1 ,910 47,570 30 - 40 d = 1 ,798 50,720 10 - 25 d = 1 ,543 59,915 25 - 35 d = 1 ,511 61 ,307 0 - 35 d = 1 ,489 62,289 20 - 30 d = 1 ,455 63,926 25 - 35 d = 1 ,387 67,446 100
Dieses Röntgenbeugungsdiagramm wird wie in der EP 0 992 284 A2 auf Seite 9, Zei¬ len 6 bis 9 beschrieben, bestimmt. Röntgenbeugungsdiagramme sind charakteristisch für die spezifische Struktur des untersuchten Materials. Die Struktur des erfindungsgemäßen Katalysators ist durch das Auftreten der oben genannten Reflexe hinreichend definiert. Zusätzlich zu den oben angegebenen kennzeichnenden Reflexen können im Röntgenbeugungsdia- gramm ein oder mehrere Reflexe in beliebiger Intensität für die Netzebenenabstände 3,48; 2,55; 2,38; 2,09; 1 ,78; 1 ,74; 1 ,62; 1 ,60; 1 ,57; 1 ,42; 1 ,40 und/oder 1 ,37 alle in der Einheit [A], auftreten.
Weiterhin können im Röntgenbeugungsdiagramm des erfindungsgemäßen Katalysa¬ tors noch beliebige weitere Reflexe auftreten.
Auf den so erhaltenen Träger des erfindungsgemäßen Katalysators können die Aktiv¬ masse und gegebenenfalls weitere Zusatzstoffe abgeschieden werden.
Die auf den Träger abzuscheidenden Metalle, Zusatz- und/oder Dotierstoffe können mit jedem bekannten Verfahren auf den Träger aufgebracht werden, beispielsweise durch Beschichtung aus der Gasphase {chemical oder physical vapor deposition) oder Trän¬ kung des Trägermaterials in einer Lösung, welche die abzuscheidenen Substanzen und/oder Verbindungen enthält.
Die bevorzugte Methode ist die Tränkung mit einer Lösung der abzuscheidenden Sub¬ stanzen und/oder Verbindungen, die sich im Zuge der weiteren Katalysatorherstellung in die abzuscheidenden Substanzen umwandeln. Die abzuscheidenden Substanzen können einzeln und/oder in Teilmengen in mehreren Verfahrensschritten oder gemein¬ sam und vollständig in einem Verfahrensschritt abgeschieden werden. Bevorzugt ist die gemeinsame Abscheidung in einer Tränkstufe. Im Anschluss an die Tränkung oder nach den einzelnen Tränkstufen wird der geträgerte Katalysator getrocknet und durch Kalzinierung sowie gegebenenfalls andere bekannte Nachbehandlungsmethoden, bei- spielsweise Aktivierung und anschließende oberflächliche Passivierung, zum einsatz¬ bereiten Katalysator umgewandelt.
Tränkverfahren zur Abscheidung von Aktivkomponenten, Zusatzstoffen und/oder Do¬ tierstoffen auf einem Träger sind bekannt. Im Allgemeinen wird der Träger mit einer Lösung von Salzen der abzuscheidenden Komponenten getränkt, wobei das Volumen der Lösung so bemessen wird, dass die Lösung praktisch vollständig vom Porenvolu¬ men des Trägers aufgenommen wird („incipient wetness"-Methode). Die Konzentration der Salze in der Lösung wird so bemessen, dass nach Tränkung und Umwandlung des geträgerten Katalysators zum fertigen Katalysator die abzuscheidenden Komponenten in der gewünschten Konzentration auf dem Katalysator vorliegen. Die Salze werden so gewählt, dass sie keine bei der Katalysatorherstellung oder dessen späterer Verwen- dung störenden Rückstände hinterlassen. Zumeist werden Nitrate oder Ammoniumsal¬ ze verwendet.
Grundsätzlich eignen sich alle dem Fachmann bekannten Tränkverfahren zur Herstel- lung des erfindungsgemäßen Katalysators.
Die Herstellung des erfindungsgemäßen Katalysators erfolgt jedoch vorzugsweise un¬ ter einstufiger Tränkung des Trägers nach der incipient-wetness-Methode einer salpe¬ tersauren Lösung der Nitrate der abzuscheidenden Metalle.
In einer besonders bevorzugten Ausführungsform wird eine Tränklösung verwendet, die Palladiumnitrat und -nitrit nebeneinander enthält.
Darüber hinaus liegt in der Tränklösung noch das Metall der IB. Gruppe des Perioden- Systems der Elemente, vorzugsweise Silbernitrat, vor.
Im Allgemeinen liegt der pH-Wert der Tränklösung bei höchstens 5, vorzugsweise bei höchstens 2, besonders bevorzugt bei höchstens 1 , insbesondere bei höchstens 0,5. Die Untergrenze des pH-Wertes liegt im Allgemeinen bei 0,2, vorzugsweise bei 0,3, besonders bevorzugt bei 0,5. Ein besonders bevorzugter pH-Bereich liegt bei 0,3 bis 0,5.
Nach der Tränkung wird der getränkte Träger in üblicher Weise getrocknet, im Allge¬ meinen bei einer Temperatur oberhalb von 60 0C, vorzugsweise oberhalb von 80 °C, besonders bevorzugt oberhalb von 100 °C, insbesondere bei einer Temperatur im Be¬ reich von 120 - 300 0C. Die Trocknung wird dabei fortgesetzt, bis im getränkten Kataly¬ sator vorhandenes Wasser im Wesentlichen vollständig entwichen ist, was im Allge¬ meinen nach einigen Stunden der Fall ist. Übliche Trocknungszeiten liegen im Bereich von 1 - 30 Stunden und sind von der eingestellten Trocknungstemperatur abhängig, wobei eine höhere Trocknungstemperatur die Trocknungszeit verkürzt. Die Trocknung kann durch Anwenden eines Unterdrucks weiter beschleunigt werden.
In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die Trocknung des getränkten Katalysators unter gleichzeitiger Bewegung des getränkten Trägermaterials, beispielsweise in einem Drehrohr-Ofen.
In einer besonderen Ausführungsform der vorliegenden Erfindung wird der zur Trock¬ nung verwendete Luftstrom im Gegenstrom durch das Drehrohr geführt.
Im Anschluss an die Trocknung wird in üblicher Weise durch Kalzinierung der Kataly¬ sator hergestellt. Diese Kalzinierung dient im Wesentlichen der Umwandlung der auf- getränkten Salze in die abzuscheidenden Komponenten oder Vorläufer solcher Kom¬ ponenten und unterscheidet sich insofern von der zuvor beschriebenen Kalzinierung, die der Herstellung des Trägermaterials und der Trägerstruktur dient. Im Fall der Auf¬ tränkung von Metallnitraten werden bei dieser Kalzinierung im Wesentlichen die Nitrate in Metalle und/oder Metalloxide, die im Katalysator verbleiben, und in nitrose Gase, die entweichen, zersetzt.
