EP0994497B1 - Schalter mit einem Isolierstoffträger - Google Patents

Schalter mit einem Isolierstoffträger Download PDF

Info

Publication number
EP0994497B1
EP0994497B1 EP99112917A EP99112917A EP0994497B1 EP 0994497 B1 EP0994497 B1 EP 0994497B1 EP 99112917 A EP99112917 A EP 99112917A EP 99112917 A EP99112917 A EP 99112917A EP 0994497 B1 EP0994497 B1 EP 0994497B1
Authority
EP
European Patent Office
Prior art keywords
switch
temperature
spring element
contact
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99112917A
Other languages
English (en)
French (fr)
Other versions
EP0994497A3 (de
EP0994497A2 (de
Inventor
Marcel Hofsäss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0994497A2 publication Critical patent/EP0994497A2/de
Publication of EP0994497A3 publication Critical patent/EP0994497A3/de
Application granted granted Critical
Publication of EP0994497B1 publication Critical patent/EP0994497B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/50Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position
    • H01H1/504Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position by thermal means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • H01H37/5418Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting using cantilevered bimetallic snap elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • H01H2037/5445Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting with measures for avoiding slow break of contacts during the creep phase of the snap bimetal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • H01H2037/5463Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting the bimetallic snap element forming part of switched circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • H01H37/5427Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting encapsulated in sealed miniaturised housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/14Electrothermal mechanisms
    • H01H71/16Electrothermal mechanisms with bimetal element

Definitions

  • the present invention relates to a switch with a Isolierstoffong, on which a first and a second external connection are arranged, as well as a temperature-dependent Rear derailleur that depending on its temperature between an electrically conductive the first and the second external connection Connection for one to be passed through the switch produces electrical current, and a switching device that its Geometric shape depending on the temperature between a closing and changed an open position and in its closed position leads the current, and includes an actuator that with the Switching element is electrically and mechanically connected in series.
  • Such a switch is known from US 4,636,766.
  • the known switch comprises a U-shaped bimetal element as a switching element with two legs of different lengths. On a movable contact part is attached to the long leg, that interacts with a switch-proof counter contact that again with one of the two external connections in electrical conductive connection.
  • the shorter leg of the U-shaped bimetal element is on the free end of an actuator designed as a lever arm attached that with its other end firmly to the housing is connected as well as with the other of the two external connections is in an electrically conductive connection.
  • the actuator is another bimetallic element that is so on the U-shaped bimetallic element is agreed that the two bimetallic elements deform in opposite directions with temperature changes and thus the contact pressure between the movable contact part and receive the mating contact fixed to the housing.
  • This switch is intended as a breaker for high currents, which leads to a strong warming of the bimetallic elements lead, which ultimately the movable contact part is lifted off the fixed counter contact. Influences of Ambient temperature are the opposite Deformation of the bimetallic elements is compensated.
  • the two bimetal elements are very different geometrically are designed, they also have different long-term stabilities on, so that from time to time a readjustment would be required. However, this is not in use more possible, so that overall long-term stability and thus the functional reliability leaves something to be desired.
  • Another disadvantage of this construction is that large height due to the U-shaped bimetal element.
  • this switch has the disadvantage that it closes again automatically after cooling, i.e. none Has current dependency, the reclosing and thus Switch on the electrical device protected by the switch prevented.
  • Another current-dependent known from EP 0 103 792 B1 Switch has a bimetal spring tongue as a switching element on, which is attached to the one external connection and to her free end carries a movable contact part that with a Counter-contact cooperates, which at the free end of an elongated Spring element is arranged, the other end on the other external connector is attached so that the current through the Series connection from spring element and bimetal spring tongue flows.
  • the elastic mounting of the counter contact ensures a low mechanical stress on the bimetal spring tongue because of the Mating contact yields to a limited extent when the bimetal spring tongue changed their geometric shape due to a change in temperature. This causes irreversible deformation of the bimetallic spring tongue avoided, leading to a shift in the switching temperature could lead.
  • a disadvantage of this switch is that the bimetal spring tongue like all bimetal elements in the transition from In the open position, a so-called creep phase passes through, in the course of a temperature increase or -
  • the bimetallic element is creepingly deformed without however from its e.g. convex low temperature position already to snap into its concave high temperature position.
  • This Creeping phase occurs every time the temperature changes of the bimetal element either from above or from below
  • the jump temperature approaches and leads to noticeable changes in the formation.
  • the creep behavior of a bimetal element furthermore also change.
  • sneaking can cause that the pressure of the contact against the counter contact decreases, which creates undefined switching states.
  • the closing movement can make contact during the creeping phase gradually approach the counter contact, thereby increasing the risk of a Arc can be caused.
  • the inventor of the present application has recognized that that it is possible with a generic switch, a provide flat lid electrode, on the inside flat series resistor is arranged between the first External connection and the first end of the actuator.
  • the height is hardly noticeably influenced by the series resistance, because e.g. be formed as a sheet resistor can hardly increase the thickness of the lid electrode contributes.
  • the actuator is a Includes spring element, the actuating force largely independent of temperature is, and the actuator is a temperature-dependent Has actuating force that is greater than in its creeping phase the force of the spring element.
  • the inventor of the present application has recognized that the e.g. known from DE 21 21 802 C mechanical and electrical parallel arrangement of temperature-neutral spring element and switching element in an electrical and mechanical series connection modified and used in the new switch can be a number of other advantages in the unite new switch.
  • the temperature-neutral spring element exercises on the bimetal element no longer exert pressure that hinders its deformation, it rather resembles the deformation of the bimetal element in the creeping phase through its own deformation in such a way that movable Contact part and fixed counter contact with each other in such a way stay safely in the system for a low contact resistance is taken care of.
  • the contact pressure remains below the Switching temperature largely independent of the temperature.
  • the creeping phase of the bimetallic element is therefore no longer as suppressed in the prior art, but balanced so to speak, the bimetal element can namely in the Deform creep phase almost unhindered, making the changes the geometry is balanced by the spring element that the switch remains securely closed.
  • the temperature-dependent actuating force of the bimetal element chosen so that they are larger in the creeping phase is the largely temperature-neutral actuating force of the Spring element, which is thus the "rigid" bimetal element only "leads".
  • a big advantage of the new switch is its simple Construction, next to a housing-fixed counter contact is only a bimetal element is required, the spring element is temperature-neutral and therefore inexpensive. Overall, bimetal element and spring element to each other with respect to the actuating force be coordinated, but no longer additionally regarding their temperature behavior, because the rear derailleur straightens yourself, so to speak. This makes it a standard spring element possible for all temperature ranges, making an essential one Rationalization effect is achieved. Through this construction a low overall height can also be realized, whereby at different switching temperatures no new individual Adjustment is required, just the bimetal element must have the same spring properties but different switching temperatures be interpreted.
