EP2043778A1 - Verfahren zur hydrierung ungesättigter kohlenwasserstoffe an kupfer und zink enthaltenden katalysatoren - Google Patents

Verfahren zur hydrierung ungesättigter kohlenwasserstoffe an kupfer und zink enthaltenden katalysatoren

Info

Publication number
EP2043778A1
EP2043778A1 EP07787141A EP07787141A EP2043778A1 EP 2043778 A1 EP2043778 A1 EP 2043778A1 EP 07787141 A EP07787141 A EP 07787141A EP 07787141 A EP07787141 A EP 07787141A EP 2043778 A1 EP2043778 A1 EP 2043778A1
Authority
EP
European Patent Office
Prior art keywords
catalyst
weight
hydrogenation
copper
catalysts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP07787141A
Other languages
English (en)
French (fr)
Inventor
Stephan Hatscher
Michael Hesse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP07787141A priority Critical patent/EP2043778A1/de
Publication of EP2043778A1 publication Critical patent/EP2043778A1/de
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/08Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
    • C07C5/09Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds to carbon-to-carbon double bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with zinc, cadmium or mercury
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a process for the hydrogenation of unsaturated hydrocarbons using copper and zinc-containing catalysts.
  • the invention relates to a process for the hydrogenation of alkynes using catalysts containing copper and zinc, and more particularly to a process for the hydrogenation of alkynes in the presence of alkenes.
  • hydrocarbon streams are produced, stored and processed on a large scale.
  • unsaturated compounds are frequently present whose presence, in particular during processing and / or storage, is known to cause problems or which are not the desired product of value, and which are therefore undesirable components of the corresponding hydrocarbon streams.
  • the secondary component acetylene is undesirable in C2 streams of steam crackers, the secondary components propyne and allen are undesirable in C3 streams and the secondary components 1- and 2-butyne, 1,2-butadiene and vinyl acetylene are undesirable in C4 streams.
  • 1, 3-butadiene is to be recovered as desired product and further processed, and the said minor components and 1, 3-butadiene itself in the cases in which 1-butene, 2-butene (in the cis and / or the trans form ) or isobutene are the desired products.
  • C5 + streams hydrocarbons having at least 5 C atoms, "pyrolysis gasoline”
  • di- and polyenes such as pentadiene and cyclopentadiene, alkynes and / or aromatics with unsaturated substituents such as phenylacetylene and styrene in the Extraction and processing of aromatics or carburetor fuel undesirable.
  • hydrocarbon streams are generally unsaturated compounds having triple bonds (alkynes) and / or diunsaturated compounds (dienes) and / or other diunsaturated or polyunsaturated compounds (polyenes, allenes, alkynenes) and / or aromatic compounds having to remove one or more unsaturated substituents (phenylalkenes and phenylalkynes) in order to obtain the desired products such as ethylene, propylene, 1-butene, isobutene, 1, 3-butadiene, aromatic or carburetor fuel in the required quality.
  • unsaturated compound is always an undesirable component to be removed from the hydrocarbon stream in question.
  • 1,3-butadiene as already indicated above, depending on the application, an undesirable secondary component or the desired product of value.
  • the removal of undesired unsaturated compounds from hydrocarbon streams containing such is frequently carried out by selective hydrogenation of some or all of the undesired unsaturated compounds in the corresponding hydrocarbon stream, preferably by selective hydrogenation to non-interfering, higher saturated compounds and particularly preferably to the products of value representing components of the hydrocarbon stream.
  • acetylene is hydrogenated to ethylene in C2 streams, propylene and allene to propylene in C3 streams, butin to butenes in C4 streams, vinylacetylene to 1,3-butadiene and / or 1,3-butadiene to butenes and C5 +.
  • Phenylacetylene and styrene flow to ethylbenzene, cyclopentadiene to cyclopentene and pentadiene to pentene.
  • supported noble metal catalysts are used in which noble metal is deposited on a catalyst support.
  • the support is generally a porous inorganic oxide, for example silica, aluminosilicate, titanium dioxide, zirconium dioxide, zinc aluminate, zinc titanate and / or mixtures of such carriers, but usually alumina or silicon dioxide are used.
  • promoters or other additives may be included.
  • noble metal-containing catalysts in this field of catalysis called silver, gold, rhodium, iridium, platinum and palladium
  • catalyst poisons such as mercury, arsenic, sulfur, carbon monoxide and other.
  • Another disadvantage is the high price of precious metals. Although these can be recovered from the catalysts as a rule, however, capital is tied up during their operation to a considerable extent. Often therefore also copper-containing catalysts are used for hydrogenation, which are significantly more resistant to catalyst poisons and significantly cheaper.
  • Copper-containing catalysts in particular also copper and zinc-containing catalysts are known. They are predominantly used as catalysts, absorbents or adsorbents for the removal of carbon monoxide from gas streams.
  • WO 02/094435 A1 teaches a process for the oxidative removal of CO from ethylene at temperatures in the range from 70 to 110 ° C. of catalysts containing copper and zinc.
  • No. 6,238,640 B1 describes a process for removing carbon monoxide from hydrogen-containing gas streams by reacting with steam and oxygen to give carbon dioxide and hydrogen in the presence of a catalyst comprising copper and aluminum oxide and at least one metal oxide of the group formed by zinc oxide, chromium oxide and magnesium oxide contains.
  • German laid-open specification DE 19 29 977 teaches 20 to 60 parts of CuO per 100 parts of ZnO-containing catalysts and their use for removing CO from ethylene and propylene streams at a temperature in the range of 50 to 200 ° C.
  • WO 2004/022223 A2 teaches a copper, zinc, zirconium and optionally aluminum-containing adsorption composition and their use for removing CO from streams in a completely reduced state.
  • Copper and zinc containing catalysts are also known for purposes other than removal of CO from streams.
  • US 4,593,148 and US 4,871,710 disclose processes for desulfurization and de-sizing with Cu / Zn catalysts.
  • WO 95/023644 A1 teaches a copper catalyst for hydrogenation of carbon oxides, for example to methanol, or for the so-called shift reaction of carbon monoxide with water to carbon dioxide and hydrogen, in addition to disperse copper and stabilizers such as silica, alumina, chromium oxide, magnesium oxide and / or zinc oxide and optionally also a support such as aluminum oxide, zirconium Contains - dioxide, magnesium oxide and / or silica.
  • DE 198 48 595 A1 discloses a catalyst for nitrous oxide decomposition of the general formula M x AbO 4 in which M is Cu or a mixture of Cu and Zn and / or Mg and which may contain further dopants, in particular Zr and / or La.
  • US Pat. No. 4,552,861 teaches a preparation process for catalysts which contain Cu, Zn, Al and at least one element selected from the group consisting of rare earths and zirconium and their use for methanol synthesis.
  • the methanol catalysts disclosed in US Pat. No. 4,780,481 contain Cu, Zn and at least one alkali or alkaline earth metal, noble metals and / or rare earths, wherein Zn may be partially replaced by Zr. No.
  • 4,835,132 describes CO shift catalysts which are produced from a precursor of the formula (Cu + Zn) 6Al ⁇ R y (CO 3) (x + y) / 2 ⁇ Hi 2 + 2 (x + y) nH 2 ⁇ with a layered structure by calcination, where R La , Ce or Zr, x is at least 1 and at most 4, y is at least 0.01 and at most 1, 5 and n is about 4.
  • US 4,323,482 discloses chromium and nickel containing methanation catalysts consisting of an intimate mixture of a reducible and at least one irreducible metal oxide which are activated by reduction at a temperature of 550 to 1000 ° C. This high temperature leads according to this document to finely divided metals and highly active catalysts. As an aside, the application of this catalyst preparation method to catalysts containing copper is also mentioned.
  • US 3,701,739 also teaches catalysts of a reducible and at least one irreducible oxide, their preparation from an ammoniacal solution of hydroxides or carbonates and their applications, inter alia, for hydrogenation. Examples of catalysts are 30% CuO and 70% ZnO or CuO / ZnO / AbOa catalysts.
  • BE 748 7423 A describes the preparation of catalysts with a range of different active compositions on porous supports by precipitation onto the support with heating and the use of such catalysts for the hydrogenation of amides at at least 50 ° C.
  • the German disclosure supply DE 20 12 430 discloses conversion catalysts comprising 30-55 wt .-% of CuO, 25 - 45 wt .-% MgO, 2-30 parts by weight Al 2 O 3 and 0-30 wt .-% Cr 2 O 3 or ZnO. No.
  • 5,990,040 describes conversion catalysts comprising 30-70% by weight of CuO, 20-90% by weight of ZnO, 0.1-20% by weight of an oxide of an element from group IVB, preferably Ti or Zr, 5-50% by weight % AI2O3 and 50-1000 ppm of an oxide of an element of Group IA, but which can also be used for methanol synthesis, purification and hydrogenation.
  • US 6,706,885 B2 teaches a method for
  • WO 96/014280 A1 teaches catalysts containing Cu, Zn and at least one compound of Al, Zr, Mg, a rare earth metal and / or mixtures thereof and their use for the hydrogenation of carboxylic acid esters.
  • EP 434 062 A1 also teaches a process for the hydrogenation of carboxylic acid esters on a catalyst comprising Cu, Al and a metal selected from the group consisting of Mg, Zn, Ti, Zr, Sn, Ni, Co and their mixtures.
  • EP 394 842 A1 teaches catalysts with 20-75 wt .-% NiO, 10-75 wt .-% ZrO2 and 5-50 wt .-% CuO for the hydrogenation of aliphatic unsaturated compounds such as butynediol at temperatures in the range of 40 ° C to 200 ° C and pressures from 30 to 320 bar.
  • EP 646 410 A1 discloses a process for the production of alcohols by hydrogenation over a copper and zinc oxide and a further oxide as an active composition on a catalyst comprising titanium oxide-coated support. The hydrogenation process is carried out at a temperature of 160 ° C to 350 ° C.
  • EP 1 331 033 A1 discloses a process for preparing spherical supported metal catalysts by dropping a mixture of a polysaccharide and at least one metal compound into a metal salt solution. Such prepared CuO catalyst on SiO 2 carrier is used for the hydrogenation of acetophenone at 80 ° C and 20 bar pressure. No. 3,677,970 mentions not only the sulfur-resistant nickel catalysts disclosed there for the hydrogenation of hydrocarbons but also a number of other catalysts, which also include copper catalysts.
  • WO 02/0681 19 A1 discloses a process for the production of copper and at least one further catalyst from a number of other elements, including zinc, selected element by built-up granulation.
  • WO 2004/026800 A1 describes a process for preparing alcohols by hydrogenating aldehydes on sulfurized copper-zinc oxide catalysts at a temperature of 240 ° C. to 280 ° C. and a (super) pressure of 20 bar to 400 bar.
  • WO 2004/004901 A1 teaches a process for the hydrogenation of C4-acetylenes in a liquid hydrocarbon stream of copper-containing coated catalysts on zeolitic carrier materials at temperatures in the range of 20 to 80 ° C (in the examples, temperatures of 60 ° C are used) and pressures of 15 and 50 bar.
  • N.L. Carr, D.L. Stahlfeld and H.G. Robertson report in Hydrocarbon Processing, May 1985, pp. 100-102, copper-containing absorption masses for the removal of arsenic from olefin streams.
  • the hydrogenation of the olefins is a secondary reaction, which by avoiding temperatures above 250 ° F (corresponding
  • a disadvantage of conventional hydrogenation catalysts with copper as hydrogenation-active metal is therefore that relatively high hydrogenation temperatures are necessary.
  • some streams already show decomposition phenomena at these temperatures; for example, in typical propylene streams-which always contain traces of oxygen-oxygenates are formed as early as 50 ° C.
  • Such oxigenates may act as catalyst poisons in subsequent processes, such as the production of polypropylene on metallocene catalysts, and are therefore highly undesirable.
  • a process has been found for the hydrogenation of unsaturated hydrocarbons on copper and zinc-containing catalysts, which is characterized by using a catalyst whose active composition in unreduced form substantially from 10 to 95 wt .-% copper oxide, as copper (II ) oxide (CuO), 5 to 90% by weight of zinc oxide (ZnO), optionally 0.1 to 50% by weight of zirconium dioxide (ZrO 2) and optionally 0.1% by weight to 50% by weight.
  • % Al2O3 the parts by weight adding up to 100% by weight.
  • the active composition of the catalyst to be used according to the invention contains copper and zinc oxides in unreduced form and optionally zirconium and aluminum oxides. Copper is under reaction conditions, i. in the presence of reducing compounds such as hydrogen, at least in part, but usually completely in the form of metallic copper. In the preparation of the catalyst, it is typically in the form of Cu (I) - and Cu (II) oxides, this is also the safe to be stored and transported form of the catalyst.
  • the active composition of the catalyst to be used according to the invention generally contains copper in an amount which, calculated as CuO, is at least 10 wt .-%, preferably at least 20 wt .-% and more preferably at least 30 wt .-%, and generally at most 95 wt .-%, preferably at most 85 wt .-% and most preferably at most 80 wt .-% copper oxide CuO, in each case based on the total amount of the active composition corresponds. It contains in pure form generally zinc oxide ZnO in an amount of at least
  • alumina AI2O3 it also optionally contains alumina AI2O3. If it is present, its proportion is at least 0.1% by weight, preferably at least 3% by weight and in a particularly preferred form at least 50% and generally at most 50%, preferably at most 40% and in a particularly preferred form at most 30 %, in each case based on the total amount of the active composition.
  • pure form means that apart from the copper (oxide) zinc oxide, zirconium dioxide and aluminum oxide fractions, no further constituents are present, apart from insignificant constituents which, for example, are still entrained from production, such as residues of starting materials and reagents, auxiliaries for shaping and the like.
  • “Pure form” thus means that the active composition essentially consists of the named components.
  • the percentages of the components of the active composition always add up to 100 wt .-%.
  • Very well suitable active masses consists in pure form, for example from approx.
  • the active composition may or may not be applied to an inert carrier.
  • Suitable inert carriers are the known catalyst carriers such as alumina, silica, zirconia, aluminosilicates, clays, zeolites, kieselguhr and the like. It is also possible to use other known auxiliaries for the processing of solids such as catalysts.
  • the active composition is used without a carrier, ie active composition and catalyst are preferably identical. Such catalysts are common commercial goods. Methods for preparing such catalysts are known. A convenient and preferred method comprises the following method steps in the order named:
  • a solution of the components of the catalyst is prepared in a conventional manner, for example by dissolving in an acid such as nitric acid.
  • their starting compounds are also used, for example the nitrates, carbonates, hydroxycarbonates of the metals in an aqueous solution, which may also be acidic, for example nitric acid, dissolved.
  • the proportion of the salts in the solution is stoichiometrically calculated and adjusted according to the desired final composition of the catalyst. It is also possible to add components in insoluble form, for example alumina, as finely divided particles and thus to produce and use a suspension in which some components are dissolved and others are suspended.
  • a solid is precipitated as precursor of the catalyst in step b).
  • This is carried out in a customary manner, preferably by increasing the pH of the solution by adding a base, for example by adding sodium hydroxide solution or soda solution.
