EP1764448A2 - Dispositifs de connection à noyer dans le béton - Google Patents
Dispositifs de connection à noyer dans le béton Download PDFInfo
- Publication number
- EP1764448A2 EP1764448A2 EP06120258A EP06120258A EP1764448A2 EP 1764448 A2 EP1764448 A2 EP 1764448A2 EP 06120258 A EP06120258 A EP 06120258A EP 06120258 A EP06120258 A EP 06120258A EP 1764448 A2 EP1764448 A2 EP 1764448A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- anchorage
- embedment
- strips
- concrete
- rebar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011150 reinforced concrete Substances 0.000 title description 3
- 239000004567 concrete Substances 0.000 claims abstract description 38
- 239000002184 metal Substances 0.000 claims abstract description 13
- 239000004744 fabric Substances 0.000 claims description 2
- 230000002787 reinforcement Effects 0.000 abstract description 13
- 230000003014 reinforcing effect Effects 0.000 abstract 1
- 238000009415 formwork Methods 0.000 description 6
- 238000003466 welding Methods 0.000 description 5
- 238000005452 bending Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/38—Connections for building structures in general
- E04B1/41—Connecting devices specially adapted for embedding in concrete or masonry
- E04B1/4107—Longitudinal elements having an open profile, with the opening parallel to the concrete or masonry surface, i.e. anchoring rails
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C5/00—Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
- E04C5/16—Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups
Definitions
- the present invention relates to fixing embedments in concrete and, more particularly, to an anchorage to facilitate the fixing of such embedments in reinforced concrete.
- GB 1281673 (ILLINOIS TOOL WORKS INC) 04.07.1972 describes an insert to be made from sheet steel such as AISI 1010. The preferred thickness is not given.
- the insert is a generally channel shaped element having two leg portions of differing lengths. The insert is held within the body of the concrete by angularly offset foot portions at the end of each leg portion.
- CA 2179227 (DI BENEDETTO, FRANK) 18.12.1997 describes a metal anchor bracket intended to be embedded into the surface of a semi-solid concrete wall.
- Di Benedetto provides a vertically extending leg to anchor the bracket in the concrete.
- the vertically extending leg has apertures, which are said to assist in allowing the leg to move through the partially set concrete.
- Di Benedetto suggests that this type of anchor is superior to inserts that are nailed to the formwork before pouring of the concrete such as that described by Illinois Tool Works.
- the anchors When embedments are used with reinforced concrete, it is taught that the anchors must always be positioned within the reinforcement cage, not in the concrete cover. In order to achieve this, the anchors must be positioned so that they do not conflict with the positions of the rebars within the cage. This is particularly difficult when using reinforcement arrangements such as ROLLMAT ® supplied by Express Reinforcements Ltd or BAMTEC ® supplied by BAM AG. These are prefabricated semi-rigid rebar assemblies and can be rolled out just like a carpet onto the formwork on site. Since the embedments must be fixed in specified places in the formwork, there is a high probability of conflict between an anchor and the rebars within the carpet. If the carpet has been designed for use with the intended embedments, it is still necessary to direct the site staff to position the carpet accurately on the formwork. This positioning is only necessary to avoid conflict with embedment anchors.
- reinforcement arrangements such as ROLLMAT ® supplied by Express Reinforcements Ltd or BAMTEC ® supplied by BAM AG.
- the problem is solved by using more but displaceable anchors such as fingers of thin (for example 1-2mm possibly up to 5mm thick) metal plate, or coils or spikes of small diameter wire -typically 3 to 5 mm - strips of thin metal sheet, or distortable metal sheet in place of studs or other rigid anchorages including bolts and lengths of welded reinforcement.
- These weaker anchors are formed as part of a continuous element and are individually or locally displaceable by any rebar into which they come into conflict. The anchors can be bent and/or buckled to displace them.
- the present invention provides an anchorage for an elongate embedment comprising anchor means adapted to extend into a concrete mass into which the embedment is to be embedded, characterised in that the anchorage is a continuous element which extends along the length of the embedment and defines a plurality of anchors that are displaceable when they come into conflict with a rebar in the concrete mass.
