EP1774555B1 - Thermobimetallschalter - Google Patents

Thermobimetallschalter Download PDF

Info

Publication number
EP1774555B1
EP1774555B1 EP05775029A EP05775029A EP1774555B1 EP 1774555 B1 EP1774555 B1 EP 1774555B1 EP 05775029 A EP05775029 A EP 05775029A EP 05775029 A EP05775029 A EP 05775029A EP 1774555 B1 EP1774555 B1 EP 1774555B1
Authority
EP
European Patent Office
Prior art keywords
thermal switch
contact
bimetallic thermal
contact spring
bimetallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP05775029A
Other languages
English (en)
French (fr)
Other versions
EP1774555A1 (de
Inventor
Harald Bischoff
Jens Radbruch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TMC Sensortechnik GmbH
Original Assignee
TMC Sensortechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34993027&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1774555(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by TMC Sensortechnik GmbH filed Critical TMC Sensortechnik GmbH
Publication of EP1774555A1 publication Critical patent/EP1774555A1/de
Application granted granted Critical
Publication of EP1774555B1 publication Critical patent/EP1774555B1/de
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • H01H37/5427Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting encapsulated in sealed miniaturised housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/14Contacts characterised by the manner in which co-operating contacts engage by abutting
    • H01H1/20Bridging contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • H01H37/5418Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting using cantilevered bimetallic snap elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/64Contacts

