EP1749340A1 - Solarwechselrichter und photovoltaikanlage mit mehreren solarwechselrichtern - Google Patents
Solarwechselrichter und photovoltaikanlage mit mehreren solarwechselrichternInfo
- Publication number
- EP1749340A1 EP1749340A1 EP05753007A EP05753007A EP1749340A1 EP 1749340 A1 EP1749340 A1 EP 1749340A1 EP 05753007 A EP05753007 A EP 05753007A EP 05753007 A EP05753007 A EP 05753007A EP 1749340 A1 EP1749340 A1 EP 1749340A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- bus
- solar
- inverter
- solar inverter
- status information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/505—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
- H02M7/515—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
- H02M7/521—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/493—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00006—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
- H02J13/00016—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/12—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
- Y04S10/123—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S40/00—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
- Y04S40/12—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
- Y04S40/124—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses
Definitions
- the invention relates to a solar inverter which can be connected on the input side to at least one photovoltaic generator and on the output side to an electrical network, in particular to a public network, and at least one inverter module, an electronic control unit at least for diagnosing an inverter module and a bus connection for data connection Electronic control unit with a communication bus.
- the invention relates to a photovoltaic system for feeding into an electrical network, in particular into a public electrical network with a plurality of solar inverters, to which at least one photovoltaic generator can be connected.
- Photovoltaic systems are used to feed electrical current into an electrical network, such as a 1-phase 5OHz / 230V voltage network or a 3-phase 50Hz / 400V voltage network.
- photovoltaic systems can have one or more photovoltaic generators, wherein a photovoltaic generator can consist of one or more solar modules, which in turn can have a large number of interconnected solar cells.
- the solar cells of a solar module are usually connected in series as a "string", in particular in a meandering shape.
- the electrical current generated in a photovoltaic way is then fed to one or more solar inverters, which convert the supplied DC voltage into a regulated, standardized mains voltage.
- solar inverters are known for 1-phase versions, for example in DE 196 42 522 Cl.
- a photovoltaic system can also have a system control level for controlling and operating several connected solar inverters.
- a monitoring device in the system which monitors the respective solar inverters and which promptly reports the failure of such a device to a reporting or control center.
- a monitoring device can e.g. be connected to a reporting device for forwarding the detected error message, e.g. with a radio-based GSM module.
- Another technical solution provides for the respective solar inverters to be cyclically operated using a PC, i.e. to query a "personal computer".
- the PC itself is connected to the mostly distant devices via a telephone connection or an Ethernet connection.
- a special software application on the PC regularly checks the status of the individual solar inverters. In the event of a fault, the operator of the system then receives a suitable message.
- a disadvantage of the first solution described is that a separate monitoring device has to be provided, which represents an additional investment for the operator of a photovoltaic system.
- the disadvantage of the second solution is that an additional PC with a special software application is required in order to be able to carry out a regular check of the system. It is therefore an object of the invention to provide a solar inverter and a photovoltaic system which does not require the above-mentioned additional monitoring devices.
- a solar inverter which can be connected on the input side to at least one photovoltaic generator and on the output side to an electrical network and has at least one inverter module, an electronic control unit at least for diagnosing an inverter module and a bus connection for data technology connection of the electronic control unit to a communication bus ,
- the electronic control unit has means for cyclically outputting status information of the respective solar inverter to the communication bus, means for cyclically reading out status information of further solar inverters connected to the communications bus, and means for outputting an error message to the communications bus in the event that at least one expected further status information is not available ,
- a separate monitoring unit can thus advantageously be dispensed with.
- the status information can be 1-bit information, which indicates whether the respective inverter module is working properly or not.
- the solar direct current currently flowing on the input side into the inverter module, the voltage applied to the connected photovoltaic generator and the grid current currently fed into the electrical network can be cyclically output as data value on the communication bus.
- the solar inverter has a unique bus address so that it can be addressed directly via the bus connection. This means, for example, that each individual solar inverter can be parameterized and configured when commissioning the photovoltaic system. This can be done using a mobile diagnostic device, for example, which is connected to the communication bus during commissioning.
- the electronic control unit of the respective solar inverter has means for the cyclical output of the status information and the unique bus address of the solar inverter on the communication bus.
- a solar inverter that is no longer reporting can advantageously be assigned via the bus address in the event of an error and a corresponding error message can be issued.
- an error message is issued if there is implausible status information for the respective solar inverter.
- This can e.g. then be the case if all other solar inverters have approximately the same feed-in power, i.e. e.g. have approximately the same percentage of the maximum possible feed-in power, and e.g. another solar inverter has a. reports little or no solar power.
- the cause can be e.g. a failure of a solar module of the photovoltaic generator, an interruption in the conductors in the feed lines to the photovoltaic generator, or major contamination of a solar module or fewer solar modules.
- the electronic control unit has an electronic memory, such as a RAM or EEPROM memory, for storing the respective bus addresses of the other solar inverters which report cyclically via the communication bus. For example, during commissioning or expansion of the photovoltaic system for a ne a certain period of time, such as one minute, the bus addresses of all cyclically reporting solar inverters are recorded. These bus addresses can then be stored in the form of a list in the above-mentioned electronic memory. If a solar inverter fails, this bus address can then be determined by comparison.
- an electronic memory such as a RAM or EEPROM memory
- the cycle time for the cyclical output of the status information on the communication bus and / or the cycle time for the cyclical readout of the further status information can be set.
- These values can e.g. be stored in the electronic memory of the electronic control unit during commissioning.
- the cycle times can e.g. range from a few seconds to a few minutes, so that an error message can still be issued promptly. If no cycle time is assigned during commissioning, the stored standard time is used.
- the electronic control unit is in particular a microcontroller.
- microcontrollers sometimes already have an integrated electronic memory for possible storage of the above. Bus addresses.
- Using a software program that can be executed on the microcontroller it is also possible to carry out both the control, the regulation and the diagnosis of the associated inverter module.
- Known microcontrollers include analog as well as digital input and output channels. By means of the input channels, the electrical input variables such as current and voltage of a connected photovoltaic generator and / or the electrical network can advantageously be read in and processed directly via an adaptation circuit.
- the microcontrollers often already have an integrated bus interface. In the simplest case, this can be, for example, a so-called SPI port for "serial port interface".
- the bus interface can be designed for communication, for example with a CAN bus, a LAN, an RS232 bus, an RS485 bus or a USB. This list is not exhaustive. Other bus systems are known to the person skilled in the art.
- the object of the invention is further achieved with a photovoltaic system for feeding into an electrical network with at least one solar inverter according to the invention, to which at least one photovoltaic generator can be connected.