  • Another advantage is that tolerances and fluctuations in the switching temperature by guiding through the temperature-neutral Spring element to be balanced.
  • the spring element and the switching element are essentially flat, sheet-like parts that are extend to the same side in a V-shape away from their connection point.
  • This measure has the advantage that compared to the generic switch, the overall height is significantly reduced, and also a slight longitudinal extension because of the "folded back" free end of the switching element reached becomes.
  • an insulation layer is arranged on which one Resistor track is arranged, one end with the first External connection and other end connected to a contact surface is in contact with a contact area on the spring element is.
  • the spring element on his first end is T-shaped, with this T-shaped end rests on the insulating material carrier and on this T-shaped End has a contact area that with the contact surface of the series resistance is in the system.
  • a bottom electrode is connected to which a movable Contact part cooperates, which is provided on the switching element and between the bottom electrode and the lid electrode at least one PTC component is clamped.
  • the advantage here is that the PTC module has a self-holding function is realized, the contacting of the PTC module done by a simple pinch, so at the mechanical assembly of the switch is automatically implemented becomes.
  • the second external connection is connected to a bottom electrode with which a movable Contact part cooperates, which is provided on the switching element and between the bottom electrode and the T-shaped end a PTC component is clamped in the spring element.
  • the T-shaped end of the spring element is now several Functions combined in one, it serves on the one hand for mechanical Holder of the switching mechanism in the insulating material carrier and on the other hand for the electrical connection of both the series resistor as well as the PTC component, which acts as a self-holding resistor acts.
  • this is only necessary in the area this T-shaped end of the spring element for such Surface finish to ensure that electrical contacting only through printing and circulation to others Surfaces are less demanding, what contributes to cost reduction.
  • the advantage here is that compared to a switch without PTC component in the transverse pocket the longitudinal extent and only the transverse dimensions for the two side pockets need to be increased slightly, the remaining dimensions can be preserved. These measures also contribute overall small dimensions for the new switch.
  • the construction variant with the two side pockets is especially preferred when considering a large Current load a larger current passage area of the now self-holding resistor formed by two PTC modules required is.
  • a new switch is shown generally at 10, the is shown in schematic longitudinal section.
  • the new switch 10 has a first external connection 11, which is integrally connected to a flat cover electrode 12 is. Furthermore, a second external connection 14 is provided, which is formed in one piece with a bottom electrode 15. The Cover electrode 12 and the bottom electrode 15 are on one Isolierstoffitati 16 held the cover electrode 12 and keeps the bottom electrode 15 spaced parallel to each other.
  • the insulating material carrier 16 is basically open on the side 1, an embodiment is shown in which the insulating material carrier 16 is a pot-shaped lower housing part 17 includes that around the bottom electrode 15 by injection molding or potting is designed such that the bottom electrode 15 is an integral part of the lower housing part 17.
  • the Lower housing part 17 is closed by the cover electrode 12 and one indicated by 18, heat-welded Edge of the insulating material carrier 16 held captive.
  • the switching mechanism 19 comprises a mechanical and electrical series connection from a spring element 21 and a switching element 22, which by a 23rd arranged connection are interconnected.
  • the switching element 22 is a bimetal element in the present case.
  • the spring element 21 has a largely temperature-independent Positioning force, which means in the context of the present invention, that the actuating force or spring force of the spring element 21 in the range of the permissible operating temperature of the Switch 10 does not change noticeably.
  • the positioning force of the bimetal element is strongly temperature dependent and also in the so-called creep phase is already so large that the spring element 21 do not hinder the deformation of the bimetallic element Pressure on that at constant temperature in this spring system thus can exert rigid bimetal element.
  • the spring element is 25 in with its first, T-shaped end System with the cover electrode 12 and leads with its second End 26 in connection 23 to the switching element 22.
  • the switching element 22 carries at its free end 27 a movable contact part 28, which interacts with a switch-fixed counter contact 29, which is formed on the bottom electrode 15.
  • the bottom electrode 15 is partly from an insulating bridge 31 attacked, which prevents the connection 23 at Opening the switching mechanism 19 moves so far down that it undesirably comes into contact with the bottom electrode 15.
  • the cover electrode 12 is on provided on the inside 32 with a series resistor which electrically between the first outer terminal 11 and the T-shaped End 25 of the spring element 21 is switched.
  • a PTC module 33 is clamped and arranged in a pocket 34 and acts as a self-holding resistor 35.
  • Switch 10 is the self-holding resistor 35 through that Switch mechanism 19 bridged, that is, de-energized. If now as a result a temperature increase, the movable contact part 28 of lifts the fixed counter contact 29, a residual current flows from the second external connection 14 via the bottom electrode 15 through the Self-holding resistor 35 in the T-shaped end 25 and from there via the series resistor in the cover electrode 12 and from there in the first external connection 11, so that between the two External connections 11, 14 a series connection of series resistance as well as self-holding resistance, which is characterized by a Residual current is heated so far that it opens the switching mechanism 19 Condition holds.
  • Fig. 2 the switch of Fig. 1 is off along the line II-II Fig. 1 shown in section. It can be seen that the T-shaped End 25 of the spring element 21 on a base 36 of the Isolierstoffisme 16 is below the cut Edge 18 is arranged. At 37 is the outline of the base 36 shown.
  • T-shaped end 25 Under the T-shaped end 25 is the self-holding resistance in the pocket 34 35 indicated, from below in plant with a at 38 indicated contact area of the T-shaped end 25 of the spring element 21.
  • the base 36 is provided with projections 39 through which the self-holding resistor 35 in the pocket 34 is held.
  • 3a to 3d show production steps for manufacturing the with a series resistor cover electrode 12.
  • the inside 32 is initially covered with an insulation layer 41 provided, on which then a resistance path according to FIG. 3b 42 is applied as series resistor 43.
  • the resistance track 42 overlaps the insulation layer 41 in FIG. 3 to the left so that a connection area 44 to the inside 32 the cover electrode 12 made of metal is produced. In this way, the first external connection 11 with the series resistor 43 connected.
  • this released area of the Resistor path 42 now becomes a silver layer according to FIG. 3d 46 applied, which forms a contact surface 47.
  • the rear derailleur 19 from FIG. 1 is schematically enlarged Scale shown in its closed position.
  • the Switching element 22 is so far below its step temperature, that his sneaking phase has not yet started.
  • the Switching member 22 presses against the force of the spring element 21 Connection 23 in Fig. 4 upwards, so that there is a indicated at 51 Distance to the cover electrode 12 and one indicated at 52 Distance to the counter contact 29 sets.
  • the distance 51 increases to the extent that the distance increases 52 decreased.
  • the movable contact part 28 in FIG. 5 transversely to the counter contact 29 has moved. This friction is desirable because hereby the contact surfaces between contact part 28 and Counter contact 29 cleaned so that the electrical contact resistance is very low.
  • spring element 21 and the Switching element 22 are flat, sheet-like parts that differ from theirs Junction 23, so to speak, V-shaped on the same side, namely to extend to the right.
  • This "folded back" Arrangement of spring element 21 and switching element 22 is a shortened Design achieved in the longitudinal direction, so that in addition to the flat a relatively short design is also possible.
  • the base 37 can be seen on which the T-shaped End 25 of the rear derailleur 19 comes to rest when this in the Interior 20 is inserted. Laterally next to the interior 20 are provided in the lower part 17 two pockets 55, 56, the extend down to the bottom electrode 15 and after are open at the top. These pockets are from the side inwards Compared to base 37, base 57 is set down surrounded by falling out of inserted PTC modules prevented into the interior 20.