  • the resulting solid precipitate is usually separated from the supernatant solution prior to drying in step c), such as by filtration or decantation, and washed with water free of soluble constituents such as sodium nitrate. It is also possible to precipitate only some components of the catalyst or their precursors in this way and to mix the solid precipitate with other, for example, insoluble components such as alumina. It is basically possible to do this by mixing dried powders, but preferably the mixing takes place as a suspension before separation and drying of the precipitate. The precipitate (optionally mixed with other insoluble components) is then normally dried before further processing by conventional drying methods. In general, treatment at a slightly elevated temperature, such as at least 80 ° C., preferably at least 100 ° C.
  • the precipitated and dried precursor of the catalyst is optionally subjected to the calcination step d).
  • the calcination temperature used is generally at least 250.degree. C., preferably at least 300.degree. C. and more preferably at least 350.degree. C., and generally at most 500.degree. C., preferably at most 450.degree. C., and in particular preferably at most 410 ° C.
  • the calcination time is generally at least 10 minutes, preferably at least 20 minutes and more preferably at least 30 minutes, and generally at most 12 hours, preferably at most 6 hours, and most preferably at most 4 hours.
  • the drying step c) and the calcination step d) can merge directly into each other.
  • the catalyst or its precursor is processed in the shaping step e) by conventional shaping methods such as Verstrangen, tableting or pelletizing into shaped articles such as stranded or extruded, tablets or - even spherical - pellets.
  • the catalyst ie, in fact, its precursor
  • a calcination step f the catalyst (ie, in fact, its precursor) is optionally subjected to a calcination step f).
  • the calcination temperature used in this case is generally at least 300 ° C, preferably at least 350 ° C and more preferably at least 400 ° C, especially at least 450 ° C and generally at most 700 ° C, preferably at most 650 ° C. and most preferably not more than 600 ° C, especially not more than 580 ° C.
  • the calcination time is generally at least 30 minutes, preferably at least 60 minutes and generally at most 10 hours, preferably at most 3 hours, and most preferably at most 2 hours, especially at most 90 minutes.
  • the temperature in the said region is slowly increased over the calcination time.
  • the catalyst precursor is converted into the actual catalyst and, as usual, the BET surface area and the pore volume of the catalyst are adjusted, as is known, the BET surface area and the pore volume decrease with increasing calcination time and calcination temperature.
  • At least one of the two calcination steps is carried out.
  • the maximum pore volume of the catalyst is set to a value of at least 0.05 ml / g in the calcination, these values being at most 80 m 2 / g, in particular at most 75 m 2 / g are preferred for the catalyst to be used in the process according to the invention.
  • auxiliaries such as, for example, calcination-decomposing pore-forming agents or tabletting aids.
  • the catalyst can also be deposited on a carrier as mentioned above. This is done by customary impregnation or precipitation procedures.
  • a patterning method is known to be a precipitation method in the presence of a support or a carrier precursor.
  • a carrier or carrier precursor is preferably added to the solution prepared in step a) in the precipitation process described above. If the support already exists in the form of preformed finished molded bodies, ie if a pure impregnation process is carried out, the shaping step e) is omitted, otherwise the support is formed by precipitation, drying, calcination and shaping in the course of processing the precursor of the catalyst.
  • a preferred impregnation process for the preparation of the catalyst is carried out with preformed supports and comprises the following process steps in the order mentioned:
  • step a) of this impregnation process is carried out in the same way as the above-described step a) of the precipitation process.
  • step b) a preformed carrier is soaked in the solution.
  • the preformed carrier has a shape selected according to the purpose, for example, stringers or extrudates, tablets or - even spherical - pellets.
  • the impregnation is carried out either with supernatant solution or as impregnation with the amount of solution corresponding to the pore volume of the support ("incipient wetness.")
  • the impregnated support in steps c) and d) is dried and calcined in the precipitation process like the precipitate a preformed carrier is used, the forming step is eliminated.
  • the catalyst After calcination, the catalyst is in oxidic form, i.
  • the copper contained in it is present predominantly or exclusively in the form of copper oxides.
  • the catalyst For hydrogenation, the catalyst must be reduced, i. The copper must be predominantly or exclusively in the metallic state.
  • the reduction is carried out by treating the present after a calcination oxide catalyst with a reducing agent. This can be done in principle by any reducing agent that can reduce copper from the oxidation state I or II to the oxidation state 0.
  • the exact reduction conditions to be used depend on the catalyst, its exact state before reduction and on the reducing agent used and can be easily determined in a few routine experiments. Methods for the reduction of copper-containing catalysts are known.
  • the reduction can be carried out with liquid or dissolved reducing agents, in which case it must be dried after the reduction.
  • Much more convenient therefore is the reduction with a gaseous reducing agent, especially the reduction with hydrogen by passing a hydrogen-containing gas.
  • the temperature to be used here is generally at least 80 ° C, preferably at least 100 ° C and more preferably at least 120 ° C and generally at most 180 ° C, preferably at most 160 ° C and most preferably at most 140 ° C. , A suitable temperature is for example about 130 ° C.
  • the reduction is exothermic.
  • the amount of reducing agent supplied must be adjusted so that the selected temperature window is not left.
  • the course of the activation can be followed by the temperature measured in the adsorbent bed ("temperature programmed reduction, TPR").
  • a preferred method of reduction is to set the desired reduction temperature following a drying carried out under a stream of nitrogen and to add a small amount of hydrogen to the stream of nitrogen.
  • a suitable gas mixture initially contains, for example, at least 0.1% by volume of hydrogen in nitrogen, preferably at least 0.5% by volume and in particularly preferred At least 1 vol .-%, and at most 10 vol .-%, preferably at most 8 vol .-% and most preferably at most 5 vol .-%.
  • a suitable value is, for example, 2% by volume. This initial concentration is either maintained or increased to reach and maintain the desired temperature window.
  • the reduction is complete when, despite the constant or increasing level of the reducing agent, the temperature in the bulk of the mass decreases.
  • a typical reduction time is generally at least 1 hour, preferably at least 10 hours and more preferably at least 15 hours, and generally at most 100 hours, preferably at most 50 hours, and most preferably at most 30 hours.
  • the drying if necessary, is carried out by heating the catalyst to a temperature of generally at least 100 ° C, preferably at least 150 ° C and more preferably at least 180 ° C and generally at most 300 ° C, preferably at most 250 ° C and in a particularly preferred manner reaches at most 220 ° C.
  • a suitable drying temperature is for example about 200 ° C.
  • the precursor is kept at the drying temperature until there are no longer disturbing residues of adhering moisture; this is generally the case for a drying time of at least 10 minutes, preferably at least 30 minutes, and more preferably at least 1 hour, and generally at most 100 hours, preferably at most 10 hours and most preferably at most 4 hours.
  • the drying takes place in a gas stream in order to remove the moisture from the bed. Dry air can be used for this purpose, for example, but it is particularly preferable to flow the bed with an inert gas; nitrogen or argon are particularly suitable here.
  • the catalyst can also be reduced outside the hydrogenation reactor, for example at the catalyst manufacturer, and passivated again by conventional methods by partial reoxidation in order to simplify transport and storage. Before being used for hydrogenation, it must then be completely reduced again.
  • the hydrogenation process according to the invention is characterized by the use of the catalyst described above.
  • the hydrogenation process according to the invention using the described catalyst is generally carried out in the same way as the known, heterogeneously catalyzed hydrogenation processes which serve the same purpose. They can be used as heterogeneously catalyzed gas-phase processes in which both the hydrocarbon stream and the hydrogenating gas in the gas phase or as a heterogeneously catalyzed gas / liquid phase process in which the hydrocarbon stream is at least partially in liquid phase and hydrogen in the gas phase and / or in dissolved form in the liquid phase.
  • the parameters to be set are selected analogously to those of known processes.
  • the temperature in the process of the invention is generally at least -50 ° C, preferably at least -10 ° C, and more preferably at least 0 ° C, and generally at most 250 ° C, preferably at most 100 ° C, and more preferably Shape at a maximum of 50 ° C.
  • the pressure is generally at least 0.01 bar abs., Preferably at least 0.8 bar abs. and in a particularly preferred form at least 1 bar abs. and generally at most 750 bar abs., preferably at most 325 bar abs. and in a particularly preferred form at most 40 bar abs.
  • the amount of hydrogen used is dependent on the content of the hydrocarbon stream of undesirable unsaturated compounds and their nature. Generally, the hydrogen will be stoichiometric in an amount ranging from 0.8 to 5 times amount required for complete conversion of hydrogen during the passage of the reactor, preferably in the range from 0.95 to 2 times this amount.
  • the hydrogenation of triple bonds usually proceeds faster than the conjugated double bonds, which in turn are faster than the unconjugated double bonds. This allows a corresponding control of the process on the basis of the added amount of hydrogen.
  • the hydrogen may include inert gases, for example noble gases such as helium, neon or argon, other inert gases such as nitrogen, carbon dioxide and / or lower alkanes, such as methane, ethane, propane and / or butane.
  • inert gases in the hydrogen are preferably present in a concentration of less than 30% by volume. Moderation of the catalyst by deliberate carbon monoxide addition is generally not required.
  • the process can be carried out in one or more parallel or successive reactors, in each case in a single pass or in circulation mode.
  • the hydrocarbon stream after passing through a reactor, is usually freed of gases in a separator and a portion of the liquid obtained is returned to the reactor.
  • the purpose of the process according to the invention is, for example, the hydrogenation of alkynes to alkadienes, of alkynes, alkynes and alkadienes to alkenes, of phenylalkenes to phenylalkenes and / or of phenylalkenes to phenylalkanes.
  • Process A for the selective hydrogenation of acetylene in C2 streams to ethylene with minimal formation of ethane (this embodiment of the process is referred to hereinafter as "Process A" for simplicity),
  • Process A is usually carried out as a gas phase process with a space velocity of the gaseous C2 stream of 500 m 3 / m 3 * h, based on the catalyst volume, to 10,000 m 3 / m 3 * h at a temperature of 0 ° C to 100 ° C. and a pressure of 0.01 bar to 50 bar, wherein per mole of acetylene in the C2 stream, one mole of hydrogen is added.
  • Process B is usually carried out as a gas phase process or as a gas / liquid phase process with a space velocity of the liquid C3 stream of 1 m 3 / m 3 * h, based on the catalyst volume, to 50 m 3 / m 3 * h at a Temperature of 0 ° C to 50 ° C and a pressure of 0.01 bar to 50 bar, wherein per mole of propyne and propadiene in the C3 stream one to two moles of hydrogen are added.
  • Process C is usually carried out as a gas / liquid phase process with a liquid C4 stream space velocity of 1 m 3 / m 3 * h, based on the catalyst volume, to 50 m 3 / m 3 * h at a temperature of 0 ° C to 180 ° C and a pressure of 2 bar to 50 bar, wherein per mole of butyne, 1, 2-butadiene and vinyl acetylene in the C4 stream one to two moles of hydrogen are added.
  • Process C can be used, for example, as selective so-called "front-end vinyl acetylene hydrogenation" before butadiene extraction.
  • Process D is usually carried out as a one- or two-stage gas / liquid phase process with a space velocity of the liquid C4 stream in the range from 0.1 m 3 / m 3 * h, based on the catalyst volume, to 60 m 3 / m 3 * h, preferably from 1 m 3 / m 3 * h to 50 m 3 / m 3 * h, at a reactor inlet temperature in the range of 20 ° C to 90 ° C, preferably from 20 ° C to 70 ° C, and a pressure in Range of 5 bar to 50 bar, preferably carried out from 10 bar to 30 bar, wherein per mole of butyne, butadiene and vinyl acetylene in the C4 stream one mole of hydrogen is added.
  • the process is carried out in two stages, the butadiene content being in typical C4 streams from steam crackers in the range of 20 wt .-% to 80 wt .-%, based on the total flow, in the first stage to a content in Range is reduced from 0.1 wt .-% to 20 wt .-% and in the second stage to the desired residual content in the range of a few ppm by weight to about 1 wt .-%. It is also possible to distribute the overall reaction to more than two reactors, for example three or four.
  • the individual reaction stages can be operated with partial recirculation of the hydrocarbon stream, the reflux ratio is usually in the range of 0 to 30.
  • Isobutene remains essentially unchanged when carrying out process D and can be carried out before or after carrying out process D by known methods be separated from the C4 stream.
  • Process D can be used, for example, as butadiene hydrogenation in the C4 stream (if butadiene should not be recovered as desired product) or as selective so-called "tail-end vinyl acetylene hydrogenation" after butadiene extraction from the C4 stream.
  • Process E is preferably carried out as a gas / liquid phase process with a space velocity of the liquid C5 + stream of 0.5 m 3 / m 3 * h, based on the catalyst volume, to 30 m 3 / m 3 * h at a temperature of 0 ° C to 180 ° C and a pressure of 2 bar to 50 bar, wherein per mole of hydrogenation bond in the C5 + stream one to two moles of hydrogen are added.
  • Process E can be used, for example, as selective pyrolysis gasoline hydrogenation, as selective hydrogenation of olefins in reformate streams or coke oven condensates, for the hydrogenation of phenylacetylene to styrene or for the hydrogenation of styrene to ethylbenzene.
  • Table 1 Composition, each in wt .-%, of the catalysts of Examples 1-4
  • Example 2 Samples of the tablets obtained in Example 1 were reduced with hydrogen and then in a tubular reactor with a C2 stream (ethylene, mixed with the proportions of hydrogen and acetylene indicated in the following Table 2) at a space velocity (GHSV) of 2 300 h. 1 and the temperature indicated in the table. Ambient pressure was set as the pressure, ie only the pressure necessary to overcome the pressure loss of the apparatus was set before the reactor. The proportions of hydrogen and acetylene measured after the reactor are given in Table 2 below. Table 2: Hydrogenation of acetylene
  • Examples 5-8 show that acetylene can be virtually completely removed in a C2 stream at very low temperatures using the process according to the invention.
  • Example 1 Samples of the tablets obtained in Example 1 were reduced with hydrogen and then in an autoclave with liquid propene (C3H6), which was mixed with 120 ppm by weight of propyne (C3H4) and 450 ppm by weight of hydrogen, at 20 bar pressure and 25 ° C applied over two hours.
  • the propene also contained 300 ppm of propane (C 3 H 8).
  • Examples 9-1 show that with the process according to the invention the virtually complete removal of propyne in C3 streams is possible in a highly selective manner at comparatively low temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