- the photovoltaic system has an electronic signaling module which comprises a bus connection for data connection to the communication bus, means for receiving an error message from a solar inverter and means for sending the error message to a signaling or control center.
- the message module can e.g. a GSM and / or a UMTS transmitter / receiver module, a modem for connection to a telephone network or a gateway for connection to a "Local Area Network", i.e. on a LAN.
- a GSM and / or a UMTS transmitter / receiver module e.g. a modem for connection to a telephone network or a gateway for connection to a "Local Area Network", i.e. on a LAN.
- the signaling module can be implemented in an extremely compact manner, since the electronic components and functional groups required for monitoring the respective solar inverters are not required. It is also possible to design the signaling module in such a way that it has an electronic display for displaying the status information sent cyclically by the respective solar inverter. If the message module still has input buttons, different status information to be displayed can also be selected.
- the signaling module has electronic means, such as, for example, a simple microcontroller, in order to control those of the respective Convert the error message received from solar inverters into a corresponding e-mail, fax or SMS.
- the solar inverter has the electronic means to convert an error message directly into an email, a fax or an SMS.
- the figure shows a photovoltaic system PVA according to the invention, which has three photovoltaic generators SM1-SM3 by way of example. For the sake of clarity, their internal structure is not shown any further.
- the SM1-SM3 photovoltaic generators each feed into one M1-M3 solar inverter.
- each solar inverter M1-M3 has an inverter module WR, which is connected on the input side to a photovoltaic generator SM1-SM3.
- the solar direct current is converted into a single-phase alternating voltage. For safety reasons, as already done in the present example, this voltage can be potential-free compared to the voltage level of the photovoltaic generators SM1-SM3.
- the three solar inverters M1-M3 each feed into a phase R, S, T of an electrical network SN in order to achieve an approximately uniform power distribution in this network SN.
- a network SN is in particular a public 3-phase 50 Hz / 400 V voltage network.
- N is the neutral conductor common to all three feeding solar inverters M1-M3.
- Each M1-M3 solar inverter has a microcontroller ⁇ C as an electronic control unit. This is connected to the inverter module WR via electrical connecting lines for controlling, regulating and monitoring or diagnosing the associated inverter module.
- the microcontroller ⁇ C is also connected to a bus interface BA.
- bus connections are also available as integrated components and tailored to the respective communication bus.
- the microcontroller ⁇ C has means for the cyclical output of status information S1-S3 of the respective solar inverter M1-M3 on the communication bus BUS.
- the microcontroller ⁇ C has means for cyclically reading out status information SA from the communication bus BUS, which the neighboring solar inverters or the solar inverters M1-M3 belonging to the group of jointly feeding in also output as their status information S1-S3 to the communication bus bus.
- the microcontroller ⁇ C has means for outputting an error message F to the communication bus BUS if at least one expected status information SA of the other solar inverters M1-M3 should fail to appear.
- bus addresses AD1-AD3 are already integrated in an integrated electronic memory of the microcontroller ⁇ C.
- the error message F is forwarded to a message module MM, which is likewise connected to the communication bus BUS for data processing purposes via a bus connection BA.
- the message module MM has a GSM transmission / reception module GSM with a suitable antenna ANT in order to display the error message F, which may be text or graphically prepared, in the form of, for example, an electronic message, such as an SMS for "Short Message Service "to a previously determined recipient GS, such as a service technician.
- Such reporting modules MM based on GSM are also available as commercial products and advantageously do not have to be developed separately for the photovoltaic system PVA according to the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Alarm Systems (AREA)
Abstract
Die Erfindung betrifft einen Solarwechselrichter (M1-M3), wel-cher eingangsseitig an zumindest einem Photovoltaikgenerator (SM1-SM3) und ausgangsseitig an ein elektrisches Netz (SN), ins-besondere an ein öffentliches elektrisches Netz anschließbar ist und zumindest ein Wechselrichtermodul (WR), eine elektronische Steuereinheit (mC) zumindest zur Diagnose eines Wechselrichtermo-duls und eine Busanschaltung (BA) zur datentechnischen Verbin-dung der elektronischen Steuereinheit mit einem Kommunikations-bus (BUS) aufweist. Die elektronische Steuereinheit weist wei-terhin Mittel zur zyklischen Ausgabe einer Statusinformation (S1-S3) des Solarwechselrichters auf den Kommunikationsbus, Mit-tel zum zyklischen Auslesen von Statusinformationen (SA) weite-rer an den Kommunikationsbus angeschlossener Solarwechselrichter sowie Mittel zur Ausgabe einer Fehlermeldung (F) auf den Kommu-nikationsbus im Falle des Ausbleibens von zumindest einer erwar-teten weiteren Statusinformation (SA) auf. Damit kann vorteil-haft auf eine separate Überwachungseinheit verzichtet werden.
Description
Beschreibung
Solarwechselrichter und Photovoltaikanlage mit mehreren Solarwechselrichtern
Die Erfindung betrifft einen Solarwechselrichter, welcher ein- gangsseitig an zumindest einem Photovoltaikgenerator und aus- gangsseitig an ein elektrisches Netz, insbesondere an ein öffentliches Netz anschließbar ist und zumindest ein Wechselrichtermodul, eine elektronische Steuereinheit zumindest zur Diagnose eines Wechselrichtermoduls und eine Busanschaltung zur datentechnischen Verbindung der elektronischen Steuereinheit mit einem Kommunikationsbus aufweist.
Die Erfindung betrifft eine Photovoltaikanlage zur Einspeisung in ein elektrisches Netz, insbesondere in eine öffentliches elektrisches Netz mit mehreren Solarwechselrichtern, an welchen zumindest ein Photovoltaikgenerator anschließbar ist.
Photovoltaikanlagen dienen der Einspeisung von elektrischem Strom in ein elektrisches Netz, wie z.B. in ein 1-phasiges 5OHz/230V-Spannungsnetz oder in ein 3-phasiges 50Hz/400V-Span- nungsnetz. Dazu können Photovoltaikanlagen ein oder mehrere Pho- tovoltaikgeneratoren aufweisen, wobei ein Photovoltaikgenerator aus einem oder mehreren Solarmodulen bestehen kann, welches bzw. welche wiederum eine Vielzahl von untereinander verschalteten Solarzellen aufweisen können. Dabei werden üblicherweise die Solarzellen eines Solarmoduls als "String" in Reihe, insbesondere mäanderförmig geschaltet. Der auf photovoltaischem Weg erzeugte elektrische Strom wird dann einem oder mehreren Solarwechselrichtern zugeführt, welcher oder welche die zugeführte Gleichspannung in eine geregelte standardisierte Netzspannung umwandeln. Derartige Solarwechselrichter sind für 1-phasige Ausführungen z.B. in der DE 196 42 522 Cl bekannt.