Description

Die vorliegende Erfindung betrifft einen Schalter mit einem Isolierstoffträger, an dem ein erster und ein zweiter Außenanschluß angeordnet sind, sowie einem temperaturabhängigen Schaltwerk, das in Abhängigkeit von seiner Temperatur zwischen dem ersten und dem zweiten Außenanschluß eine elektrisch leitende Verbindung für einen durch den Schalter zu leitenden elektrischen Strom herstellt, und ein Schaltorgan, das seine geometrische Form temperaturabhängig zwischen einer Schließund einer Öffnungsstellung verändert und in seiner Schließstellung dem Strom führt, sowie ein Stellorgan umfaßt, das mit dem Schaltorgan elektrisch und mechanisch in Reihe geschaltet ist.
Ein derartiger Schalter, gemäß dem Oberbegriff des Patentanspruchs 1, ist aus der US 4,636,766 bekannt.
Der bekannte Schalter umfaßt als Schaltorgan ein U-förmiges Bimetall-Element mit zwei unterschiedlich langen Schenkeln. An dem langen Schenkel ist ein bewegliches Kontaktteil befestigt, das mit einem schalterfesten Gegenkontakt zusammenwirkt, der wiederum mit einem der beiden Außenanschlüsse in elektrisch leitender Verbindung steht.
Der kürzere Schenkel des U-förmigen Bimetall-Elementes ist an dem freien Ende eines als Hebelarm ausgebildeten Stellorganes befestigt, das mit seinem anderen Ende fest mit dem Gehäuse verbunden ist sowie mit dem anderen der beiden Außenanschlüsse in elektrisch leitender Verbindung steht. Das Stellorgan ist ein weiteres Bimetall-Element, das so auf das U-förmige Bimetall-Element abgestimmt ist, daß sich die beiden Bimetall-Elemente bei Temperaturänderungen gegensinnig verformen und somit den Kontaktdruck zwischen dem beweglichen Kontaktteil sowie dem gehäusefesten Gegenkontakt erhalten.
Dieser Schalter ist als Unterbrecher für hohe Ströme gedacht, die zu einer starken Erwärmung der durchflossenen Bimetall-Elemente führen, wodurch letztendlich das bewegliche Kontaktteil von dem festen Gegenkontakt abgehoben wird. Einflüsse der Umgebungstemperatur werden dabei durch die erwähnte gegensinnige Verformung der Bimetall-Elemente kompensiert.
Bei dieser Konstruktion ist vor allem von Nachteil, daß zwei Bimetall-Elemente benötigt werden, deren Temperaturverhalten exakt aufeinander abgestimmt sein muß, was konstruktiv aufwendig und kostenintensiv zu realisieren ist. Um Fertigungstoleranzen zu kompensieren, wird der bekannte Schalter nach der Montage ferner mechanisch justiert, was einen weiteren Nachteil darstellt.
Da die beiden Bimetall-Elemente geometrisch sehr verschieden ausgelegt sind, weisen sie außerdem unterschiedliche Langzeitstabilitäten auf, so daß eigentlich von Zeit zu Zeit eine Nachjustage erforderlich wäre. Dies ist jedoch im Einsatz nicht mehr möglich, so daß insgesamt die Langzeitstabilität und damit die Funktionssicherheit zu wünschen übrig läßt.
Ein weiterer Nachteil bei dieser Konstruktion besteht in der durch das U-förmige Bimetall-Element bedingten großen Bauhöhe.
Schließlich ist bei diesem Schalter noch von Nachteil, daß er sich nach dem Abkühlen selbsttätig wieder schließt, also keine Stromabhängigkeit aufweist, die das erneute Schließen und damit Einschalten des durch den Schalter geschützten elektrischen Gerätes verhindert.
Schalter mit Stromabhängigkeit sind allgemein bekannt, bei ihnen wird parallel zu dem temperaturabhängigen Schaltwerk ein Selbsthaltewiderstand zwischen die beiden Außenanschlüsse geschaltet. Im geschlossenen Zustand des Schalters wird der Selbsthaltewiderstand durch das Schaltwerk elektrisch kurzgeschlossen, so daß er stromfrei ist. Öffnet das Schaltwerk dagegen, fließt ein Reststrom durch den Selbsthaltewiderstand, der sich dabei in Abhängigkeit von der angelegten Spannung sowie seinem Widerstandswert so weit aufheizt, daß er das temperaturabhängige Schaltwerk auf einer Temperatur oberhalb der Ansprechtemperatur hält, so daß es geöffnet bleibt.
Im Stand der Technik sind eine ganze Reihe von Konstruktionen für den Selbsthaltewiderstand bekannt, bei denen ein blockförmiger PTC-Widerstand verwendet wird, der verglichen mit einem keine Stromabhängigkeit aufweisenden Schalter zu einer Vergrößerung der geometrischen Abmaße führt.
Ein weiterer Nachteil, der mit den bekannten Schaltern mit Stromabhängigkeit verbunden ist, besteht in dem konstruktiven Aufwand, der zu kostenintensiven und aufwendig zu montierenden Schaltern führt.
Ein weiterer, mit dem eingangs erwähnten Schalter verbundener Nachteil ist darin zu sehen, daß sich der Schwellwert des Stromes, der zum Öffnen des Schalters führt, durch den Ohm'schen Widerstand der Bimetall-Elemente bestimmt, so daß sich unterschiedliche Schaltstromstärken nur schwer realisieren lassen.
Aus dem Stand der Technik ist es jedoch bereits bekannt, die Stromabhängigkeit durch Verwendung eines Vorwiderstandes einzustellen, der elektrisch zu dem temperaturabhängigen Schaltwerk in Reihe geschaltet ist. Bei den bekannten Schaltern ist jedoch parallel zu dem Schaltorgan ein Stellorgan in Form einer Feder-Schnappscheibe etc. geschaltet, durch die der elektrische Strom fließt. Mit anderen Worten, das Bimetall-Element ist bei stromabhängigen Schaltern mit Vorwiderstand stromfrei, der Betriebsstrom des zu schützenden elektrischen Gerätes wird über ein gesondertes Federelement geleitet. Durch die Wahl des Widerstandswertes dieses Vor- oder Serienwiderstandes kann jetzt die Schaltstromstärke genau und reproduzierbar eingestellt werden.
Auch bei den bekannten Schaltern mit Serienwiderstand ist der konstruktive Aufwand von Nachteil, die Schalter sind kostenintensiv und zeitaufwendig zu montieren.
Ein weiterer, aus der EP 0 103 792 B1 bekannter, stromabhängiger Schalter weist als Schaltorgan eine Bimetall-Federzunge auf, die an dem einen Außenanschluß befestigt ist und an ihrem freien Ende ein bewegliches Kontaktteil trägt, das mit einem Gegenkontakt zusammenwirkt, der an dem freien Ende eines länglichen Federelementes angeordnet ist, das anderen Endes an dem anderen Außenanschluß befestigt ist, so daß der Strom durch die Reihenschaltung aus Federelement und Bimetall-Federzunge fließt.
Die elastische Lagerung des Gegenkontaktes sorgt hier für eine geringe mechanische Belastung der Bimetall-Federzunge, da der Gegenkontakt begrenzt nachgibt, wenn die Bimetall-Federzunge infolge einer Temperaturänderung ihre geometrische Form verändert. Hierdurch werden irreversible Verformungen der Bimetall-Federzunge vermieden, die zu einer Verschiebung der Schalttemperatur führen könnten.
Ein Nachteil dieses Schalters besteht darin, daß die Bimetall-Federzunge wie alle Bimetall-Elemente beim Übergang von der Schließ- in die Öffnungsstellung eine sogenannte Schleichphase durchläuft, in der sich infolge einer Temperaturerhöhung oder - erniedrigung das Bimetall-Element schleichend verformt, ohne jedoch von seiner z.B. konvexen Tieftemperaturstellung bereits in seine konkave Hochtemperaturstellung umzuschnappen. Diese Schleichphase tritt jedesmal dann auf, wenn sich die Temperatur des Bimetall-Elementes entweder von oben oder von unten der Sprungtemperatur nähert und führt zu merklichen Ronformationsänderungen. Insbesondere infolge von Alterung oder Langzeitbetrieb kann sich das Schleichverhalten eines Bimetall-Elementes darüber hinaus auch noch verändern.
Während der Öffnungsbewegung kann das Schleichen dazu führen, daß der Druck des Kontaktes gegen den Gegenkontakt nachläßt, wodurch undefinierte Schaltzustände entstehen. Während der Schließbewegung kann sich der Kontakt während der Schleichphase allmählich dem Gegenkontakt annähern, wodurch die Gefahr eines Lichtbogens hervorgerufen werden kann.
Die mit dem Schleichverhalten eines Bimetall-Elementes einhergehenden Probleme werden bei einem stromabhängigen Schalter, wie er in der eingangs erwähnten US 4,636,766 oder der EP 0 103 792 beschrieben ist, dadurch gelöst, daß die Bimetall-Federzunge mit Vorprägungen versehen wird, die die Schleichphase zwar nicht vollständig, aber doch zum großen Teil unterdrükken. Diese Vorprägungen oder sonstige mechanische Einwirkungen auf das Bimetall-Element zur Unterdrückung der Schleifphase sind aufwendige und teure Maßnahmen, durch die zudem die Lebensdauer dieser Bimetall-Elemente deutlich deutlich reduziert wird. Ein weiterer Nachteil der erforderlichen Vorprägung ist darin zu sehen, daß für verschiedene Leistungsklassen und Ansprechtemperaturen nicht nur unterschiedliche Materialzusammensetzungen und -stärken sondern auch noch unterschiedliche Vorprägungen eingesetzt werden müssen.