Die Kalzinationstemperatur liegt im Allgemeinen bei 200 - 900 0C, vorzugsweise 280 - 800 0C, besonders bevorzugt 300 - 700 0C. Die Kalzinationsdauer liegt im Allgemeinen zwischen 0,5 und 20 Stunden, vorzugsweise zwischen 0,5 und 10 Stunden, besonders bevorzugt zwischen 0,5 und 5 Stunden. Die Kalzination erfolgt in einem üblichen Ofen, beispielsweise in einem Drehrohr-Ofen, in einem Bandkalzinierer oder in einem Kam¬ merofen. Die Kalzination kann sich ohne zwischenzeitliche Abkühlung des geträgerten und getrockneten Trägers direkt an die Trocknung anschließen.
In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die Trocknung und die Kalzinierung des Katalysators in einem Drehrohrofen kombiniert.
Nach der Kalzination ist der Katalysator prinzipiell einsatzbereit. Falls erforderlich oder gewünscht, wird er vor dem Einbau in den Hydrierreaktor in bekannter Weise durch Vorreduzierung aktiviert und gegebenenfalls auch wieder oberflächlich passiviert.
In der Regel erfolgt die Reduktion des Hydrierkatalysators jedoch meistens erst im Hydrierreaktor selbst. Dies geschieht nach einer dem Fachmann bekannten Weise durch zunächst erfolgende Inertisierung mit Stickstoff oder einem anderen Inertgas. Die Reduktion wird, mit einem Wasserstoff-haltigen Gas als reine Gasphase oder unter Inert-Kreislauf durchgeführt. Die Temperatur, bei der diese Vorreduktion durchgeführt wird, beträgt im Allgemeinen 5 - 200 0C, vorzugsweise 20 - 150 0C.
Auch eine Regenerierung des erfindungsgemäßen Katalysators ist außer- oder inner¬ halb des Hydrierreaktors bei Temperaturen von 15 bis 500 0C möglich.
Weiterer Gegenstand der vorliegenden Erfindung sind die durch dieses Verfahren er- hältlichen Hydrierkatalysatoren.
Die vorliegende Erfindung betrifft darüber hinaus die Verwendung der erfindungsge¬ mäßen Katalysatoren zur Hydrierung ungesättigter Verbindungen sowie entsprechende Hydrierverfahren. Die erfindungsgemäßen Verfahren zur selektiven Hydrierung zeichnen sich durch die Verwendung des erfindungsgemäßen Katalysators aus. Die erfindungsgemäßen Hyd¬ rierverfahren wird im Allgemeinen genauso wie die bekannten, denselben Zwecken dienenden, heterogen katalysierten Hydrierverfahren durchgeführt. Sie können als he- terogen katalysierte Gasphasenverfahren, bei denen sich sowohl der Kohlenwasser¬ stoffstrom wie auch der Hydrierwasserstoff in der Gasphase befinden, oder als hetero¬ gen katalysierte Gas-/Flüssigphasenverfahren, bei denen der Kohlenwasserstoffstrom zumindest teilweise in flüssiger Phase und Wasserstoff in der Gasphase und/oder in gelöster Form in der Flüssigphase vorliegen, durchgeführt werden. Die einzustellenden Parameter, wie Durchsatz an Kohlenwasserstoffstrom, ausgedrückt in Raumgeschwin¬ digkeit in der Einheit [m3/m3(kat) h] oder Massengeschwindigkeit [t/m3(kat) h], bezogen auf das Katalysatorvolumen, Temperatur und Druck werden analog zu denen bekann¬ ter Verfahren gewählt. Die Eintrittstemperatur liegt üblicherweise im Bereich von 0 bis 100 0C und der Druck im Bereich von 2 bis 50 bar. Die Hydrierung kann dabei in einer oder in mehreren Reaktionsstufen durchgeführt werden, wobei in mindestens einer Reaktionsstufe ein erfindungsgemäßer Katalysator verwendet wird.
Die Menge des eingesetzten Wasserstoffs, bezogen auf die Menge des zugeführten Kohlenwasserstoffstroms, ist abhängig von dem Gehalt des Kohlenwasserstoffstroms an unerwünschten ungesättigten Verbindungen und deren Art. Im Allgemeinen wird der Wasserstoff in einer Menge vom 0,4- bis zum 5-fachen der stöchiometrisch zum voll¬ ständigen Wasserstoffumsatz beim Reaktordurchgang erforderlichen Menge zugege¬ ben. Die Hydrierung von Dreifachbindungen läuft im Normalfall schneller ab als die konjugierter Doppelbindungen und dieses wiederum schneller als die unkonjugierter Doppelbindungen. Dieses erlaubt eine entsprechende Steuerung des Verfahrens an¬ hand der zugegebenen Wasserstoffmenge. In Sonderfällen, beispielsweise wenn eine hohe Isomerisierung von 1 -Buten zu eis- oder trans-2-Buten gewünscht ist, kann auch ein höherer Wasserstoffüberschuss, beispielsweise ein 10-facher Wasserstoffüber- schuss, verwendet werden. Der Wasserstoff kann inerte Gase enthalten, beispielswei- se Edelgase wie Helium, Neon oder Argon, Stickstoff, Kohlendioxid und/oder niedrige Alkane, wie Methan, Ethan, Propan und/oder Butan. Solche Inertgase in Wasserstoff liegen vorzugsweise in einer Konzentration von weniger als 30 Vol.-% vor. Besonders bevorzugt ist der Wasserstoff im Wesentlichen frei von Kohlenmonoxid.
Die Verfahren können in einen oder in mehreren parallelen oder hintereinander ge¬ schalteten Reaktoren, jeweils im einfachen Durchgang oder in Kreislauffahrweise, durchgeführt werden. Bei Durchführung der Verfahren in der GasVFIüssigphase wird der Kohlenwasserstoffstrom nach Durchtritt durch einen Reaktor üblicherweise in ei¬ nem Abscheider von Gasen befreit und ein Teil der erhaltenen Flüssigkeit in den Reak- tor zurückgeführt. Das Verhältnis zwischen zurückgeführtem und erstmals in den Reak¬ tor eingespeisten Kohlenwasserstoffstrom, das so genannte Rücklaufverhältnis, wird so eingestellt, dass unter den sonstigen Reaktionsbedingungen, wie Druck, Eintritts¬ temperatur, Durchsatz und Wasserstoffmenge, die adiabate Temperaturerhöhung nicht zu groß wird.
Einsatzzwecke der erfindungsgemäßen Verfahren sind beispielsweise die Hydrierung von Ethin in C2-Strömen, insbesondere von Propin und/oder Propadien zu Propen in C3-Strömen, insbesondere von 1 ,3-Butadien zu Butenen in C4-Strömen und/oder von Alkinen, Dienen sowie Styrol in C5+-Strömen (Pyrolysebenzin).
So eignen sich die erfindungsgemäßen Katalysatoren beispielsweise zur Verwendung in einem Verfahren zur selektiven Hydrierung ungesättigter Kohlenwasserstoffe aus Alken- und/oder Alkadien-haltigen flüssigen Kohlenwasserstoffgemischen, deren Hauptbestandteile drei Kohlenstoffatome im Molekül enthalten, wobei der erfindungs¬ gemäße Katalysator mit dem Kohlenwasserstoff ström, beispielsweise unter den zuvor beschriebenen Bedingungen, in Kontakt gebracht wird.