- anchorage is a continuous distortable metal sheet which extends along the length of the embedment and is locally displaceable where it comes into conflict with a rebar in the concrete mass.
- the present invention provides an elongate embedment having a coil comprising a plurality of individual loops each welded to a rear surface of the embedment such that a loop is displaceable when it comes into conflict with a rebar in a concrete mass in which the embedment is placed.
- the loop spacing is typically in the range 20 to 100 mm.
- the spacing can be determined in dependence on the thickness of the coil wire, its stiffness, the load to be carried by the embedment and the concrete aggregate size.
- a displaceable anchorage avoids the issues arising when there is interference between reinforcement and anchor studs on the embedments. By avoiding such conflicts, productivity is increased on site.
- the anchorage as a whole is effective. Although some of the multiple anchors are taken out by conflicts with rebars, the remainder are sufficient to hold the embedment in position.
- the use of a coil to create the anchorage has the advantage that the spacing of the anchors is self-setting. Cutting through the individual loops opposite the points at which they are welded to the embedment effectively provides two rows of wires.
- Figure 1 is a perspective view of a first embodiment of a thin sheet anchorage
- Figure 2 is a top plan view of the embodiment of Figure 1;
- Figure 3 is a front view of the embodiment of Figure 1;
- Figure 4 is a side view of the embodiment of Figure 1;
- Figure 5 is a perspective view of a channel to which a helical anchorage is fitted
- Figure 6 is a perspective view of a channel with multiple wire anchors
- Figure 7 is a perspective view of a channel with an alternative design of wire anchors
- Figure 8 is a perspective view of a channel with a sheet anchor
- Figure 9 shows an end elevation of the channel of Figure 8 in which some of the anchor strips have been displaced
- Figure 10 is a perspective view of a channel with a second embodiment of a sheet anchor.
- Figure 11 is a perspective view of a channel with a third embodiment of a sheet anchor.
- anchor system described here can be used with other forms of inserts or embedments apart from the channels described.
- An elongate channel 2 is provided with anchor means 4 which are two continuous thin plate anchorage elements 8 that together provide an anchorage 6 adapted to extend into a concrete mass into which the embedment 2 is to be embedded.
- This concrete mass contains rebars for reinforcement.
- the anchorage is formed from a 1.5mm sheet of metal such as galvanized steel plate and shaped to create a flat base strip 10 with elongated edges 12. This base strip can be welded to a rear face 14 of the channel 2. Two serrated wings 16, 16' project away from the strip along each elongate edge 12 in order to form the anchorage elements. These anchorage elements project into the reinforcement cage defined by the rebars.
- the wings 16 are angled outwardly at 105° to the plane of the base strip 10. Each wing 16 defines a plurality of spaced finger strips 18 with gaps 20 between them. The strips 18 along one wing 16 are positioned opposite the gaps 20 in the opposite wing 16'. Although all the fingers in a wing are shown as extending at the same angle, the strips could be fanned out so that adjacent strips are at different angles relative to the rear surface 14 of the embedment.
- Each finger strip 18 has an oval opening 22 extending from near a root at which it joins the base strip 10 to close to its tip 24.
- a circular opening 26 is stamped out above the oval opening 22 close to the tip 24.
- the finger strips 18 are bent more steeply away from the vertical at an intermediate position so that whereas an outer face of a lower part 28 of the strip 18 is at an angle of 75° to the horizontal and an upper part 30 of the strip is inclined at an angle of 52° to the horizontal.
- the finger strips 18 are, in this embodiment, 46mm long with a bend line 32 between the upper and lower parts 28,30 25 mm from the tip 24.
- the finger strips 18 are designed to be displaceable and/or broken off when they come into conflict with the rebar in the concrete mass.
- the strips 18 need to have sufficient rigidity to remain intact during storage and transport of the anchorage.
- the strips 18 need to be sufficiently flexible to give way when they encounter a rebar.
- the bend line 32 facilitates the movement of the finger out of the way when it comes into conflict with a rebar.
- the presence of the openings 22, 26 also serves to make the finger strips 18 less stable and flexible when confronted by a rebar.
- the channel 2 which is to be embedded in concrete, has a helical coil 34 welded along its length to serve as an anchorage 6.