Definitions

  • the invention is based on a bimetallic switch, which in the DE 195 09 656 C2 is disclosed.
  • the known bimetallic switch has in a housing an insulating support in which a metallic support is embedded, which carries a contact spring made of a bimetal.
  • the contact spring is provided at its one end with a contact piece and connected at its opposite, fixed end with a leading out of the housing supply line. From a second contact piece, which is opposite to the first contact piece attached to the contact spring, a second lead leads out of the housing.
  • Such a bimetallic switch is used to protect electrical equipment, motors, transformers and the like against overheating. He should open when the temperature at his site a predetermined limit exceeds. This limit is hereinafter referred to as the switching temperature.
  • the bimetallic switch has a well-defined switching temperature
  • the contact spring is spherically shaped in an area between its fixed end and its contact piece by an embossing process. This has the consequence that the spherically shaped region can not change its curvature steadily, but only by leaps and bounds, when a minimum mechanical stress determined by the shape of the contact spring and its elastic properties has built up due to temperature change in the contact spring. For safety reasons, tolerance limits specified for the switching temperature must be observed.
  • the current consumed by the electrical equipment to be monitored flows through the contact spring.
  • heat is generated in the contact spring, which depends on the current intensity and the ohmic resistance of the contact spring.
  • This is disadvantageous for some applications, because a temperature can be simulated by the current heat generated in the contact spring, which is higher than the temperature at the location to be monitored of the electrical device. It can therefore come to unwanted tripping of the bimetallic switch.
  • the problem is aggravated by the fact that there is a development in electrical engineering to ever higher power densities. In the case of bimetallic switches, this means that increasingly smaller electrical currents and heat flows must be conducted through smaller and smaller conductor cross-sections, and this also includes the cross-section of a bimetallic contact spring.
  • Thermobimetallic switches in which the contact spring is not made of a bimetallic strip, but of a highly conductive, spring-hard iron or copper alloy, and in which a separate Bimetallschnappulation is provided for actuating the contact spring, which are arranged loosely on the underside or top of the contact spring is, so that the current to be switched with the bimetallic switch current substantially does not flow over the bimetallic strip.
  • a bimetallic switch is for example from EP 0 246 255 B1 known.
  • bimetallic switch In such a bimetallic switch is indeed the Switching element (the Bimetallschnappulation) largely decoupled from the current-carrying element (the contact spring) of the bimetallic switch, but requires such a switch a greater effort in the manufacture of its parts and its assembly, because the bimetallic snap disk to be produced separately, for example between separately punched and to be bent hook and tabs of the contact spring must be used and secured.
  • the Bimetallic switch the Switching element (the Bimetallschnappulation) largely decoupled from the current-carrying element (the contact spring) of the bimetallic switch, but requires such a switch a greater effort in the manufacture of its parts and its assembly, because the bimetallic snap disk to be produced separately, for example between separately punched and to be bent hook and tabs of the contact spring must be used and secured.
  • Thermobimetalischalter which have a circular in plan metallic housing with an insulating cover, on the inside of a diagonal arrangement two contacts are fixed.
  • the contact pieces is a contact plate opposite, which acts as a contact bridge and can be actuated together with a Bimetallschnappulation and arranged between this and the contact plate spring washer.
  • the contact plate, the spring washer and the Bimetallschnappulation are centrally riveted together and thus determined in the housing that the spring washer is clamped with its edge between two housing parts.
  • the present invention has for its object to provide a way how a bimetallic switch can be improved with a fixed at one end contact spring of a bimetallic strip, that it from a minimum number can be produced inexpensively from components in small size and at the same time shows a reliable switching behavior, which is largely unaffected by the current generated in the bimetallic switch current heat.
  • the bimetallic switch according to the invention has an electrically insulating support, a carrier spring carried by a bimetal, which is formed at least in a portion so that it suddenly changes their curvature when their switching temperature exceeds its curvature, two held by the insulating support electrical leads, which are two of each other and separate from the contact spring contact pieces, and a contact bridge, which is mounted opposite the two contact pieces on the contact spring.
  • the contact spring may be formed in a known manner, in particular be bulged by embossing, in order to achieve that it changes its curvature when its switching temperature is exceeded.
  • This shaping expediently takes place only in a central portion of the contact spring.
  • the contact bridge is preferably arranged on the contact spring outside of the region which changes its curvature as a consequence of its shape, preferably directly on the movable end of the contact spring.
  • a contact bridge is particularly suitable a profile section of a highly electrically conductive contact material, in particular based on copper or silver.
  • the contact bridge is suitably fastened by riveting, welding or soldering on the contact spring, preferably already in the course of the production of a band-shaped semi-finished product, from which the contact springs provided with a contact bridge are formed by embossing, punching and optionally by bending.
  • the contact bridge does not have to be fixed rigidly on the contact spring. It can also be attached to the contact spring in the manner of a rocker by being connected to the center of the contact spring with some play, for example by means of a clamp or a rivet.
  • Such an embodiment has the advantage that it can compensate for misalignments of the contact bridge and / or the contact pieces and can ensure that the contact bridge equally well contacts two contact pieces.
  • the contact spring may be attached with its fixed end directly to the insulating support.
  • Such an embodiment is particularly suitable for air-open switch, the rear derailleur is not protected by a housing.
  • the contact spring not directly, but only indirectly to be attached to the electrically insulating support, in particular so that the contact spring is connected with its remote from the contact bridge end by welding, soldering, clamping, crimping or riveting with a metallic support, which in turn is held by the insulating support.
  • the metallic carrier should be characterized by a greater rigidity than it has the contact spring, so that the switching behavior and the switching path are not affected by unintentional bending of the metallic carrier.
  • the metallic carrier itself is expediently embedded with a part of itself in the insulating carrier so that it is firmly anchored therein.
  • the metallic support is fixedly connected to the insulating support at two spaced apart locations.
  • the metallic support is U-shaped in plan view and the two legs of the U are attached to the insulating support, in particular embedded. It is particularly advantageous if the legs have an opposite surface to the base of the U angled surface and the fixed end of the contact spring is attached to the base connecting the legs of the U.
  • the legs of the U preferably run on the lateral walls of a flat housing and can increase its dimensional stability against external pressure, which is important in some applications of bimetallic switches.
  • the use of a metallic carrier for the bimetallic contact spring has the further advantage that the fixed end of the contact spring can be arranged at the remote from the insulating support end of the housing, whereas the free end of the contact spring is located with the contact bridge in the vicinity of the insulating support.
  • This makes it easier for the two contact pieces, with which the contact bridge is to work together, at well-defined locations position, for which you only need exceptionally short leads, which only need to protrude with a short stub over the insulating support.
  • very stable arrangements are obtained even in the case of miniaturized switches.
  • erroneous positioning of the contact pieces is unlikely with short leads, whereby an automated production is favored.
  • the housing of the bimetallic thermal switch may be made of metal or plastic.
  • a metallic housing is preferred.
  • the metallic carrier of the contact spring it is preferred that it is insulated from the housing.
  • the invention also allows an embodiment in which the metallic carrier of the contact spring contacts the metallic housing or is otherwise electrically conductively connected to it. The advantage of this is that it allows the use of the bimetal temperature switch in a star connection, in which an electrical contact is made not only on the leads leading to the two fixed contact pieces of the switch, but also on the housing.
  • the leads to the contact pieces are expediently embedded in the insulating support as well as the legs of the metallic support.
  • the switch is constructed mirror-symmetrically with respect to the two contact pieces or the electrical leads carrying them.
  • the electrically insulating support expediently serves at the same time for closing the housing by being inserted and fixed in it from one end. It can be fixed, for example, by gluing, by clamping, by crimping the edge of the housing against the insulating support or by ultrasonic welding.
  • a sealing of the housing by casting a possibly remaining after insertion of the electrically insulating support opening of the housing by means of a hardening sealing compound possible.
  • the switch can also be protected, as known per se, only by means of a shrunk-on shrink-tubing section, which also offers protection against the contact with live electrical connections.
  • Thermobimetallschalter show the FIGS. 1 to 3 greatly enlarged (scale approximately 10: 1). He has a flat housing 1, which may be made of metal or plastic and at one end has an opening which through a insulating support 2 is closed.
  • the insulating support 2 is a molded part made of plastic, which has a flange 2a which lies outside the housing 1 and an inner part 2b which engages in a form-fitting manner in the housing 1.
  • the flange 2 a strikes the edge of the opening of the housing 1.
  • the inner part 2 b has lateral extensions 2 c, which rest against the low side walls 1 a of the housing 1.
  • a metallic support 3 is arranged, which is formed in the plan view substantially U-shaped. Accordingly, it has a base 3a and two legs 3b extending from this base 3a. In addition, a stubby projection 3c extends centrally from the base 3a, in a direction opposite to the direction of the legs 3b.
  • a contact spring 4 made of a bimetal, which extends parallel to the legs 3b in the direction thereof, as well as a trim bracket 10, which is dispensable. Instead of soldering or welding, the contact spring 4 could also be fastened by riveting, clamping or crimping.
  • the metallic carrier 3 may be formed by punching and bending from a metal sheet.
  • His legs 3b are bent relative to the base 3a at a right angle, parallel to the side walls 1 a of the housing 1 and extend in the region of the extensions 2c in the insulating support 2 inside, in which they are embedded and preferably by undercuts, which at the embedded portions of the legs 3b are formed, are anchored in the extensions 2c.
  • the insulating support 2 and the metallic carrier 3 form in the manner described a stable assembly, which is particularly well suited as a basis for the construction of the switching mechanism of the bimetallic switch.
  • the contact spring 4 is provided at its movable end with a contact bridge 5, which extends transversely to the longitudinal direction of the legs 3b and the contact spring 4 and is fastened by riveting, soldering or welding on the contact spring.
  • a contact bridge 5 which extends transversely to the longitudinal direction of the legs 3b and the contact spring 4 and is fastened by riveting, soldering or welding on the contact spring.
  • the contact spring 4 In the middle region of the contact spring 4, between the stubby Extension 3c and the movable end, on which the contact bridge 5 is located, which is the contact spring 4 with a convex embossing 4a of approximately circular outline 4b provided.
  • the contact spring 4 can also be stamped into a differently shaped bulge, if this leads to a sudden change in the curvature of the contact spring 4 only when the switching temperature is exceeded;
  • the bulge may have a trapezoidal shape across the surface of the contact spring in section.
  • the contact bridge 5 are two contact pieces 6 and 7 opposite.
  • the insulating support 2 carries these two contact pieces 6 and 7 separated from each other by two metallic, formed from sheet metal leads 8 and 9 are embedded in the carrier 2 so that they protrude each with its two ends from the carrier 2.
  • the two contact pieces 6 and 7. On the projecting into the housing 1 portions of the leads 8 and 9 are the two contact pieces 6 and 7.
  • the two leads 8 and 9 each form a terminal lug 8a and 9a, which later, for example, flexible Connecting cables can be attached.
  • the switch shown can be produced in a miniaturized version. It consists of a minimal number of parts, which are favorable for an automated assembly. Even with a miniaturized design, the current flowing through the switch practically does not influence the switching behavior.
  • FIGS. 4 and 5 show a modified embodiment of the in the FIGS. 1 to 3 illustrated switch.
  • the modification consists in that the contact bridge 5 is not rigidly connected to the contact spring 4, but in the manner of a rocker.
  • the rectangular in plan view contact bridge 5 on its side facing the contact spring 4 side centered a projection 5a a mushroom-shaped extension 5b, which consists of a neck 5c and a head 5d.
  • the neck 5c is caught in a mating hole 4c with some play.
  • the hole 4c and the neck 5c have a shape deviating from the circular shape; they preferably have a rectangular outline, so that the contact bridge 5 on the contact spring 4 can not rotate.
  • the contact bridge 5 can be attached, for example, to the contact spring 4 by first forming only the neck 5c on the projection 5b, inserting it into the hole 4c punched in the contact spring 4, and then by means of a forming tool which forms a die with the die has the head 5d defining contour, similar to rivets formed the head 5d.
  • This embodiment has the advantage that misalignments between the contact bridge 5 and the two contact pieces 6 and 7 in the way they are in FIG. 5 is shown, due to the possible rocking motion can compensate automatically, so that it comes in any case to a full-surface contact of the contact bridge 5 with the two contact pieces 6 and 7, as in FIG. 4 shown.
  • FIG. 6 illustrated embodiment differs from that in the FIGS. 1 to 3 illustrated embodiment in that from the legs 3b of the metallic support 3 in each case a tongue 3d is cut out.
  • the two tongues 3d are bent outward and are the side walls 1a of the housing 1, which in this case consists of metal, with mechanical bias, so that the metallic support 3 and the housing 1 are always at the same electrical potential.
  • This allows the use of the bimetallic thermal switch in a star connection, in which an electrical contact is made not only at the two terminal lugs 8a and 9a, but also on the housing 1.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Thermally Actuated Switches (AREA)