Hydrierverfahren für derartige C3-Ströme sind aus dem Stand der Technik bereits be¬ kannt. So beschreibt die DE 37 09 328 A1 ein Rieselphasenverfahren zur selektiven Hydrierung stark ungesättigter Kohlenwasserstoffe. Das Verfahren dient der weitest gehenden und selektiven Entfernung hoch ungesättigter Komponenten aus Alken-, Alkadien- und/oder Aromaten-haltigen flüssigen Kohlenwasserstoffgemischen, deren Hauptbestandteile wenigstens drei Kohlenstoffatome im Molekül enthalten. Dabei er¬ folgt die Hydrierung an einem fest angeordneten Palladium-Trägerkatalysator bzw. einem fest angeordneten Katalysatorensystem, bestehend aus zwei bis vier Palladium- Trägerkatalysatoren.
Nachteilig an diesem Verfahren unter Verwendung von reinen Palladium-Katalysatoren ist, dass die Verwendung reiner Palladium-Katalysatoren leicht zu einer Überhydrie¬ rung und zu einer Grünölbildung führt. Dieses hat eine schnelle Verkokung zur Folge und bedingt somit kurze Lebenszeiten des verwendeten Katalysators.
Um dieses zu verhindern, wird der erfindungsgemäße bevorzugt silberhaltige Katalysa¬ tor in einem Hydrierverfahren zur Hydrierung von C3-Strömen verwendet. Hierdurch wird die Überhydrierung und Grünölbildung vermindert. Darüber hinaus muss das ver- wendete Palladium in einer bestimmten Randzone des Katalysators lokalisiert sein, um eine genügende Aktivität zur Hydrierung der C3-Ströme aufzuweisen. Dieses wird von den erfindungsgemäßen Katalysatoren erfüllt, die eine Eindringtiefe des Palladiums von bis 1000 μm aufweisen.
Das verwendete Silber ist darüber hinaus über das ganze Profil des Katalysators im Wesentlichen homogen verteilt. Hierdurch wird eine Grünölbildung durch den Katalysa- tor verringert oder vermieden. Auch dieses wird von den erfindungsgemäßen Katalysa¬ toren erfüllt, die Silber im Wesentlichen über den ganzen Strangquerschnitt nahezu ho¬ mogen verteilt haben.
Das erfindungsgemäße Verfahren zur Hydrierung der C3-Ströme dient im Wesentli¬ chen zur selektiven Hydrierung von in diesen Kohlenwasserstoffgemischen enthalte¬ nem Propin- und/oder Propadien zu Propen bei minimaler Bildung von Propan.
In einer besonders bevorzugten Ausführungsform erfolgt die Hydrierung in einer Stufe.
Alternativ kann die Hydrierung auch in zwei Verfahrensstufen durchgeführt werden. Der so erhaltene C3-Strom weist dann - vor den jeweiligen Hydrierstufen - beispiels¬ weise die folgenden Gehalte auf:
Die C3-Hydrierung erfolgt vorzugsweise mit einer überwiegend flüssigen C3-Phase und einer Wasserstoffgasphase.
Dabei beträgt der Druck vorzugsweise 9 bis 30 barg, besonders bevorzugt 10 bis 25 barg, insbesondere 10 bis 16 barg. Die Eintrittstemperatur beträgt vorzugsweise 0 bis 50 0C1 besonders bevorzugt 0 bis 40 0C, insbesondere 20 bis 30 0C. Die Temperatur¬ erhöhung beträgt vorzugsweise 0 bis 60 0C, besonders bevorzugt 0 bis 40 0C, insbe¬ sondere 0 bis 5 0C. Die Belastung (whsv) beträgt vorzugsweise 3 bis 30 kg/lh, beson¬ ders bevorzugt 5 bis 25 kg/lh, insbesondere 8 bis 15 kg/lh. Die Leerraumgeschwindig¬ keit beträgt vorzugsweise 0,2 bis 20 cm/s, besonders bevorzugt 0,5 bis 10 cm/s, insbe¬ sondere 1 bis 5 cm/s. Das Verhältnis von Wasserstoff zu Methylacetylen und Propa¬ dien beträgt vorzugsweise 0,9 bis 2, besonders bevorzugt 1 ,01 bis 2.
In einer bevorzugten Ausführungsform erfolgt die C3-Hydrierung in einer Stufe. Alter¬ nativ ist auch eine Hydrierung in zwei Stufen möglich.
Die Reaktionsführung erfolgt auf eine dem Fachmann an sich bekannte Weise, bei¬ spielsweise adiabatisch, mit Siedekühlung oder isotherm, bevorzugt isotherm und be- sonders bevorzugt ist bei der isothermen Reaktionsführung die Verwendung eines Kühlmittels, z.B. Ammoniak.
Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungs- gemäßen Hydrierkatalysatoren in Verfahren zur Hydrierung von C4-Strömen.
Verfahren zur Hydrierung von C4-Strömen sind aus dem Stand der Technik bekannt. So beschreibt EP 0 523 482 B1 ein Verfahren zur selektiven Hydrierung von Butadien zu Butenen in der Flüssig- oder Rieselphase an fest angeordneten Edelmetall- Trägerkatalysatoren. Dabei wird ein Butadien-reicher C4-Strom, mit Butadien-Gehalten von 20 - 80 Gew.-%, bezogen auf den C4-Strom, in zwei hintereinander geschalteten Reaktionszonen so hydriert, dass das Hydrierprodukt der ersten Reaktionszone 0,1 - 20 Gew.-% und das Hydrierprodukt der zweiten Reaktionszone 0,005 - 1 Gew.-% Restbutadien, bezogen auf den C4-Strom, enthält.
Die in der vorliegenden erfindungsgemäßen Hydrierung zu verwendenden C4- Kohlenwasserstoffgemische entstehen hauptsächlich beim Steam-Cracken von Mine¬ ralöl-stämmigen Kohlenwasserstoffen, z.B. Naphtha. Neben der Hauptkomponente 1 ,3-Butadien können diese Kohlenwasserstoffgemische auch geringe Mengen an Ver- bindungen mit kumulierten Doppelbindungen und/oder acetylenischen Dreifachbindun¬ gen enthalten. Die Zusammensetzung des Roh-C4-Schnitts aus dem Steam-Cracker kann in weiten Bereichen variieren (siehe Tabelle 1).
Tabelle 1 : Typische Zusammensetzung eines C4-Schnitts eines Steam-Crackers, angegeben in Gew.-%.
C4-Feed
Summe C3-Spuren < 1
1 ,3-Butadien 35 - 70 I Issoobbuutteenn 14 - 35
1 -Buten 5 - 22 trans-2-Buten 3 - 7 cis-2-Buten 2 - 6
Butan 1 - 12 i i--BBuuttaann 0 - 10
Butenin (Vinylacetylen) 0,3 - 2
1-Butin (Ethylacetylen) 0,1 - 0,5
1 ,2-Butadien 0 - 0,5
Summe C5-Souren < 1 Die Zusammensetzung ist im Wesentlichen abhängig von dem Einsatzstoff und den Spaltbedingungen des Steam-Crackers. Üblicherweise ist in dem Roh-C4-Schnitt zwi¬ schen 35 - 50 Gew.-% Butadien enthalten.
Grundsätzlich können mit den erfindungsgemäßen Verfahren bzw. erfindungsgemäßen Katalysatoren alle, wie auch immer gewonnenen C4-Schnitte mit Butadien-Gehalten bis 80 Gew.-% selektiv hydriert werden. Vorzugsweise werden C4-Ströme eingesetzt, die 30 - 60 Gew.-% Butadien enthalten. Vinylacetylen und Butine werden ebenfalls selektiv zu Butenen hydriert. n-Butan und i-Butan gehen unverändert aus dem erfin- dungsgemäßen Verfahren hervor. i-Buten kann je nach Verfahrensbedingungen uner¬ wünschterweise bei hoher Hydrierschärfe zu i-Butan hydriert werden.