Vor diesem Hintergrund ist es Aufgabe der vorliegenden Erfindung, einen die obigen Nachteile vermeidenden Schalter der eingangs genannten Art bei preiswerter und einfacher Konstruktion mit einer Stromabhängigkeit zu versehen, wobei der Schalter eine kleine Bauweise sowie eine hohe Funktionssicherheit und lange Lebensdauer aufweisen soll.
Bei dem eingangs erwähnten Schalter wird diese Aufgabe dadurch gelöst, daß der erste Außenanschluß mit einer flächigen Deckelelektrode verbunden ist, an der das Stellorgan mit seinem ersten Ende festgelegt ist, und auf dessen Innenseite ein flacher Serienwiderstand angeordnet ist, der elektrisch zwischen den ersten Außenanschluß und das erste Ende des Stellorganes geschaltet ist.
Die der Erfindung zugrundeliegende Aufgabe wird auf diese Weise vollkommen gelöst.
Der Erfinder der vorliegenden Anmeldung hat nämlich erkannt, daß es bei einem gattungsgemäßen Schalter möglich ist, eine flache Deckelelektrode vorzusehen, auf deren Innenseite ein flacher Serienwiderstand angeordnet ist, der zwischen dem ersten Außenanschluß und dem ersten Ende des Stellorganes liegt. Die Bauhöhe wird durch den Serienwiderstand kaum merklich beeinflußt, da er z.B. als Schichtwiderstand ausgebildet werden kann, der kaum zu einer Vergrößerung der Dicke der Deckelelektrode beiträgt.
Dabei ist es insbesondere bevorzugt, wenn das Stellorgan ein Federelement umfaßt, dessen Stellkraft weitgehend temperaturunabhängig ist, und das Stellorgan eine temperaturabhängige Stellkraft aufweist, die in dessen Schleichphase größer ist als die Stellkraft des Federelementes.
Der Erfinder der vorliegenden Anmeldung hat erkannt, daß die z.B. aus der DE 21 21 802 C bekannte mechanische und elektrische parallele Anordnung von Temperatur-neutralem Federelement und Schaltorgan in eine elektrische und mechanische Reihenschaltung abgewandelt und bei dem neuen Schalter eingesetzt werden kann, um eine ganze Reihe von weiteren Vorteilen in dem neuen Schalter zu vereinigen.
Durch die mechanische Reihenschaltung, also das Zusammenwirken der Federkraft des Federelementes mit der des Schaltorganes kann nämlich die Schleichphase des Schaltorganes ausgeglichen werden. Wenn sich das Schaltorgan während der Schleichphase in seiner Geometrie verändert, so wird dies durch das Federelement unmittelbar ausgeglichen. Damit ist es jetzt erstmals möglich, auch bei einem Schalter mit stromdurchflossenem Schaltorgan, das ein Bimetall-Element oder ein Trimetall-Element sein kann, eine große Schleichphase des Schaltorganes zu ermöglichen, denn das Federelement kann die "ungewollten" Formänderungen während der Schleichphase ausgleichen. Dies bedeutet jedoch, daß ein einfacher herzustellendes und damit preiswerteres Schaltorgan eingesetzt werden kann, das zudem eine höhere Lebensdauer aufweist, da auf die Vorprägung größtenteils verzichtet werden kann und somit eine größere Hysterese zulässig wird, so daß die Schleichphase maximal ausgenutzt werden kann.
Damit sind aber nicht nur geringe geometrische Anforderungen an das Schaltorgan sondern ebenfalls geringere Anforderungen an das Federelement zu stellen, denn letzteres muß jetzt nur noch dafür sorgen, daß das Schaltorgan unterhalb seiner Sprungtemperatur, also während der Schleichphase, in elektrischem Kontakt zu einem der Außenanschlüsse verbleibt. Unterschiedliche Schaltertypen bezüglich Leistungsklasse und Ansprechtemperatur können jetzt mit im wesentlichen demselben Federelement aber unterschiedlichen Schaltorganen ausgelegt werden, wobei an diese Bauteile des Schaltwerkes sehr viel geringere geometrische und mechanische Bedingungen zu stellen sind, so daß sie insgesamt einfacher und preiswerter herzustellen sind.
Bezüglich der Lebensdauer des Schaltorganes ergeben sich hier dieselben Vorteile, wie die bei der lose eingelegten Bimetall-Schnappscheibe gemäß DE 21 21 802 C. Insgesamt kann bei dem neuen Schalter mehr Wert auf die elektrischen Eigenschaften und die Schalttemperatur gelegt werden, die mechanische Federkraft des Schaltorganes spielt bei dem neuen Schalter zum ersten Mal in der Technik eine untergeordnete Rolle, sie muß nur so groß sein, daß das Schaltorgan durch das Federelement nicht zu stark zusammengedrückt wird. Der Schaltprozeß selbst wird nach Abschluß der Schleichphase allein durch das Schaltorgan bewirkt, das in seiner Schließstellung jetzt immer vorgespannt ist. Dieses vorgespannte Schaltorgan weist noch eine ganze Reihe von weiteren Vorteilen auf, so vibriert es nicht im Magnetfeld und weist keine Lichtbogengefahr auf, denn sich allmählich öffnende oder schließende Kontakte werden durch die Vorspannung verhindert.
Damit ist aber nur noch eine sehr geringe Vorprägung des Bimetall-Elementes erforderlich, durch die lediglich noch der Schnappeffekt für die plötzliche Kontakttrennung sichergestellt werden muß. Eine stärkere Vorprägung, wie sie bisher zur Unterstützung bzw. Unterdrückung der Schleichphase verwendet wurde, ist nicht mehr erforderlich. Dadurch werden die mechanischen Belastungen verringert und damit die Lebensdauer sowie die Zuverlässigkeit und Reproduzierbarkeit des Schaltpunktes deutlich erhöht.
Das temperaturneutrale Federelement übt auf das Bimetall-Element keinen dessen Verformung behindernden Druck mehr aus, es gleicht vielmehr in der Schleichphase die Verformung des Bimetall-Elementes durch eigene Verformung derart aus, daß bewegliches Kontaktteil und fester Gegenkontakt miteinander derart sicher in Anlage bleiben, daß für einen niedrigen Übergangswiderstand gesorgt wird. Der Kontaktdruck bleibt unterhalb der Schalttemperatur weitgehend unabhängig von der Temperatur konstant.
Die Schleichphase des Bimetall-Elementes wird also nicht mehr wie im Stand der Technik unterdrückt, sondern sozusagen ausgeglichen, das Bimetall-Element kann sich nämlich in der Schleichphase nahezu ungehindert verformen, wobei die Änderungen der Geometrie dabei durch das Federelement so ausgeglichen werden, daß der Schalter sicher geschlossen bleibt.
Zu diesem Zweck ist die temperaturabhängige Stellkraft des Bimetall-Elementes so gewählt, daß sie in der Schleichphase größer ist als die weitgehend temperaturneutrale Stellkraft des Federelementes, das das somit "starre" Bimetall-Element damit lediglich noch "führt".
Ein großer Vorteil des neuen Schalters liegt in seiner einfachen Bauweise, neben einem gehäusefesten Gegenkontakt ist nur ein Bimetall-Element erforderlich, das Federelement ist temperaturneutral und damit preiswert. Insgesamt müssen Bimetall-Element und Federelement zwar bezüglich der Stellkraft aufeinander abgestimmt werden, nicht mehr jedoch zusätzlich auch noch bezüglich ihres Temperaturverhaltens, denn das Schaltwerk richtet sich sozusagen selbst aus. Dadurch wird ein Standardfederelement für alle Temperaturbereiche möglich, wodurch ein wesentlicher Rationalisierungseffekt erreicht wird. Durch diese Konstruktion ist ferner eine geringe Bauhöhe realisierbar, wobei bei unterschiedlichen Schalttemperaturen keine neue individuelle Anpassung erforderlich ist, lediglich das Bimetall-Element muß mit gleichen Federeigenschaften aber anderen Schalttemperaturen ausgelegt werden.
Ein weiterer Vorteil besteht darin, daß Toleranzen und Schwankungen in der Schalttemperatur durch die Führung durch das temperaturneutrale Federelement ausgeglichen werden.
Dabei ist es bevorzugt, wenn das Federelement und das Schaltorgan im wesentlichen flache, blechartige Teile sind, die sich zur selben Seite V-förmig von ihrer Verbindungsstelle weg erstrecken.