Description

  • Die Erfindung geht aus von einem Thermobimetallschalter, der in der DE 195 09 656 C2 offenbart ist. Der bekannte Thermobimetallschalter hat in einem Gehäuse einen isolierenden Träger, in welchen ein metallischer Träger eingebettet ist, welcher eine Kontaktfeder aus einem Bimetall trägt. Die Kontaktfeder ist an ihrem einen Ende mit einem Kontaktstück versehen und an ihrem gegenüberliegenden, festliegenden Ende mit einer aus dem Gehäuse herausführenden Zuleitung verbunden. Von einem zweiten Kontaktstück, welches dem ersten, an der Kontaktfeder angebrachten Kontaktstück gegenüberliegt, führt eine zweite Zuleitung aus dem Gehäuse heraus.
  • Ein solcher Thermobimetallschalter dient dem Schutz von elektrischen Geräten, Motoren, Transformatoren und dergleichen gegen Überhitzung. Er soll öffnen, wenn die Temperatur an seinem Einsatzort einen vorgegebenen Grenzwert übersteigt. Dieser Grenzwert wird nachfolgend als die Schalttemperatur bezeichnet. Damit der Thermobimetallschalter eine wohldefinierte Schalttemperatur hat, ist die Kontaktfeder in einem Bereich zwischen ihrem festliegenden Ende und ihrem Kontaktstück durch einen Prägevorgang ballig geformt. Das hat zur Folge, dass der ballig geformte Bereich seine Krümmung nicht stetig ändern kann, sondern nur sprunghaft, wenn sich durch Temperaturänderung in der Kontaktfeder eine von der Gestalt der Kontaktfeder und von ihren elastischen Eigenschaften bestimmte mechanische Mindestspannung aufgebaut hat. Aus Sicherheitsgründen sind für die Schalttemperatur vorgegebene Toleranzgrenzen einzuhalten.
  • Bei dem bekannten Thermobimetallschalter fließt der Strom, welcher von dem zu überwachenden elektrischen Gerät verbraucht wird, über die Kontaktfeder. Dabei wird in der Kontaktfeder Wärme erzeugt, die von der Stromstärke und dem ohmschen Widerstand der Kontaktfeder abhängt. Das ist für manche Anwendungen nachteilig, weil durch die in der Kontaktfeder erzeugte Stromwärme eine Temperatur vorgetäuscht werden kann, welche höher ist als die Temperatur an dem zu überwachenden Einsatzort des elektrischen Gerätes. Es kann deshalb zu unerwünschten Auslösungen des Thermobimetallschalters kommen. Das Problem wird dadurch verschärft, dass es in der Elektrotechnik eine Entwicklung zu immer höheren Leistungsdichten gibt. Bei Thermobimetallschaltern bedeutet das, dass durch immer kleinere Leitungsquerschnitte, und dazu zählt auch der Querschnitt einer Bimetallkontaktfeder, immer größere elektrische Ströme und Wärmeströme geleitet werden müssen. Das Problem wird außerdem dadurch verschärft, dass höhere Leistungsdichten aus Sicherheitsgründen gleichzeitig eine höhere Zuverlässigkeit der Thermobimetallschalter erfordern. Gleichzeitig werden von dem für die Entwicklung von Thermobimetallschaltern zuständigen Fachmann Lösungen verlangt, die nach Möglichkeit nicht teurer, sondern billiger sind als bekannte Lösungen.
  • Um trotz kleiner werdender Leitungsquerschnitte und höherer Leistungsdichten ein zuverlässiges Schaltverhalten zu erreichen, ist es bekannt, zwischen den beiden unterschiedlich zusammengesetzten Schichten der Bimetallkontaktfeder, die infolge ihres unterschiedlichen Wärmeausdehnungskoeffizienten bei einer Temperaturänderung den Schaltvorgang herbeiführen und meist einen verhältnismäßig hohen elektrischen Widerstand haben, eine Zwischenschicht aus einem elektrisch gut leitenden Metall vorzusehen, insbesondere aus Kupfer. Das soll die elektrische Leitfähigkeit der Kontaktfeder erhöhen, ohne die Schalttemperatur zu verändern. Durch diese Maßnahme kann man den Einfluß der Stromwärme auf das Ansprechen des Thermobimetallschalters zwar mildern, aber nicht beseitigen. Leider handelt es sich dabei jedoch um eine teure Maßnahme, weil die Kontaktfeder nicht mehr aus einem Bimetall besteht, sondern aus einem Trimetall, und weil sich die Kontaktfeder durch den dreischichtigen Aufbau in ihren mechanischen Eigenschaften nachteilig verändert.
  • Ein weiteres Problem ergibt sich dadurch, dass als Folge einer fortschreitenden Miniaturisierung unvermeidliche Fertigungstoleranzen bei der Kontaktfeder und Unregelmäßigkeiten in der durch Prägen gebildeten Form der Kontaktfeder innerhalb einer Serie von Thermobimetallschaltern zu einer Streuung der Schalttemperaturen führen, die um so größer wird, je kleiner die Thermobimetallschalter werden. Zwar könnte man dem dadurch begegnen, dass man die Schalttemperaturen aller Thermobimetallschalter einer Serie mißt und durch Sortieren der Thermobimetallschalter die Streuung innerhalb einer Lieferung verkleinert, doch ist das eine außerordentlich unwirtschaftliche Maßnahme.
  • Bekannt sind auch Thermobimetallschalter, bei denen die Kontaktfeder nicht aus einem Thermobimetall besteht, sondern aus einer gut leitfähigen, federharten Eisen- oder Kupferlegierung, und bei denen zur Betätigung der Kontaktfeder eine gesonderte Bimetallschnappscheibe vorgesehen ist, welche lose an der Unterseite oder Oberseite der Kontaktfeder angeordnet ist, so dass der mit dem Thermobimetallschalter zu schaltende Strom im wesentlichen nicht über das Thermobimetall fließt. Ein solcher Thermobimetallschalter ist zum Beispiel aus der EP 0 246 255 B1 bekannt. Bei einem solchen Thermobimetallschalter ist zwar das Schaltelement (die Bimetallschnappscheibe) vom stromführenden Element (der Kontaktfeder) des Thermobimetallschalters weitgehend entkoppelt, doch erfordert ein solcher Schalter einen größeren Aufwand bei der Herstellung seiner Teile und bei seiner Montage, weil die gesondert herzustellende Bimetallschnappscheibe zum Beispiel zwischen gesondert zu stanzende und zu biegende Haken und Laschen der Kontaktfeder eingesetzt und gesichert werden muß.
  • Aus der US 4,843,363 ist ein dreiphasiger Schalter mit einer Thermobimetallscheibe bekannt, die im Stromkreis liegt. Ähnlich wie bei dem vorstehend beschriebenen Thermobimetallschatter kann deshalb auch bei dem aus der US 4,843,363 bekannten dreiphasigen Schalter die Schalttemperatur durch Stromerwärmung beeinflusst werden, beispielsweise bei einem Schaden an dem durch den dreiphasigen Schalter geschützten elektrischen Gerät.