- the coil 34 is made of a relatively thin gauge wire -for example 3 mm wire- and is welded in position to a rear face 14 of the channel by means of a welding arm (not shown) that passes through the centre of the coil 34 along a central axis indicated by line 40 in order to create spot welds 42 at 20mm spacing between each individual loop of the anchorage and the rear face 14 of the channel 2.
- a welding arm (not shown) that passes through the centre of the coil 34 along a central axis indicated by line 40 in order to create spot welds 42 at 20mm spacing between each individual loop of the anchorage and the rear face 14 of the channel 2.
- the resulting anchorage 6 will therefore consist of a plurality of thin wires 44 arranged in two rows each wire extending generally upwardly from the rear face 14 of the channel 2.
- each individual loop is substantially circular
- the coil could be square or rectangular in profile.
- This anchorage configuration is particularly advantageous as it is easy to manufacture as pulling out of the coil effectively sets the spacing of the loops.
- any of the wires 44 that come into conflict with a rebar will be displaced or broken off. Where the anchor wires 44 are bent out of position they will still contribute to the anchorage effect.
- the strength and integrity of the anchorage 6 as a whole is secured by the number of individual anchors 44 rather than their individual strength.
- Halfen teaches anchor spacing of 200 - 250 mm for long channel embedments.
- the spacing of anchors 44 is reduced to 20mm although with a thicker wire coil, say 5 mm, the coil 34 could be stretched out so that individual loops were welded at 30mm spacing to the rear face 14 of the embedment 2.
- a spacing of less than 100mm is suggested as suitable even for small embedments. The skilled man will appreciate that the exact design parameters can be determined in dependence on the load to be carried by the embedment, concrete aggregate size and other relevant factors by appropriate tests and calculations.
- anchor wires 44 are paired, vertical spikes.
- the spikes 44 may be assembled to a mat to create a continuous element and facilitate welding to the rear face 38 of the channel 2.
- a double row of spikes is preferable to a single row in case of conflict with a rebar which runs parallel to the embedment 2.
- wire spikes 44 are illustrated as being straight, it is preferable for them to be formed with a small deformation along their length as shown at 46 in the callout in Figure 6.
- the presence of the deformation 46 improves the bond between the wire and the surrounding concrete. It also facilitates the movement of the spike out of the way when it comes into conflict with a rebar. Because part of the spike is offset, a bending moment is created when the spike is subjected to an axial load and this helps to start the bending and buckling process to displace the spike.
- the spikes 44 are each angled outwardly away from the embedment 2.
- the wire anchors 44 are replaced by an anchorage 6 fabricated from a thin sheet 50 which has been cut into strips 52 to form a comb or brush like structure along each side.
- the cuts permit each strip 52a to be positioned during manufacture with a displacement relative to the adjacent strips 52b. Therefore, adjacent strips extend at different angles relative to a rear surface 14 of the embedment 2.
- This arrangement permits the flow of concrete around each strip 52.
- the sheet 50 is welded along an intermediate line or lines 54 to the rear face 14 of the embedment so that the strips of the comb or brush like structure project away from the embedment 2 into the main body of the concrete.
- the fanning arrangement of this embodiment is advantageous as it produces an effective variation in height of the anchors so that the initial conflicts between the wire anchors and the reinforcement do not all occur simultaneously.
- the fingers 18 or wire spikes 44 of the earlier embodiments could be cut to differing lengths to ensure such a progressive loading.
- the anchor 6 is made of a sheet of distortable metal 56 that is welded to the rear face 14 of the embedment with each edge shaped to extend at an angle to the face 14.
- the sheet 56 is sufficiently flexible that it can distort, compress or bend locally where it comes into conflict with a rebar whilst leaving adjacent portions of the sheet extending into the concrete mass to provide anchorage.
- Suitable sheet materials include expanded metal mesh or woven or knitted wire fabric. An anisotropic material that is weak enough to be locally compressed or bent but provides a strong anchorage overall can be used.
- the metal mesh manufactured by The Expanded Metal Company Limited and described at http://www.experf.co.uk could be used for this purpose.
- the sheet 56 can be shaped so that it extends transversely away from the rear face 14 of the embedment 2 as shown in Figure 10.