Bei dieser Maßnahme ist von Vorteil, daß verglichen mit dem gattungsbildenden Schalter die Bauhöhe deutlich reduziert wird, wobei ferner auch eine geringe Längserstreckung wegen des "zurückgeklappten" freien Endes des Schaltorganes erreicht wird.
Weiter ist es bevorzugt, wenn auf der Innenseite der Deckelelektrode eine Isolationsschicht angeordnet ist, auf der eine Widerstandsbahn angeordnet ist, die einen Endes mit dem ersten Außenanschluß und anderen Endes mit einer Kontaktfläche verbunden ist, mit der ein Kontaktbereich an dem Federelement in Anlage ist.
Diese Maßnahme ist konstruktiv von Vorteil, beim Auflegen der Deckelelektrode auf den bereits mit dem Schaltwerk versehenen Schalter kommt die Kontaktfläche unmittelbar in Anlage mit dem Kontaktbereich, so daß die elektrische Verbindung sozusagen zusammen mit der mechanischen Verbindung der Deckelelektrode mit dem Gehäuse hergestellt wird.
Dabei ist es dann bevorzugt, wenn das Federelement an seinem ersten Ende T-förmig ausgebildet ist, mit diesem T-förmigen Ende auf den Isolierstoffträger aufliegt und an diesem T-förmigen Ende einen Kontaktbereich aufweist, der mit der Kontaktfläche des Serienwiderstandes in Anlage ist.
Hierdurch wird die Montage des neuen Schalters noch einmal vörteilhaft vereinfacht, denn das Schaltwerk richtet sich im Inneren des Isolierstoffträgers sozusagen automatisch aus, wenn das T-förmige Ende auf den Isolierstoffträger aufgelegt wird.
Allgemein ist es bevorzugt, wenn der zweite Außenanschluß mit einer Bodenelektrode verbunden ist, mit der ein bewegliches Kontaktteil zusammenwirkt, das an dem Schaltorgan vorgesehen ist, und zwischen der Bodenelektrode und der Deckelelektrode zumindest ein PTC-Baustein eingeklemmt ist.
Hier ist von Vorteil, daß durch den PTC-Baustein eine Selbsthaltefunktion realisiert wird, wobei die Kontaktierung des PTC-Bausteines durch eine einfache Einklemmung erfolgt, also bei dem mechanischen Zusammenbau des Schalters automatisch mit realisiert wird.
Andererseits ist es bevorzugt, wenn der zweite Außenanschluß mit einer Bodenelektrode verbunden ist, mit der ein bewegliches Kontaktteil zusammenwirkt, das an dem Schaltorgan vorgesehen ist, und zwischen der Bodenelektrode und dem T-förmigen Ende des Federelementes ein PTC-Baustein eingeklemmt ist.
Hier ist von Vorteil, daß sich ebenfalls eine einfache Kontaktierung des PTC-Bausteines erzielen läßt, wobei dieser PTC-Baustein im geöffneten Zustand des Schaltwerkes jetzt in Reihe zu dem Serienwiderstand geschaltet ist, so daß sich andere Widerstandsverhältnisse ergeben können. Besonders vorteilhaft ist jedoch, daß das T-förmige Ende des Federelementes jetzt mehrere Funktionen in sich vereinigt, es dient zum einen zur mechanischen Halterung des Schaltwerkes in dem Isolierstoffträger und zum anderen zum elektrischen Anschluß sowohl des Serienwiderstandes als auch des PTC-Bausteines, der als Selbsthaltewiderstand wirkt. Damit ist es aber lediglich erforderlich, im Bereich dieses T-förmigen Endes des Federelementes für eine derartige Oberflächengüte zu sorgen, daß eine elektrische Kontaktierung allein durch Druck und Auflage möglich wird, an die anderen Oberflächen sind geringere Anforderungen zu stellen, was zur Kostenreduzierung beiträgt.
Dabei ist es dann bevorzugt, wenn entweder eine zwischen den Außenanschlüssen angeordnete, querverlaufende Tasche für den PTC-Baustein oder aber zwei seitliche Taschen neben dem Schaltwerk für zwei PTC-Bausteine vorgesehen sind.
Hier ist von Vorteil, daß verglichen mit einem Schalter ohne PTC-Baustein bei der querverlaufenden Tasche die Längsausdehnung und bei den beiden seitlichen Taschen lediglich die Querabmaße geringfügig erhöht werden müssen, die übrigen Abmaße können erhalten bleiben. Auch diese Maßnahmen tragen damit zu insgesamt geringen Abmaßen bei dem neuen Schalter bei.
Die Konstruktionsvariante mit den beiden seitlichen Taschen ist insbesondere dann zu bevorzugen, wenn im Hinblick auf eine große Strombelastung eine größere Stromdurchtrittsfläche des jetzt durch zwei PTC-Bausteine gebildeten Selbsthaltewiderstandes erforderlich ist.
Weitere Vorteile ergeben sich aus der Beschreibung der beigefügten Zeichnung.
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Fig. 1
einen Längsschnitt durch den neuen Schalter längs der Linie I-I aus Fig. 2;
Fig. 2
eine Draufsicht auf den Schalter gemäß Fig. 1 in einer Schnittdarstellung längs der Linie II-II aus Fig. 1;
Fig. 3a bis 3d
jeweils eine Draufsicht auf die Innenseite der Dekkelelektrode des Schalters aus Fig. 1 und 2, in unterschiedlichen Stadien der Anbringung eines Serienwiderstandes nebst dessen Kontaktierung;
Fig. 4
das Schaltwerk des Schalters aus Fig. 1 in einer schematisierten, vergrößerten Darstellung, wobei das Schaltorgan in Schließstellung ist;
Fig. 5
eine Darstellung wie Fig. 4, jedoch während der Schleichphase des Schaltorganes;
Fig. 6
eine Darstellung wie Fig. 4, wobei das Schaltorgan jedoch in seiner Öffnungsstellung ist; und
Fig. 7
eine Draufsicht auf den Isolierstoffträger des Schalters gemäß Fig. 1 in einem zweiten Ausführungsbeispiel mit zwei Taschen für zwei PTC-Bausteine.
In Fig. 1 ist allgemein mit 10 ein neuer Schalter gezeigt, der im schematischen Längsschnitt dargestellt ist.
Der neue Schalter 10 weist einen ersten Außenanschluß 11 auf, der einstückig mit einer ebenen Deckelelektrode 12 verbunden ist. Ferner ist ein zweiter Außenanschluß 14 vorgesehen, der mit einer Bodenelektrode 15 einstückig ausgebildet ist. Die Deckelelektrode 12 sowie die Bodenelektrode 15 sind an einem Isolierstoffträger 16 gehalten, der die Deckelelektrode 12 und die Bodenelektrode 15 parallel zueinander beabstandet hält.
Während der Isolierstoffträger 16 grundsätzlich seitlich offen sein kann, ist in Fig. 1 ein Ausführungsbeispiel gezeigt, bei dem der Isolierstoffträger 16 ein topfförmiges Gehäuseunterteil 17 umfaßt, das um die Bodenelektrode 15 herum durch Umspritzen oder Vergießen derart ausgebildet ist, daß die Bodenelektrode 15 integraler Bestandteil des Gehäuseunterteiles 17 ist. Das Gehäuseunterteil 17 wird durch die Deckelelektrode 12 verschlossen und von einem mit 18 angedeuteten, heißverschweißten Rand des Isolierstoffträgers 16 unverlierbar gehalten.
Zwischen der Deckelelektrode 12 und der Bodenelektrode 15 ist ein temperaturabhängiges Schaltwerk 19 in einem Innenraum des Isolierstroffträgers 16 angeordnet. Das Schaltwerk 19 umfaßt eine mechanische und elektrische Reihenschaltung aus einem Federelement 21 sowie einem Schaltorgan 22, die durch eine bei 23 angeordnete Verbindung miteinander verbunden sind. Das Schaltorgan 22 ist im vorliegenden Fall ein Bimetall-Element.
Das Federelement 21 hat dabei ein weitgehend temperaturunabhängige Stellkraft, was im Rahmen der vorliegenden Erfindung bedeutet, daß sich die Stellkraft oder Federkraft des Federelementes 21 im Bereich der zulässigen Betriebstemperatur des Schalters 10 nicht merklich ändert. Die Stellkraft des Bimetall-Elementes ist dagegen stark temperaturabhängig und auch in der sogenannten Schleichphase schon derart groß, daß das Federelement 21 keinen die Verformung des Bimetall-Elementes behindernden Druck auf das bei konstanter Temperatur in diesem Federsystem somit starre Bimetall-Element ausüben kann.
Das Federelement ist mit seinem ersten, T-förmigen Ende 25 in Anlage mit der Deckelelektrode 12 und führt mit seinem zweiten Ende 26 in die Verbindung 23 zu dem Schaltorgan 22. Das Schaltorgan 22 trägt an seinem freien Ende 27 ein bewegliches Kontaktteil 28, das mit einem schalterfesten Gegenkontakt 29 zusammenwirkt, der an der Bodenelektrode 15 ausgebildet ist.
Die Bodenelektrode 15 ist teilweise von einer Isolierbrücke 31 übergriffen, die verhindert, daß sich die Verbindung 23 beim Öffnen des Schaltwerkes 19 so weit nach unten bewegt, daß sie unerwünschterweise in Anlage mit der Bodenelektrode 15 gelangt.
In noch zu beschreibender Weise ist die Deckelelektrode 12 an ihrer Innenseite 32 mit einem Serienwiderstand versehen, der elektrisch zwischen den ersten Außenanschluß 11 sowie das T-förmige Ende 25 des Federelementes 21 geschaltet ist.