  • Weiterhin sind aus der DE 198 27 113 A1 Thermobimetalischalter bekannt, welche ein im Grundriß kreisförmliges metallisches Gehäuse mit einem isolierenden Deckel haben, an dessen Innenseite in diagonaler Anordnung zwei Kontaktstücke fest angeordnet sind. Den Kontaktstücken liegt ein Kontaktteller gegenüber, welcher als Kontaktbrücke wirkt und zusammen mit einer Bimetallschnappscheibe und einer zwischen dieser und dem Kontaktteller angeordneten Federscheibe betätigbar ist. Der Kontaktteller, die Federscheibe und die Bimetallschnappscheibe sind zentrisch miteinander vernietet und dadurch im Gehäuse festgelegt dass die Federscheibe mit ihrem Rand zwischen zwei Gehäuseteilen eingespannt ist. Bei diesen bekannten Thermobimetallschaltern sind zwar die Stromleitung und die Bimetalischeibe weitgehend voneinander entkoppelt, doch ist ein solcher Schalter wegen des gewählten Aufbaus und der größeren Anzahl der für seine Funktion erforderlichen Teile in der Herstellung seiner Teile und bei der Montage verhältnismäßig aufwendig.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen Weg aufzuzeigen, wie ein Thermobimetallschalter mit einer an einem Ende festgelegten Kontaktfeder aus einem Thermobimetall so verbessert werden kann, dass er aus einer minimalen Zahl von Bauteilen in geringer Größe preiswert hergestellt werden kann und zugleich ein zuverlässiges Schaltverhalten zeigt, welches von der im Thermobimetallschalter erzeugten Stromwärme weitgehend unbeeinflusst ist.
  • Diese Aufgabe wird gelöst durch einen Thermobimetallschalter mit dem im Patentanspruch 1 angegeben Merkmalen. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
  • Der erfindungsgemäße Thermobimetallschalter hat einen elektrisch isolierenden Träger, eine vom Träger getragene Kontaktfeder aus einem Bimetall, welche mindestens in einem Teilbereich so geformt ist, dass sie bei Überschreiten ihrer Schalttemperatur sprunghaft ihre Krümmung ändert, zwei vom isolierenden Träger gehaltene elektrische Zuleitungen, welche zu zwei voneinander und von der Kontaktfeder getrennten Kontaktstücken führen, und eine Kontaktbrücke, welche den beiden Kontaktstücken gegenüberliegend auf der Kontaktfeder angebracht ist.
  • Das hat wesentliche Vorteile:
    • ◆ Der Thermobimetallschalter besteht aus einer minimalen Anzahl von Bauteilen, nämlich aus zwei Zuleitungen, die zu zwei Kontaktstücken führen, aus einer Kontaktfeder aus einem Thermobimetall und aus einem elektrisch isolierenden Träger, welcher diese drei Elemente trägt. Es scheint nicht möglich zu sein, mit weniger Einzelteilen auszukommen.
    • ◆ Die geringe Anzahl von Einzelteilen begünstigt eine rationelle, automatisierungsgerechte Fertigung.
    • ◆ Der elektrisch isolierende Träger kann preiswert durch Spritzgießen aus Kunststoff geformt werden.
    • ◆ Die Zuleitungen und die Kontaktfeder können in den isolierenden Träger eingebettet werden, insbesondere dadurch, dass sie mit Kunststoff umspritzt werden. Es ist aber auch möglich, den isolierenden Träger aus zwei miteinander zu verbindenden Teilen herzustellen, zwischen welchen die Zuleitungen und die Kontaktfeder zum Beispiel durch Verrasten formschlüssig fixiert werden. Die beiden Teile des isolierenden Trägers können untereinander gleich ausgebildet sein, so dass sie sich symmetrisch zusammenfügen lassen.
    • ◆ Die Zuleitungen mit ihren Kontaktstücken und die Bimetallkontaktfeder können aus vorgestanztem bandförmigem Halbzeug gebildet werden. Das ist für eine automatisierte Fertigung günstig. Die Kontaktstücke und die Kontaktbrücke können bereits auf dem bandförmigen Halbzeug durch Nieten, Löten oder Schweißen befestigt werden. So kann man zum Beispiel ein Bimetallband durchgehend durch Rollnahtschweißen mit einem Kontaktprofil für die Kontaktbrücke versehen. Aus einem solchen Halbzeug lassen sich anschließend durch Prägen und Stanzen einzelne Kontaktfedern bilden. Entsprechend lassen sich die Zuleitungen zu den Kontaktstücken aus einem bandförmigen Halbzeug bilden. Für die Herstellung der Zuleitungen können aber auch einzelne Kontaktstücke auf das Halbzeug geschweißt, gelötet oder genietet werden. Für das Schalten geringerer Ströme geeignete Kontaktschichten können durch galvanische Metallbeschichtung gebildet werden.
    • ◆ Obwohl der erfindungsgemäße Thermobimetallschalter eine Thermobimetallkontaktfeder hat, welche die zu schaltenden Ströme direkt schaltet, beeinflußt der durch den Schalter fließende Strom das Schaltverhaltenpraktisch nicht, weil der Strom im wesentlichen auf kürzestem Wege von dem einen Kontaktstück über die Kontaktbrücke zu dem anderen Kontaktstück fließt und die Kontaktbrücke ohne Rücksicht darauf, woraus die Thermobimetallkontaktfeder besteht, aus einem elektrisch gut leitenden Werkstoff, insbesondere auf der Basis von Kupfer oder Silber, bestehen und ohne nachteilige Folgen für das Schaltverhalten der Bimetallkontaktfeder selbst im Falle einer Miniaturisierung des Schalters einen hinreichend großen Leitungsquerschnitt haben kann.
    • ◆ Anders als bei einer mittig gehaltenen Bimetallschnappscheibe kann in einem erfindungsgemäßen Thermobimetallschalter eine Kontaktfeder verwendet werden, welche an einem Ende festgelegt ist und am gegenüberliegenden Ende den Schalter öffnet oder schließt. Beim Öffnen des Schalters erzielt man dadurch einen größeren Kontaktabstand als man ihn bei Verwendung einer gleich langen, mittig befestigten Schnappscheibe erzielen kann. Das ist für miniaturisierte Schalter, bei denen kurze Kontaktfedern angestrebt werden, von besonderer Bedeutung.
  • In dem erfindungsgemäßen Thermobimetallschalter kann die Kontaktfeder auf eine bekannte Weise geformt, insbesondere durch Prägen ausgebuchtet sein, um zu erreichen, dass sie bei Überschreiten ihrer Schalttemperatur sprunghaft ihre Krümmung ändert. Diese Formgebung findet zweckmäßigerweise nur in einem mittleren Teilbereich der Kontaktfeder statt. Die Kontaktbrücke wird vorzugsweise außerhalb des infolge seiner Formgebung sprunghaft seine Krümmung ändernden Bereiches auf der Kontaktfeder angeordnet, am besten unmittelbar am beweglichen Ende der Kontaktfeder.
  • Als Kontaktbrücke eignet sich besonders ein Profilabschnitt aus einem elektrisch gut leitenden Kontaktwerkstoff, insbesondere auf der Basis von Kupfer oder Silber. Die Kontaktbrücke wird zweckmäßigerweise durch Nieten, Schweißen oder Löten auf der Kontaktfeder befestigt, vorzugsweise bereits im Zuge der Fertigung eines bandförmigen Halbzeuges, aus welchem die mit einer Kontaktbrücke versehenen Kontaktfedern durch Prägen, Stanzen und gegebenenfalls durch Biegen gebildet werden. Die Kontaktbrücke muß aber nicht starr auf der Kontaktfeder befestigt sein. Sie kann auch nach Art einer Wippe auf der Kontaktfeder angebracht sein, indem sie mittig mit etwas Spiel mit der Kontaktfeder verbunden ist, zum Beispiel mittels einer Klammer oder einem Niet. Eine solche Ausführungsform hat den Vorteil, dass sie Fehljustierungen der Kontaktbrücke und/oder der Kontaktstücke ausgleichen und sicherstellen kann, dass die Kontaktbrücke beiden Kontaktstücken gleich gut anliegt.