Eine Photovoltaikanlage kann zudem eine Anlagenleitebene zur Steuerung und Betriebsführung von mehreren angeschlossenen Solarwechselrichtern aufweisen.
Bei Photovoltaikanlagen kann es - wie generell bei technischen Geräten - vorkommen, dass einzelne oder auch mehrere Solarwechselrichter aufgrund eines technischen Defekts ausfallen. Wird dieser Defekt von der Anlagensteuerung nicht erkannt, so führt dies zu Ertragseinbußen und letztlich zu finanziellen Einbußen der Anlagenbetreiber .
Zur Vermeidung der o.g. Problematik ist es bekannt, in der Anlage ein Überwachungsgerät vorzusehen, welches die jeweiligen Solarwechselrichter überwacht und welches zeitnah den Ausfall eines solchen Geräts an eine Melde- oder Leitstelle meldet. Hierzu kann ein solches Überwachungsgerät z.B. mit einer Meldeeinrichtung zur Weiterleitung der erfassten Fehlermeldung verbunden sein, wie z.B. mit einem funkgestützten GSM-Modul sein.
Eine andere technische Lösung sieht vor, die jeweiligen Solarwechselrichter zyklisch mittels eines PCs, d.h. eines "Personal Computers" abzufragen. Der PC selbst ist dabei über eine Telefonverbindung oder über eine Ethernetverbindung mit den zumeist weit entfernt gelegenen Geräten verbunden. Eine spezielle Software-Applikation auf dem PC führt regelmäßig die Statusabfrage der einzelnen Solarwechselrichter durch. Im Fehlerfall erhält der Betreiber der Anlage dann eine geeignete Meldung.
Nachteilig an der ersten beschriebenen Lösung ist, dass ein separates Überwachungsgerät vorzusehen ist, welches für den Betreiber einer Photovoltaikanlage eine zusätzliche Investition darstellt.
Nachteilig an der zweiten Lösung ist, dass ein zusätzlicher PC mit einer speziellen Software-Applikation benötigt wird, um eine regelmäßige Überprüfung der Anlage durchführen zu können.
Es ist somit eine Aufgabe der Erfindung, einen Solarwechselrichter sowie eine Photovoltaikanlage anzugeben, welche ohne die o.g. zusätzlichen Überwachungsgeräte auskommt.
Die Aufgabe wird gelöst mit einem Solarwechselrichter, welcher eingangsseitig an zumindest einem Photovoltaikgenerator und aus- gangsseitig an ein elektrisches Netz anschließbar ist und zumindest ein Wechselrichtermodul, eine elektronische Steuereinheit zumindest zur Diagnose eines Wechselrichtermoduls sowie eine Busanschaltung zur datentechnischen Verbindung der elektronischen Steuereinheit mit einem Kommunikationsbus aufweist.
Erfindungsgemäß weist die elektronische Steuereinheit Mittel zur zyklischen Ausgabe einer Statusinformation des jeweiligen Solarwechselrichters auf den Kommunikationsbus, Mittel zum zyklischen Auslesen von Statusinformationen weiterer an den Kommunikationsbus angeschlossener Solarwechselrichter sowie Mittel zur Ausgabe einer Fehlermeldung auf den Kommunikationsbus im Falle des Ausbleibens von zumindest einer erwarteten weiteren Statusinformation auf.
Durch die gegenseitige Überwachung mehrerer an den Kommunikationsbus angeschlossener Solarwechselrichter ist eine zeitnahe De- tektion eines ausgefallenen Solarwechselrichters, welcher sich nun zyklisch nicht mehr melden kann, möglich. Dadurch kann vorteilhaft auf eine separate Überwachungseinheit verzichtet werden.
Die Statusinformation kann im einfachsten Fall eine 1-Bit-Infor- mation sein, welche anzeigt, ob das jeweilige Wechselrichtermodul ordnungsgemäß arbeitet oder nicht. Darüber hinaus können z.B. auch der aktuell eingangsseitig in das Wechselrichtermodul fließende Solargleichstrom, die am angeschlossenen Photovoltaikgenerator anliegende Spannung sowie der in das elektrische Netz aktuell eingespeiste Netzstrom als Datenwert auf den Kommunikationsbus zyklisch ausgegeben werden.
In einer ersten Ausführungsform weist der Solarwechselrichter eine eindeutige Busadresse auf, so dass dieser über die Busanschaltung direkt adressiert werden kann. Dadurch kann z.B. im Rahmen der Inbetriebnahme der Photovoltaikanlage jeder einzelne Solarwechselrichter parametriert und konfiguriert werden. Dies kann z.B. mittels eines mobilen Diagnosegeräts erfolgen, welches während der Inbetriebnahme an den Kommunikationsbus angeschlossen wird.
In einer weiteren Ausführungsform weist die elektronische Steuereinheit des jeweiligen Solarwechselrichters Mittel zur zyklischen Ausgabe der Statusinformation sowie der eindeutigen Busadresse des Solarwechselrichters auf den Kommunikationsbus auf.
Dadurch kann vorteilhaft im Fehlerfall über die Busadresse ein sich nun nicht mehr meldender Solarwechselrichter zugeordnet und eine entsprechende Fehlermeldung abgesetzt werden.
Auch ist es vorteilhaft möglich, dass bei Vorliegen von nicht plausiblen Statusinformationen der jeweiligen Solarwechselrichter eine Fehlermeldung abgesetzt wird. Dies kann z.B. dann der Fall sein, wenn alle anderen Solarwechselrichter eine in etwa gleiche Einspeiseleistung, d.h. z.B. in etwa den gleichen Prozentwert von der jeweils maximal möglichen Einspeiseleistung, aufweisen und z.B. ein weiterer Solarwechselrichter einen i.Vgl. dazu geringen oder gar keinen Solarstrom meldet. Ursache kann hier z.B. ein Ausfall eines Solarmoduls des Photovoltaikgenera- tors, eine Leiterunterbrechung in den Zuführungsleitungen zum Photovoltaikgenerator oder größere Verschmutzungen eines Solarmoduls oder weniger Solarmodule sein.
In einer weiteren Ausführungsform weist die elektronische Steuereinheit einen elektronischen Speicher, wie z.B. einen RAM- oder EEPROM-Speicher zur Ablage der jeweiligen Busadressen der weiteren sich über den Kommunikationsbus zyklisch meldenden Solarwechselrichter aufweist. Hierzu kann z.B. während der Inbetriebnahme oder einer Erweiterung der Photovoltaikanlage für ei-
ne gewisse Zeitspanne, wie z.B. von einer Minute, eine Erfassung der Busadressen aller sich zyklisch meldenden Solarwechselrichter erfolgen. Diese Busadressen können dann in Form einer Liste in dem o.g. elektronischen Speicher abgelegt werden. Bei Ausfall eines Solarwechselrichters ist dann diese Busadresse durch Vergleich ermittelbar.
