EP1743755A1 - Procédé de vulcanisation des pneus et procédé de réglage du processus de vulcanisation des pneus - Google Patents
Procédé de vulcanisation des pneus et procédé de réglage du processus de vulcanisation des pneus Download PDFInfo
- Publication number
- EP1743755A1 EP1743755A1 EP05730508A EP05730508A EP1743755A1 EP 1743755 A1 EP1743755 A1 EP 1743755A1 EP 05730508 A EP05730508 A EP 05730508A EP 05730508 A EP05730508 A EP 05730508A EP 1743755 A1 EP1743755 A1 EP 1743755A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tire
- vulcanization
- thermal fluid
- jacket
- thermal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 239000012530 fluid Substances 0.000 claims abstract description 141
- 238000004073 vulcanization Methods 0.000 claims abstract description 138
- 239000011324 bead Substances 0.000 claims abstract description 36
- 238000010438 heat treatment Methods 0.000 claims abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 230000004308 accommodation Effects 0.000 claims description 2
- 230000002093 peripheral effect Effects 0.000 description 12
- 238000001816 cooling Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/06—Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
- B29D30/0601—Vulcanising tyres; Vulcanising presses for tyres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/04—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
- B29C35/041—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/02—Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
- B29C33/04—Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using liquids, gas or steam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/06—Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
- B29D30/0601—Vulcanising tyres; Vulcanising presses for tyres
- B29D30/0662—Accessories, details or auxiliary operations
- B29D2030/0675—Controlling the vulcanization processes
- B29D2030/0677—Controlling temperature differences
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2030/00—Pneumatic or solid tyres or parts thereof
Definitions
- This invention relates to a method of vulcanizing a tire and a method of setting a vulcanization process of a tire vulcanized by the above vulcanizing method, and more particularly to an optimization of a vulcanization quality every each site of the tire.
- heat is generally supplied from both inner side and outer side of the tire.
- a method of supplying heat from the outer side there are a method wherein a vulcanization mold is statically placed in a thermal fluid to directly heat the vulcanization mold with such a thermal fluid, and a method wherein a heating plate is brought into contact with an outside of a vulcanization mold and a thermal fluid is supplied to a jacket arranged in the heating plate to indirectly heat the vulcanization mold with such a thermal fluid.
- the outside of the tire itself can be heated uniformly, but in the latter method it is required to dispose a jacket at a position corresponding to each site of the tire for efficiently and uniformly heating all sites of the tire.
- the thermal fluid of the same system is used as a thermal fluid supplied to each of the jackets arranged at positions corresponding to the bead portion and the shoulder portion because if it is intended to supply thermal fluids having different temperatures to the jackets located at positions corresponding to three tire sites of the tread portion, bead portion and shoulder portion, respectively, the supply systems become considerably complicated.
- the materials are selected as a primary requirement satisfying the necessary heat quantity and allowable maximum temperature, there is a problem that the performances of the tire itself are compelled to become unsatisfactory.
- the invention is to provide a tire vulcanizing method which can satisfy the allowable range of vulcanization degree and allowable maximum temperature previously defined every the tire site in all of plural tire sites at least including the bead portion and shoulder portion when the heating plate is brought into contact with the outside of the vulcanization mold and the thermal fluid is supplied to the jacket disposed in the heating plate to vulcanize the tire, and a method of setting such a tire vulcanization process.
- the invention lies in a method of vulcanizing a tire wherein use is made of a vulcanization mold closed after the accommodation of an unvulcanized tire, which includes side mold members forming both side faces of the tire and extending radially from a bead portion to a shoulder portion, and a heating plate is brought into contact with an outer face of the each side mold member in a widthwise direction of the tire and provided with an inner jacket arranged at a radial position corresponding to the bead portion and an outer jacket arranged at a radial position corresponding to the shoulder portion, and a thermal fluid is supplied to each of the jackets to use heat transmitted from the thermal fluid through the heating plate and the side mold member to the tire as at least one of vulcanization heat sources, in which:
- the thermal fluid selected from the two systems is supplied to a tread jacket disposed in an annular heating member which is brought into contact with radially outer faces of plural tread segments circumferentially divided in the vulcanization mold and forming a tire tread face.
- the number of changing over the supply of the thermal fluid on the way of the vulcanization is one, and the change-over is carried out by changing the thermal fluids of the two system from a high temperature side to a low temperature side.