  • Die Kontaktfeder kann mit ihrem festliegenden Ende unmittelbar an dem isolierenden Träger befestigt sein. Eine solche Ausführungsform eignet sich besonders für luftoffene Schalter, deren Schaltwerk nicht durch ein Gehäuse geschützt ist. Für Thermobimetallschalter, in denen sich das Schaltwerk in einem Gehäuse befindet, wird es bevorzugt, die Kontaktfeder nicht unmittelbar, sondern nur mittelbar an dem elektrisch isolierenden Träger zu befestigen, insbesondere so, dass die Kontaktfeder mit ihrem von der Kontaktbrücke entfernten Ende durch Schweißen, Löten, Klammern, Crimpen oder Nieten mit einem metallischen Träger verbunden ist, welcher seinerseits von dem isolierenden Träger gehalten ist. Der metallische Träger sollte sich durch eine größere Steifigkeit auszeichnen, als sie die Kontaktfeder hat, damit das Schaltverhalten und der Schaltweg nicht durch unbeabsichtigtes Verbiegen des metallischen Trägers beeinflußt werden. Der metallische Träger selbst wird mit einem Teil von sich zweckmäßigerweise in den isolierenden Träger so eingebettet, dass er darin fest verankert ist.
  • Vorzugsweise wird der metallische Träger an zwei voneinander einen Abstand aufweisenden Stellen fest mit dem isolierenden Träger verbunden. Das verleiht dem metallischen Träger eine verbesserte Biegesteifigkeit und Verwindungssteifigkeit. Die kann noch dadurch verbessert werden, dass der metallische Träger in der Draufsicht U-förmig ausgebildet ist und die beiden Schenkel des U an dem isolierenden Träger befestigt, insbesondere eingebettet sind. Besonders günstig ist es, wenn die Schenkel eine gegenüber der Basis des U abgewinkelte Oberfläche haben und das festliegende Ende der Kontaktfeder an der die Schenkel verbindenden Basis des U angebracht ist.
  • Die Schenkel des U verlaufen vorzugsweise an den seitlichen Wänden eines flachen Gehäuses und können dessen Formstabilität gegen Druck von außen erhöhen, was bei einigen Anwendungsfällen von Thermobimetallschaltern von Bedeutung ist.
  • Die Verwendung eines metallischen Trägers für die Bimetallkontaktfeder hat den weiteren Vorteil, dass das feste Ende der Kontaktfeder an dem vom isolierenden Träger entfernten Ende des Gehäuses angeordnet werden kann, wohingegen das freie Ende der Kontaktfeder mit der Kontaktbrücke in der Nähe des isolierenden Trägers liegt. Das erleichtert es, die beiden Kontaktstücke, mit denen die Kontaktbrücke zusammenarbeiten soll, an wohldefinierten Stellen zu positionieren, für welche man nur noch außerordentlich kurze Zuleitungen benötigt, die nur noch mit einem kurzen Stummel über den isolierenden Träger vorstehen müssen. Dadurch erhält man auch im Falle von miniaturisierten Schaltern sehr stabile Anordnungen. Außerdem ist bei kurzen Zuleitungen eine fehlerhafte Positionierung der Kontaktstücke eher unwahrscheinlich, wodurch eine automatisierte Fertigung begünstigt wird.
  • Das Gehäuse des Thermobimetallschalters kann aus Metall oder aus Kunststoff bestehen. Ein metallisches Gehäuse ist bevorzugt. Für den metallischen Träger der Kontaktfeder ist es bevorzugt, dass er gegenüber dem Gehäuse isoliert ist. Die Erfindung erlaubt aber auch eine Ausführungsform, in welcher der metallische Träger der Kontaktfeder das metallische Gehäuse berührt oder auf andere Weise elektrisch leitend mit ihm verbunden ist. Der Vorteil davon ist, dass es die Verwendung des Bimetalltemperaturschalters in einer Sternschaltung ermöglicht, in welcher eine elektrische Kontaktgabe nicht nur an den zu den beiden festen Kontaktstücken des Schalters führenden Zuleitungen erfolgt, sondern auch am Gehäuse.
  • Die Zuleitungen zu den Kontaktstücken sind zweckmäßigerweise ebenso in den isolierenden Träger eingebettet wie die Schenkel des metallischen Trägers. Vorzugsweise ist der Schalter bezüglich der beiden Kontaktstücke bzw. der sie tragenden elektrischen Zuleitungen spiegelsymmetrisch aufgebaut.
  • Bei einem mit Gehäuse versehenen Schalter dient der elektrisch isolierende Träger zweckmäßigerweise zugleich zum Verschließen des Gehäuses, indem er in dieses von einem Ende her eingeschoben und festgelegt wird. Er kann zum Beispiel durch Verkleben, durch Klemmen, durch Bördeln des Randes des Gehäuses gegen den isolierenden Träger oder durch Ultraschallschweißen festgelegt werden. Ergänzend ist ein Versiegeln des Gehäuses durch Vergießen einer nach dem Einsetzen des elektrisch isolierenden Trägers gegebenenfalls noch verbleibenden Öffnung des Gehäuses mittels einer aushärtenden Versiegelungsmasse möglich. In Fällen, in denen es auf ein Versiegeln nicht ankommt, kann der Schalter auch, wie an sich bekannt, lediglich mittels eines aufgeschrumpften Schrumpfschlauchabschnittes geschützt werden, welcher auch Schutz gegen das Berühren von elektrische Spannung führenden Anschlüssen bietet.
  • Ausführungsbeispiele der Erfindung sind in den beigefügten Zeichnungen dargestellt. Gleiche oder einander entsprechende Teile sind in den Beispielen mit übereinstimmenden Bezugszahlen bezeichnet.
  • Figur 1
    zeigt einen erfindungsgemäßen Schalter in einer Draufsicht auf sein Schaltwerk bei geschnittenem Gehäuse,
    Figur 2
    zeigt einen Längsschnitt gemäß Schnittlinie II-II durch den in Figur 1 dargestellten Schalter, wobei die Kontakte geschlossen sind,
    Figur 3
    zeigt die Darstellung entsprechend Figur 2 bei geöffneten Kontakten,
    Figur 4
    zeigt eine Abwandlung des Schalters aus Figur 1 in einem Querschnitt entlang der Schnittlinie IV-IV in Figur 1 bei geschlossenem Schalter,
    Figur 5
    zeigt einen Schnitt entsprechend Figur 4, jedoch bei offenem Schalter und
    Figur 6
    zeigt ein drittes Beispiel eines erfindungsgemäßen Schalters in einer Darstellung entsprechend der Figur 1.
  • Den Thermobimetallschalter zeigen die Figuren 1 bis 3 stark vergrößert (Maßstab ungefähr 10: 1). Er hat ein flaches Gehäuse 1, welches aus Metall oder Kunststoff bestehen kann und an einem Ende eine Öffnung hat, welche durch einen isolierenden Träger 2 verschlossen ist. Bei dem isolierenden Träger 2 handelt es sich um ein Formteil aus Kunststoff, welches einen außerhalb des Gehäuses 1 liegenden Flansch 2a und ein formschlüssig in das Gehäuse 1 eingreifendes Innenteil 2b hat. Der Flansch 2a schlägt am Rand der Öffnung des Gehäuses 1 an. Das Innenteil 2b hat seitliche Fortsätze 2c, welche den niedrigen Seitenwänden 1 a des Gehäuses 1 anliegen.