Das erfindungsgemäße Verfahren wird zweckmäßig in der Flüssig- oder Rieselphase durchgeführt, wobei der Wasserstoff in an sich bekannter Weise in dem flüssigen C4- Strom fein verteilt wird. Vorzugsweise führt man die selektive Hydrierung des Buta¬ diens in der Rieselphase von oben nach unten mit fest angeordneten Hydrierkatalysa¬ toren durch. Auch eine Durchführung von unten nach oben ist möglich.
In bevorzugten Ausführungsformen erfolgt das erfindungsgemäße Verfahren zur Hyd- rierung von C4-Strömen zwei- oder dreistufig.
Die beiden Reaktionszonen müssen so voneinander getrennt sein, dass dazwischen Wasserstoff eindosiert und fein verteilt werden kann. Vorzugsweise sind die Reakti¬ onszonen in Form von getrennten Hydrierreaktoren ausgeführt. Der Wasserstoff wird in der einfachen bis zweifachen der zum berechneten Umsatz stöchiometrisch notwendi¬ gen Menge (bezogen auf das Gesamtverfahren (alle Stufen)) zugegeben, vorzugswei¬ se wird die stöchiometrisch erforderliche Menge bis zu einem Wasserstoffüberschuss in der 1 ,2fachen Menge zugegeben.
Der für die Hydrierung verwendete Wasserstoff kann bis zu 30 Vol-% an Inertgas, z.B. Methan, enthalten, ohne dass hierdurch die Hydrierung wesentlich beeinträchtigt wird. Der für das erfindungsgemäße Verfahren verwendete Wasserstoff sollte bevorzugt CO- frei sein; geringe Mengen an CO (< 5 ppm) stören aber nicht.
Die Reaktionsbedingungen in jeder der Reaktoren können in weiten Bereichen variiert werden. So läuft das erfindungsgemäße Verfahren bei Reaktoreingangstemperatur von 20 bis 100 0C, vorzugsweise 30 bis 90 0C, wobei die Temperaturerhöhung vorzugswei¬ se 10 bis 60 0C beträgt. Der Druck beträgt vorzugsweise 5 bis 50 barg, besonders be¬ vorzugt 5 bis 30 bar. Die auf den G4-Einsatz bezogene flüssige Raumzeitgeschwindig- keit "liquid hourly space velocity" (Ihsv) beträgt vorzugsweise 1 bis 30 h"\ vorzugswei¬ se 2 bis 15 h'1. Die Frischfeed-Belastung (whsv) beträgt vorzugsweise 0,5 bis 15 kg/lh. Das Verhältnis Kreislaufstrom zu Frischfeed beträgt vorzugsweise 2 bis 20. Das Ver¬ hältnis von Wasserstoff zu Butadien beträgt vorzugsweise 1 bis 1 ,5.
Unter diesen Bedingungen wird ein möglichst maximaler Gehalt an 1 -Buten bei niedri- gern Austrittsgehalt an 1 ,3-Butadien von vorzugsweise 10 bis 1000 ppm erreicht, wobei eine hohe 1 -Butenselektivität erreicht wird. So beträgt der 1 -Buten-Gehalt im hydrierten
C4-Strom vorzugsweise 30 %, besonders bevorzugt 40 %, insbesondere 50 % (nach
Isobuten-Entfernung, Rest Isobuten: vorzugsweise 0,5 bis 4 %, besonders bevorzugt 1 bis 3 %), während das Verhältnis von 1 -Buten zu 2-Buten vorzugsweise 1 ,2 bis 2,0, besonders bevorzugt 1 ,3 bis 1 ,6 beträgt.
Wenn die Hydrierung des C4-Stroms zweistufig erfolgt, so wird in der ersten Reakti¬ onsstufe vorzugsweise der erfindungsgemäße Katalysator verwendet, wobei eine 1- Butenselektivität von vorzugsweise größer 60 % erreicht wird.
Das erfindungsgemäße Verfahren weist eine Reihe von Vorteilen auf. Das im Einsatz¬ stoff enthaltene Butadien wird praktisch quantitativ mit sehr hoher Selektivität hydriert. Man erreicht hierbei trotz des sehr hohen Butadienumsatzes eine Butenselektivität S von mindestens 96 %.
Die Hydrierung ist über einen sehr großen Bereich bis hin zu extrem hohen Butadien¬ umsätzen selektiv. Die Isomerisierung von Buten-1 zu Buten-2 ist durch die Wahl des erfindungsgemäßen Katalysators in der ersten Stufe deutlich geringer als in den Stan¬ dardverfahren und Isobuten wird im Wesentlichen nicht zu Isobutan umgesetzt. An den Wasserstoff werden keine besonderen Reinheitsanforderungen gestellt, solange keine irreversiblen Katalysatorgifte, wie Blei oder Arsen, enthalten sind. Die Wasserstoffdo- sierung kann mit automatisch arbeitenden Analysenverfahren geregelt werden.
Da die Selektivität auch bei höherer Reaktionstemperatur erhalten bleibt, werden keine aufwendigen Kühlvorrichtungen oder Anlagen zur Kälteerzeugung benötigt. Die Wär¬ meabfuhr wird einfach über eine ausreichende Menge an Flüssig-Recycle von hydrier¬ tem Produkt geregelt. Im Kreislaufstrom befindet sich ein Wärmetauscher.
Ferner werden bei dem erfindungsgemässen Verfahren keine merklichen Mengen an Oligomerisationsprodukten gebildet.
Die vorliegende Erfindung wird anhand der nachfolgend beschriebenen Beispiele nä¬ her erläutert. 1. C3-Hydrierung:
Die Herstellung der Katalysatoren erfolgt nach der dem Fachmann bekannten „incipient wetness"-Methode.
Der Palladiumgehalt der Tränklösung wird über das Verdünnen einer salpetersauren Palladium-haltigen Stammlösung auf den jeweiligen Wert eingestellt. Hierbei wird avon einer Stammlösung mit ungefähr 11% Palladium, im Wesentlichen als Nitrat vorlie¬ gend, mit einem Gehalt von 2 bis 6 Gew.-% Nitrit in der Stammlösung ausgegangen.
In den Beispielen werden Katalysatorträgerstränge (Extrudate) mit einem Durchmesser von 3 mm verwendet.
1.1 Herstellung eines Vergleichskatalysators I
AI2O3-Stränge mit einer Oberfläche von 60-90 m2/g werden mit einer Tränklösung, ent¬ haltend Palladiumnitrat und Palladiumnitrit, welche mit Salpetersäure auf einen pH- Wert von 0,2 bis 2 angesäuert wurde, getränkt. Die feuchten Stränge werden bei 200 0C getrocknet und bei 600 0C kalziniert. Hierbei wird ein Vergleichskatalysator I mit 0,3 Gew.-% Palladium erhalten.
Die Konzentration der Nitritionen in der Tränklösung beträgt 0,1%. Nitrat stellt den ü- berwiegenden Teil der Anionen.
1.2 Herstellung eines Vergleichskatalysators Il
Der Vergleichskatalysator Il wird analog dem Beispiel zur Herstellung des Vergleichs¬ katalysators I hergestellt, wobei der pH-Wert kleiner als 0,2 ist und durch die Verwen¬ dung von weniger Palladium und mehr Silber in der Tränklösung ein Katalysator mit 0,2 Gew.-% Palladium und 0,1 Gew.-% Silber resultiert.