- temperatures of the thermal fluids of the two systems are higher than 100°C at the high temperature side and 20-100°C at the low temperature side.
- the thermal fluid of the high temperature side is steam and the thermal fluid of the low temperature side is water.
- the invention lies in a method of setting a vulcanization process of a tire to be vulcanized by the tire vulcanizing method of any one of (1)-(7), in which:
- the thermal fluids supplied to the inner jacket and the outer jacket just after the start of the vulcanization are a thermal fluid of a high temperature side among the thermal fluid of the two systems, and a change-over timing of the thermal fluid is set so as to change to a low temperature side of the thermal fluid supplied to a jacket in at least one tire site of the bead portion and the shoulder portion before the temperature in this site exceeds the allowable maximum temperature.
- the thermal fluids supplied to the inner jacket, the outer jacket and the tread jacket just after the start of the vulcanization are a thermal fluid of a high temperature side among the thermal fluid of the two systems, and a change-over timing of the thermal fluid is set so as to change to a low temperature side of the thermal fluid supplied to a jacket in at least one tire site of the bead portion, the shoulder portion and the tread portion before the temperature in this site exceeds the allowable maximum temperature.
- At least a part of supply conditions including kind, fluid temperature and supply timing of the thermal fluid is made different between the inner jacket and the outer jacket, so that the supply conditions of the thermal fluids to the jackets located at positions corresponding to the tire sites can be independently set to each other so as to satisfy the conditions of allowable vulcanization degree range and allowable maximum temperature previously determined every each tire site with respect at least bead portion and shoulder portion.
- thermal fluids of two systems having previously determined different temperatures and the thermal fluids of the two systems are changed over at the predetermined timing on the way of the vulcanization in at least one of the jackets, so that the kinds of the thermal fluids or the change-over timing of the thermal fluids of the two systems are made different between these jackets and only supply sources for the thermal fluids of the two systems are provided, whereby the vulcanization conditions of the bead portion and the shoulder portion can be optimized independently and the expected purpose can be attained by a simple supply system for the thermal fluid.
- the thermal fluid selected from the two systems is supplied to the tread jacket disposed at the position corresponding to the tread portion, so that the kind, number of the thermal fluid used in the tread jacket or the change-over timing for the thermal fluids of the two systems can be set independently from the other jackets, and hence the vulcanization conditions can be optimized even on the other tire sites such as bead portion and the shoulder portion without complicating the supply system for the thermal fluid.
- the number of the change-over to the thermal fluids on the way of the vulcanization is one and such a change-over is carried out by changing the thermal fluids of the two systems from the high temperature side to the low temperature side, so that the heating of the tire is conducted efficiently from the start of the vulcanization and also the vulcanization of the tire can be ended in a short time by changing the thermal fluid to the low temperature side before the tire temperature exceeds the allowable maximum temperature, and the tire temperature never exceeds the allowable maximum temperature.
- the thermal fluids of the two systems are higher than 100°C at the high temperature side and 20-100°C at the low temperature side, so that the respective tire sites can be vulcanized more rapidly and cooled more rapidly, and hence the vulcanization time can be further shortened.
- the thermal fluid of the high temperature side is steam, so that the required temperature can be generated at a lower pressure as compared with the case of using warm water and the steam generating installation such as piping system, boiler and the like can be simplified.
- the thermal fluid of the low temperature side is water, so that the higher cooling capacity can be provided and the given site of the tire can be cooled in a short time to suppress the rise of the temperature.
- the thermal fluids of the two systems are steam at both high temperature side and low temperature side, so that the temperatures of these steams are set properly and the change-over timing of these thermal fluids are made different in accordance with the tire site, whereby the proceeding degree of the vulcanization different in the tire sites can be finely adjusted.
- the supply conditions of thermal fluids supplied to the inner jacket and the outer jacket are separately set so as to satisfy the conditions of the vulcanization degree range and the allowable maximum temperature previously determined every each tire site in all of the tire sites at least including the bead portion and the shoulder portion, so that the materials used in these tire sites can be properly selected without sacrificing the performances inherent to the tire as previously mentioned.
- the thermal fluids supplied to the inner jacket and the outer jacket just after the start of the vulcanization are a thermal fluid of a high temperature side among the thermal fluid of the two systems, so that the tire can be efficiently heated from the start of the vulcanization.