- the edges may be angled outwardly in a similar arrangement to the fingers 18 of Figure 1 or wire spikes 44 of Figure 7. It will be appreciated that other configurations may be employed. A number of separate sheets spaced along the length of the embedment could also be used.
- Anchors made of sheets 50 or 56 can also be provided with deformations to improve bonding and displacement under axial loading as described for the wire spikes 44 of Figure 6.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Reinforcement Elements For Buildings (AREA)
- Tents Or Canopies (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0518954A GB2430206B (en) | 2005-09-16 | 2005-09-16 | Fixing embedments in reinforced concrete |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1764448A2 true EP1764448A2 (fr) | 2007-03-21 |
EP1764448A3 EP1764448A3 (fr) | 2008-08-06 |
EP1764448B1 EP1764448B1 (fr) | 2013-08-28 |
Family
ID=35248919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06120258.6A Not-in-force EP1764448B1 (fr) | 2005-09-16 | 2006-09-07 | Dispositifs de connection à noyer dans le béton |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1764448B1 (fr) |
GB (1) | GB2430206B (fr) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100978960B1 (ko) * | 2007-10-29 | 2010-08-30 | 현대엔지니어링 주식회사 | 2차부재 고정용 강판절곡 매입기구 |
WO2013020287A1 (fr) * | 2011-08-10 | 2013-02-14 | Yau Pak Sum | Système de fentes d'ancrage pré-intégrées combinées |
EP3112543A1 (fr) * | 2015-06-29 | 2017-01-04 | Jordahl GmbH | Élement de construction en beton arme comprenant un element d'armature reticule |
CN107542168A (zh) * | 2016-06-27 | 2018-01-05 | 八角工程株式会社 | 埋入混凝土结构物的组装型槽钢 |
WO2020160833A1 (fr) * | 2019-02-06 | 2020-08-13 | Pino Albanese | Système de montage pour le montage d'un dispositif d'ancrage et procédé pour le montage d'un dispositif d'ancrage sur des constructions partiellement bâties en béton |
DE102020103568A1 (de) | 2020-02-12 | 2021-08-12 | Wilhelm Modersohn Gmbh & Co Kg | Ankerschiene und Verfahren zur Herstellung einer Ankerschiene |
DE102020120750A1 (de) | 2020-08-06 | 2022-02-10 | Wilhelm Modersohn Gmbh & Co Kg | Ankerschiene und Verfahren zur Herstellung einer Ankerschiene |
DE102020126901A1 (de) | 2020-10-13 | 2022-04-14 | Wilhelm Modersohn Gmbh & Co Kg | Ankerschiene |
DE102022107996A1 (de) | 2022-04-04 | 2023-10-05 | Henning Hager | Ankereinheit, Bauwerkseinrichtung und Verfahren zum Herstellen einer Bauwerkseinrichtung |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112317660A (zh) * | 2020-06-19 | 2021-02-05 | 中国建筑土木建设有限公司 | 一种灌注桩钢筋笼半自动制作方法 |
CN112459262B (zh) * | 2020-11-30 | 2022-05-10 | 中国一冶集团有限公司 | 一种新型哈芬槽及其施工方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB191329749A (en) | 1913-12-24 | 1915-07-22 | Anders Jordahl | Means for Securing and Supporting Brackets, Plummer-blocks,or other Fittings on Ceilings, Beams, Walls or the like constructed of Reinforced Concrete. |
GB1281673A (en) | 1969-02-10 | 1972-07-12 | Illinois Tool Works | Corner insert device |
EP0758039A1 (fr) | 1995-07-26 | 1997-02-12 | HALFEN GmbH & CO. Kommanditgesellschaft | Rail d'ancrage pour la technique du bâtiment |
CA2179227A1 (fr) | 1996-06-17 | 1997-12-18 | Frank Di Benedetto | Dispositif d'ancrage en acier pour fixations sur murs en beton |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL105260C (fr) * | ||||
DE359153C (de) * | 1916-02-19 | 1922-09-21 | Emil Buhlmann | Zum Aufhaengen von Lasten dienendes Trageisen fuer Betondecken |