Bei diesem Katalysator liegt das Palladium nicht in einer Schale bis zu 1000 μm vor, . sondern ist wie Silber im Wesentlichen homogen über den gesamten Querschnitt des Katalysators verteilt.
1.3 Herstellung des erfindungsgemäßen Katalysators III
Die Herstellung des erfindungsgemäßen Katalysators III erfolgt analog zur Herstellung des Vergleichskatalysators Il (pH-Wert 0,2 bis 2). Es resultiert ein Katalysator mit 0,2 Gew.-% Palladium und 0,1 Gew.-% Silber. 1.4 Herstellung des erfindungsgemäßen Katalysators IV
Der erfindungsgemäße Katalysator IV wird analog zu dem erfindungsgemäßen Kataly¬ sator III hergestellt, wobei jedoch ein Katalysator mit 0,5 Gew.-% Palladium und 0,1 Gew.-% Silber durch die Verwendung von mehr Palladiumnitrat und -nitrit erhalten wird.
Die so hergestellten Katalysatoren werden in einer Hydrierung eines C3-Stromes ver¬ wendet. Die Hydrierung findet in einem Reaktor statt. Der Reaktor ist ausgestattet mit: - Mengen kontrollierter Edukt- Versorgung,
Mengen kontrollierter Wasserstoff-Versorgung, einem Rohrreaktor (Länge 2 m, Innendurchmesser 17,6 mm) mit innen lie¬ gendem zentrierten Thermoelement (Hülsendurchmesser 4 mm) und Vor¬ heizzone (V2A-Kugel), freier Querschnitt: 2,31 x 10"4 m2, - Produktabscheider für Gas- und Flüssigphasentrennung,
Gas-Auslasssystem mit Kühler, Flüssigkeitskreislauf und Flüssigkeitsaustragssystem.
Die Ein- und Austragsanalysen werden mithilfe eines Online-GC-Chromatographen durchgeführt.
Die vor der Reaktion in situ erfolgende Reduktion verläuft unter folgenden Bedingun¬ gen: 120 0C, 40 Nl/h H2 5 barg für 12 Stunden.
Die Hydrierung wird unter den folgenden Bedingungen durchgeführt:
70 ml Katalysator Tein = 20 °C
Whsv = 19 kg/lKath Kreislauf: Eduktmenge = 2 Druck = 10 - 20 barg
Reinheit des H2 = 100 % (nicht beschränkend) Bei einem MAPD-Umsatz von 99% werden erhalten
Propenselektivität: Δ Propen / Δ MAPD mit MAPD = Methylacetylen und Propadien
2. Hydrierung von C4-Strömen
Die Herstellung der Katalysatoren erfolgt nach der dem Fachmann bekannten „incipient wetness"-Methode.
Der Palladiumgehalt der Tränklösung für die Katalysatoren I, III, IV und V wird über das Verdünnen einer salpetersauren Palladium-haltigen Stammlösung auf den jeweiligen Wert eingestellt. Hierbei wird von einer Stammlösung mit ungefähr 11 % Palladium, im Wesentlichen als Nitrat vorliegend, mit einem Gehalt von 2 bis 6 Gew.-% Nitrit in der Stammlösung, ausgegangen.
In den Beispielen werden Katalysatorträgerstränge (Extrudate) mit einem Durchmesser von 3 mm verwendet.
2.1 Herstellung eines erfindungsgemäßen Katalysators I
AI2O3-Stränge mit einer Oberfläche von 60-90 m2/g werden mit einer Tränklösung, ent¬ haltend Palladiumnitrat, Palladiumnitrit und Silbernitrat, welche mit Salpetersäure auf einen pH-Wert von 0,2 bis 2 angesäuert wurde, getränkt. Die feuchten Stränge werden bei 200 0C getrocknet und bei 600 °C kalziniert. Es wird ein Katalysator erhalten, der 0,3 Gew.-% Palladium und 0,1 Gew.-% Silber enthält, wobei das Gewichtsverhältnis von Palladium zu Silber 3 beträgt.
2.2 Herstellung eines Vergleichskatalysators Il
Der Vergleichskatalysator Il wird hergestellt wie der erfindungsgemäße Katalysator I, wobei eine andere Palladiumnitrat-Stammlösung mit 0,06 Gew.-% NO2 " anstelle von 2 bis 6 Gew.-% NO2 "verwendet wird. Die fertige Tränklösung enthält folglich 0,0024 Gew.-% NO2 ". 2.3 Herstellung eines Vergleichskatalysators III
Der Vergleichskatalysator III wird entsprechend dem erfindungsgemäßen Hydrierkata- lysator I hergestellt, wobei jedoch auf Silber verzichtet wurde.
2.4 Herstellung eines erfindungsgemäßen Katalysators IV
Der erfindungsgemäße Hydrierkatalysator IV wird entsprechend dem erfindungsgemä- ßen Hydrierkatalysator I hergestellt, wobei jedoch ein Katalysator resultiert, der ein Verhältnis von Palladium zu Silber von 6 mit 0,05% Silber aufweist.
2.5 Herstellung eines erfindungsgemäßen Hydrierkatalysators V
Der erfindungsgemäße Hydrierkatalysator V wird entsprechend dem erfindungsgemä¬ ßen Hydrierkatalysator I hergestellt, wobei das Gewichtsverhältnis von Palladium zu Silber 3,5 und der Anteil an Silber 0,085% beträgt.
Die so erhaltenen Katalysatoren werden in einer Selektivhydrierung eines Roh-C4- Schnittes getestet.
Die Versuche werden in einer Versuchsanlage durchgeführt, die mit einem elektrischen beheizbaren Festbettreaktor von 16 mm Durchmesser und 2 m Länge, einer Vorheiz¬ strecke, einem Abscheider, einem Kühler für den Reaktoraustrag und einem Flüssig- keitskreislauf ausgestattet ist. Die verwendete Katalysatormenge ist 200 ml. Der Roh- C4-Schnitt wird über eine Förderpumpe dosiert und an einer Mischstelle mit dem men¬ gengeregelten zugeführten Wasserstoff vermischt. Im Abscheider wird der Reaktions- austrag in Gas- und Flüssigphase getrennt. Der Großteil der Flüssigphase wird im Kreislauf wieder in den Reaktor zugeführt. Ein kleinerer, der dem Reaktor zugeführten Menge des Roh-C4-Schnitts entsprechender Teil wird kontinuierlich aus dem Abschei¬ der als Produkt entnommen. Die Analysen werden mittels eines Gaschromatographen durchgeführt.
Vor der erstmaligen Zufuhr von Kohlenwasserstoff in den Reaktor werden die Katalysa- toren über 12 Stunden bei 120 0C und 5 bar Druck mit Wasserstoff behandelt. An¬ schließend wird die Anlage mit bereits selektiv hydriertem C4-Schnitt gefüllt, auf 50 0C beheizt und in Betrieb genommen. Nach Erreichen der Betriebsbedingungen (Druck, Temperatur, Durchsatz) wird der Roh-C4-Schnitt und Wasserstoff zugeführt. Die Hyd¬ rierung erfolgt bei 50 0C unter den folgenden Bedingungen: Whsv = 5 kg/lKath Kreislauf: Edukt = 8 Druck = 10 - 15 barg Reinheit des H2 = 10O % (nicht beschränkend)
Gesamt-Buten-Selektivität = 1 - (Δ (n-Butan)/Δ(1 ,3-Butadien))
1 -Buten-Selektivität = Δ(1-Buten)/Δ(1 ,3-Butadien)