  • Im Gehäuse 1 ist ein metallischer Träger 3 angeordnet, welcher in der Draufsicht im wesentlichen U-förmig ausgebildet ist. Demgemäß hat er eine Basis 3a und zwei von dieser Basis 3a ausgehende Schenkel 3b. Außerdem geht von der Basis 3a mittig ein stummelförmiger Fortsatz 3c aus, und zwar in einer der Richtung der Schenkel 3b entgegengesetzten Richtung. An dem Fortsatz 3c sind durch Löten oder Schweißen eine Kontaktfeder 4 aus einem Bimetall, welche sich parallel zu den Schenkeln 3b in deren Richtung erstreckt, sowie ein Trimmbügel 10 befestigt, welcher verzichtbar ist. Anstatt durch Löten oder Schweißen könnte die Kontaktfeder 4 auch durch Nieten, Klemmen oder Crimpen befestigt sein. Der metallische Träger 3 kann durch Stanzen und Biegen aus einem Blech gebildet sein. Seine Schenkel 3b sind gegenüber der Basis 3a um einen rechten Winkel abgebogen, verlaufen parallel zu den Seitenwänden 1 a des Gehäuses 1 und erstrecken sich im Bereich der Fortsätze 2c in den isolierenden Träger 2 hinein, in welchen sie eingebettet und vorzugsweise durch Hinterschnitte, welche an den eingebetteten Abschnitten der Schenkel 3b ausgebildet sind, in den Fortsätzen 2c verankert sind. Der isolierende Träger 2 und der metallische Träger 3 bilden auf die beschriebene Weise eine stabile Baugruppe, welche sich besonders gut als Grundlage für den Aufbau des Schaltwerkes des Thermobimetallschalters eignet.
  • Die Kontaktfeder 4 ist an ihrem beweglichen Ende mit einer Kontaktbrücke 5 versehen, welche sich quer zur Längsrichtung der Schenkel 3b und der Kontaktfeder 4 erstreckt und durch Nieten, Löten oder Schweißen auf der Kontaktfeder befestigt ist. Im mittleren Bereich der Kontaktfeder 4, zwischen dem stummelförmigen Fortsatz 3c und dem beweglichen Ende, an welchem sich die Kontaktbrücke 5 befindet, ist die die Kontaktfeder 4 mit einer balligen Prägung 4a von annähernd kreisförmigem Umriss 4b versehen. Durch diese Formgebung erreicht man, dass sich der Thermobimetallschalter bei einem Überschreiten seiner Schalttemperatur sprunghaft öffnet oder schließt. Anstelle der dargestellten balligen Prägung 4a kann der Kontaktfeder 4 auch eine anders geformte Ausbuchtung eingeprägt werden, wenn diese nur bei Überschreiten der Schalttemperatur zu einer sprunghaften Änderung der Krümmung der Kontaktfeder 4 führt; zum Beispiel kann die Ausbuchtung im Schnitt quer zur Oberfläche der Kontaktfeder einen trapezförmigen Verlauf haben.
  • Der Kontaktbrücke 5 liegen zwei Kontaktstücke 6 und 7 gegenüber. Der isolierende Träger 2 trägt diese beiden Kontaktstücke 6 und 7 getrennt voneinander, indem zwei metallische, aus Blech gebildete Zuleitungen 8 und 9 so in den Träger 2 eingebettet sind, dass sie jeweils mit ihren beiden Enden aus dem Träger 2 herausragen. Auf den in das Gehäuse 1 ragenden Abschnitten der Zuleitungen 8 und 9 befinden sich die beiden Kontaktstücke 6 und 7. Auf der gegenüberliegenden Seite des isolierenden Trägers 2 bilden die beiden Zuleitungen 8 und 9 jeweils eine Anschlußfahne 8a und 9a, an welchen später zum Beispiel flexible Anschlußleitungen befestigt werden können.
  • Der dargestellte Schalter läßt sich in miniaturisierter Ausführung herstellen. Er besteht aus einer minimalen Anzahl von Einzelteilen, die für einen automatisierten Zusammenbau günstig sind. Selbst bei miniaturisierter Bauweise beeinflusst der durch den Schalter fließende Strom das Schaltverhalten praktisch nicht.
  • Die Figuren 4 und 5 zeigen eine abgewandelte Ausführungsform des in den Figuren 1 bis 3 dargestellten Schalters. Die Abwandlung besteht darin, dass die Kontaktbrücke 5 nicht starr mit der Kontaktfeder 4 verbunden ist, sondern nach Art einer Wippe. Zu diesem Zweck hat die in der Draufsicht rechteckige Kontaktbrücke 5 an ihrer der Kontaktfeder 4 zugewandten Seite mittig einen Ansatz 5a mit einem pilzförmigen Fortsatz 5b, welcher aus einem Hals 5c und einem Kopf 5d besteht. Der Hals 5c ist in einem dazu passenden Loch 4c mit etwas Spiel gefangen. Das Loch 4c und der Hals 5c haben eine von der Kreisform abweichende Umrissgestalt; sie haben vorzugsweise einen rechteckigen Umriss, so dass sich die Kontaktbrücke 5 auf der Kontaktfeder 4 nicht drehen kann. Die Kontaktbrücke 5 kann zum Beispiel an der Kontaktfeder 4 angebracht werden, indem man zunächst nur den Hals 5c an dem Ansatz 5b ausbildet, ihn in das in die Kontaktfeder 4 gestanzte Loch 4c steckt und danach mittels eines Verformungswerkzeuges, welches ein Gesenk mit einer die Form des Kopfes 5d bestimmenden Kontur hat, ähnlich wie bei Nieten den Kopf 5d formt.
  • Diese Ausführungsform hat den Vorteil, dass sich Fehlausrichtungen zwischen der Kontaktbrücke 5 und den beiden Kontaktstücken 6 und 7 in der Art, wie sie in Figur 5 dargestellt ist, infolge der möglichen Wippbewegung selbsttätig ausgleichen können, so dass es auf jeden Fall zu einer vollflächigen Kontaktgabe der Kontaktbrücke 5 mit den beiden Kontaktstücken 6 und 7 kommt, wie in Figur 4 dargestellt.
  • Das in Figur 6 dargestellte Ausführungsbeispiel unterscheidet sich von dem in den Figuren 1 bis 3 dargestellten Ausführungsbeispiel darin, dass aus den Schenkeln 3b des metallischen Trägers 3 jeweils eine Zunge 3d ausgeschnitten ist. Die beiden Zungen 3d sind nach außen gebogen und liegen den Seitenwänden 1a des Gehäuses 1, welches in diesem Fall aus Metall besteht, mit mechanischer Vorspannung an, so dass der metallische Träger 3 und das Gehäuse 1 stets auf demselben elektrischen Potential liegen. Das ermöglicht die Verwendung des Thermobimetallschalters in einer Sternschaltung, in welcher eine elektrische Kontaktgabe nicht nur an den beiden Anschlußfahnen 8a und 9a, sondern auch am Gehäuse 1 erfolgt.
  • Bezugszahlenliste:
  • 1.
    Gehäuse
    1a.
    Seitenwände
    2.
    Träger
    2a.
    Flansch
    2c.
    Innenteil
    2b.
    Fortsatz
    3.
    Träger
    3a.
    Basis
    3b.
    Schenkel
    3c.
    Fortsatz
    3d.
    Zunge
    4.
    Kontaktfeder
    4a.
    Prägung
    4b.
    Umriss
    4c.
    Loch
    5.
    Kontaktbrücke
    5a.
    Ansatz
    5b.
    pilzförmiger Fortsatz
    5c.
    Hals
    5d.
    Kopf
    6.
    Kontaktstück
    7.
    Kontaktstück
    8.
    Zuleitung
    8a.
    Anschlußfahne
    9.
    Zuleitung
    9a.
    Anschlußfahne
    10.
    Trimmbügel