DE513240C (de) * | 1927-03-29 | 1930-11-24 | Claus Meyn | Geschlitzte Ankerschiene fuer Eisenbetonbauten |
US4073114A (en) * | 1977-04-01 | 1978-02-14 | Unistrut Corporation | Insert assembly for use in pre-stressed concrete structures |
DE2806261C2 (de) * | 1978-02-15 | 1986-08-14 | Pfeifer Seil- Und Hebetechnik Gmbh & Co, 8940 Memmingen | Vorrichtung zum Transport von Betonfertigteilen |
AT379636B (de) * | 1983-07-15 | 1986-02-10 | Best Baueisen & Stahl | Bewehrungskorb fuer raeumliche armierungen von stahlbetonkoerpern |
JPH10122215A (ja) * | 1996-10-14 | 1998-05-12 | Wakai Sangyo Kk | 気泡コンクリート用アンカー |
DE19725882A1 (de) * | 1997-06-18 | 1998-12-24 | Modersohn Gmbh & Co Kg Wilh | Ankerschiene |
EP1164227A1 (fr) * | 2000-06-15 | 2001-12-19 | Sergio Zambelli | Dispositif d'ancrage pour composants en béton |
-
2005
- 2005-09-16 GB GB0518954A patent/GB2430206B/en not_active Expired - Fee Related
-
2006
- 2006-09-07 EP EP06120258.6A patent/EP1764448B1/fr not_active Not-in-force
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB191329749A (en) | 1913-12-24 | 1915-07-22 | Anders Jordahl | Means for Securing and Supporting Brackets, Plummer-blocks,or other Fittings on Ceilings, Beams, Walls or the like constructed of Reinforced Concrete. |
GB1281673A (en) | 1969-02-10 | 1972-07-12 | Illinois Tool Works | Corner insert device |
EP0758039A1 (fr) | 1995-07-26 | 1997-02-12 | HALFEN GmbH & CO. Kommanditgesellschaft | Rail d'ancrage pour la technique du bâtiment |
CA2179227A1 (fr) | 1996-06-17 | 1997-12-18 | Frank Di Benedetto | Dispositif d'ancrage en acier pour fixations sur murs en beton |
Non-Patent Citations (1)
Title |
---|
HALFEN-DEHA, HALFEN CAST-IN CHANNELS - CONCRETE, May 2005 (2005-05-01) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100978960B1 (ko) * | 2007-10-29 | 2010-08-30 | 현대엔지니어링 주식회사 | 2차부재 고정용 강판절곡 매입기구 |
WO2013020287A1 (fr) * | 2011-08-10 | 2013-02-14 | Yau Pak Sum | Système de fentes d'ancrage pré-intégrées combinées |
CN103119230A (zh) * | 2011-08-10 | 2013-05-22 | 游柏森 | 组合式预埋锚固槽系统 |
CN103119230B (zh) * | 2011-08-10 | 2014-09-10 | 游柏森 | 组合式预埋锚固槽系统 |
US9097004B2 (en) | 2011-08-10 | 2015-08-04 | Pak Sum Yau | Combined pre-embedded anchoring slot system |
EP3112543A1 (fr) * | 2015-06-29 | 2017-01-04 | Jordahl GmbH | Élement de construction en beton arme comprenant un element d'armature reticule |
CN107542168A (zh) * | 2016-06-27 | 2018-01-05 | 八角工程株式会社 | 埋入混凝土结构物的组装型槽钢 |
WO2020160833A1 (fr) * | 2019-02-06 | 2020-08-13 | Pino Albanese | Système de montage pour le montage d'un dispositif d'ancrage et procédé pour le montage d'un dispositif d'ancrage sur des constructions partiellement bâties en béton |
DE102020103568A1 (de) | 2020-02-12 | 2021-08-12 | Wilhelm Modersohn Gmbh & Co Kg | Ankerschiene und Verfahren zur Herstellung einer Ankerschiene |
WO2021160354A1 (fr) | 2020-02-12 | 2021-08-19 | Wilhelm Modersohn Gmbh & Co Kg | Rail d'ancrage et son procédé de fabrication |
DE102020120750A1 (de) | 2020-08-06 | 2022-02-10 | Wilhelm Modersohn Gmbh & Co Kg | Ankerschiene und Verfahren zur Herstellung einer Ankerschiene |
DE102020126901A1 (de) | 2020-10-13 | 2022-04-14 | Wilhelm Modersohn Gmbh & Co Kg | Ankerschiene |
WO2022078654A1 (fr) | 2020-10-13 | 2022-04-21 | Wilhelm Modersohn Gmbh & Co Kg | Rail d'ancrage et son procédé de fabrication |
DE102022107996A1 (de) | 2022-04-04 | 2023-10-05 | Henning Hager | Ankereinheit, Bauwerkseinrichtung und Verfahren zum Herstellen einer Bauwerkseinrichtung |
Also Published As
Publication number | Publication date |