Claims

Patentansprüche
1. Katalysator, der mindestens ein Metall der VIII. Gruppe des Periodensystems der Elemente als Hydriermetall und zusätzlich einen Promotor auf einem oxidischen
Träger umfasst, dadurch gekennzeichnet, dass mindestens 80 % des Metalls der VIII. Gruppe des Periodensystems der Elemente in einer Schicht zwischen der Oberfläche des Katalysators und einer Eindringtiefe, die maximal 80 % des Ra¬ dius des Katalysators, gerechnet von der Oberfläche des Katalysators, ent- spricht, im Wesentlichen homogen und der Promotor über den gesamten Quer¬ schnitt des Katalysators im Wesentlichen homogen verteilt vorliegt.
2. Katalysator, nach Anspruch 1 , dadurch gekennzeichnet, dass der Katalysator einen Durchmesser von 2,5 bis 10 mm aufweist, mindestens 80 % des Metalls der VIII. Gruppe des Periodensystems der Elemente in einer Schicht zwischen der Oberfläche des Katalysators und einer Eindringtiefe von maximal 1000 μm, gerechnet von der Oberfläche des Katalysators, im Wesentlichen homogen und der Promotor über den gesamten Querschnitt des Katalysators im Wesentlichen homogen verteilt vorliegt.
3. Katalysator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der oxidi¬ sche Träger Aluminiumoxid ist.
4. Katalysator nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der oxidische Träger Aluminiumoxid in einer Mischung aus δ-, θ- und oc-
Aluminiumoxid ist.
5. Katalysator nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Metall der VIII. Gruppe des Periodensystems der Elemente Palladium ist.
6. Katalysator nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Gehalt an Metall der VIII. Gruppe des Periodensystems 0,05 bis 5 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, ist.
7. Katalysator nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Promotor ein Metall der IB. Gruppe des Periodensystems der Elemente ist.
8. Katalysator nach Anspruch 7, dadurch gekennzeichnet, dass das Metall der IB.
Gruppe des Periodensystems der Elemente Silber ist.
9. Katalysator nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass das Atom¬ verhältnis zwischen dem Metall der VIII. Gruppe des Periodensystems der Ele¬ mente zum Metall der IB. Gruppe des Periodensystems der Elemente 0,1 bis 10 beträgt.
10. Verfahren zur Herstellung eines Katalysators gemäß einem der Ansprüche 1 bis 9, wobei ein oxidischer Träger mit einer Lösung, die Nitrat- und Nitritsalze von Metallen der VIII. Gruppe des Periodensystems der Elemente enthält und mit Salpetersäure angesäuert ist, getränkt, getrocknet und kalziniert wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Trocknung des Katalysators unter Bewegung in einem Drehrohr erfolgt.
12. Verfahren nach Anspruch 10 oder 11 , dadurch gekennzeichnet, dass die Trock¬ nung mit einem Luftstrom als Gegenstrom erfolgt.
13. Verfahren nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass die Trocknung und die Kalzinierung in einem Drehrohr kombiniert erfolgt.
14. Verfahren nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass der Katalysator außer- oder innerhalb eines Hydrierreaktors bei Temperaturen von 0 bis 200 0C reduziert wird.
15. Verfahren nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, dass der Katalysator außer- oder innerhalb eines Hydrierreaktors bei Temperaturen von 15 bis 500 0C regeneriert wird.
16. Katalysator, erhältlich nach den Verfahren gemäß einem der Ansprüche 10 bis 15.
17. Verwendung eines Katalysators gemäß einem der Ansprüche 1 bis 9 oder 16 zur Hydrierung ungesättigter Verbindungen.
18. Verwendung nach Anspruch 17, dadurch gekennzeichnet, dass man in C3- Strömen Propin und/oder Propadien zu Propen hydriert.
19. Verwendung nach Anspruch 17, dadurch gekennzeichnet, dass man in G4-
Strömen 1 ,3-Butadien zu Butenen hydriert.
20. Verfahren der selektiven Hydrierung ungesättigter Verbindungen in der Gaspha¬ se oder gemischten Gas-/Flüssigphase bei Eintrittstemperaturen von 0 bis 100 0C und Drücken im Bereich von 5 bis 50 bar, dadurch gekennzeichnet, dass man die selektive Hydrierung in einer oder mehreren Reaktionsstufen durchführt und in wenigstens einer Reaktionsstufe einen Katalysator gemäß einem der Ansprü¬ che 1 bis 9 oder 16 verwendet.
21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass man in C3-Strömen Propin und/oder Propadien zu Propen hydriert.
22. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass man Ethin in C2- Strömen hydriert.
23. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass man Alkine, Diene und/oder Styrol in C5+ Strömen hydriert.
24. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass man in C4-Strömen 1 ,3-Butadien zu Butenen hydriert.
25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, dass man die Hydrierung in zwei Reaktionsstufen durchführt und in der ersten Stufe einen Katalysator ge¬ mäß einem der Ansprüche 1 bis 9 oder 16 verwendet.
26. Verfahren nach Anspruch 24 oder 25, dadurch gekennzeichnet, dass in der ers- ten Reaktionsstufe eine 1 -Butenselektivität von größer 60 % erreicht wird.
EP05795758A 2004-10-13 2005-10-13 Selektivhydrierkatalysator Ceased EP1804968A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004059282A DE102004059282A1 (de) 2004-10-13 2004-10-13 Selektivhydrierkatalysator
PCT/EP2005/011026 WO2006040159A1 (de) 2004-10-13 2005-10-13 Selektivhydrierkatalysator