Ungesättigte Kohlenwasserstoffe werden an Kupfer und Zink enthaltenden Katalysatoren hydriert, deren Aktivmasse in unreduzierter Form im Wesentlichen aus 10 bis 95 Gew.-% Kupferoxid, als Kupfer(ll)-oxid (CuO) gerechnet, 5 bis 90 Gew.-% Zinkoxid (ZnO), wahlweise 0,1 bis 50 Gew.-% Zirkondioxid (Zr?2) sowie wahlweise 0,1 Gew.-% bis 50 Gew.-% AI<SUB>2</SUB>O<SUB>3</SUB> besteht, wobei sich die Gewichtsanteile zu 100 Gew.-% summieren.

Description

Verfahren zur Hydrierung ungesättigter Kohlenwasserstoffe an Kupfer und Zink enthaltenden Katalysatoren
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Hydrierung ungesättigter Kohlenwasserstoffe unter Verwendung Kupfer und Zink enthaltender Katalysatoren. Insbesondere betrifft die Erfindung ein Verfahren zur Hydrierung von Alkinen unter Verwendung Kupfer und Zink enthaltender Katalysatoren und speziell ein Verfahren zur Hyd- rierung von Alkinen in Gegenwart von Alkenen.
In Raffinerien und petrochemischen Anlagen werden in großem Umfang Kohlenwasserstoffströme erzeugt, gelagert und verarbeitet. In diesen Kohlenwasserstoffströmen sind häufig ungesättigte Verbindungen vorhanden, deren Anwesenheit insbesondere bei Verarbeitung und/oder Lagerung bekanntermaßen zu Problemen führt, oder die nicht das gewünschte Wertprodukt darstellen, und die daher unerwünschte Komponenten der entsprechenden Kohlenwasserstoffströme sind. Allgemeine Übersichten über derartige Probleme bei Steamcrackern und übliche Lösungen gaben beispielsweise H.- M. Allmann, Ch. Herion und P. Polanek in ihrem Vortrag "Selective Hydrogenations and Purifications in the Steamcracker Downstream Treatment" auf der DGMK-
Konferenz "Selective Hydrogenation and Dehydrogenation" am 11. und 12. November 1993 in Kassel, Deutschland, dessen Manuskript auch im Tagungsbericht 9305 der DGMK Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e. V., Hamburg, S. 1 - 30, erschienen ist (ISSN 0938-068X, ISBN 3-928164-61-9), und M. L. Derrien in: L. Cerveny (Hrsg.), Stud. Surf. Sei. Catal., Bd. 27, S. 613 - 666, Elsevier, Amsterdam 1986.
Üblicherweise ist in C2-Strömen von Steamcrackern die Nebenkomponente Acetylen unerwünscht, in C3-Strömen sind die Nebenkomponenten Propin und Allen uner- wünscht und in C4-Strömen sind die Nebenkomponenten 1- und 2-Butin, 1 ,2-Butadien und Vinylacetylen unerwünscht, wenn 1 ,3-Butadien als Wertprodukt gewonnen und weiterverarbeitet werden soll, sowie die genannten Nebenkomponenten und 1 ,3- Butadien selbst in den Fällen, in denen 1 -Buten, 2-Buten (in der eis- und/oder der trans-Form) oder Isobuten die gewünschten Produkte sind. Bei der Verarbeitung von C5+-Strömen ("C5+":Kohlenwasserstoffe mit mindestens 5 C-Atomen, "Pyrolysebenzin") sind Di- und Polyene wie Pentadien und Cyclopentadien, Alkine und/oder Aroma- ten mit ungesättigten Substituenten wie Phenylacetylen und Styrol bei der Gewinnung und Verarbeitung von Aromaten oder Vergaserkraftstoff unerwünscht.
Bei Kohlenwasserstoffströmen, die einem FCC-Cracker oder einem Reformer statt einem Steamcracker entstammen, treten analoge Probleme auf. Eine allgemeine Ü- bersicht über solche Probleme, speziell bei C4- und C5+-Strömen aus FCC-Crackern gaben beispielsweise J. P. Boitiaux, C. J. Cameron, J. Cosyns, F. Eschard und P. Sarrazin in ihrem Vortrag "Selective Hydrogenation Catalysts and Processes: Bench to Industrial Scale" auf der DGMK-Konferenz "Selective Hydrogenation and Dehydroge- nation" am 1 1. und 12. November 1993 in Kassel, Deutschland, dessen Manuskript auch im Tagungsbericht 9305 der DGMK Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e. V., Hamburg, S. 49 - 57, erschienen ist (ISSN 0938-068X, ISBN 3-928164-61-9).
Im Allgemeinen sind daher aus Kohlenwasserstoffströmen zumeist ungesättigte Ver- bindungen mit Dreifachbindungen (Alkine) und/oder zweifach ungesättigte Verbindungen (Diene) und/oder andere zwei- oder mehrfach ungesättigte Verbindungen (Polye- ne, Allene, Alkinene) und/oder aromatische Verbindungen mit einem oder mehreren ungesättigten Substituenten (Phenylalkene und Phenylalkine) zu entfernen, um die gewünschten Produkte wie Ethylen, Propylen, 1 -Buten, Isobuten, 1 ,3-Butadien, Aroma- ten oder Vergaserkraftstoff in der geforderten Qualität zu erhalten. Nicht jede ungesättigte Verbindung ist jedoch immer eine unerwünschte Komponente, die aus dem fraglichen Kohlenwasserstoffstrom zu entfernen ist. Beispielsweise ist 1 ,3-Butadien, wie oben bereits angedeutet, je nach Anwendungsfall eine unerwünschte Nebenkomponente oder das gewünschte Wertprodukt.
Die Entfernung unerwünschter ungesättigter Verbindungen aus solche enthaltenden Kohlenwasserstoffströmen geschieht häufig durch Selektivhydrierung mancher oder aller der unerwünschten ungesättigten Verbindungen im entsprechenden Kohlenwasserstoffstrom, vorzugsweise durch Selektivhydrierung zu nicht störenden, höher gesät- tigten Verbindungen und in besonders bevorzugter Weise zu den Wertprodukte darstellenden Komponenten des Kohlenwasserstoffstroms. Beispielsweise wird in C2- Strömen Acetylen zu Ethylen hydriert, in C3-Strömen Propin und Allen zu Propylen, in C4-Strömen Butin zu Butenen, Vinylacetylen zu 1 ,3-Butadien und/oder 1 ,3-Butadien zu Butenen und in C5+-Strömen Phenylacetylen und Styrol zu Ethylbenzol, Cyclopenta- dien zu Cyclopenten und Pentadien zu Penten.
Typischerweise sind solche Verbindungen bis auf Restgehalte von wenigen Gew.-ppm zu entfernen. Die ("Über-")Hydrierung zu Verbindungen, die höher gesättigt ist als das gewünschte Wertprodukt und/oder die parallele Hydrierung eines eine oder mehrere Mehrfachbindungen enthaltenden Wertprodukts zur entsprechenden höher oder vollständig gesättigten Verbindung sollen aufgrund des damit verbundenen Wertverlusts jedoch möglichst vermieden werden. Die Selektivität der Hydrierung der unerwünschten ungesättigten Verbindungen muß daher möglichst hoch sein. Zusätzlich sind im Allgemeinen eine ausreichend hohe Aktivität des Katalysators und eine lange Standzeit erwünscht. Gleichzeitig soll der Katalysator möglichst auch keine anderen unerwünschten Nebenreaktionen bewirken, beispielsweise ist eine Katalyse der Isomerisierung von 1 -Buten zu 2-Buten mit Ausnahme spezieller Sonderfälle möglichst zu vermeiden. Verfahren zur selektiven Hydrierung ungesättigter Verbindungen in diese enthaltenden Kohlenwasserstoffströmen sind sowohl als Flüssigphasenhydrierung oder gemischte Gas/Flüssigphasenhydrierung, in Riesel- oder Sumpffahrweise, wie auch als reine Gasphasenhydrierung bekannt, wobei verschiedene verfahrenstechnische Maßnah- men zur Verbesserung der Selektivität publiziert wurden.
Üblicherweise werden Edelmetall-Trägerkatalysatoren eingesetzt, in denen Edelmetall auf einem Katalysatorträger abgeschieden ist. Häufig wird Palladium als Edelmetall verwendet, der Träger ist im Allgemeinen ein poröses anorganisches Oxid, beispiels- weise Kieselerde, Alumosilikat, Titandioxid, Zirkoniumdioxid, Zinkaluminat, Zinktitanat und/oder Mischungen solcher Träger, meist werden jedoch Aluminiumoxid oder Silici- umdioxid verwendet. Weiterhin können Promotoren oder andere Zusatzstoffe enthalten sein. Ein Nachteil edelmetallhaltiger Katalysatoren (als „Edelmetalle" werden auf diesem Gebiet der Katalyse Silber, Gold, Rhodium, Iridium, Platin und Palladium bezeich- net) ist ihre relativ hohe Anfälligkeit gegen Verunreinigungen, sogenannte „Katalysatorgifte" wie Quecksilber, Arsen, Schwefel, Kohlenmonoxid und andere. Ein weiterer Nachteil ist der hohe Preis der Edelmetalle. Diese können zwar in aller Regel aus den Katalysatoren wiedergewonnen werden, allerdings ist während ihres Betriebs in erheblichem Umfang Kapital gebunden. Oft werden zur Hydrierung deshalb auch Kupfer enthaltende Katalysatoren verwendet, die erheblich resistenter gegen Katalysatorgifte und erheblich preiswerter sind.
Kupfer enthaltende Katalysatoren, insbesondere auch Kupfer und Zink enthaltende Katalysatoren sind bekannt. Sie werden vorwiegend als Katalysatoren, Absorbentien oder Adsorbentien zur Entfernung von Kohlenmonoxid aus Gasströmen verwendet. WO 02/094435 A1 lehrt ein Verfahren zum oxidativen Entfernen von CO aus Ethylen bei Temperaturen im Bereich von 70 bis 1 10 °C an Kupfer und Zink enthaltenden Katalysatoren. US 6,238,640 B1 beschreibt ein Verfahren zur Entfernung von Kohlenmonoxid aus Wasserstoff enthaltenden Gasströmen durch Umsetzung mit Dampf und Sau- erstoff zu Kohlendioxid und Wasserstoff in Gegenwart eines Katalysators, der Kupfer- und Aluminiumoxid sowie mindestens ein Metalloxid aus der von Zinkoxid, Chromoxid und Magnesiumoxid gebildeten Gruppe enthält. Die deutsche Offenlegungsschrift DE 19 29 977 lehrt 20 bis 60 Teile CuO auf 100 Teile ZnO enthaltende Katalysatoren und ihre Verwendung zur Entfernung von CO aus Ethylen- und Propylenströmen bei einer Temperatur im Bereich von 50 bis 200 °C. WO 2004/022223 A2 lehrt eine Kupfer, Zink, Zirkon und wahlweise Aluminium enthaltende Adsorptionsmasse und ihre Verwendung zur Entfernung von CO aus Stoffströmen in vollständig reduziertem Zustand.
Kupfer und Zink enthaltende Katalysatoren sind auch zu anderen Anwendungszwe- cken als zur Entfernung von CO aus Stoffströmen bekannt. US 4,593,148 und US 4,871 ,710 offenbaren Verfahren zur Entschwefelung und Entarsenierung mit Cu/Zn-Katalysatoren. WO 95/023644 A1 lehrt einen Kupferkatalysator zur Hydrierung von Kohlenoxiden, beispielsweise zu Methanol, oder für die sogenannte Shift-Reaktion von Kohlenmonoxid mit Wasser zu Kohlendioxid und Wasserstoff, der neben dispersem Kupfer auch Stabilisatoren wie Siliciumdioxid, Aluminiumoxid, Chromoxid, Magnesiumoxid und/oder Zinkoxid und wahlweise auch einen Träger wie Aluminiumoxid, Zir- kondioxid, Magnesiumoxid und/oder Siliciumdioxid enthält. DE 198 48 595 A1 offenbart einen Katalysator zur Lachgaszersetzung der allgemeinen Formel MxAbO4, in denen M Cu oder eine Mischung aus Cu und Zn und/oder Mg ist und der weitere Dotierungen, insbesondere Zr und/oder La enthalten kann. US 4,552,861 lehrt ein Herstellverfahren für Katalysatoren, die Cu, Zn, AI und mindestens ein Element aus der von den Selte- nen Erden und Zirkon gebildeten Gruppe enthalten sowie deren Verwendung zur Methanolsynthese. Die in US 4,780,481 offenbarten Methanolkatalysatoren enthalten Cu, Zn und mindestens ein Alkali- oder Erdalkalimetall, Edelmetalle und/oder Seltene Erden, wobei Zn teilweise durch Zr ersetzt werden kann. US 4,835,132 beschreibt CO- Shift-Katalysatoren, die aus einem Vorläufer der Formel (Cu+Zn)6AlχRy(Cθ3)(x+y)/2θHi2+2(x+y)nH2θ mit Schichtstruktur durch Kalzination erzeugt werden, wobei R La, Ce oder Zr ist, x mindestens 1 und höchstens 4, y mindestens 0,01 und höchstens 1 ,5 und n ungefähr 4 ist.
US 4,323,482 offenbart Chrom und Nickel enthaltende Methanisierungskatalysatoren, die aus einer innigen Mischung eines reduzierbaren und mindestens eines nicht reduzierbaren Metalloxids bestehen und die bei einer Temperatur von 550 bis 1 000 °C durch Reduktion aktiviert werden. Diese hohe Temperatur führt nach dieser Schrift zu feinteiligen Metallen und hochaktiven Katalysatoren. Am Rande wird auch die Anwendung dieses Katalysatorherstellverfahrens auf Kupfer enthaltende Katalysatoren er- wähnt. US 3,701 ,739 lehrt ebenso Katalysatoren aus einem reduzierbaren und mindestens einem nicht reduzierbaren Oxid, ihre Herstellung aus einer ammoniakalischen Lösung von Hydroxiden oder Carbonaten sowie ihre Anwendungen, unter anderem zur Hydrierung. Genannt werden etwa Katalysatoren aus 30 % CuO und70 % ZnO oder CuO/ZnO/AbOa-Katalysatoren. Verwendet werden diese beispielsweise zur Hydrierung von Aceton zu Isopropanol bei 200 °C. BE 748 7423 A beschreibt die Herstellung von Katalysatoren mit einer Reihe von verschiedenen Aktivmassen auf porösen Trägern durch Auffällen auf den Träger unter Aufheizen sowie die Verwendung derartiger Katalysatoren zur Hydrierung von Amiden bei mindestens 50 °C. Die deutsche Offenle- gungsschrift DE 20 12 430 offenbart Konvertierungskatalysatoren aus 30-55 Gew.-% CuO, 25 - 45 Gew.-% MgO, 2 - 30 Gew.-AI2O3 und 0-30 Gew.-% Cr2O3 oder ZnO. US 5,990,040 beschreibt Konvertierungskatalysatoren aus 30 - 70 Gew.-% CuO, 20- 90 Gew.-% ZnO, 0,1 - 20 Gew.-% eines Oxids eines Elements aus der Gruppe IVB , vorzugsweise Ti oder Zr, 5 - 50 Gew.-% AI2O3 und 50 - 1 000 ppm eines Oxids eines Elements aus der Gruppe IA, die aber auch zur Methanolsynthese, zur Reinigung und zur Hydrierung verwendet werden können. US 6,706,885 B2 lehrt ein Verfahren zur