Zwischen die Bodenelektrode 15 und das T-förmige Ende 25 ist ferner ein PTC-Baustein 33 geklemmt, der in einer Tasche 34 angeordnet ist und als Selbsthalte-Widerstand 35 wirkt.
In dem in Fig. 1 gezeigten, geschlossenen Zustand des neuen Schalters 10 ist der Selbsthalte-Widerstand 35 durch das Schaltwerk 19 überbrückt, also stromlos. Wenn sich jetzt infolge einer Temperaturerhöhung das bewegliche Kontaktteil 28 von dem festen Gegenkontakt 29 abhebt, fließt ein Reststrom von dem zweiten Außenanschluß 14 über die Bodenelektrode 15 durch den Selbsthalte-Widerstand 35 in das T-förmige Ende 25 und von dort über den Serienwiderstand in die Deckelelektrode 12 und von dort in den ersten Außenanschluß 11, so daß zwischen den beiden Außenanschlüssen 11, 14 eine Reihenschaltung aus Serienwiderstand sowie Selbsthaltewiderstand liegt, die sich durch einen Reststrom soweit erhitzt, daß sie das Schaltwerk 19 in geöffnetem Zustand hält.
In Fig. 2 ist der Schalter aus Fig. 1 längs der Linie II-II aus Fig. 1 geschnitten dargestellt. Es ist zu erkennen, daß das T-förmige Ende 25 des Federelementes 21 auf einem Sockel 36 des Isolierstoffträgers 16 liegt, der unterhalb des geschnittenen Randes 18 angeordnet ist. Bei 37 ist der Umriß des Sockels 36 gezeigt.
Unter dem T-förmigen Ende 25 ist in der Tasche 34 der Selbsthalte-Widerstand 35 angedeutet, der von unten in Anlage mit einem bei 38 angedeuteten Kontaktbereich des T-förmigen Endes 25 des Federelementes 21 ist. Auf der anderen Seite des T-förmigen Endes 25, also in der Draufsicht der Fig. 2 ist ein weiterer Kontaktbereich 38 vorgesehen, über den in noch zu beschreibender Weise die Kontaktierung des Serienwiderstandes erfolgt.
Es noch erwähnt, daß der Sockel 36 mit Vorsprüngen 39 versehen ist, durch die der Selbsthaltewiderstand 35 in der Tasche 34 gehalten wird.
Die Fig. 3a bis 3d zeigen Produktionsschritte zur Fertigung der mit einem Serienwiderstand versehenen Deckelelektrode 12. In Fig. 3a wird die Innenseite 32 zunächst mit einer Isolationsschicht 41 versehen, auf die dann gemäß Fig. 3b eine Widerstandsbahn 42 als Serienwiderstand 43 aufgebracht wird. Die Widerstandsbahn 42 überlappt die Isolationsschicht 41 in Fig. 3 nach links, so daß ein Anschlußbereich 44 zu der Innenseite 32 der aus Metall gefertigten Deckelelektrode 12 hergestellt wird. Auf diese Weise ist der erste Außenanschluß 11 mit dem Serienwiderstand 43 verbunden.
Gemäß Fig. 3c wird über den Anschlußbereich 44 sowie größtenteils über die Widerstandsbahn 42 eine weitere Isolationsschicht 45 gelegt, die lediglich rechts einen Teil der Widerstandsbahn 42 freiläßt. Auf diesen freigelassenen Bereich der Widerstandsbahn 42 wird jetzt gemäß Fig. 3d eine Silberschicht 46 aufgebracht, die eine Kontaktfläche 47 bildet.
Beim Auflegen der Deckelelektrode 12 aus Fig. 3d auf den in Fig. 2 offen dargestellten Schalter 10 kommt die Kontaktfläche 47 in Anlage mit dem Kontaktbereich 38, so daß der Serienwiderstand 43 in Reihe zwischen den ersten Außenanschluß 11 sowie das Federelement 21 geschaltet ist.
Der im geschlossenen Zustand durch den Schalter 10 fließende Betriebsstrom eines zu schützenden elektrischen Gerätes fließt also unmittelbar durch den Serienwiderstand 43, der sich bei einem unzulässig hohen Strom aufheizt und diese Ohm'sche Wärme unmittelbar in den Innenraum 20 des Schalters 10 abgibt, was zu einer entsprechenden Erwärmung des Schaltwerkes 19 und damit zu einem Öffnen der Kontakte 28, 29 führt, wie es jetzt anhand der Fig. 4 bis 6 geschildert wird.
In Fig. 4 ist das Schaltwerk 19 aus Fig. 1 schematisch in vergrößertem Maßstab in seiner Schließstellung gezeigt. Das Schaltorgan 22 befindet sich soweit unterhalb seiner Sprungtemperatur, daß seine Schleichphase noch nicht eingesetzt hat. Das Schaltorgan 22 drückt gegen die Kraft des Federelementes 21 die Verbindung 23 in Fig. 4 nach oben, so daß sich ein bei 51 angedeuteter Abstand zur Deckelelektrode 12 sowie ein bei 52 angedeuteter Abstand zu dem Gegenkontakt 29 einstellt.
Wenn sich jetzt die Temperatur des Schaltorganes 22 infolge eines erhöhten Stromflusses und der damit verbundenen Aufheizung des Serienwiderstandes 43 oder aber infolge einer erhöhten Außentemperatur erhöht, so beginnt zunächst die Schleichphase des Schaltorganes 22, in der seine gegen die Kraft des Federelementes 21 arbeitende Federkraft nachläßt, so daß die Verbindung 23 in Fig. 4 nach unten bewegt wird, wie es in Fig. 5 dargestellt ist. Die Stellkraft des Bimetall-Elementes ist jedoch immer noch so groß, daß die Stellkraft des Federelementes 21 nicht ausreicht, um die in der Schleichphase auftretenden Verformungen zu behindern. Unabhängig von seiner Geometrieänderung in der Schleichphase ist das Schaltorgan 22 verglichen mit dem Federelement 21 als starr anzusehen, der Kontaktdruck wird allein durch die Stellkraft des Federelementes 21 ausgeübt.
Der Abstand 51 vergrößert sich in dem Maße, indem sich der Abstand 52 verringert. Die mechanische Reihenschaltung aus Federelement 21 und Schaltorgan 22 drückt jedoch nach wie vor das bewegliche Kontaktteil 28 gegen den Gegenkontakt 29. Im Vergleich zwischen den Fig. 4 und 5 ist jedoch zu erkennen, daß das bewegliche Kontaktteil 28 sich in Fig. 5 quer zu dem Gegenkontakt 29 verschoben hat. Diese Reibung ist erwünscht, denn hierdurch werden die Kontaktflächen zwischen Kontaktteil 28 und Gegenkontakt 29 gereinigt, so daß der elektrische Übergangswiderstand sehr gering ist.
Erhöht sich jetzt die Temperatur des Schaltorganges 22 weiter, so schnappt es in Richtung eines Pfeiles 53 in seine Öffnungsstellung, die in Fig. 6 dargestellt ist. Die Verbindung 23 ist noch weiter nach unten gelangt, wobei das Schaltorgan 22 das bewegliche Kontaktteil 28 von dem Gegenkontakt 29 abgehoben hat. Im Vergleich zwischen den Fig. 4 und 6 ist zu erkennen, daß sich die Verbindung 23 zwischen der Deckelelektrode 12 und der Bodenelektrode 15 nach unten bewegt hat, während sich das bewegliche Kontaktteile 28 in umgekehrter Richtung nach oben bewegt hat, so daß der lichte Abstand zwischen der Deckelelektrode 12 und der Bodenelektrode 15 sozusagen doppelt ausgenutzt wird.
Ferner ist zu erkennen, daß das Federelement 21 sowie das Schaltorgan 22 flache, blechartige Teile sind, die sich von ihrer Verbindungsstelle 23 sozusagen V-förmig zur selben Seite, nämlich nach rechts erstrecken. Durch diese "zurückgeklappte" Anordnung von Federelement 21 und Schaltorgan 22 wird eine verkürzte Bauform in Längsrichtung erreicht, so daß neben der flachen auch eine relativ kurze Bauform möglich ist.
Zurückkehrend zur Fig. 2 sei noch bemerkt, daß durch die Tasche 34 und den darin angeordneten Selbsthalte-Widerstand 35 die Länge des Schalters verglichen mit einer Ausführungsform ohne Selbsthalte-Widerstand nur geringfügig vergrößert wird.
Sollte jedoch auch diese geringfügige Vergrößerung in Längsrichtung bereits unerwünscht sein, so lassen sich PTC-Bausteine auch in Taschen seitlich neben dem Schaltwerk 19 anordnen, wie es aus Fig. 7 zu erkennen ist.
In Fig. 7 ist ein topfförmiges Gehäuseunterteil 17 in der Draufsicht gezeigt, wobei lediglich bereits die Bodenelektrode 15 mit ihrem Außenanschluß 14 verspritzt oder umgossen wurde, das Schaltwerk selbst sowie die PTC-Bausteine sind noch nicht eingelegt.
In Fig. 7 ist der Sockel 37 zu erkennen, auf dem das T-förmige Ende 25 des Schaltwerkes 19 zu liegen kommt, wenn dieses in den Innenraum 20 eingelegt wird. Seitlich neben dem Innenraum 20 sind in dem Unterteil 17 zwei Taschen 55, 56 vorgesehen, die sich nach unten bis zur Bodenelektrode 15 erstrecken und nach oben offen sind. Seitlich nach innen sind diese Taschen von einem gegenüber dem Sockel 37 nach unten abgesetzten Sockel 57 umgeben, der ein Herausfallen von eingesetzten PTC-Bausteinen in den Innenraum 20 hinein verhindert.
Bei der Montage werden jetzt PTC-Bausteine in die Taschen 55, 56 eingelegt, das Schaltwerk 19 in bereits beschriebener Weise in den Innenraum 20 eingelegt und dann die Deckelelektrode 12 aufgelegt. Die Kontaktierung mit der Deckelelektrode 12 erfolgt dabei über Kontaktflächen 58, die in Fig. 3a gestrichelt angedeutet sind.