Publications (1)

Publication Number Publication Date
EP1804968A1 true EP1804968A1 (de) 2007-07-11

Family

ID=35447582

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05795758A Ceased EP1804968A1 (de) 2004-10-13 2005-10-13 Selektivhydrierkatalysator

Country Status (8)

Country Link
US (1) US8067334B2 (de)
EP (1) EP1804968A1 (de)
JP (1) JP4764428B2 (de)
KR (1) KR101264443B1 (de)
CN (1) CN101072637A (de)
CA (1) CA2583155C (de)
DE (1) DE102004059282A1 (de)
WO (1) WO2006040159A1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004049940A1 (de) * 2004-10-13 2006-04-20 Basf Ag Verfahren zur Herstellung eines C4-Olefin-Gemisches durch Selektivhydrierung und Metatheseverfahren zur Verwendung dieses Stroms
CN102728352A (zh) 2005-07-27 2012-10-17 切夫里昂菲利普化学有限责任公司 选择性加氢催化剂及其制备和使用方法
JP5222278B2 (ja) 2006-03-21 2013-06-26 ビーエーエスエフ ソシエタス・ヨーロピア アミンの製造法
WO2007147781A1 (de) * 2006-06-21 2007-12-27 Basf Se Absorptionsmasse und verfahren zur entfernung von quecksilber
CN101489671B (zh) * 2006-07-17 2011-08-03 巴斯夫欧洲公司 在包含铜和锌的催化剂存在下氢化不饱和烃的方法
CN101423775B (zh) 2007-11-01 2010-05-12 中国石油天然气股份有限公司 一种选择性镍系加氢催化剂及其制备方法
CN101433841B (zh) * 2007-12-13 2010-04-14 中国石油天然气股份有限公司 一种选择性加氢催化剂及其制备方法
FR2927267B1 (fr) * 2008-02-07 2010-04-16 Inst Francais Du Petrole Catalyseur d'hydrogenation selective et son procede de preparation
DE102008002347A1 (de) * 2008-06-11 2009-12-17 Evonik Oxeno Gmbh Katalysator und Verfahren zur Herstellung von gesättigten Ethern durch Hydrierung ungesättigter Ether
WO2010026046A1 (de) * 2008-08-26 2010-03-11 Basf Se Verfahren zur kontinuierlichen herstellung eines katalysators
EP2547443B1 (de) * 2010-03-19 2022-04-06 Shell Internationale Research Maatschappij B.V. Hydrierungskatalysator
DE102010030990A1 (de) * 2010-07-06 2012-01-12 Evonik Oxeno Gmbh Verfahren zur selektiven Hydrierung von mehrfach ungesättigten Kohlenwasserstoffen in olefinhaltigen Kohlenwasserstoffgemischen
US20120209042A1 (en) * 2011-02-10 2012-08-16 Saudi Basic Industries Corporation Liquid Phase Hydrogenation of Alkynes
DE102011006721A1 (de) * 2011-04-04 2012-10-04 Evonik Oxeno Gmbh Verfahren zur Herstellung von 1-Buten und einem 1,3-Butadienderivat
US9108188B2 (en) * 2012-03-07 2015-08-18 Chevoron Phillip Chemical Company, LP Selective hydrogenation catalyst and methods of making and using same
US20140005449A1 (en) * 2012-03-07 2014-01-02 Basf Corporation Selective Hydrogenation Catalyst and Methods of Making and Using Same
FR2990882B1 (fr) * 2012-05-24 2015-05-15 IFP Energies Nouvelles Procede de preparation d'un catalyseur a base d'un metal du groupe viii et contenant du silicium et procede d'hydrogenation selective mettant en oeuvre ledit catalyseur
CN103787813B (zh) * 2012-10-30 2015-08-19 中国石油化工股份有限公司 一种丁二烯尾气加氢装置及方法
CN103787811B (zh) * 2012-10-30 2015-09-16 中国石油化工股份有限公司 一种丁二烯尾气的加氢方法
TWI615197B (zh) * 2013-09-06 2018-02-21 雪弗龍飛利浦化學公司 選擇性氫化觸媒及其製造與使用方法
CN104437498B (zh) * 2013-09-24 2017-01-11 中国石油化工股份有限公司 丁烯-1临氢异构制丁烯-2催化剂及方法
CN105732272B (zh) * 2014-12-12 2018-10-16 中国石油天然气股份有限公司 甲醇制烯烃装置中微量乙炔选择加氢方法
US10752563B2 (en) * 2016-03-31 2020-08-25 Zeon Corporation Hydrogenation method
WO2017201644A1 (zh) * 2016-05-23 2017-11-30 中国石油天然气股份有限公司 一种钯系负载型加氢催化剂及其制备方法与应用
CN108452852A (zh) * 2017-02-20 2018-08-28 中国石油天然气股份有限公司 一种乙炔前加氢催化剂的器外预还原和钝化处理方法
CN109092298B (zh) * 2017-06-21 2021-09-03 中国石油化工股份有限公司 用于裂解碳四选择加氢催化剂
KR20200072540A (ko) 2017-10-25 2020-06-22 바스프 에스이 선택적 수소화에 의해 c3 내지 c5 탄화수소를 포함하는 물질 스트림으로부터 다이엔을 제거하는 방법
CN110639517A (zh) * 2018-06-27 2020-01-03 中国石油化工股份有限公司 丁二烯选择加氢的催化剂以及应用
EP3911436A1 (de) 2019-01-17 2021-11-24 Shell Internationale Research Maatschappij B.V. Katalysator auf bimetallischer nanopartikelbasis, dessen verwendung zur selektiven hydrierung und verfahren zur herstellung des katalysators
EP3962884A1 (de) * 2019-04-30 2022-03-09 Lyondell Chemical Technology, L.P. Verfahren zur hydrierung von 1,3-butadien
CN110624578A (zh) * 2019-09-24 2019-12-31 浙江三美化工股份有限公司 一种合成1,1,2,3,3-五氯丙烷用的负载型催化剂的制备方法
CN112675837A (zh) * 2019-10-18 2021-04-20 中国石油化工股份有限公司 一种碳四选择加氢催化剂及其制备方法和应用