Herstellung von 2,5-Di-(3'-aminoprop-1-inyl)pyridinen durch Sonogashira-Kupplung von 2,5-Dihalopyridinen mit geschützten 3-Aminopropinen an Kupfer- Zink- oder Zirkoniumkatalysatoren.
Wie schon erwähnt, ist auch die Verwendung Kupfer enthaltender Katalysatoren für Hydrierungen bekannt. WO 96/014280 A1 lehrt Katalysatoren, die Cu, Zn und mindestens eine Verbindung von AI, Zr, Mg, eines Seltenerdmetalls und/oder Mischungen davon enthalten und ihre Verwendung zur Hydrierung von Carbonsäureestern. EP 434 062 A1 lehrt ebenfalls ein Verfahren zur Hydrierung von Carbonsäureestern an einem Katalysator, umfassend Cu, AI und ein aus der von Mg, Zn, Ti, Zr, Sn, Ni, Co und ihren Mischungen gebildeten Gruppe gewähltes Metall. EP 394 842 A1 lehrt Katalysatoren mit 20 - 75 Gew.-% NiO, 10-75 Gew.-% ZrO2 und 5 - 50 Gew.-% CuO zur Hydrierung aliphatischer ungesättiger Verbindungen wie Butindiol bei Temperaturen im Bereich von 40 °C bis 200 °C und Drücken von 30 bis 320 bar. EP 646 410 A1 offenbart ein Verfahren zur Erzeugung von Alkoholen durch Hydrierung an einem Kupfer und Zinkoxid sowie ein weiteres Oxid als Aktivmasse auf einem mit Titanoxid überzogenen Träger umfassenden Katalysator. Das Hydrierverfahren wird bei einer Temperatur von 160 °C bis 350 °C durchgeführt. EP 1 331 033 A1 offenbart ein Verfahren zur Herstellung kugelförmiger Metall-Trägerkatalysatoren durch Vertropfung eines Gemisches aus einem Polysaccharid und mindestens einer Metallverbindung in eine Metall- Salzlösung. Ein derart hergestellter CuO-Katalysator auf Siθ2-Träger wird zur Hydrierung von Acetophenon bei 80 °C und 20 bar Druck verwendet. US 3,677,970 erwähnt neben den dort offenbarten schwefel resistenten Nickelkatalysatoren zur Hydrierung von Kohlenwasserstoffen auch eine Reihe anderer Katalysatoren, zu der auch Kupferkatalysatoren gehören. WO 02/0681 19 A1 offenbart ein Verfahren zur Herstellung von Kupfer und mindestens ein weiteres, aus einer Reihe anderer Elemente, darunter Zink, gewähltes Element enthaltenden Katalysatoren durch Aufbaugranulation. Diese Katalysatoren werden zur Hydrierung funktioneller organischer Verbindungen sowie zur Dehydrierung verwendet. WO 2004/026800 A1 beschreibt ein Verfahren zur Herstellung von Alkoholen durch Hydrierung von Aldehyden an geschwefelten Kupfer- Zinkoxid-Katalysatoren bei einer Temperatur von 240 °C bis 280 °C und einem (Über-)- Druck von 20 bar bis 400 bar.
WO 2004/004901 A1 lehrt ein Verfahren zur Hydrierung von C4-Acetylenen in einem flüssigen Kohlenwasserstoffstrom an Kupfer enthaltenden Schalenkatalysatoren auf zeolithischen Trägermaterialien bei Temperaturen im Bereich von 20 bis 80 °C (in den Beispielen werden Temperaturen von 60 °C verwendet) und Drücken von 15 und 50 bar. N. L. Carr, D. L. Stahlfeld und H. G. Robertson berichten in Hydrocarbon Processing, Mai 1985, S. 100-102 über Kupfer enthaltende Absorptionsmassen zur Entfernung von Arsen aus Olefinströmen. Die Hydrierung der Olefine ist dabei eine Nebenre- aktion, die durch Vermeiden von Temperaturen oberhalb von 250 °F (entsprechend
121 °C) unterbunden werden kann. J. Blanco berichtet in Quimica e Industria 20 (1974) 604-606, dass Kohlenwasserstoffe an Kupferkatalysatoren erst bei Temperaturen von mindestens 300 °C und Drücken um 300 bar hydriert werden.
Ein Nachteil gängiger Hydrierkatalysatoren mit Kupfer als hydrieraktivem Metall ist demnach, dass relativ hohe Hydriertemperaturen notwendig sind. Manche Stoffströme zeigen bei diesen Temperaturen jedoch bereits Zersetzungserscheinungen, beispielsweise werden in typischen Propylenströmen - die stets auch Spuren von Sauerstoff enthalten - bereits ab 50 °C Oxigenate gebildet. Derartige Oxigenate können in nachfolgenden Verfahren, etwa Herstellung der von Polypropylen an Metallocenkatalysato- ren als Katalysatorgifte wirken und sind daher äußerst unerwünscht.
Die Anforderungen an Verfahren zur selektiven Hydrierung unerwünschter ungesättigter Verbindungen steigen ständig. Es bestand daher die Aufgabe, ein verbessertes Verfahren zur selektiven Hydrierung ungesättigter Verbindungen zu finden, insbeson- dere ein Verfahren, das die Bildung von Nebenprodukten wie Oxigenaten vermeidet. Gleichzeitig sollen Aktivität und Selektivität des Katalysators hoch sein.
Dementsprechend wurde ein Verfahren zur Hydrierung ungesättigter Kohlenwasserstoffe an Kupfer und Zink enthaltenden Katalysatoren gefunden, dass dadurch ge- kennzeichnet ist, dass man einen Katalysator verwendet, dessen Aktivmasse in unreduzierter Form im Wesentlichen aus 10 bis 95 Gew.-% Kupferoxid, als Kupfer(ll)-oxid (CuO) gerechnet, 5 bis 90 Gew.-% Zinkoxid (ZnO), wahlweise 0,1 bis 50 Gew.-% Zir- kondioxid (Zrθ2) sowie wahlweise 0,1 Gew.-% bis 50 Gew.-% AI2O3 besteht, wobei sich die Gewichtsanteile zu 100 Gew.-% summieren.
Mit dem erfindungsgemäßen Verfahren ist es möglich, ungesättigte Kohlenwasserstoffe auf wirtschaftliche Weise unter milden Bedingungen zu hydrieren. Die Bildung von Oxigenaten wird dabei ebenso vermieden wie die hohe Kapitalbindung bei edelmetall- haltigen Katalysatoren. Unerwünschte Überhydrierung wird vermeiden, das Verfahren ist geeignet zur selektiven Hydrierung von Alkinen in Alkenströmen. Der Katalysator ist vergiftungsresistent.
Die Aktivmasse des erfindungsgemäß zu verwendenden Katalysators enthält in unreduzierter Form Kupfer- und Zinkoxide sowie wahlweise Zirkon- und Aluminiumoxide. Kupfer liegt unter Reaktionsbedingungen, d.h. in Gegenwart reduzierender Verbindungen wie Wasserstoff, zumindest teilweise, in der Regel jedoch vollständig als metallisches Kupfer vor. Bei der Herstellung des Katalysators fällt es typischerweise in Form von Cu(I)- und Cu(ll)-Oxiden an, dies ist auch die gefahrlos zu lagernde und transportierende Form des Katalysators.
In Reinform enthält die Aktivmasse des erfindungsgemäß zu verwendenden Katalysators im Allgemeinen Kupfer in einer Menge, die als CuO gerechnet mindestens 10 Gew.-%, vorzugsweise mindestens 20 Gew.-% und in besonders bevorzugter Weise mindestens 30 Gew.-%, sowie im Allgemeinen höchstens 95 Gew.-%, vorzugsweise höchstens 85 Gew.-% und in besonders bevorzugter Weise höchstens 80 Gew.-% Kupferoxid CuO, jeweils bezogen auf die Gesamtmenge der Aktivmasse entspricht. Sie enthält in Reinform im Allgemeinen Zinkoxid ZnO in einer Menge von mindestens
5 Gew.-%, vorzugsweise mindestens 10 Gew.-% und in besonders bevorzugter Weise mindestens 15 Gew.-% sowie im Allgemeinen höchstens 90 Gew.-%, vorzugsweise höchstens 80 Gew.-% und in besonders bevorzugter Weise höchstens 70 Gew.-%, jeweils bezogen auf die Gesamtmenge der Aktivmasse. Sie enthält in Reinform ferner wahlweise Zirkondioxid Zrθ2. Sofern dieses vorhanden ist, beträgt sein Anteil im Allgemeinen mindestens 0,1 Gew.-%, vorzugsweise mindestens 3 Gew.-% und in besonders bevorzugter Weise mindestens 5 Gew.-% sowie im Allgemeinen höchstens 50 Gew.-%, vorzugsweise höchstens 40 Gew.-% und in besonders bevorzugter Weise höchstens 30 Gew.-%, jeweils bezogen auf die Gesamtmenge der Aktivmasse. Sie enthält ferner wahlweise Aluminiumoxid AI2O3. Sofern dieses vorhanden ist, beträgt sein Anteil mindestens 0,1 Gew.-%, vorzugsweise mindestens 3 Gew.-% und in besonders bevorzugter Form mindestens 50 % sowie im Allgemeinen höchstens 50 %, vorzugsweise höchstens 40 % und in besonders bevorzugter Form höchstens 30 %, jeweils bezogen auf die Gesamtmenge der Aktivmasse. „Reinform" bedeutet im Rah- men dieser Erfindung, dass außer den Kupfer(oxid)- Zinkoxid-, Zirkondioxid- und Aluminiumoxid-Anteilen keine weiteren Bestandteile enthalten sind, abgesehen von unwesentlichen Bestandteilen, die beispielsweise noch aus der Fertigung mitgeschleppt werden, wie Überreste von Ausgangsstoffen und Reagenzien, Hilfsstoffe zur Formgebung und Ähnliches. „Reinform" bedeutet also, dass die Aktivmasse im Wesentlichen aus den genannten Komponenten besteht.
Die prozentualen Mengen der Komponenten der Aktivmasse addieren sich stets zu 100 Gew.-%.
Sehr gut geeignete Aktivmassen besteht in Reinform beispielsweise aus ca.
40 Gew.-% CuO, ca. 40 Gew.-% ZnO und ca. 20 Gew.-% AI2O3; aus ca. 70 Gew.-% CuO, ca. 20 Gew.-% ZnO und ca. 10 Gew.-% ZrO2 oder aus ca. 70 Gew.-% CuO, ca. 25 Gew.-% ZnO und ca. 5 Gew.-% Al2θ3, wobei sich deren Anteile zu 100 Gew.-% addieren.
Die Aktivmasse kann, muss aber nicht unbedingt auf einen inerten Träger aufgebracht werden. Geeignete inerte Träger sind die bekannten Katalysatorträger wie beispielsweise Aluminiumoxid, Siliciumdioxid, Zirkondioxid, Alumosilikate, Tone, Zeolithe, Kieselgur und Ähnliche. Es ist ebenso möglich, weitere bekannte Hilfsstoffe zur Verarbei- tung von Festkörpern wie Katalysatoren zu verwenden. Vorzugsweise wird die Aktivmasse ohne Träger verwendet, d.h. Aktivmasse und Katalysator sind vorzugsweise identisch. Derartige Katalysatoren sind gängige Handelswaren. Verfahren zur Herstellung solcher Katalysatoren sind bekannt. Ein bequemes und bevorzugtes Verfahren umfasst die folgenden Verfahrensschritte in der genannten Reihenfolge:
a) Herstellen einer Lösung oder Suspension der Komponenten des Katalysators und/oder von Ausgangsverbindungen davon; b) Fällen eines Festkörpers aus dieser Lösung durch Zugabe einer Base, wahlweise mit Vermischen des Fällprodukts mit weiteren Komponenten des Katalysators und/oder von Ausgangsverbindungen davon; c) Abtrennung und Trocknung des Festkörpers; d) wahlweise eine Kalzination des Festkörpers; e) Verformung des Festkörpers zu Formkörpern; und f) wahlweise eine Kalzination der Formkörper;
wobei mindestens einer der beiden Kalzinationsschritte d) oder f) durchgeführt wird.
Im ersten Verfahrensschritt, Schritt a), wird in üblicher Weise eine Lösung der Komponenten des Katalysators hergestellt, beispielsweise durch Lösen in einer Säure wie Salpetersäure. Wahlweise werden statt der Komponenten des Katalysators auch deren Ausgangsverbindungen verwendet, beispielsweise die Nitrate, Carbonate, Hydroxicar- bonate der Metalle in einer wässrigen Lösung, die auch sauer, beispielsweise salpetersauer sein kann, gelöst. Das Mengenverhältnis der Salze in der Lösung wird gemäß der gewünschten Endzusammensetzung des Katalysators stöchiometrisch berechnet und eingestellt. Es ist ebenso möglich, Komponenten in unlöslicher Form, beispielwei- se Aluminiumoxid, als feinteilige Partikel zuzugeben und so eine Suspension zu erzeugen und zu verwenden, in der manche Komponenten gelöst und andere suspendiert sind.
Aus dieser Lösung wird im Schritt b) ein Festkörper als Vorläufer des Katalysators ge- fällt. Dies erfolgt in üblicher Weise, vorzugsweise durch Erhöhung des pH-Werts der Lösung durch Zugabe einer Base, etwa durch Zugabe von Natronlauge oder Sodalösung.