Claims (10)

  1. Schalter mit einem Isolierstoffträger (16), an dem ein erster und ein zweiter Außenanschluß (11, 14) angeordnet sind, sowie einem temperaturabhängigen Schaltwerk (19), das in Abhängigkeit von seiner Temperatur zwischen dem ersten und dem zweiten Außenanschluß (11, 14) eine elektrisch leitende Verbindung für einen durch den Schalter (10) zu leitenden elektrischen Strom herstellt und ein Schaltorgan (22), das seine geometrische Form temperaturabhängig zwischen einer Schließ- und einer Öffnungsstellung verändert und in seiner Schließstellung den Strom führt, sowie ein Stellorgan (21) umfaßt, das mit dem Schaltorgan (22) mechanisch und elektrisch in Reihe geschaltet ist,
    dadurch gekennzeichnet, daß der erste Außenanschluß (11) mit einer flächigen Deckelelektrode (12) verbunden ist, an der das Stellorgan (21) mit seinem ersten Ende (25) festgelegt ist, und auf dessen Innenseite (32) ein flacher Serienwiderstand (43) angeordnet ist, der elektrisch zwischen den ersten Außenanschluß (11) und das erste Ende (25) des Stellorganes (21) geschaltet ist.
  2. Schalter nach Anspruch 1, dadurch gekennzeichnet, daß das Stellorgan ein Federelement (21) umfaßt, dessen Stellkraft weitgehend temperaturunabhängig ist, und das Schaltorgan (22) eine temperaturabhängige Stellkraft aufweist, die in dessen Schleichphase größer ist als die Stellkraft des Federelementes (21).
  3. Schalter nach Anspruch 2, dadurch gekennzeichnet, daß das Federelement (21) und das Schaltorgan (22) im wesentlichen flache, blechartige Teile sind, die sich zur selben Seite V-förmig von ihrer Verbindungsstelle (23) weg erstrecken.
  4. Schalter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß auf der Innenseite (32) der Deckelelektrode (12) eine Isolationsschicht (41) angeordnet ist, auf der eine Widerstandsbahn (42) angeordnet ist, die einen Endes mit dem ersten Außenanschluß (11) und anderen Endes mit einer Kontaktfläche (47) verbunden ist, mit der ein Kontaktbereich (38) an dem Federelement (21) in Anlage ist.
  5. Schalter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Federelement (21) an seinem ersten Ende (25) T-förmig ausgebildet ist, mit diesem T-förmigen Ende (25) auf dem Isolierstoffträger (16) aufliegt und an diesem T-förmigen Ende (25) einen Kontaktbereich (38) aufweist, der mit einer Kontaktfläche (47) des Serienwiderstandes (43) in Anlage ist.
  6. Schalter nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der zweite Außenanschluß (14) mit einer Bodenelektrode (15) verbunden ist, mit der ein bewegliches Kontaktteil (28) zusammenwirkt, das an dem Schaltorgan (22) vorgesehen ist, und zwischen der Bodenelektrode (15) und der Deckenelektrode (12) zumindest ein PTC-Baustein eingeklemmt ist.
  7. Schalter nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der zweite Außenanschluß (14) mit einer Bodenelektrode (15) verbunden ist, mit der ein bewegliches Kontaktteil (28) zusammenwirkt, das an dem Schaltorgan (22) vorgesehen ist, und zwischen der Bodenelektrode (15) und einem T-förmigen Ende (25) des Federelementes (21) ein PTC-Baustein (33) eingeklemmt ist.
  8. Schalter nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß der PTC-Baustein (33) in einer Tasche (34, 55, 56) in dem Isolierstoffträger (16) angeordnet ist.
  9. Schalter nach Anspruch 6 und 8, dadurch gekennzeichnet, daß die Tasche (34) zwischen den Außenanschlüssen (11, 14) quer verlaufend angeordnet ist.
  10. Schalter nach Anspruch 6 und 8, dadurch gekennzeichnet, daß zwei seitliche Taschen (55, 56) neben dem Schaltwerk (9) vorgesehen sind.
EP99112917A 1998-10-13 1999-07-05 Schalter mit einem Isolierstoffträger Expired - Lifetime EP0994497B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19847208 1998-10-13
DE19847208A DE19847208C2 (de) 1998-10-13 1998-10-13 Schalter mit einem Isolierstoffträger

Publications (3)

Publication Number Publication Date
EP0994497A2 EP0994497A2 (de) 2000-04-19
EP0994497A3 EP0994497A3 (de) 2001-03-21
EP0994497B1 true EP0994497B1 (de) 2003-11-26

Family

ID=7884346

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99112917A Expired - Lifetime EP0994497B1 (de) 1998-10-13 1999-07-05 Schalter mit einem Isolierstoffträger

Country Status (6)