Gemäß einer Ausführungsform ist die Zykluszeit zur zyklischen Ausgabe der Statusinformation auf den Kommunikationsbus und/oder die Zykluszeit zum zyklischen Auslesen der weiteren Statusinformationen einstellbar. Diese Werte können z.B. im Rahmen der Inbetriebnahme im elektronischen Speicher der elektronischen Steuereinheit hinterlegt werden. Die Zykluszeiten können z.B. im Bereich von wenigen Sekunden bis zu wenigen Minuten betragen, so dass dennoch zeitnah eine Absetzung einer Fehlermeldung erfolgen kann. Wird während der Inbetriebnahme keine Zykluszeit zugewiesen, so wird die hinterlegte Standardzeit verwendet.
Die elektronische Steuereinheit ist insbesondere ein Mikrocont- roller. Derartige MikroController weisen dabei zum Teil auch bereits einen integrierten elektronischen Speicher zur möglichen Ablage der o.g. Busadressen auf. Mittels eines auf dem Mikro- controller ausführbaren Softwareprogramms ist es auch möglich, sowohl die Steuerung, die Regelung sowie die Diagnose des damit verbundenen Wechselrichtermoduls durchzuführen. Bekannte Mikro- controller weisen u.a. analoge wie auch digitale Ein- und Ausgabekanäle auf. Mittels der Eingabekanäle können vorteilhaft die elektrischen Eingangsgrößen wie Strom und Spannung eines angeschlossenen Photovoltaikgenerators und/oder des elektrischen Netzes über eine Anpassschaltung direkt eingelesen und verarbeitet werden.
Häufig verfügen die Mikrocontroller auch bereits über eine integrierte Busanschaltung. Im einfachsten Fall kann dies z.B. ein sogenannter SPI-Port für "Serial Port Interface" sein.
In einer weiteren Ausführungsform kann die Busanschaltung zur Kommunikation z.B. mit einem CAN-BUS, einem LAN, einem RS232- Bus, einem RS485-Bus oder einem USB ausgebildet sein. Diese Aufzählung ist nicht abschließend. Weitere Bussysteme sind dem Fachmann bekannt.
Die Aufgabe der Erfindung wird weiterhin gelöst mit einer Photovoltaikanlage zur Einspeisung in ein elektrisches Netz mit zumindest einem erfindungsgemäßen Solarwechselrichter, an dem zumindest ein Photovoltaikgenerator anschließbar ist.
In einer besonderen Ausführungsform weist die Photovoltaikanlage ein elektronisches Meldemodul auf, welches eine Busanschaltung zur datentechnischen Verbindung mit dem Kommunikationsbus, Mittel zum Empfang einer von einem Solarwechselrichter stammenden Fehlermeldung sowie Mittel zum Senden der Fehlermeldung an eine Melde- oder Leitstelle umfasst.
Hierzu kann das Meldemodul z.B. eine GSM- und/oder ein UMTS-Sen- de-/Empfangsmodul, ein Modem zum Anschluss an eine Telefonnetz oder ein Gateway zum Anschluss an ein "Local Area Network", d.h. an ein LAN aufweisen.
Damit ist der große Vorteil verbunden, dass zum einen das Meldemodul äußerst kompakt realisiert werden kann, da die zur Überwachung der jeweiligen Solarwechselrichter erforderlichen elektronischen Komponenten und Funktionsgruppen nicht erforderlich sind. Möglich ist es auch, das Meldemodul in der Art auszugestalten, dass dieses eine elektronische Anzeige zur Darstellung der zyklisch von den jeweiligen Solarwechselrichter gesandten Statusinformationen aufweist. Weist das Meldemodul weiterhin Eingabetasten auf, so sind auch unterschiedliche darzustellende Statusinformationen auswählbar.
In einer besonders vorteilhaften Ausführungsform der Photovoltaikanlage weist das Meldemodul elektronische Mittel, wie z.B. einen einfachen MikroController auf, um die von den jeweiligen
Solarwechselrichtern empfangene Fehlermeldung in eine entsprechende E-Mail, in ein Fax oder in eine SMS zu konvertieren.
Damit ist der Vorteil verbunden, dass die Fehlermeldung zeitnah und im Klartext direkt vor Ort an eine zuständige Person übermittelt werden kann. Besonders vorteilhaft ist es, wenn die Fehlermeldung als Klartext an ein Mobiltelefon weitergeleitet wird, welches die zu überwachende Person üblicherweise mit sich führt.
In einer weiteren Variante verfügt der Solarwechselrichter über die elektronischen Mittel, um direkt eine Fehlermeldung in eine E-Mail, in ein Fax oder in eine SMS zu konvertieren.
Die Erfindung wird an Hand der nachfolgenden einzigen Figur beispielhaft näher erläutert.
Dabei zeigt die Figur eine erfindungsgemäße Photovoltaikanlage PVA, welche beispielhaft drei Photovoltaikgeneratoren SM1-SM3 aufweist. Aus Gründen der Übersichtlichkeit ist deren interner Aufbau nicht weiter dargestellt. Die Photovoltaikgeneratoren SM1-SM3 speisen dabei in je einen Solarwechselrichter M1-M3. Im Beispiel der Figur verfügt jeder Solarwechselrichter M1-M3 über ein Wechselrichtermodul WR, welches eingangsseitig mit einem Photovoltaikgenerator SM1-SM3 verbunden ist. Dabei wird der Solargleichstrom in eine einphasige Wechselspannung umgewandelt. Aus Sicherheitsgründen kann, wie bereits im vorliegenden Beispiel erfolgt, diese Spannung potentialfrei gegenüber der Spannungsebene der Photovoltaikgeneratoren SM1-SM3 sein.
Im Beispiel der Figur speisen die drei Solarwechselrichter M1-M3 in je eine Phase R, S, T eines elektrischen Netzes SN ein, um eine in etwa gleichmäßige Leistungsverteilung in diesem Netz SN zu erreichen. Ein derartiges Netz SN ist insbesondere ein öffentliches 3-phasiges 50Hz/400V-Spannungsnetz . Mit N ist der allen drei einspeisenden Solarwechselrichtern M1-M3 gemeinsame Nullleiter bezeichnet.