---|---|
GB2430206A (en) | 2007-03-21 |
EP1764448A3 (fr) | 2008-08-06 |
GB2430206B (en) | 2007-09-12 |
GB0518954D0 (en) | 2005-10-26 |
EP1764448B1 (fr) | 2013-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1764448A2 (fr) | Dispositifs de connection à noyer dans le béton | |
US9217256B2 (en) | Concrete lifting anchors | |
JP6108595B2 (ja) | リブ付きプレキャストコンクリート板と、それを用いた合成床スラブと梁のコンクリート打ち分け方法 | |
CN102852276B (zh) | 一种大吨位预应力叠合吊车梁与施工方法 | |
WO2018112015A1 (fr) | Barre de mise en place de paroi de barres d'armature | |
US3105423A (en) | Chair for supporting a reinforcement mat for concrete | |
KR20150042267A (ko) | 지점 지지 요소 또는 평탄 콘크리트 천장 | |
WO2016106149A1 (fr) | Systèmes de raccord géosynthétique et procédés permettant d'obtenir des murs en terre stabilisés mécaniquement | |
CN212534815U (zh) | 型钢混凝土纵向钢筋约束结构 | |
DK148693B (da) | Betonelement med forankringselementer til t-formede fastgoerelsesorganer | |
KR20130050634A (ko) | 철근 콘크리트 구조물을 위한 전단보강재 | |
KR100727140B1 (ko) | 로드 클립 및 클립 설치 장치 | |
KR101185940B1 (ko) | 보강토 옹벽 축조용 금속 스트립 보강재 및 이의 시공방법 | |
JP6679261B2 (ja) | スラブの鉄骨梁支持部補強構造 | |
US20110058904A1 (en) | Stabilizing Reinforcement For Use In Reinforced Soil Works | |
US20160347584A1 (en) | Lifting anchor with enhanced loadbearing features | |
JP2013501168A (ja) | Z字形薄板部材からなる補強部を備える鉄筋コンクリート構成材 | |
KR20130005556A (ko) | 각도 조절이 가능한 좌굴 방지 어스앵커용 브라켓 | |
KR200436319Y1 (ko) | 유공형 절곡 철판 전단보강체 및 그 설치구조 | |
JP2013036185A (ja) | 継手金物部位と開孔部とを併設配置した補強構造 | |
KR20060038665A (ko) | 슬래브와 기둥 접합부의 전단보강체 및 이를 이용한전단보강구조 | |
KR20090079561A (ko) | 슬래브와 기둥 접합부의 전단 보강체 | |
JPH0637072Y2 (ja) | スターラップ筋 | |
JP2003206694A (ja) | 曲面状の壁面への補強用メッシュ部材の取り付け方法 | |
KR100696278B1 (ko) | 평판형 스페이서 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17P | Request for examination filed |
Effective date: 20090206 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20090403 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 629463 Country of ref document: AT Kind code of ref document: T Effective date: 20130915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602006038084 Country of ref document: DE Effective date: 20131024 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 629463 Country of ref document: AT Kind code of ref document: T Effective date: 20130828 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131228 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130717 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131230 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602006038084 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130907 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130930 |
|
26N | No opposition filed |
Effective date: 20140530 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602006038084 Country of ref document: DE Effective date: 20140530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130828 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130907 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20060907 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20150810 Year of fee payment: 10 Ref country code: DE Payment date: 20150821 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20150810 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602006038084 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160907 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170401 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160907 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160930 |