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2482953A1 (fr) * 1980-05-22 1981-11-27 Inst Francais Du Petrole Procede d'hydrogenation selective d'une di-olefine dans un melange d'hydrocarbures renfermant au moins 4 atomes de carbone et contenant une olefine -a
US4404124A (en) * 1981-05-06 1983-09-13 Phillips Petroleum Company Selective hydrogenation catalyst
US4421676A (en) * 1981-10-29 1983-12-20 Standard Oil Company Process for preparation of palladium on carbon catalysts used in the purification of crude terephthalic acid
EP0686615B2 (de) 1994-06-09 2007-06-27 Institut Francais Du Petrole Verfahren zur katalytischen Hydrierung und in diesem Verfahren zu verwendender Katalysator
FR2742679B1 (fr) 1995-12-22 1998-01-16 Inst Francais Du Petrole Catalyseur d'hydrogenation selective et procede utilisant ce catalyseur
US6054409A (en) 1995-06-06 2000-04-25 Institut Francais Du Petrole Selective hydrogenation catalyst and a process using that catalyst
ITMI971161A1 (it) * 1997-05-19 1998-11-19 Montecatini Tecnologie Srl Catalizzatori di idrogenazione
FR2767721B1 (fr) * 1997-08-29 1999-10-22 Inst Francais Du Petrole Nouveaux catalyseurs utilisables dans les reactions de transformation de composes organiques
US6602821B2 (en) * 1998-08-12 2003-08-05 Institut Francais Du Petrole Supported catalysts to be used in conversion reactions for organic compounds
DE19839459A1 (de) * 1998-08-29 2000-03-02 Basf Ag Katalysator und Verfahren zur Selektivhydrierung ungesättigter Verbindungen in Kohlenwasserstoffströmen
DE19840373A1 (de) * 1998-09-04 2000-03-09 Basf Ag Katalysator und Verfahren zur Selektivhydrierung ungesättigter Verbindungen in Kohlenwasserstoffströmen
DE19959064A1 (de) * 1999-12-08 2001-06-13 Basf Ag Trägerkatalysator zur Selektivhydrierung von Alkinen und Dienen
US6797669B2 (en) * 2000-12-29 2004-09-28 China Petroleum & Chemical Corporation Catalyst for selective hydrogenation, its preparation process and application
WO2004074220A1 (en) * 2003-02-18 2004-09-02 Chevron Phillips Chemical Company Acetylene hydrogenation catalyst with segregated palladium skin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006040159A1 *

Also Published As

Publication number Publication date
KR101264443B1 (ko) 2013-05-14
CA2583155A1 (en) 2006-04-20
KR20070063593A (ko) 2007-06-19
DE102004059282A1 (de) 2006-04-27
CN101072637A (zh) 2007-11-14
CA2583155C (en) 2013-07-09
US8067334B2 (en) 2011-11-29
WO2006040159A1 (de) 2006-04-20
JP2008515631A (ja) 2008-05-15
JP4764428B2 (ja) 2011-09-07
US20090030250A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
EP1804968A1 (de) Selektivhydrierkatalysator
EP0992284B1 (de) Katalysator und Verfahren zur Selektivhydrierung ungesättigter Verbindungen in Kohlenwasserstoffströmen
EP1802559B1 (de) Verfahren zur herstellung eines c4-olefin-gemisches durch selektivhydrierung und metatheseverfahren zur verwendung dieses stroms
EP1242181B1 (de) Pd-ag trägerkatalysator zur selektivhydrierung von alkinen und dienen
EP2043778A1 (de) Verfahren zur hydrierung ungesättigter kohlenwasserstoffe an kupfer und zink enthaltenden katalysatoren
DE19840373A1 (de) Katalysator und Verfahren zur Selektivhydrierung ungesättigter Verbindungen in Kohlenwasserstoffströmen
EP2212267A1 (de) Verfahren zur isomerisierung von olefinen
EP0653243A1 (de) Trägerkatalysatoren
DE2107568A1 (de) Verfahren zur Reinigung von Kohlen Wasserstoffen durch selektive Hydrierung
EP2285488B1 (de) Verfahren zur herstellung von gesättigten ethern durch hydrierung ungesättigter ether
WO2008138785A1 (de) Selektivhydrierkatalysator
WO2017009204A1 (de) Katalysator und verfahren zur isomerisierung von olefinen aus olefin-haltigen kohlenwasserstoffgemischen mit 4 bis 20 c-atomen
DE60004682T2 (de) Hydrierungskatalysatoren
EP2516360A1 (de) Isomerisierung von linearen alpha-olefinen
WO2006131308A1 (de) Verfahren zur oligomerisierung von olefinen
WO2004102488A2 (de) Verfahren zur doppelbindungsisomerisierung bei olefinen
DE19947989A1 (de) Katalysator, Verfahren zu seiner Herstellung und Verfahren zur Selektivhydrierung ungesättigter Verbindungen in Kohlenwasserstoffströmen
DD270442A3 (de) Rieselphasenverfahren zur selektiven hydrierung stark ungesaettigter kohlenwasserstoffe
DE10216745A1 (de) Ruthenium-Katalysatoren für die Hydrierung von aromatischen Kohlenwasserstoffen
DE1299605B (de) Verfahren zur Herstellung eines Cr/Ni-Traegerkatalysators fuer selektive Hydrierung von Diolefinen und Acetylenkohlenwasserstoffen
AT226205B (de) Verfahren zur selektiven Hydrierung von Acetylenen in Kohlenwasserstoffgemischen
DE1443074C (de)
DE102017130369A1 (de) Verfahren zur selektiven hydrierung unter verwendung eines nickel-katalysators, hergestellt mittels eines additivs, umfassend eine amin- oder amid-funktion, oder eine aminosäure
EP3700880A1 (de) Verfahren zur entfernung von dienen aus einem c3- bis c5-kohlenwasserstoffe enthaltenden stoffstrom durch selektivhydrierung
DE1443074B (de) Verfahren zum katalytischen Isomen sieren und Hydrieren von unverzweigten oder wenig verzweigten Olefinen mit 3 bis 8 Kohlenstoffatomen zu starker verzweig ten gesattigten Kohlenwasserstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070514

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PETERSEN, HERMANN

Inventor name: HILL, THOMAS

Inventor name: KONS, GERMAIN

Inventor name: JUNICKE, HENRIK

17Q First examination report despatched

Effective date: 20090527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20160119