Jeder Solarwechselrichter M1-M3 verfügt über einen Mikrocontroller μC als elektronische Steuereinheit. Dieser ist über elektrische Verbindungsleitungen zur Steuerung, Regelung und Überwachung bzw. Diagnose des zugehörigen Wechselrichtermoduls WR mit diesem verbunden.
Im Beispiel der Figur ist zudem der Mikrocontroller μC mit einer Busanschaltung BA verbunden. Derartige Busanschaltung sind auch als integrierte Bauelemente erhältlich und auf den jeweiligen Kommunikationsbus zugeschnitten.
Gemäß der Erfindung weist der Mikrocontroller μC Mittel zur zyklischen Ausgabe einer Statusinformation S1-S3 des jeweiligen Solarwechselrichters M1-M3 auf den Kommunikationsbus BUS auf. Darüber hinaus verfügt der Mikrocontroller μC über Mittel zum zyklischen Auslesen von Statusinformationen SA von dem Kommunikationsbus BUS, welche die benachbarten bzw. die zur Gruppe der gemeinsam einspeisenden gehörenden Solarwechselrichter M1-M3 gleichfalls als deren Statusinformation S1-S3 auf den Kommunikationsbus Bus ausgeben. Schließlich weist der Mikrocontroller μC Mittel zur Ausgabe einer Fehlermeldung F auf den Kommunikations- bus BUS auf, falls zumindest eine erwartete Statusinformation SA der anderen Solarwechselrichter M1-M3 ausbleiben sollte.
Beispielhaft sind gemäß der vorliegenden Figur die Busadressen AD1-AD3 bereits in einem integrierten elektronischen Speicher des MikroControllers μC integriert.
Die Fehlermeldung F wird gemäß der Erfindung weitergeleitet an ein Meldemodul MM, welches gleichfalls über eine Busanschaltung BA mit dem Kommunikationsbus BUS datentechnisch verbunden ist. Im Beispiel der vorliegenden Figur weist das Meldemodul MM ein GSM-Sende-/Empfangsmodul GSM mit einer geeigneten Antenne ANT auf, um die ggf. textlich oder graphisch aufbereitete Fehlermeldung F in Form z.B. einer elektronischen Nachricht, wie z.B. einer SMS für "Short Message Service" an einen zuvor bestimmten Empfänger GS, wie z.B. an einen Servicetechniker weiterzuleiten.
Derartige Meldemodule MM auf GSM-Basis sind auch als käufliche Produkte erhältlich und müssen vorteilhaft nicht gesondert für die erfindungsgemäße Photovoltaikanlage PVA entwickelt werden.
Claims
1. Solarwechselrichter (M1-M3) , welcher eingangsseitig an zumindest einem Photovoltaikgenerator (SM1-SM3) und ausgangsseitig an ein elektrisches Netz (SN) anschließbar ist, welcher aufweist a) zumindest ein Wechselrichtermodul (WR) , b) eine elektronische Steuereinheit (μC) zumindest zur Diagnose eines Wechselrichtermoduls (WR) , und c) eine Busanschaltung (BA) zur datentechnischen Verbindung der elektronischen Steuereinheit (μC) mit einem Kommunikationsbus (BUS) , g e k e n n z e i c h n e t d u r c h die elektronische Steuereinheit (μC) mit Mitteln zur zyklischen Ausgabe einer Statusinformation (S1-S3) des Solarwechselrichters (M1-M3) auf den Kommunikationsbus (BUS), mit Mitteln zum zyklischen Auslesen von Statusinformationen (SA) weiterer an den Kommunikationsbus (BUS) angeschlossener Solarwechselrichter (M1-M3) sowie mit Mitteln zur Ausgabe einer Fehlermeldung (F) auf den Kommunikationsbus (BUS) im Falle des Ausbleibens von zumindest einer erwarteten weiteren Statusinformation (SA) .
2. Solarwechselrichter (M1-M3) nach Anspruch 1, wobei der Solarwechselrichter (M1-M3) eine eindeutige Busadresse (AD1-AD3) aufweist .
3. Solarwechselrichter (M1-M3) nach Anspruch 2, mit Mitteln der elektronischen Steuereinheit (μC) zur zyklischen Ausgabe der Statusinformation (S1-S3) sowie der eindeutigen Busadresse (AD1-AD3) des Solarwechselrichters (M1-M3) auf den Kommunikationsbus (BUS) .
4. Solarwechselrichter (M1-M3) nach Anspruch 3, wobei die elektronische Steuereinheit (μC) einen elektronischen Speicher zur Ablage der Busadressen (AD1-AD3) der weiteren sich über den Kommunikationsbus (BUS) zyklisch meldenden Solarwechselrichter (M1-M3) aufweist.
5. Solarwechselrichter (M1-M3) nach einem der vorangegangenen Ansprüche, wobei die Zykluszeit zur zyklischen Ausgabe der Statusinformation (S1-S3) auf den Kommunikationsbus (BUS) und/oder die Zykluszeit zum zyklischen Auslesen der weiteren Statusinformationen (SA) einstellbar ist.
6. Solarwechselrichter (M1-M3) nach einem der vorangegangenen Ansprüche, wobei die elektronische Steuereinheit (μC) ein Mikrocontroller ist.
7. Solarwechselrichter (M1-M3) nach einem der vorangegangenen Ansprüche, wobei die Busanschaltung (BA) zur Kommunikation mit einem der Kommunikationsbusse (BUS) ausgebildet ist: CAN- BUS, LAN, RS232-Bus, RS485-Bus oder ein USB.
8. Photovoltaikanlage (PVA) zur Einspeisung in ein elektrisches Netz (SN) mit zumindest einem Solarwechselrichter (M1-M3) nach einem der vorangegangenen Ansprüche, an welchen zumindest ein Photovoltaikgenerator (SM1-SM3) anschließbar ist.
9. Photovoltaikanlage (PVA) nach Anspruch 8, mit einem elektronischen Meldemodul (MM) , welches aufweist a) eine Busanschaltung (BA) zur datentechnischen Verbindung mit dem Kommunikationsbus (BUS) , b) Mittel zum Empfang einer von einem Solarwechselrichter (M1-M3) stammenden Fehlermeldung (F) sowie c) Mittel zum Senden der Fehlermeldung (F) an eine Meldestelle (GS) .
10. Photovoltaikanlage (PVA) nach Anspruch 9, wobei das Meldemodul (MM) ein GSM- und/oder ein UMTS-Sende-/Empfangsmodul (GSM) aufweist.
11. Photovoltaikanlage (PVA) nach Anspruch 9, wobei das Meldemodul (MM) ein Modem zum Anschluss an ein Telefonnetz aufweist.