Claims (25)

  1. Thermobimetallschalter, welcher
    einen elektrisch isolierenden Träger (2),
    eine vom elektrisch isolierenden Träger (2) getragene Kontaktfeder (4) aus einem Bimetall, welche zwei Enden hat, von denen eines festgelegt ist, und welche mindestens in einem Teilbereich (4a) so geformt ist, dass sie bei Überschreiten ihrer Schalttemperatur sprunghaft ihre Krümmung ändert,
    zwei vom isolierenden Träger (2) getragene elektrische Zuleitungen (8, 9), welche zu zwei voneinander und von der Kontaktfeder (4) getrennten Kontaktstücken (6, 7) führen,
    und eine Kontaktbrücke (5) aufweist, welche den beiden Kontaktstücken (6, 7) gegenüberliegend auf der Kontaktfeder (4) angebracht ist.
  2. Thermobimetallschalter nach Anspruch 1, dadurch gekennzeichnet, dass die Kontaktbrücke (5) außerhalb des infolge seiner Formgebung sprunghaft seine Krümmung ändernden Bereiches (4a) auf der Kontaktfeder (4) angeordnet ist.
  3. Thermobimetallschalter nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kontaktbrücke (5) ein Profilabschnitt ist.
  4. Thermobimetallschalter nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Kontaktbrücke (5) durch Schweißen, Klammern, Crimpen, Nieten oder Löten auf der Kontaktfeder (4) befestigt ist, wobei das Schweißen und das Nieten bevorzugt sind.
  5. Thermobimetallschalter nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Kontaktfeder (4) unmittelbar mit ihrem von der Kontaktbrücke (5) entfernten Ende an dem isolierenden Träger (2) befestigt ist.
  6. Thermobimetallschalter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Kontaktfeder (4) mittelbar an dem elektrisch isolierenden Träger (2) befestigt ist.
  7. Thermobimetallschalter nach Anspruch 6, dadurch gekennzeichnet, dass die Kontaktfeder (4) mit ihrem von der Kontaktbrücke (5) entfernten Ende an einem metallischen Träger (3) befestigt ist, welcher seinerseits von dem isolierenden Träger (2) getragen ist.
  8. Thermobimetallschalter nach Anspruch 7, dadurch gekennzeichnet, dass ein Teil des metallischen Trägers (3) in den isolierenden Träger (2) eingebettet ist.
  9. Thermobimetallschalter nach Anspruch 8, dadurch gekennzeichnet, dass zwischen dem metallischen Träger (3) und dem isolierenden Träger (2) ein Formschluß besteht.
  10. Thermobimetallschalter nach Anspruch 7, 8 oder 9, dadurch gekennzeichnet, dass der metallische Träger (3) an zwei voneinander einen Abstand aufweisenden Stellen fest mit dem isolierenden Träger (2) verbunden ist.
  11. Thermobimetallschalter nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Zuleitungen (8, 9) in den isolierenden Träger (2) eingebettet sind.
  12. Thermobimetallschalter nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass er ein Gehäuse (1) aufweist, welches ein die Kontaktfeder (4) mit der Kontaktbrücke (5), die ihr gegenüberliegenden Kontaktstükke (6, 7) und den isolierenden Träger (2) umfassendes Schaltwerk aufnimmt.
  13. Thermobimetallschalter nach Anspruch 12, dadurch gekennzeichnet, dass das Gehäuse (1) aus Metall besteht.
  14. Thermobimetallschalter nach Anspruch 7 und 13, dadurch gekennzeichnet, dass der metallische Träger (3) gegenüber dem Gehäuse (1) elektrisch isoliert ist.
  15. Thermobimetallschalter nach Anspruch 7 und 13, dadurch gekennzeichnet, dass der metallische Träger (3) mit dem Gehäuse (1) elektrisch leitend verbunden ist.
  16. Thermobimetallschalter nach Anspruch 15, dadurch gekennzeichnet, dass der metallische Träger (3) das Gehäuse (1) berührt.
  17. Thermobimetallschalter nach Anspruch 12, dadurch gekennzeichnet, dass das Gehäuse (1) elektrisch isolierend ausgebildet ist.
  18. Thermobimetallschalter nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass er bezüglich der Lage der beiden Kontaktstücke (6, 7) spiegelsymmetrisch aufgebaut ist.
  19. Thermobimetallschalter nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass er bezüglich der Lage seiner beiden Zuleitungen (8, 9) spiegelsymmetrisch aufgebaut ist.
  20. Thermobimetallschalter nach einem der vorstehenden Ansprüche in Kombination mit Anspruch 7, dadurch gekennzeichnet, dass der metallische Träger (3) in der Draufsicht U-förmig ausgebildet und mit seinen beiden Schenkeln (3b) des U in dem isolierenden Träger (2) eingebettet ist.
  21. Thermobimetallschalter nach Anspruch 20, dadurch gekennzeichnet, dass die Kontaktfeder (4) an der die Schenkel (3b) verbindenden Basis (3a) des U angebracht ist.
  22. Thermobimetallschalter nach Anspruch 20 oder 21, dadurch gekennzeichnet, dass die Schenkel (3b) eine gegenüber der Basis (3a) des U abgewinkelte Oberfläche haben.
  23. Thermobimetallschalter nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Kontaktbrücke (5) aus einem Werkstoff besteht, welcher eine höhere elektrische Leitfähigkeit als das Bimetall der Kontaktfeder (4) hat.
  24. Thermobimetallschalter nach einem der Ansprüche 20 bis 22 in Kombination mit Anspruch 11, dadurch gekennzeichnet, dass sich die Schenkel (3b) des U nahe bei den einander gegenüberliegenden Seitenwänden (1a) des Gehäuses (1) befinden.
  25. Thermobimetallschalter nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Kontaktbrücke (5) nach Art einer Wippe auf der Kontaktfeder (4) angebracht ist.
EP05775029A 2004-07-24 2005-07-22 Thermobimetallschalter Revoked EP1774555B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004036117A DE102004036117B4 (de) 2004-07-24 2004-07-24 Thermobimetallschalter
PCT/EP2005/008001 WO2006010563A1 (de) 2004-07-24 2005-07-22 Thermobimetallschalter

Publications (2)

Publication Number Publication Date
EP1774555A1 EP1774555A1 (de) 2007-04-18
EP1774555B1 true EP1774555B1 (de) 2008-12-17

Family

ID=34993027

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05775029A Revoked EP1774555B1 (de) 2004-07-24 2005-07-22 Thermobimetallschalter

Country Status (6)

Country Link
US (1) US20070252671A1 (de)
EP (1) EP1774555B1 (de)
AT (1) ATE418153T1 (de)
DE (2) DE102004036117B4 (de)
ES (1) ES2319800T3 (de)
WO (1) WO2006010563A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2511930A1 (de) 2011-04-13 2012-10-17 TMC Sensortechnik GmbH Temperaturschutzschalter