- the change-over timing of the thermal fluid is set so as to change to a low temperature side of the thermal fluid supplied to a jacket in at least one tire site of the bead portion and the shoulder portion before the temperature in this site exceeds the allowable maximum temperature, so that the vulcanization of the tire cane be ended in a short time and the temperature of the tire never exceeds the allowable maximum temperature.
- the thermal fluids supplied to the inner jacket, the outer jacket and the tread jacket just after the start of the vulcanization are a thermal fluid of a high temperature side among the thermal fluid of the two systems, so that the tire can be efficiently heated even in the tread portion from the start of the vulcanization.
- the change-over timing of the thermal fluid is set so as to change to a low temperature side of the thermal fluid supplied to a jacket in at least one tire site of the bead portion, the shoulder portion and the tread portion before the temperature in this site exceeds the allowable maximum temperature, so that the vulcanization of the tire cane be ended in a short time even in the tread portion and the temperature of the tire never exceeds the allowable maximum temperature.
- only one kind of the thermal fluids is supplied to at least one of the inner jacket, outer jacket and tread jacket, and the vulcanization is ended at a time of arriving a vulcanization degree of the tire site corresponding to such a jacket at a previously determined vulcanization degree, so that the vulcanization time can be made shortest by ending the vulcanization in accordance with the tire site having a longest time of arriving at the predetermined vulcanization degree.
- FIG. 1 is a section view of a tire vulcanization apparatus used in the tire vulcanizing method according to the invention as an apparatus for a construction vehicle tire in the vulcanization of the tire
- FIG. 2 is a section view of such an apparatus at a state of raising an upper platen for the fixation of an upper side mold member
- FIG. 3 is a section view of the apparatus showing a state of moving a tread segment outward in a radial direction.
- a vulcanization mold 1 comprises a pair of side mold members 2, 3 and a plurality of tread segments 4 engaging with outer peripheral portions of these side mold members 2, 3.
- the tread segments 4 have a fan-like form, respectively, viewing in a plane and are united with each other into an annular form in the operation of the vulcanization mold 1 and engaged with the outer peripheral portions of the side mold members 2, 3 to form a treading face in a tread portion TR of a tire T.
- the tread segment 4 has a form circumferentially divided into plural parts, for example, 6-9 parts.
- the side mold members 2, 3 form the remaining sites of the tire, i.e.
- the side mold members 2, 3 are provided with bead ring members 5, 6 for shaping the bead portion through vulcanization.
- a vulcanization apparatus 10 is transversely mounted the vulcanization mold 1 as illustrated.
- the vulcanization apparatus 10 comprises a pair of upper and lower platens 7, 8.
- the upper side mold member 2 is fixed to the upper platen 7, and the lower side mold member 3 is fixed to the lower platen 8, and each of the platens 7, 8 constitutes a heating plate brought into contact with each of the side mold members 2, 3 to heat them.
- annular inner jacket 30 located at a radial position corresponding to the bead portion BD of the tire accommodated in the vulcanization mold 1 and an annular outer jacket 31 located at a radial position corresponding to the shoulder portion SH.
- annular inner jacket 32 located at a radial position corresponding to the bead portion BD of the tire accommodated in the vulcanization mold 1
- annular outer jacket 31 located at a radial position corresponding to the shoulder portion SH.
- annular outer jacket 31 located at a radial position corresponding to the shoulder portion SH.
- annular inner jacket 32 corresponding to the bead portion BD
- annular outer jacket 33 corresponding to the shoulder portion SH.
- the vulcanization apparatus comprises a plurality of sectors 13 fixedly attached to each of the tread segments 4.
- Each of the sectors 13 is movable inside and outside in the radial direction with respect to a center axial line CL together with the corresponding tread segments 4 between the pair of platens 7, 8 during the operation of the vulcanization apparatus 10.
- each of the platens 7, 8 is provided on its radially outer opposed faces with faces 11S, 12S of sliding each of the sectors 13 inward and outward in the radial direction, while each of the sectors 13 is provided with a tapered outer peripheral face 13S tapering downward.
- the vulcanization apparatus 10 comprises an accommodating ring 14 heating each of the tread segments 4 through each sector 13.
- the accommodating ring 14 is provided with a tapered inner peripheral face 14S slidably engaging with the tapered outer peripheral face 13s of the sector 13.