12. Photovoltaikanlage (PVA) nach Anspruch 9, wobei das Meldemodul (MM) ein Gateway zum Anschluss an ein Lokal Area Network, d.h. an ein LAN aufweist.
13. Photovoltaikanlage (PVA) nach einem der Ansprüche 9 bis 12, wobei die Fehlermeldung (F) vom Meldemodul (MM) in eine entsprechende E-Mail, in ein Fax oder in eine SMS konvertierbar ist .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004025924A DE102004025924A1 (de) | 2004-05-27 | 2004-05-27 | Solarwechselrichter und Photovoltaikanlage mit mehreren Solarwechselrichtern |
PCT/EP2005/005678 WO2005117245A1 (de) | 2004-05-27 | 2005-05-25 | Solarwechselrichter und photovoltaikanlage mit mehreren solarwechselrichtern |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1749340A1 true EP1749340A1 (de) | 2007-02-07 |
Family
ID=35170162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05753007A Withdrawn EP1749340A1 (de) | 2004-05-27 | 2005-05-25 | Solarwechselrichter und photovoltaikanlage mit mehreren solarwechselrichtern |
Country Status (7)
Country | Link |
---|---|
US (1) | US20070252716A1 (de) |
EP (1) | EP1749340A1 (de) |
JP (1) | JP2008500797A (de) |
KR (1) | KR100884853B1 (de) |
CN (1) | CN100576712C (de) |
DE (1) | DE102004025924A1 (de) |
WO (1) | WO2005117245A1 (de) |
Families Citing this family (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006004233A1 (de) * | 2006-01-30 | 2007-08-09 | Siemens Ag Österreich | Kommunikationsstruktur für Solarwechselrichter |
ES2307388B1 (es) * | 2006-06-01 | 2009-09-22 | Acsolar Xxi, S.L.L. | Sistema de telecontrol y supervision para instalaciones de energia solar. |
EP2127064A4 (de) | 2007-03-07 | 2014-07-30 | Greenray Inc | Datenbeschaffungsvorrichtung und methodologie für die selbstdiagnose von wechselstrommodulen |
US20080283118A1 (en) * | 2007-05-17 | 2008-11-20 | Larankelo, Inc. | Photovoltaic ac inverter mount and interconnect |
US20090000654A1 (en) | 2007-05-17 | 2009-01-01 | Larankelo, Inc. | Distributed inverter and intelligent gateway |
US9407093B2 (en) | 2007-08-22 | 2016-08-02 | Maxout Renewables, Inc. | Method for balancing circuit voltage |
JP2009099971A (ja) * | 2007-09-28 | 2009-05-07 | Enphase Energy Inc | 光電池モジュール用の汎用インターフェース |
ES2319155B1 (es) * | 2007-11-02 | 2010-01-29 | Huerto Fotovoltaico Montesol, S.L. | Sistema para la monitorizacion de instalaciones solares fotovoltaicas. |
US8018748B2 (en) * | 2007-11-14 | 2011-09-13 | General Electric Company | Method and system to convert direct current (DC) to alternating current (AC) using a photovoltaic inverter |
DE102008008503A1 (de) * | 2008-02-11 | 2009-08-20 | Siemens Aktiengesellschaft | PV-Teilgenerator-Anschlusskasten, PV-Generator-Anschlusskasten und PV-Wechselrichter für eine PV-Anlage sowie PV-Anlage |
US8289183B1 (en) * | 2008-04-25 | 2012-10-16 | Texas Instruments Incorporated | System and method for solar panel array analysis |
GB0809235D0 (en) * | 2008-05-21 | 2008-06-25 | Poweroasis Ltd | Supervisory system controller for use with a renewable energy powered radio telecommunications site |
DE102008035727A1 (de) | 2008-07-31 | 2009-08-13 | Siemens Aktiengesellschaft | Verfahren zur Steuerung elektrischer Aggregate, korrespondierendes Steuerungssystem und elektrisches Aggregat als Station in einem solchen System |
US8264195B2 (en) * | 2008-10-01 | 2012-09-11 | Paceco Corp. | Network topology for monitoring and controlling a solar panel array |
EP2189859A1 (de) | 2008-11-21 | 2010-05-26 | SMA Solar Technology AG | Energieerzeungsanlage mit mehreren Stromgeneratoren mit mehreren Umrichtern, z.B. PV- und/oder Windkraftanlagen |
AT508104B1 (de) * | 2009-02-12 | 2015-05-15 | Fronius Int Gmbh | Photovoltaikanlage mit mehreren wechselrichtern, wechselrichter, usb-massenspeichergerät und verfahren zum durchführen von software-updates an wechselrichtern |
JP2010226843A (ja) * | 2009-03-23 | 2010-10-07 | Honda Motor Co Ltd | 単相−n相変換装置 |
KR20120017416A (ko) | 2009-04-01 | 2012-02-28 | 넥스트로넥스 인크. | 그리드 연계형 태양광 시스템 및 방법 |
US8435056B2 (en) | 2009-04-16 | 2013-05-07 | Enphase Energy, Inc. | Apparatus for coupling power generated by a photovoltaic module to an output |
US8482163B2 (en) * | 2009-05-15 | 2013-07-09 | First Solar, Inc. | Inverter cooler |
BRPI1012165A2 (pt) * | 2009-05-19 | 2019-04-02 | Maxout Renewables, Inc. | aparelhos para balancear saída de potência e de colheita de potência. |
WO2010150374A1 (ja) * | 2009-06-24 | 2010-12-29 | 三菱電機株式会社 | 電力変換システムおよび通信アドレス設定方法 |
US20120173766A1 (en) * | 2009-08-07 | 2012-07-05 | Mitsubishi Electric Corporation | Inverter system and inverter |
US8099197B2 (en) * | 2009-08-18 | 2012-01-17 | Enphase Energy, Inc. | Method and system for distributed energy generator message aggregation |
US20110044083A1 (en) * | 2009-08-20 | 2011-02-24 | Christopher Thompson | Adaptive Photovoltaic Inverter |
US8207637B2 (en) * | 2009-10-09 | 2012-06-26 | Solarbridge Technologies, Inc. | System and apparatus for interconnecting an array of power generating assemblies |
US7990743B2 (en) * | 2009-10-20 | 2011-08-02 | General Electric Company | System and method for decreasing solar collector system losses |
US7855906B2 (en) * | 2009-10-26 | 2010-12-21 | General Electric Company | DC bus voltage control for two stage solar converter |