Das entstehende feste Fällprodukt wird vor der Trocknung in Schritt c) in der Regel von der überstehenden Lösung abgetrennt, etwa durch Filtrieren oder Dekantieren, und mit Wasser frei von löslichen Bestandteilen wie Natriumnitrat gewaschen. Es ist ebenso möglich, nur einige Komponenten des Katalysators oder ihre Vorläufer auf diese Weise zu fällen und das feste Fällprodukt mit weiteren, beispielsweise unlöslichen Komponenten wie etwa Aluminiumoxid zu vermischen. Es ist grundsätzlich möglich, dies durch Vermischen getrockneter Pulver zu tun, vorzugsweise erfolgt das Vermischen jedoch als Suspension vor Abtrennung und Trocknung des Fällprodukts. Das Fällprodukt (gegebenenfalls mit weiteren, unlöslichen Komponenten vermischt) wird dann normalerweise vor der Weiterverarbeitung mit üblichen Trocknungsmethoden getrocknet. Im allgemeinen genügt dazu eine Behandlung bei leicht erhöhter Temperatur, etwa mindestens 80 °C, vorzugsweise mindestens 100 °C und in besonders bevorzugter Weise mindestens 120 °C statt, über einen Zeitraum von 10 min bis 12 Stunden, vorzugsweise 20 min bis 6 Stunden und in besonders bevorzugter Weise 30 min bis 2 Stunden. Es ist auch möglich und besonders bequem, das Produkt der Fällung direkt - ein gewisser Alkali-, zum Beispiel Natriumgehalt des Katalysators stört im Allgemeinen nicht - oder nach Waschen durch Sprühtrocknung zu einem trockenen weiterverarbeitungsfähigen Pulver umzuwandeln.
Im Anschluss an die Trocknung wird das gefällte und getrocknete Vorprodukt des Katalysators wahlweise dem Kalzinationsschritt d) unterzogen. Die angewendete Kalzina- tionstemperatur liegt dabei im Allgemeinen bei mindestens 250 °C, vorzugsweise min- destens 300 °C und in besonders bevorzugter Weise bei mindestens 350 °C, sowie im Allgemeinen bei höchstens 500 °C, vorzugsweise höchstens 450 °C und in besonders bevorzugter Weise bei höchstens 410 °C. Die Kalzinationsdauer beträgt im Allgemeinen mindestens 10 Minuten, vorzugsweise mindestens 20 Minuten und in besonders bevorzugter Weise mindestens 30 Minuten sowie im Allgemeinen höchstens 12 Stun- den, vorzugsweise höchstens 6 Stunden und in besonders bevorzugter Weise höchstens 4 Stunden. Der Trocknungsschritt c) und der Kalzinationsschritt d) können direkt ineinander übergehen.
Nach dem Trocknungsschritt c) oder dem Kalzinationsschritt d) wird der Katalysator oder sein Vorläufer im Formgebungsschritt e) mit üblichen Formgebungsverfahren wie Verstrangen, Tablettieren oder Pelletisieren zu Formkörpern wie Stränglingen oder Extrudaten, Tabletten oder - auch kugelförmigen - Pellets verarbeitet.
Nach dem Formgebungsschritt wird der Katalysator (d.h., genau genommen sein Vor- läufer) wahlweise einem Kalzinationsschritt f) unterzogen. Die hierbei angewendete Kalzinationstemperatur liegt dabei im Allgemeinen bei mindestens 300 °C, vorzugsweise mindestens 350 °C und in besonders bevorzugter Weise bei mindestens 400 °C, insbesondere bei mindestens 450 °C sowie im Allgemeinen bei höchstens 700 °C, vorzugsweise höchstens 650 °C und in besonders bevorzugter Weise bei höchstens 600 °C, insbesondere höchstens 580 °C. Die Kalzinationsdauer beträgt im Allgemeinen mindestens 30 Minuten, vorzugsweise mindestens 60 Minuten sowie im Allgemeinen höchstens 10 Stunden, vorzugsweise höchstens 3 Stunden und in besonders bevorzugter Weise höchstens 2 Stunden, insbesondere höchstens 90 Minuten. In einer besonders bevorzugten Ausführungsform wird die Temperatur im genannten Bereich ü- ber die Kalzinationsdauer langsam erhöht. Während der Kalzinationschritte wird der Katalysatorvorläufer zum eigentlichen Katalysator umgewandelt und unter anderem wie üblich auch die BET-Oberfläche und das Porenvolumen des Katalysators eingestellt, wobei bekanntermaßen die BET- Oberfläche und das Porenvolumen mit steigender Kalzinationsdauer und Kalzina- tionstemperatur sinken.
Es wird mindestens einer der beiden Kalzinationsschritte durchgeführt.
Vorzugsweise wird zumindest insgesamt so lange kalziniert, dass der Gehalt des Kata- lysators an Carbonat (berechnet als CO32") höchstens 10 Gew.-%, bezogen auf das Gesamtgewicht des Kalzinationsprodukts beträgt, und ihre BET-Oberfläche einen Wert im Bereich von mindestens 10 m2/g, vorzugsweise mindestens 30 m2/g und in besonders bevorzugter Form mindestens 40 m2/g, insbesondere mindestens 50 m2/g sowie im Allgemeinen höchstens 100 m2/g, vorzugsweise höchstens 90 m2/g und in beson- ders bevorzugter Form höchstens 80 m2/g, insbesondere höchstens 75 m2/g aufweist. Das Porenvolumen des Katalysators, gemessen als Wasseraufnahme, wird bei der Kalzination auf einen Wert von mindestens 0,05 ml/g eingestellt. Diese Werte sind für den im erfindungsgemäßen Verfahren zu verwendenden Katalysator bevorzugt.
Bei der Herstellung des Katalysators können selbstverständlich bekannte Hilfsstoffe wie etwa sich bei der Kalzination zersetzende Porenbildner oder Tablettierhilfsmittel verwendet werden.
Der Katalysator kann auch, wie oben erwähnt, auf einem Träger abgeschieden wer- den. Dies geschieht durch übliche Tränkverfahren oder Auffällverfahren. Ein Auffällverfahren ist bekanntlich ein Fällverfahren in Gegenwart eines Trägers oder eines Trägervorläufers. Zur Durchführung eines Auffällverfahrens wird vorzugsweise im oben ausgeführten Fällverfahren der in Schritt a) hergestellten Lösung ein Träger oder Trägervorläufer zugesetzt. Falls der Träger bereits in Form von vorgeformten fertigen Form- körpern vorliegt, also ein reines Tränkverfahren durchgeführt wird, entfällt der Formgebungsschritt e), ansonsten wird der Träger im Zuge der Verarbeitung des Vorprodukts des Katalysators durch Fällung, Trocknung, Kalzinierung und Formgebung mit ausgebildet.
Ein bevorzugtes Tränkverfahren zur Herstellung des Katalysators wird mit vorgeformten Trägern durchgeführt und umfasst die folgenden Verfahrensschritte in der genannten Reihenfolge:
a) Herstellen einer Lösung der Komponenten des Katalysators und/oder von lösli- chen Ausgangsverbindungen davon; b) Tränken eines vorgeformten Trägers mit dieser Lösung; c) Trocknung des getränkten Trägers; und d) Kalzination des getränkten und getrockneten Trägers.
Verfahrensschritt a) dieses Tränkverfahrens wird wie der oben beschriebene Schritt a) des Fällverfahrens durchgeführt. In Schritt b) wird ein vorgeformter Träger mit der Lö- sung getränkt. Der vorgeformte Träger hat eine dem Einsatzzweck entsprechend gewählte Form, beispielsweise Stränglinge oder Extrudate, Tabletten oder - auch kugelförmige - Pellets. Die Tränkung wird entweder mit überstehender Lösung oder als Tränkung mit der dem Porenvolumen des Trägers entsprechenden Lösungsmenge („incipient wetness") durchgeführt. Nach der Tränkung wird der getränkte Träger in Schritten c) und d) wie das Fällprodukt beim Fällverfahren getrocknet und kalziniert. Da ein vorgeformter Träger verwendet wird, entfällt der Formgebungsschritt.
Nach der Kalzination liegt der Katalysator in oxidischer Form vor, d.h. das in ihm enthaltene Kupfer liegt überwiegend oder ausschließlich in Form von Kupferoxiden vor. Zur Hydrierung muss der Katalysator reduziert werden, d.h. das Kupfer muss überwiegend oder ausschließlich im metallischen Zustand vorliegen. Die Reduktion erfolgt durch Behandlung des nach einer Kalzination vorliegenden oxidischen Katalysators mit einem Reduktionsmittel. Dies kann im Prinzip durch jedes Reduktionsmittel erfolgen, das Kupfer aus den Oxidationsstufen I oder Il zur Oxidationsstufe 0 reduzieren kann. Die genauen anzuwendenden Reduktionsbedingungen sind vom Katalysator, seinem genauen Zustand vor Reduktion sowie vom verwendeten Reduktionsmittel abhängig und können in wenigen Routineversuchen leicht ermittelt werden. Verfahren zur Reduktion von kupferhaltigen Katalysatoren sind bekannt.
Die Reduktion kann mit flüssigen oder gelösten Reduktionsmitteln erfolgen, in diesem Fall muss nach der Reduktion getrocknet werden. Sehr viel bequemer ist deshalb die Reduktion mit einem gasförmigen Reduktionsmittel, vor allem die Reduktion mit Wasserstoff durch Überleiten eines Wasserstoff enthaltenen Gases. Die hierbei anzuwendende Temperatur beträgt im Allgemeinen mindestens 80 °C, vorzugsweise mindes- tens 100 °C und in besonders bevorzugter Weise mindestens 120 °C sowie im Allgemeinen höchstens 180 °C, vorzugsweise höchstens 160 °C und in besonders bevorzugter Weise höchstens 140 °C. Eine geeignete Temperatur ist beispielsweise ca. 130 °C. Die Reduktion ist exotherm. Die Menge an zugeführtem Reduktionsmittel ist so einzustellen, dass das gewählte Temperaturfenster nicht verlassen wird. Der Verlauf der Aktivierung kann anhand der in der Schüttung des Adsorptionsmittels gemessenen Temperatur verfolgt werden („temperaturprogrammierte Reduktion, TPR").
Eine bevorzugte Methode zur Reduktion ist es, im Anschluss an eine unter einem Stickstoffstrom durchgeführte Trocknung die gewünschte Reduktionstemperatur einzu- stellen und dem Stickstoffstrom eine geringe Menge Wasserstoff beizumischen. Ein geeignetes Gasgemisch enthält zu Beginn beispielsweise mindestens 0,1 Vol.-% Wasserstoff in Stickstoff, vorzugsweise mindestens 0,5 Vol.-% und in besonders bevorzug- ter Weise mindestens 1 Vol.-%, sowie höchstens 10 Vol.-%, vorzugsweise höchstens 8 Vol.-% und in besonders bevorzugter Weise höchstens 5 Vol.-%. Ein geeigneter Wert ist beispielsweise 2 Vol.-%. Diese Anfangskonzentration wird entweder beibehalten oder erhöht, um das gewünschte Temperaturfenster zu erreichen und zu halten. Die Reduktion ist vollständig, wenn trotz konstantem oder steigendem Pegel des Reduktionsmittels die Temperatur in der Schüttung der Masse zurückgeht. Eine typische Reduktionsdauer beträgt im Allgemeinen mindestens 1 Stunde, vorzugsweise mindestens 10 Stunden und in besonders bevorzugter Weise mindestens 15 Stunden sowie im Allgemeinen höchstens 100 Stunden, vorzugsweise höchstens 50 Stunden und in be- sonders bevorzugter Weise höchstens 30 Stunden.
Die Trocknung, falls erforderlich, wird durch Heizen des Katalysators auf eine Temperatur von im Allgemeinen mindestens 100 °C, vorzugsweise mindestens 150 °C und in besonders bevorzugter Weise mindestens 180 °C sowie im Allgemeinen höchstens 300 °C, vorzugsweise höchstens 250 °C und in besonders bevorzugter Weise höchstens 220 °C erreicht. Eine geeignete Trocknungstemperatur beträgt beispielsweise ca. 200 °C. Der Vorläufer wird so lange bei der Trocknungstemperatur gehalten, bis nur noch nicht mehr störende Reste anhaftender Feuchtigkeit vorhanden sind; dies ist im Allgemeinen bei einer Trocknungsdauer von mindestens 10 Minuten, vorzugsweise mindestens 30 Minuten und in besonders bevorzugter Weise mindestens 1 Stunde sowie im Allgemeinen höchstens 100 Stunden, vorzugsweise höchstens 10 Stunden und in besonders bevorzugter Weise höchstens 4 Stunden der Fall. Vorzugsweise findet die Trocknung in einem Gasstrom statt, um die Feuchtigkeit aus der Schüttung abzutransportieren. Dazu kann beispielsweise trockene Luft verwendet werden, be- sonders bevorzugt ist es jedoch, die Schüttung mit einem Inertgas zu durchströmen, geeignet sind hier insbesondere Stickstoff oder Argon.
Bequemerweise wird die Trocknung und die Reduktion vor Einsatz des Katalysators zur Hydrierung im Hydrierreaktor durchgeführt, da Transport und Lagerung des Kataly- sators im reduzierten Zustand besondere Vorsichtsmaßnahmen erfordern und schwierig sind. Der Katalysator kann allerdings auch außerhalb des Hydrierreaktors, etwa beim Katalysatorhersteller, reduziert und nach üblichen Verfahren durch teilweise Re- oxidation wieder passiviert werden, um Transport und Lagerung zu vereinfachen. Vor dem Einsatz zur Hydrierung ist er dann wiederum vollständig zu reduzieren. Diese Maßnahmen sind bei Kupferkatalysatoren gängig und allgemein bekannt.