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4638942B2 (ja) * 2006-10-30 2011-02-23 ウチヤ・サーモスタット株式会社 サーマルプロテクタ
DE102009053258C5 (de) * 2009-11-05 2016-01-14 Tmc Sensortechnik Gmbh Thermobimetallschalter und Verfahren zu seiner Montage
DE102011078636A1 (de) * 2011-07-05 2013-01-10 Siemens Aktiengesellschaft Überlastauslöser, insbesondere für einen Leistungsschalter
DE102011119632B3 (de) * 2011-11-22 2013-04-11 Marcel P. HOFSAESS Temperaturabhängiges Schaltwerk
DE102012112487A1 (de) 2012-12-18 2014-06-18 Thermik Gerätebau GmbH Temperaturschutzschaltung
DE102013108508A1 (de) 2013-08-07 2015-02-12 Thermik Gerätebau GmbH Temperaturabhängiger Schalter
DE202017106035U1 (de) 2017-10-04 2019-01-10 Tmc Sensortechnik Gmbh Elektrischer Netzstecker

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2917482C2 (de) * 1979-04-30 1982-11-25 Peter 7530 Pforzheim Hofsäss Übertemperaturschutzschalter
US4376926A (en) * 1979-06-27 1983-03-15 Texas Instruments Incorporated Motor protector calibratable by housing deformation having improved sealing and compactness
DE3539425A1 (de) * 1985-11-07 1987-05-14 Limitor Ag Thermobimetallschalter
JPH0831300B2 (ja) * 1987-10-07 1996-03-27 生方 眞哉 三相用サーマルプロテクタ
US4866408A (en) * 1988-10-28 1989-09-12 Texas Instruments Incorporated Multiphase motor protector apparatus
JP2519530B2 (ja) * 1989-03-01 1996-07-31 生方 眞哉 熱応動スイッチ
US5196820A (en) * 1990-12-19 1993-03-23 Ubukata Industries Co., Ltd. Thermally responsive switch and method of making the same
DE19509656C2 (de) * 1995-03-17 1997-01-16 Radbruch Jens Dipl Ing Temperaturschutzschalter
DE19546005C2 (de) * 1995-12-09 1999-07-08 Hofsaes Marcel Schalter mit einem temperaturabhängigen Schaltwerk
CA2208910C (en) * 1996-07-04 2001-11-06 Ubukata Industries Co., Ltd. Thermal protector for electric motors
DE19708436C2 (de) * 1997-03-01 1999-08-19 Hofsaes Temperaturabhängiger Schalter mit Kontaktbrücke und Verfahren zu dessen Herstellung
DE19727197C2 (de) * 1997-06-26 1999-10-21 Marcel Hofsaess Temperaturabhängiger Schalter mit Kontaktbrücke
DE19748589C2 (de) * 1997-11-04 1999-12-09 Marcel Hofsaes Schalter mit einem temperaturabhängigen Schaltwerk
GB2331184B (en) * 1997-11-06 1999-09-22 Ubukata Ind Co Ltd Thermally responsive switch
DE19827113C2 (de) * 1998-06-18 2001-11-29 Marcel Hofsaes Temperaturabhängiger Schalter mit Stromübertragungsglied
DE29917174U1 (de) * 1999-09-30 2000-01-13 Abb Patent Gmbh, 68309 Mannheim Elektronisches Überlastrelais
DE10110562C1 (de) * 2001-03-06 2002-12-19 Marcel Hofsaes Temperaturabhängiger Schalter mit aufgestempelter Kleberschicht
EP1508909A4 (de) * 2002-05-07 2007-08-01 Ubukata Ind Co Ltd Thermische schutzvorrichtung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2511930A1 (de) 2011-04-13 2012-10-17 TMC Sensortechnik GmbH Temperaturschutzschalter
EP2511930B1 (de) 2011-04-13 2016-01-20 TMC Sensortechnik GmbH Temperaturschutzschalter
DE102011016896C5 (de) * 2011-04-13 2016-10-27 Tmc Sensortechnik Gmbh Temperaturschutzschalter

Also Published As

Publication number Publication date
DE502005006292D1 (de) 2009-01-29
ES2319800T3 (es) 2009-05-12
EP1774555A1 (de) 2007-04-18
ATE418153T1 (de) 2009-01-15
DE102004036117B4 (de) 2006-12-14
WO2006010563A1 (de) 2006-02-02
DE102004036117A1 (de) 2006-03-16
US20070252671A1 (en) 2007-11-01

Similar Documents

Publication Publication Date Title
EP1774555B1 (de) Thermobimetallschalter
EP2511930B1 (de) Temperaturschutzschalter
EP0887826B1 (de) Temperaturabhängiger Schalter mit Kontaktbrücke
DE19941190A1 (de) Wärmeschutzsicherung
DE69728460T2 (de) Elektromagnetisches Relais
EP0678882B1 (de) Elektrischer Schalter und Herstellverfahren für einen derartigen Schalter
DE2831198A1 (de) Bimetalltemperaturschalter
EP3134942A1 (de) Leiteranschlussklemme
EP2783380B1 (de) Temperaturabhängiges schaltwerk
EP0994497B1 (de) Schalter mit einem Isolierstoffträger
DE102018111034A1 (de) Sicherungselement
EP0938117B1 (de) Schalter
EP2437354A1 (de) Niederspannungsschaltgerät mit einer Steckklemmvorrichtung
EP2332161B1 (de) Miniatur-schutzschalter
DE60200633T2 (de) Mit der Hand auslösbarer Schutzschalter
EP2650897B1 (de) Temperaturempfindlicher elektrischer Schalter und Verfahren zu dessen Herstellung
DE202009010473U1 (de) Miniatur-Schutzschalter
DE1200414B (de) Bimetallschaltvorrichtung
DE102023102302B3 (de) Temperaturabhängiger Schalter
DE202011001820U1 (de) Schutzvorrichtung für die Steuerelektronik einer Kraftfahrzeugkomponente
DE102023102304B4 (de) Temperaturabhängiges Schaltwerk und temperaturabhängiger Schalter
DE202009012616U1 (de) Niederstromschalter
WO2023237488A1 (de) Baugruppe für ein überspannungsschutzgerät, überspannungsschutzgerät sowie verfahren zur herstellung einer baugruppe
DE19913903C1 (de) Elektromagnetisches Relais
WO2021001074A1 (de) Elektrisches schaltsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070226

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070613

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REF Corresponds to:

Ref document number: 502005006292

Country of ref document: DE

Date of ref document: 20090129

Kind code of ref document: P

26 Opposition filed

Opponent name: THERMIK GERAETEBAU GMBH

Effective date: 20090117

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

NLR1 Nl: opposition has been filed with the epo

Opponent name: THERMIK GERAETEBAU GMBH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2319800

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090417

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090317

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20090727

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090724

Year of fee payment: 5

Ref country code: RO

Payment date: 20090721

Year of fee payment: 5

BERE Be: lapsed

Owner name: TMC SENSORTECHNIK G.M.B.H.

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090722

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110201

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 502005006292

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 502005006292

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110729

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110728

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110726

Year of fee payment: 7

RDAE Information deleted related to despatch of communication that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSDREV1

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20111007

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 418153

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111007

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 502005006292

Country of ref document: DE

Effective date: 20120524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110606

Year of fee payment: 7