DE202009016164U1 (de) * | 2009-11-26 | 2010-03-04 | Carlo Gavazzi Services Ag | Steuerungsvorrichtung für Fotovoltaikmodule |
WO2011088028A1 (en) * | 2010-01-12 | 2011-07-21 | Sunreports, Inc. | Monitoring interface device and method |
US9806445B2 (en) | 2010-01-25 | 2017-10-31 | Enphase Energy, Inc. | Method and apparatus for interconnecting distributed power sources |
CA2787330A1 (en) | 2010-01-25 | 2011-07-28 | Enphase Energy, Inc. | Method and apparatus for interconnecting distributed power sources |
US8050062B2 (en) | 2010-02-24 | 2011-11-01 | General Electric Company | Method and system to allow for high DC source voltage with lower DC link voltage in a two stage power converter |
CN103238259B (zh) * | 2010-10-05 | 2016-03-23 | 艾利肯获取有限公司 | 高压能源采集和转换可回收能源实用规模的电力系统及用于该系统的可视监控和控制系统 |
CN101976852A (zh) * | 2010-11-02 | 2011-02-16 | 深圳市合兴加能科技有限公司 | 光伏电源系统结构及其方法 |
CN102142689B (zh) * | 2010-11-30 | 2013-04-17 | 浙江工业大学 | 适用于微电网的刀片式逆变服务器 |
DE102010062698A1 (de) | 2010-12-09 | 2012-06-14 | Thomas Gottschalk | Photovoltaik Modul sowie Verfahren zur Steuerung eines Photovoltaik Moduls |
EP2466407A1 (de) * | 2010-12-17 | 2012-06-20 | Solare Datensysteme GmbH | Überwachung von Umrichtern in einem photovoltaischen System |
US8614525B2 (en) * | 2010-12-21 | 2013-12-24 | General Electric Company | Methods and systems for operating a power generation system |
US8774974B2 (en) * | 2011-07-15 | 2014-07-08 | First Solar, Inc. | Real-time photovoltaic power plant control system |
CN102255536B (zh) | 2011-07-18 | 2013-06-05 | 浙江昱能光伏科技集成有限公司 | 太阳能光伏三相微逆变器系统及提高其转换效率的方法 |
WO2013012852A1 (en) | 2011-07-18 | 2013-01-24 | Enphase Energy, Inc. | Resilient mounting assembly for photovoltaic modules |
DE102011110632A1 (de) * | 2011-08-18 | 2013-02-21 | Phoenix Contact Gmbh & Co. Kg | Strangstrombestimmung in Photovoltaikanlagen |
US9680301B2 (en) * | 2011-10-27 | 2017-06-13 | Sunpower Corporation | Master-slave architecture for controlling operation of photovoltaic power plants |
CN103947068B (zh) | 2011-11-21 | 2018-08-17 | 兹尼亚泰克有限公司 | 协同受控以提供一相、二相或三相单极电的单相逆变器 |
USD707632S1 (en) | 2012-06-07 | 2014-06-24 | Enphase Energy, Inc. | Trunk connector |
USD708143S1 (en) | 2012-06-07 | 2014-07-01 | Enphase Energy, Inc. | Drop cable connector |
USD734653S1 (en) | 2012-11-09 | 2015-07-21 | Enphase Energy, Inc. | AC module mounting bracket |
US8648498B1 (en) * | 2012-11-19 | 2014-02-11 | Renewable Power Conversion, Inc | Photovoltaic power system with distributed photovoltaic string to polyphase AC power converters |
US9273885B2 (en) * | 2013-06-13 | 2016-03-01 | Building Materials Investment Corporation | Roof integrated photovoltaic system |
US10256765B2 (en) | 2013-06-13 | 2019-04-09 | Building Materials Investment Corporation | Roof integrated photovoltaic system |
EP3011653A1 (de) * | 2013-06-19 | 2016-04-27 | SMA Solar Technology AG | Dynamische leistungsverteilung in fotovoltaikanlagen |
CN108736516B (zh) * | 2013-08-27 | 2023-01-31 | 东芝三菱电机产业系统株式会社 | 太阳能发电系统 |
JP6158099B2 (ja) * | 2014-01-07 | 2017-07-05 | 株式会社日立製作所 | 電力変換装置およびその制御方法 |
CN104201783B (zh) * | 2014-09-15 | 2016-06-01 | 浙江昱能科技有限公司 | 分布式发电系统及其通信性能的诊断方法 |
KR101950445B1 (ko) * | 2015-01-19 | 2019-02-20 | 엘에스산전 주식회사 | 태양광 발전 시스템 |
DE102015106034A1 (de) * | 2015-04-20 | 2016-10-20 | Interroll Holding Ag | Installationsverfahren zum Einrichten von Fördervorrichtungen |
US10483759B2 (en) | 2016-04-07 | 2019-11-19 | Alencon Acquisition Co., Llc | Integrated multi-mode large-scale electric power support system for an electrical grid |
US10847976B1 (en) * | 2017-09-08 | 2020-11-24 | Magnolia Optical Technologies, Inc. | Solar augmenter |
JP6440129B2 (ja) * | 2017-11-06 | 2018-12-19 | パナソニックIpマネジメント株式会社 | 状態報知装置 |
JP7237145B2 (ja) * | 2019-03-28 | 2023-03-10 | 三菱電機株式会社 | 制御装置および制御システム |
JP7196027B2 (ja) * | 2019-07-04 | 2022-12-26 | 株式会社日立製作所 | データ処理装置およびデータ処理方法 |
US11545931B2 (en) | 2019-11-10 | 2023-01-03 | Maxout Renewables, Inc. | Optimizing hybrid inverter system |
EP4142137B1 (de) * | 2021-08-23 | 2024-03-13 | SAX Power GmbH | Schaltungsanordnung und verfahren zur erzeugung einer wechselspannung |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5592074A (en) * | 1992-06-26 | 1997-01-07 | Canon Kabushiki Kaisha | Battery power supply system |
JP3382434B2 (ja) * | 1995-09-22 | 2003-03-04 | キヤノン株式会社 | 電池電源の電圧制御装置および電圧制御方法 |
JP3327774B2 (ja) * | 1996-06-03 | 2002-09-24 | キヤノン株式会社 | 太陽光発電システム |
DE19642522C1 (de) * | 1996-10-15 | 1998-04-23 | Dietrich Karschny | Wechselrichter |
JPH10322885A (ja) * | 1997-05-14 | 1998-12-04 | Canon Inc | 太陽光発電装置 |
JPH11251615A (ja) * | 1998-03-03 | 1999-09-17 | Canon Inc | 融雪機能付き太陽光発電システム |
US6111767A (en) * | 1998-06-22 | 2000-08-29 | Heliotronics, Inc. | Inverter integrated instrumentation having a current-voltage curve tracer |
JP3697121B2 (ja) * | 1998-10-15 | 2005-09-21 | キヤノン株式会社 | 太陽光発電装置およびその制御方法 |
DE19859732A1 (de) * | 1998-12-23 | 2000-06-29 | Abac Elektronische Kommunikati | Verfahren zur Datenübertragung zwischen einer Photovoltaikanlage und einer Zentrale |
US6362540B1 (en) * | 1999-10-20 | 2002-03-26 | Pinnacle West Capital Corporation | Expandable hybrid electric generator and method therefor |
DE10120595B4 (de) * | 2000-04-28 | 2004-08-05 | Sharp K.K. | Solarenergiesystem |