Das erfindungsgemäße Hydrierverfahren zeichnet sich durch den Einsatz des oben beschriebenen Katalysators aus. Das erfindungsgemäße Hydrierverfahren unter Einsatz des beschriebenen Katalysators wird im Allgemeinen genauso wie die bekannten, denselben Zwecken dienenden, heterogen katalysierten Hydrierverfahren durchgeführt. Sie können als heterogen katalysierte Gasphasenverfahren, bei denen sich sowohl der Kohlenwasserstoffstrom wie auch der Hydrierwasserstoff in der Gasphase befinden, oder als heterogen katalysierte Gas/Flüssigphasenverfahren, bei denen der Kohlenwasserstoffstrom zumindest teilweise in flüssiger Phase und Wasserstoff in der Gasphase und/oder in gelöster Form in der Flüssigphase vorliegen, durchgeführt werden. Die einzustellenden Parameter wie Durchsatz an Kohlenwasserstoffstrom, ausge- drückt als Raumgeschwindigkeit in der Einheit [m3/m3*lr1], bezogen auf das Katalysatorvolumen, Temperatur und Druck werden analog zu denen bekannter Verfahren gewählt. Die Temperatur liegt beim erfindungsgemäßen Verfahren im Allgemeinen bei mindestens -50 °C, vorzugsweise mindestens -10 °C und in besonders bevorzugter Form bei mindestens 0 °C sowie im Allgemeinen bei höchstens 250 °C, vorzugsweise bei höchstens 100 °C und in besonders bevorzugter Form bei höchstens 50 °C. Der Druck liegt im allgemeinen bei mindestens 0,01 bar abs., vorzugsweise bei mindestens 0,8 bar abs. und in besonders bevorzugter Form bei mindestens 1 bar abs. sowie im Allgemeinen bei höchstens 750 bar abs., vorzugsweise höchstens 325 bar abs. und in besonders bevorzugter Form höchstens 40 bar abs.
Die Menge des eingesetzten Wasserstoffs, bezogen auf die Menge des zugeführten Kohlenwasserstoffstroms, ist abhängig von dem Gehalt des Kohlenwasserstoffstroms an unerwünschten ungesättigten Verbindungen und deren Art. Im Allgemeinen wird der Wasserstoff in einer Menge im Bereich vom 0,8 bis zum 5-fachen der stöchiometrisch zum vollständigen Wasserstoffumsatz beim Reaktordurchgang erforderlichen Menge zugegeben, vorzugsweise im Bereich vom 0,95 bis 2-fachen dieser Menge. Die Hydrierung von Dreifachbindungen läuft im Normalfall schneller ab als die konjugierter Doppelbindungen, und diese wiederum schneller als die unkonjugierter Doppelbindungen. Dies erlaubt eine entsprechende Steuerung des Verfahrens anhand der zugegebenen Wasserstoffmenge. In Sonderfällen, beispielsweise wenn eine hohe Isomerisierung von 1 -Buten zu eis- oder trans-2-Buten gewünscht ist, kann bekanntlich auch ein höherer Wasserstoffüberschuss, beispielsweise ein zehnfacher Wasserstoffüberschuss verwendet werden. Der Wasserstoff kann inerte Gase enthalten, beispielsweise Edelgase wie Helium, Neon oder Argon, andere inerte Gase wie Stickstoff, Kohlendioxid und/oder niedere Alkane, etwa Methan, Ethan, Propan und/oder Butan. Solche Inertgase im Wasserstoff liegen vorzugsweise in einer Konzentration von weniger als 30 Vol.-% vor. Eine Moderation des Katalysators durch bewusste Kohlenmonoxidzu- gabe ist im Allgemeinen nicht erforderlich.
Das Verfahren kann in einem oder in mehreren parallelen oder hintereinandergeschal- teten Reaktoren, jeweils im einfachen Durchgang oder in Kreislauffahrweise durchgeführt werden. Bei Durchführung des Verfahrens in der Gas-/Flüssigphase wird der Kohlenwasserstoffstrom nach Durchtritt durch einen Reaktor üblicherweise in einem Abscheider von Gasen befreit und ein Teil der erhaltenen Flüssigkeit in den Reaktor zu- rückgeführt. Das Verhältnis zwischen zurückgeführtem und erstmals in den Reaktor eingespeistem Kohlenwasserstoffstrom, das sogenannte Rücklaufverhältnis, wird so eingestellt, dass unter den sonstigen Reaktionsbedingungen, wie Druck, Temperatur, Durchsatz und Wasserstoffmenge, der gewünschte Umsatz erreicht wird.
Einsatzzweck des erfindungsgemäßen Verfahrens ist etwa die Hydrierung von Alkine- nen zu Alkadienen, von Alkinen, Alkinenen und Alkadienen zu Alkenen, von Phenylal- kinen zu Phenylalkenen und/oder von Phenylalkenen zu Phenylalkanen.
Beispiele von Anwendungsfällen des erfindungsgemäßen Verfahrens sind die:
zur selektiven Hydrierung von Acetylen in C2-Strömen zu Ethylen bei minimaler Bildung von Ethan (diese Ausführungsform des Verfahrens wird zur Vereinfachung im folgenden als „Verfahren A" bezeichnet),
zur selektiven Hydrierung von Propin und/oder Propadien in C3-Strömen zu Propylen bei minimaler Bildung von Propan („Verfahren B"),
zur selektiven Hydrierung von 1-Butin, 2-Butin, 1 ,2-Butadien und/oder Vinylacetylen in C4-Strömen zu 1 ,3-Butadien, 1 -Buten, eis- und/oder trans-2-Buten („Verfahren C"),
zur selektiven Hydrierung von 1-Butin, 2-Butin, 1 ,2-Butadien, 1 ,3-Butadien und/oder Vinylacetylen in C4-Strömen zu 1 -Buten, eis- und/oder trans-2-Buten, bei butadienreichen C4-Strömen („Roh-C4-Schnitt") oder butadienarmen C4-Strömen („Raffinat I") („Verfahren D"), und
zur selektiven Hydrierung ungesättigter Verbindungen und/oder ungesättiger Substi- tuenten aromatischer Verbindungen in C5+-Strömen zu höher gesättigten Verbindungen und/oder aromatischen Verbindungen mit höher gesättigten Substituenten bei minimaler Hydrierung der aromatischen Kerne („Verfahren E"),
jeweils unter Verwendung des oben beschriebenen Katalysators.
Verfahren A wird üblicherweise als Gasphasenverfahren mit einer Raumgeschwindigkeit des gasförmigen C2-Stroms von 500 m3/m3*h, bezogen auf das Katalysatorvolumen, bis 10 000 m3/m3*h bei einer Temperatur von 0 °C bis 100 °C und einem Druck von 0,01 bar bis 50 bar durchgeführt, wobei je Mol Acetylen im C2-Strom ein Mol Wasserstoff zugegeben wird.
Verfahren B wird üblicherweise als Gasphasenverfahren oder als Gas-/Flüssigphasen- verfahren mit einer Raumgeschwindigkeit des flüssigen C3-Stroms von 1 m3/m3*h, be- zogen auf das Katalysatorvolumen, bis 50 m3/m3*h bei einer Temperatur von 0 °C bis 50 °C und einem Druck von 0,01 bar bis 50 bar durchgeführt, wobei je Mol Propin und Propadien im C3-Strom ein bis zwei Mole Wasserstoff zugegeben werden. Verfahren C wird üblicherweise als Gas/Flüssigphasenverfahren mit einer Raumgeschwindigkeit des flüssigen C4-Stroms von 1 m3/m3*h, bezogen auf das Katalysatorvolumen, bis 50 m3/m3*h bei einer Temperatur von 0 °C bis 180 °C und einem Druck von 2 bar bis 50 bar durchgeführt, wobei je Mol Butin, 1 ,2-Butadien und Vinylacetylen im C4-Strom ein bis zwei Mole Wasserstoff zugegeben werden. Verfahren C kann beispielsweise als selektive sogenannte "front end-Vinylacetylenhydrierung" vor einer Butadienextraktion eingesetzt werden.
Verfahren D wird üblicherweise als ein- oder zweistufiges Gas-/Flüssigphasen- verfahren mit einer Raumgeschwindigkeit des flüssigen C4-Stroms im Bereich von 0,1 m3/m3*h, bezogen auf das Katalysatorvolumen, bis 60 m3/m3*h, vorzugsweise von 1 m3/m3*h bis 50 m3/m3*h, bei einer Reaktoreingangstemperatur im Bereich von 20 °C bis 90 °C, vorzugsweise von 20 °C bis 70 °C, und einem Druck im Bereich von 5 bar bis 50 bar, vorzugsweise von 10 bar bis 30 bar durchgeführt, wobei je Mol Butin, Buta- dien und Vinylacetylen im C4-Strom ein Mol Wasserstoff zugegeben wird. Beispielsweise wird das Verfahren zweistufig durchgeführt, wobei der Butadiengehalt, der in typischen C4-Strömen aus Steamcrackern im Bereich von 20 Gew.-% bis 80 Gew.-%, bezogen auf den Gesamtstrom, liegt, in der ersten Stufe bis auf einen Gehalt im Bereich von 0,1 Gew.-% bis 20 Gew.-% und in der zweiten Stufe bis auf den gewünsch- ten Restgehalt im Bereich von wenigen Gew.-ppm bis zu etwa 1 Gew.-% verringert wird. Es ist ebenso möglich, die Gesamtreaktion auf mehr als zwei Reaktoren, beispielsweise drei oder vier, zu verteilen. Die einzelnen Reaktionsstufen können unter teilweiser Rückführung des Kohlenwasserstoffstroms betrieben werden, das Rücklaufverhältnis liegt üblicherweise im Bereich von 0 bis 30. Isobuten bleibt bei der Durchfüh- rung von Verfahren D im wesentlichen unverändert erhalten und kann vor oder nach der Durchführung von Verfahren D mit bekannten Methoden aus dem C4-Strom abgetrennt werden. Verfahren D kann beispielsweise als Butadienhydrierung im C4-Strom (wenn Butadien nicht als Wertprodukt gewonnen werden soll) oder als selektive sogenannte "tail end-Vinylacetylenhydrierung" nach der Butadienextraktion aus dem C4- Strom verwendet werden.
Verfahren E wird vorzugsweise als Gas/Flüssigphasenverfahren mit einer Raumgeschwindigkeit des flüssigen C5+-Stroms von 0,5 m3/m3*h, bezogen auf das Katalysatorvolumen, bis 30 m3/m3*h bei einer Temperatur von 0 °C bis 180 °C und einem Druck von 2 bar bis 50 bar durchgeführt, wobei je Mol zu hydrierender Bindung im C5+-Strom ein bis zwei Mole Wasserstoff zugegeben werden. Verfahren E kann beispielsweise als selektive Pyrolysebenzinhydrierung, als selektive Hydrierung von Olefinen in Refor- matströmen oder Koksöfen-Kondensaten, zur Hydrierung von Phenylacetylen zu Styrol oder zur Hydrierung von Styrol zu Ethylbenzol eingesetzt werden. Beispiele
Beispiele 1 bis 4: Herstellung von Katalysatoren A-D
In einem beheizbaren und mit Rührwerk ausgestatteten 10 I-Fällgefäß wurden jeweils 1 ,2 I Wasser vorgelegt und auf 70 °C erwärmt. Anschließend wurden unter Rühren jeweils salpetersaure Metallnitratlösungen in den zum Erreichen der unten in der Tabelle 1 angegebenen Zusammensetzung der so hergestellten Katalysatoren A-D notwendigen Mengen zudosiert. Gleichzeitig wurde eine 20 Gew.-%ige Natriumcarbonat- lösung so zudosiert, dass im Fällgefäß ein pH-Wert von 6,5 gehalten wurde. Die gebildeten Suspensionen wurden 120 Minuten bei 70 °C und pH 6,5 nachgerührt, danach abfiltriert und mit kaltem Wasser nitratfrei (< 25 ppm Nitrat im Ablauf) gewaschen. Die Filterkuchen wurden getrocknet, anschließend über 4 Stunden bei 300 °C kalziniert und danach tablettiert.
Bei den Katalysatoren A und B wurde nach Tablettierung ein erneuter Kalzinati- onsschritt durchgeführt.
Tabelle 1 : Zusammensetzung, jeweils in Gew.-%, der Katalysatoren von Beispielen 1-4
Beispiele 5 bis 8: Hydrierung von Acetylen in einem C2-Strom
Proben der in Beispiel 1 erhaltenen Tabletten wurden mit Wasserstoff reduziert und danach in einem Rohrreaktor mit einem C2-Strom (Ethylen, vermischt mit den in der folgenden Tabelle 2 angegebenen Anteilen an Wasserstoff und Acetylen) bei einer Raumgeschwindigkeit (GHSV) von 2 300 h-1 und der in der Tabelle angegebenen Temperatur beaufschlagt. Als Druck wurde Umgebungsdruck eingestellt, d.h. vor Reaktor wurde nur der zur Überwindung des Druckverlusts der Apparatur notwendige Druck eingestellt. Die nach dem Reaktor gemessenen Anteile an Wasserstoff und Acetylen sind in der folgenden Tabelle 2 angegeben. Tabelle 2: Hydrierung von Acetylen
Beispiele 5-8 zeigen, dass mit dem erfindungsgemäßen Verfahren Acetylen in einem C2-Strom bei sehr niedrigen Temperaturen praktisch vollständig entfernt werden kann.
Beispiele 9-11 : Hydrierung von Propin
Proben der in Beispiel 1 erhaltenen Tabletten wurden mit Wasserstoff reduziert und danach in einem Autoklav mit flüssigem Propen (C3H6), das mit 120 Gew.-ppm Propin (C3H4) und 450 Gew.-ppm Wasserstoff versetzt worden war, bei 20 bar Druck und 25 °C über zwei Stunden beaufschlagt. Das Propen enthielt ferner 300 ppm Propan (C3H8).
Die anschließend gemessenen Anteile an Wasserstoff, Propan und Propin sind in der folgenden Tabelle 3 angegeben.
Tabelle 3: Hydrierung von Propin in Propen
Beispiele 9-1 1 zeigen, dass mit dem erfindungsgemäßen Verfahren die praktisch vollständige Entfernung von Propin in C3-Strömen auf hochselektive Weise bei vergleichsweise niedrigen Temperaturen möglich ist.