Country Link
US (1) US6249210B1 (de)
EP (1) EP0994497B1 (de)
AT (1) ATE255273T1 (de)
DE (2) DE19847208C2 (de)
ES (1) ES2210907T3 (de)
PT (1) PT994497E (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19909059C2 (de) * 1999-03-02 2003-10-16 Marcel Hofsaes Schalter mit Verschweißsicherung
DE19919648C2 (de) * 1999-04-30 2003-03-13 Marcel Hofsaess Gerät mit in einer Tasche vorgesehenem temperaturabhängigen Schaltwerk
JP3756700B2 (ja) * 1999-07-22 2006-03-15 ウチヤ・サーモスタット株式会社 サーマルプロテクタ
US6498559B1 (en) * 2000-05-24 2002-12-24 Christopher Cornell Creepless snap acting bimetallic switch having step adjacent its bimetallic element
JP4471479B2 (ja) * 2000-10-13 2010-06-02 ウチヤ・サーモスタット株式会社 サーマルプロテクタ
DE10235650B4 (de) * 2002-08-02 2006-04-27 INTER CONTROL Hermann Köhler Elektrik GmbH & Co KG Thermischer Überlastschutz
DE112008003632B4 (de) * 2008-01-28 2023-04-06 Uchiya Thermostat Co., Ltd. Hitzeschutz
JP5174893B2 (ja) * 2008-04-10 2013-04-03 ウチヤ・サーモスタット株式会社 外部操作型サーマルプロテクタ
DE102008049507A1 (de) * 2008-09-29 2010-04-01 Ellenberger & Poensgen Gmbh Miniatur-Schutzschalter
DE102009030353B3 (de) * 2009-06-22 2010-12-02 Hofsaess, Marcel P. Kappe für einen temperaturabhängigen Schalter sowie Verfahren zur Fertigung eines temperaturabhängigen Schalters
DE102009039948A1 (de) * 2009-08-27 2011-03-03 Hofsaess, Marcel P. Temperaturabhängiger Schalter
DE102011100752A1 (de) 2011-05-05 2012-11-08 Thermik Gerätebau GmbH Schalteinheit mit drei Außenanschlüssen
ITMI20132139A1 (it) * 2013-12-19 2015-06-20 Electrica S R L Dispositivo di protezione per apparecchi elettrici, in particolare per motori elettrici, compressori e trasformatori

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2113388A (en) * 1936-12-24 1938-04-05 Norton Co Grinding machine work clamping mechanism
US2139921A (en) * 1938-06-07 1938-12-13 Chace Co W M Snap acting thermostat
BE476947A (de) * 1945-11-05
US3443259A (en) * 1967-05-16 1969-05-06 Portage Electric Prod Inc Creepless snap-acting thermostatic switch
NL7004367A (de) * 1970-03-26 1971-09-28
DE2121802C3 (de) * 1971-05-03 1974-10-24 Thermik-Geraetebau Gmbh + Co, 7530 Pforzheim Temperaturwächter
US3706952A (en) * 1972-02-02 1972-12-19 Gen Electric Automatically resettable thermal switch
US3959762A (en) * 1974-12-09 1976-05-25 Texas Instruments Incorporated Thermally responsive electrical switch
US4389630A (en) * 1980-03-15 1983-06-21 Susumu Ubukatu Snap action thermally responsive switch
US4319214A (en) * 1980-07-16 1982-03-09 Portage Electric Products, Inc. Creepless, snap action thermostat
US4363016A (en) * 1981-06-03 1982-12-07 Amf Incorporated Circuit breaker
DE3234373A1 (de) * 1982-09-16 1984-05-10 Peter 7530 Pforzheim Hofsäss Vorrichtung zum temperatur- und/oder stromabhaengigen schalten einer elektrischen verbindung
US4636766A (en) * 1983-09-19 1987-01-13 Gte Products Corporation Miniaturized circuit breaker
US4620175A (en) * 1985-10-11 1986-10-28 North American Philips Corporation Simple thermostat for dip mounting
DE3644514A1 (de) * 1986-12-24 1988-07-07 Inter Control Koehler Hermann Bimetallschalter
DE3711666A1 (de) * 1987-04-07 1988-10-27 Hofsass P Temperaturschalter
JPH0831300B2 (ja) * 1987-10-07 1996-03-27 生方 眞哉 三相用サーマルプロテクタ
JPH0834075B2 (ja) * 1988-03-29 1996-03-29 東部電気株式会社 サーマルスイッチ
JP2585148B2 (ja) * 1991-04-05 1997-02-26 ウチヤ・サーモスタット株式会社 フィルム状発熱体内蔵型サーモスタット
DE4206157A1 (de) * 1992-02-28 1993-09-16 Hofsass P Thermoschalter
JPH05282977A (ja) * 1992-03-30 1993-10-29 Texas Instr Japan Ltd 過電流保護装置
US5212465A (en) * 1992-08-12 1993-05-18 Ubukata Industries Co., Ltd. Three-phase thermal protector
DE19604939C2 (de) * 1996-02-10 1999-12-09 Marcel Hofsaes Schalter mit einem temperaturabhängigen Schaltwerk
US5808539A (en) * 1996-10-10 1998-09-15 Texas Instruments Incorporated Temperature responsive snap acting control assembly, device using such assembly and method for making
JPH1074438A (ja) * 1997-08-29 1998-03-17 Yamada Denki Seizo Kk 密封形コンプレッサのサーマルプロテクタ

Also Published As

Publication number Publication date
ES2210907T3 (es) 2004-07-01
EP0994497A3 (de) 2001-03-21
DE59907849D1 (de) 2004-01-08
ATE255273T1 (de) 2003-12-15
DE19847208A1 (de) 2000-05-04
EP0994497A2 (de) 2000-04-19
DE19847208C2 (de) 2002-05-16
US6249210B1 (en) 2001-06-19
PT994497E (pt) 2004-04-30

Similar Documents

Publication Publication Date Title
EP0994498B1 (de) Schalter mit einem Isolierstoffträger
DE102008048554B3 (de) Temperaturabhängiger Schalter
EP0994497B1 (de) Schalter mit einem Isolierstoffträger
DE112007002532B4 (de) Temperaturschalter
EP2511930B1 (de) Temperaturschutzschalter
DE102009061050B4 (de) Bimetallteil und damit ausgestattete temperaturabhängige Schalter
DE112009004500B4 (de) Temperaturwächter
EP0920044B1 (de) Schalter mit einem temperaturabhängigen Schaltwerk
EP0951040B2 (de) Temperaturabhängiger Schalter
EP1774555B1 (de) Thermobimetallschalter
EP2867910A1 (de) Temperaturschutzschaltung
EP0740323B1 (de) Temperaturwächter mit einem bei Übertemperatur schaltenden Bimetall-Schaltwerk
EP0938117B1 (de) Schalter
DE3111901A1 (de) Unterbrecherschalter, insbesondere ueberlastschalter
DE2625715A1 (de) Leistungssteuergeraet
DE102023102302B3 (de) Temperaturabhängiger Schalter
DE102023102303B3 (de) Temperaturabhängiger Schalter
DE1200414B (de) Bimetallschaltvorrichtung
DE102023102301B3 (de) Temperaturabhängiger Schalter und Verfahren zu dessen Herstellung
DE2513494C2 (de) Temperaturschutzschalter für Rohrheizkörper
EP0162940B1 (de) Überlastsicherungsschalter
DE1176237B (de) Bimetallschaltvorrichtung mit kurzschliess-barem Bimetallglied
DE2916664A1 (de) Waermeschutzschalter
EP3991189A1 (de) Elektrisches schaltsystem
DE2300333A1 (de) Elektrische schaltervorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010414

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031126

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031126

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031126

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

REF Corresponds to:

Ref document number: 59907849

Country of ref document: DE

Date of ref document: 20040108

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040226

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040226

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040226

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040310

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20040225

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2210907

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040827

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20100625

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20100714

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100722

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100715

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110729

Year of fee payment: 13

Ref country code: CH

Payment date: 20110725

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110726

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110726

Year of fee payment: 13

Ref country code: IT

Payment date: 20110722

Year of fee payment: 13

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20120105

BERE Be: lapsed

Owner name: *HOFSASS MARCEL

Effective date: 20110731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110705

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 255273

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110705

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59907849

Country of ref document: DE

Representative=s name: WITTE, WELLER & PARTNER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59907849

Country of ref document: DE

Representative=s name: WITTE, WELLER & PARTNER PATENTANWAELTE MBB, DE

Effective date: 20121017

Ref country code: DE

Ref legal event code: R082

Ref document number: 59907849

Country of ref document: DE

Representative=s name: WITTE, WELLER & PARTNER, DE

Effective date: 20121017

Ref country code: DE

Ref legal event code: R081

Ref document number: 59907849

Country of ref document: DE

Owner name: HOFSAESS, MARCEL P., DE

Free format text: FORMER OWNER: HOFSAESS, MARCEL, 75305 NEUENBUERG, DE

Effective date: 20121017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110705

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120705

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20131021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130822

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59907849

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59907849

Country of ref document: DE

Effective date: 20150203