US6653549B2 (en) * | 2000-07-10 | 2003-11-25 | Canon Kabushiki Kaisha | Photovoltaic power generation systems and methods of controlling photovoltaic power generation systems |
JP2002112553A (ja) * | 2000-09-29 | 2002-04-12 | Canon Inc | 電力変換装置およびその制御方法、並びに、発電装置 |
JP2002112459A (ja) * | 2000-09-29 | 2002-04-12 | Canon Inc | 太陽電池モジュールおよび発電装置 |
DE20112558U1 (de) * | 2001-07-30 | 2002-12-05 | Siemens AG, 80333 München | Multimasterbussystem |
US20040024494A1 (en) * | 2001-12-28 | 2004-02-05 | Bayoumi Deia Salah-Eldin | On-line control of distributed resources with different dispatching levels |
US7126294B2 (en) * | 2002-01-31 | 2006-10-24 | Ebara Corporation | Method and device for controlling photovoltaic inverter, and feed water device |
US8067855B2 (en) * | 2003-05-06 | 2011-11-29 | Enecsys Limited | Power supply circuits |
US7193872B2 (en) * | 2005-01-28 | 2007-03-20 | Kasemsan Siri | Solar array inverter with maximum power tracking |
-
2004
- 2004-05-27 DE DE102004025924A patent/DE102004025924A1/de not_active Ceased
-
2005
- 2005-05-25 CN CN200580015384A patent/CN100576712C/zh not_active Expired - Fee Related
- 2005-05-25 JP JP2007513803A patent/JP2008500797A/ja not_active Abandoned
- 2005-05-25 KR KR1020067025599A patent/KR100884853B1/ko not_active IP Right Cessation
- 2005-05-25 US US11/597,765 patent/US20070252716A1/en not_active Abandoned
- 2005-05-25 EP EP05753007A patent/EP1749340A1/de not_active Withdrawn
- 2005-05-25 WO PCT/EP2005/005678 patent/WO2005117245A1/de active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2005117245A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2008500797A (ja) | 2008-01-10 |
CN100576712C (zh) | 2009-12-30 |
WO2005117245A1 (de) | 2005-12-08 |
KR20070017549A (ko) | 2007-02-12 |
US20070252716A1 (en) | 2007-11-01 |
DE102004025924A1 (de) | 2005-12-22 |
CN1954484A (zh) | 2007-04-25 |
KR100884853B1 (ko) | 2009-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005117245A1 (de) | Solarwechselrichter und photovoltaikanlage mit mehreren solarwechselrichtern | |
EP2598954B1 (de) | Konfiguration der kommunikationsverbindungen von feldgeräten einer energieautomatisierungsanlage | |
WO2008145170A1 (de) | Verfahren zum konfigurieren einer automatisierungsanlage | |
DE19859732A1 (de) | Verfahren zur Datenübertragung zwischen einer Photovoltaikanlage und einer Zentrale | |
DE102010024234A1 (de) | Sicherheitsgerät und Leistungsumformer | |
EP2282388A1 (de) | Vorrichtung zur Einspeisung elektrischer Energie von einer Vielzahl von Strings von Photovoltaikmodulen in ein Stromnetz | |
DE102007054647A1 (de) | Solarwechselrichter mit mehreren parallel geschalteten Einzelwechselrichtern und mit einer übergeordneten elektronischen Steuereinheit | |
WO2012119648A1 (de) | Energieautomatisierungsanlage und verfahren zum betreiben einer energieautomatisierungsanlage | |
EP0192120B1 (de) | Verfahren und Einrichtung zur Datenübertragung in der Fernwirktechnik | |
EP4062514A1 (de) | Verfahren zur ermittlung eines betriebsparameters einer pv-anlage, pv-anlage mit einem wechselrichter sowie wechselrichter für eine derartige pv-anlage | |
DE102020207682A1 (de) | Leistungswandler, steuervorrichtung, server und system | |
DE102009041632A1 (de) | Schaltungsanordnung mit einem Umrichterteil umfassend eine zentrale Steuereinheit | |
EP1690390B1 (de) | Verfahren zur übertragung von daten über einen datenbus sowie system und gateway zur durchführung des verfahrens | |
WO2009010084A1 (de) | Datenkonzentrator, redundantes schutzsystem und verfahren zum überwachen eines schutzobjektes in einem elektrischen energieversorgungsnetz | |
EP0617350A1 (de) | Verfahren und Vorrichtung zur Fernsteuerung von Betriebsvorgängen sowie zur Selbstdiagnose von Heizungs- und Klimaanlagen | |
DE4336698C2 (de) | Servoregler | |
DE102008027887A1 (de) | Verfahren und Schaltungsanordnung zum Steuern der Energieeinspeisung von mehreren einphasigen Wechselrichtern in ein Mehrphasennetz | |
EP1729138B1 (de) | Verfahren und Vorrichtung zum Ermitteln des Ortes eines Kurzschlusses in einer Leitung eines Energieversorgungsnetzes | |
WO2024153396A1 (de) | Energiemanagementverfahren für eine energieversorgungseinrichtung in einem inselnetz sowie energieversorgungseinrichtung | |
AT508106B1 (de) | Wechselrichter für eine photovoltaikanlage mit strangüberwachung und verfahren zur strangüberwachung | |
WO2024012903A1 (de) | Verfahren und system zur fehlererkennung eines regelbaren ortsnetztransformators | |
DE102004021782A1 (de) | Stromversorgungsanlage, Verwendung einer Stromversorgungsanlage auf dem Gebiet der Telekommunikation sowie Stromversorgungsmodul für eine Stromversorgungsanlage | |
DE102022209870A1 (de) | Verfahren und Verteilungssystem zum Verteilen von elektrischer Energie | |
EP1251645A2 (de) | Stromversorgungsstation und modulares Stromversorgungssystem zur Speisung mindestens einer Telekommunikationsanlage | |
WO2024012904A1 (de) | Verfahren und system zur fehlererkennung eines regelbaren ortsnetztransformators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060920 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20100311 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20100722 |