Claims

Patentansprüche
1. Verfahren zur Hydrierung ungesättigter Kohlenwasserstoffe an Kupfer und Zink enthaltenden Katalysatoren, dadurch gekennzeichnet, dass man einen Katalysa- tor verwendet, dessen Aktivmasse in unreduzierter Form im Wesentlichen aus
10 bis 95 Gew.-% Kupferoxid, als Kupfer(ll)-oxid (CuO) gerechnet, 5 bis 90 Gew.-% Zinkoxid (ZnO), wahlweise 0,1 bis 50 Gew.-% Zirkondioxid (ZrO2) sowie wahlweise 0,1 Gew.-% bis 50 Gew.-% AI2O3 besteht, wobei sich die Gewichtsanteile zu 100 Gew.-% summieren.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man einen Katalysator verwendet, der in unreduzierter Form im Wesentlichen aus 10 bis 95 Gew.-% Kupferoxid, als Kupfer(ll)-oxid (CuO) gerechnet, 5 bis 90 Gew.-% Zinkoxid (ZnO), wahlweise 0,1 bis 50 Gew.-% Zirkondioxid (ZrO2) sowie wahlweise 0,1 Gew.-% bis 50 Gew.-% AI2O3 besteht, wobei sich die Gewichtsanteile zu
100 Gew.-% summieren.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man Alkine in Olefinströmen hydriert.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass man Acetylen in einem Ethylenstrom hydriert.
5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass man Propin und Al- len in einem Propylenstrom hydriert.
6. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass man Buta-3-en-1-in in einem C4-Strom hydriert.
7. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man bei einer Temperatur von höchstens 50 °C hydriert.
EP07787141A 2006-07-17 2007-07-05 Verfahren zur hydrierung ungesättigter kohlenwasserstoffe an kupfer und zink enthaltenden katalysatoren Ceased EP2043778A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07787141A EP2043778A1 (de) 2006-07-17 2007-07-05 Verfahren zur hydrierung ungesättigter kohlenwasserstoffe an kupfer und zink enthaltenden katalysatoren

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06117306 2006-07-17
PCT/EP2007/056858 WO2008009568A1 (de) 2006-07-17 2007-07-05 Verfahren zur hydrierung ungesättigter kohlenwasserstoffe an kupfer und zink enthaltenden katalysatoren
EP07787141A EP2043778A1 (de) 2006-07-17 2007-07-05 Verfahren zur hydrierung ungesättigter kohlenwasserstoffe an kupfer und zink enthaltenden katalysatoren

Publications (1)

Publication Number Publication Date
EP2043778A1 true EP2043778A1 (de) 2009-04-08

Family

ID=38561730

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07787141A Ceased EP2043778A1 (de) 2006-07-17 2007-07-05 Verfahren zur hydrierung ungesättigter kohlenwasserstoffe an kupfer und zink enthaltenden katalysatoren

Country Status (7)

Country Link
US (1) US8680350B2 (de)
EP (1) EP2043778A1 (de)
JP (1) JP5463141B2 (de)
KR (1) KR101384407B1 (de)
CN (1) CN101489671B (de)
BR (1) BRPI0714401A2 (de)
WO (1) WO2008009568A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8157436B2 (en) 2008-02-15 2012-04-17 Red Devil Equipment Company Multi-size mixer
CN102249835B (zh) * 2010-05-21 2014-02-05 中国石油化工股份有限公司 碳四烃物流中炔烃和二烯烃的选择加氢方法
CN102249838B (zh) * 2010-05-21 2014-02-05 中国石油化工股份有限公司 碳四烃物流中炔烃的选择加氢方法
US8778833B2 (en) 2010-11-11 2014-07-15 Basf Corporation Copper-zirconia catalyst and method of use and manufacture
US9168509B2 (en) * 2011-11-09 2015-10-27 China Petroleum & Chemical Corp. Hydrogenation catalysts and the preparation processes thereof
US9295978B2 (en) 2012-02-15 2016-03-29 Basf Corporation Catalyst and method for the direct synthesis of dimethyl ether from synthesis gas
GB201205764D0 (en) * 2012-03-30 2012-05-16 Johnson Matthey Plc Catalyst and method of manufacture
CA2951694C (en) * 2014-06-12 2019-07-02 Reaction35, LLC Production of 1,3-butadiene
US9545619B2 (en) * 2014-12-04 2017-01-17 Clariant Corporation Catalyst materials for hydrogenating olefins and shifting carbon monoxide
CN105037064B (zh) * 2015-07-09 2017-01-11 上海华谊(集团)公司 含烯烃尾气催化加氢的处理方法
WO2018198072A1 (en) 2017-04-27 2018-11-01 Sabic Global Technologies B.V. Removal of alkyne impurities from diolefin containing mixtures through cracking over cuo/al2o3 based materials
WO2018203615A1 (ko) * 2017-05-04 2018-11-08 (주) 엘지화학 산화적 탈수소화 반응용 촉매의 제조방법 및 이 촉매를 이용한 산화적 탈수소화 방법
KR102173583B1 (ko) * 2017-05-04 2020-11-04 주식회사 엘지화학 산화적 탈수소화 반응용 촉매의 제조방법 및 이 촉매를 이용한 산화적 탈수소화 방법
CN112705042A (zh) * 2019-10-25 2021-04-27 中国石油化工股份有限公司 脱除天然气裂解尾气中乙炔、乙烯的方法
US20210206704A1 (en) * 2020-01-06 2021-07-08 Uop Llc Oxygenate removal for para-xylene purification via adsorption separation
KR20220028810A (ko) * 2020-08-31 2022-03-08 주식회사 엘지화학 세리아-지르코니아 복합 산화물의 제조방법, 세리아-지르코니아 복합 산화물, 이를 포함하는 촉매 및 부타디엔의 제조방법
CN118356942A (zh) * 2024-04-19 2024-07-19 浙江工业大学 Cu-M双金属氧化物催化剂在乙炔选择性加氢制乙烯中的应用

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2426604A (en) * 1944-07-17 1947-09-02 Dow Chemical Co Removal of acetylenic hydrocarbons from diolefine-containing mixtures
FR1573174A (de) 1968-04-10 1969-07-04
NL156117B (nl) * 1968-06-17 1978-03-15 Stamicarbon Werkwijze voor het zuiveren van etheen en/of propeen.
BE743652A (de) * 1968-12-26 1970-05-28
BE748742A (en) 1969-04-09 1970-10-09 Unilever Nv Selective hydrogenation catalyst for poly - unsaturated triglycerides
US3677970A (en) 1970-01-07 1972-07-18 Exxon Research Engineering Co Hydrogenation of organic compounds
NL7002631A (de) * 1970-02-25 1971-08-27
GB1281112A (en) 1970-03-06 1972-07-12 Margarita Ivanovna Markina A method of preparing catalysts
US3701739A (en) 1970-12-14 1972-10-31 Little Inc A Method for forming mixed oxide heterogenous catalysts
US3912789A (en) * 1973-12-17 1975-10-14 Dow Chemical Co Dealkynation of olefin and diolefin streams
US4323482A (en) 1979-08-14 1982-04-06 University Of Delaware Catalyst and method of preparation
FR2560531B1 (fr) 1984-03-02 1988-04-08 Inst Francais Du Petrole Procede de fabrication de catalyseurs contenant du cuivre, du zinc, de l'aluminium et au moins un metal du groupe forme par les terres rares et le zirconium et utilisation des catalyseurs obtenus pour les reactions mettant en jeu un gaz de synthese
US4593148A (en) 1985-03-25 1986-06-03 Phillips Petroleum Company Process for removal of arsine impurities from gases containing arsine and hydrogen sulfide
GB8529245D0 (en) * 1985-11-27 1986-01-02 British Petroleum Co Plc Chemical process
EP0234745B1 (de) 1986-01-29 1991-06-12 Dyson Refractories Limited Katalysatoren
FR2595689B1 (fr) 1986-03-17 1988-11-04 Inst Francais Du Petrole Procede de fabrication d'un melange d'alcools primaires a partir de gaz de synthese en presence d'un catalyseur contenant du cuivre, du cobalt, du zinc et au moins un metal alcalin et/ou alcalino-terreux
GB8610196D0 (en) 1986-04-25 1986-05-29 Ici Plc Sulphur compounds removal
DE3913835A1 (de) 1989-04-27 1990-10-31 Basf Ag Katalysator fuer die hydrierung aliphatischer ungesaettigter verbindungen
US5008235A (en) 1989-12-21 1991-04-16 Union Carbide Chemicals And Plastics Technology Corporation Catalysts of Cu-Al-third metal for hydrogenation
JP2976716B2 (ja) * 1992-08-25 1999-11-10 工業技術院長 メタノール合成用触媒及びその製造方法
DE4244273A1 (de) * 1992-12-28 1994-06-30 Hoechst Ag Kupferkatalysator
JP3339655B2 (ja) 1993-10-04 2002-10-28 花王株式会社 水素化反応用触媒前駆体、その製造法、及びアルコールの製造法
GB9404198D0 (en) 1994-03-04 1994-04-20 Ici Plc Copper catalysts
MY129140A (en) 1994-11-07 2007-03-30 Shell Int Research Process and a catalyst for the direct hydrogenation of carboxylic esters
US5990040A (en) * 1995-01-11 1999-11-23 United Catalysts Inc. Promoted and stabilized copper oxide and zinc oxide catalyst and preparation
DE19848595A1 (de) 1998-10-21 2000-04-27 Basf Ag Hochtemperaturstabile Katalysatoren zur Zersetzung von N¶2¶0
JP2000143209A (ja) 1998-11-05 2000-05-23 Idemitsu Kosan Co Ltd 一酸化炭素の転化方法および触媒
JP4295406B2 (ja) * 1998-11-16 2009-07-15 中國石油化工集團公司 銅含有触媒およびその製造方法
DE19915894C1 (de) * 1999-04-08 2000-08-24 Inventa Ag Verfahren zur Umwandlung von cis- und trans-Cyclododecenoxid in Cyclododecanon
US6576588B2 (en) * 2000-04-07 2003-06-10 Catalytic Distillation Technologies Process for selective hydrogenation of alkynes and catalyst therefor
DE10108842A1 (de) 2001-02-23 2002-10-02 Degussa Geformter Kupfer-Katalysator
DE10124962A1 (de) 2001-05-21 2002-12-05 Basf Ag Katalysatoren für die Reinigung von Ethylen
US6706885B2 (en) 2001-06-06 2004-03-16 Merck & Co., Inc. Process for preparing integrin antagonist intermediates
DE10202127A1 (de) 2002-01-22 2003-07-31 Kataleuna Gmbh Catalysts Kugelförmige hochaktive Metall-Trägerkatalysatoren
AU2002318331A1 (en) * 2002-07-08 2004-01-23 Uop Llc Process for hydrogenating acetylenes
DE10241529A1 (de) 2002-09-05 2004-03-11 Basf Ag Adsorptionsmasse und Verfahren zur Entfernung von Kohlenmonoxid aus Stoffströmen
GB0221489D0 (en) 2002-09-17 2002-10-23 Ici Plc Selective hydrogenation process
US6734328B1 (en) * 2002-11-08 2004-05-11 Catalytic Distillation Technologies Process for the selective hydrogenation of alkynes
DE102004059282A1 (de) * 2004-10-13 2006-04-27 Basf Ag Selektivhydrierkatalysator
US6987152B1 (en) * 2005-01-11 2006-01-17 Univation Technologies, Llc Feed purification at ambient temperature
JP2007083197A (ja) * 2005-09-26 2007-04-05 Mitsubishi Gas Chem Co Inc 銅−亜鉛−アルミニウム系触媒の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008009568A1 *

Also Published As

Publication number Publication date
WO2008009568A1 (de) 2008-01-24
JP5463141B2 (ja) 2014-04-09
US20090312588A1 (en) 2009-12-17
KR101384407B1 (ko) 2014-04-10
US8680350B2 (en) 2014-03-25
BRPI0714401A2 (pt) 2013-02-26
CN101489671B (zh) 2011-08-03
KR20090031760A (ko) 2009-03-27
JP2009543834A (ja) 2009-12-10
CN101489671A (zh) 2009-07-22

Similar Documents

Publication Publication Date Title
WO2008009568A1 (de) Verfahren zur hydrierung ungesättigter kohlenwasserstoffe an kupfer und zink enthaltenden katalysatoren
EP0992284B1 (de) Katalysator und Verfahren zur Selektivhydrierung ungesättigter Verbindungen in Kohlenwasserstoffströmen
EP1069101B1 (de) Verfahren zur Herstellung von C5-/C6-Olefinen
EP1134271B1 (de) Verfahren zur flexiblen Herstellung von Propen und Hexen
EP1802559B1 (de) Verfahren zur herstellung eines c4-olefin-gemisches durch selektivhydrierung und metatheseverfahren zur verwendung dieses stroms
EP0945415B1 (de) Verfahren zur Herstellung von Olefinen
EP2056962B1 (de) Verfahren zur entfernung von sauerstoff, stickstoffoxiden, acetylenen und/oder dienen aus wasserstoffreichen olefinhaltigen gasgemischen
DE102004059282A1 (de) Selektivhydrierkatalysator
EP1242181B1 (de) Pd-ag trägerkatalysator zur selektivhydrierung von alkinen und dienen
EP1536886A2 (de) Adsorptionsmasse und verfahren zur entfernung von kohlenmonoxid aus stoffströmen
EP2180947A1 (de) Hydrierkatalysator und verfahren zur herstellung von alkoholen durch hydrierung von carbonylverbindungen
EP0985447A2 (de) Katalysator und Verfahren zur Selektivhydrierung ungesättigter Verbindungen in Kohlenwasserstoffströmen
DE102005035816A1 (de) Verfahren zur Hydrierung von Oxo-Aldehyden mit hohen Estergehalten
EP0314020B1 (de) Katalysator zur selektiven Hydrierung von mehrfach ungesättigten Kohlenwasserstoffen
EP2285488B1 (de) Verfahren zur herstellung von gesättigten ethern durch hydrierung ungesättigter ether
EP0124744A1 (de) Hydrierkatalysator, Verfahren zu seiner Herstellung und seine Verwendung
WO2008135582A1 (de) Iridium-palladium-katalysatoren für umsetzung von kohlenwasserstoffen in gegenwart von wasserdampf und insbesondere für die dampfdealkylierung von alkyl-substituierten aromatischen kohlenwasserstoffen
DE102005053232A1 (de) Verfahren zur Dealkylierung von Alkyl-substituierten aromatischen Kohlenwasserstoffen mit Wasserdampf
DE19947989A1 (de) Katalysator, Verfahren zu seiner Herstellung und Verfahren zur Selektivhydrierung ungesättigter Verbindungen in Kohlenwasserstoffströmen
DE19521222A1 (de) Verfahren zur Herstellung von Alkylbenzolen
WO2024037770A1 (de) Verfahren zur behandlung eines katalysators
DE1299605B (de) Verfahren zur Herstellung eines Cr/Ni-Traegerkatalysators fuer selektive Hydrierung von Diolefinen und Acetylenkohlenwasserstoffen
EP3666854A1 (de) Verfahren zur oligomerisierung mit stufenangepasstem austausch des oligomerisierungskatalysators

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20090615

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20150226