- the inner peripheral face 14S has the same tapered form as in the outer peripheral face 13S.
- the accommodating ring 14 latches the outer peripheral face 13S of each of the sectors 13.
- a T-shaped projection 14T fitting into a dovetail groove 13A formed in the outer peripheral face 13S of the sector 13 is formed in the inner peripheral face 14S.
- the accommodating ring 14 and the respective sector 13 engaged therewith are brought into contact with the corresponding tread segments 4 to constitute an annular heating member 9 heating these segments.
- annular tread jackets 34, 35 In the accommodating ring 14 constituting the annular heating member 9 are formed annular tread jackets 34, 35. To these tread jackets 34, 35 is supplied a thermal fluid as a heat source vulcanizing the tread portion TR or a thermal fluid cooling the tread portion TR.
- the vulcanization apparatus 10 comprises a plurality of lifting means, two lifting means in the illustrated embodiment lifting up and down the accommodating ring 14.
- the lifting means 15 includes a pressurized fluid (pressurized gas, pressurized liquid) actuator, an electromagnetic actuator, a mechanical (for example, ball thread type) actuator and the like, and the system thereof is not particularly limited as far as the accommodating ring can be lifted up and down.
- the lifting means 15 is connected and fixed at a top portion 15P of its working axis to the accommodating ring 14 through a fixing member 16.
- the lower platen 8 is fixed to a floor face FL through a support member 17, while the upper platen 7 is liftably constituted with respect to the lower platen 8 at a state of fixing to the upper side mold member 2.
- either the upper platen 7 or the lower platen 8 has a guiding means and a fixing means to the other.
- the upper platen 7 has a pin 18 fixed thereto, while the accommodating ring 14 has a guide member 19 protruding outward in the radial direction and a hole 19H guiding the pin 18 is formed therein, so that the pin 18 moves upward and downward along a wall face of the guiding hole 19H.
- a clamping member for example, a nut 20 is screwed to threads formed in the top portion of the pin 18, whereby the pin is joined to the guiding member 19 through the nut 20.
- the vulcanization apparatus 10 comprises means 21 for supplying a pressurized fluid of a predetermined gauge pressure, for example, a pressurized gas (pressurized air, pressurized nitrogen gas or the like) to an interior of an unvulcanized tire GT to be vulcanized.
- a pressurized gas pressurized air, pressurized nitrogen gas or the like
- the supply means 21 for the pressurized fluid is attached to a central space portion of the lower platen 8.
- the supply means 21 for the pressurized fluid supplies the pressurized fluid to an interior of a bladder 22 and also may be used as a means for directly supplying the pressurized fluid to an interior of the unvulcanized tire.
- each of the lifting means 15 are descended to descend the accommodating ring 14, whereby each of the sectors 13 and each of the tread segments 4 are moved outward in the radial direction and the unvulcanized tire GT after the completion of the shaping is placed at an opening state of the tread segments 4.
- another lifting-moving means suitable for the transfer of a heavy mass such as an overhead traveling crane or the like when the vulcanization apparatus 10 is super-size, or a lifting means such as an electronic hoist or the like when it is another size.
- the upper platen 7 is descended and at the same time the each lifting means 15 is worked to raise the top portion 15P of the working shaft and the fixing member 16, and each of the pins 18 in the upper platen 7 is fitted into the guide groove 19H of the guide member 19 while descending the upper platen 7.
- the upper platen 7 is fixed to the accommodating ring 14, while the each sector 13 and the each tread segment 4 at the opening state are moved inward in the radial direction, whereby the tread segments 4 are annularly united with each other to form a closed state.
- a low internal pressure of a predetermined gauge pressure is filled in the bladder 22 to accommodate the bladder 22 into the interior of the unvulcanized tire GT through the shaping work. This state is shown in FIG. 2.
- the nut 20 is clamped to the guide member 19. Thereafter, an internal pressure of a predetermined gauge pressure is filled in the interior of the unvulcanized tire GT through the supply means 21 for the pressurized fluid, whereby the unvulcanized tire GT is pushed onto the inner face of the vulcanization mold 1.
- the supply of the thermal fluid is started to the jackets 30-35 of the pair of the platens 7, 8 and the accommodating ring 14, whereby the vulcanization mold 1 is heated to conduct the vulcanization of the unvulcanized tire GT to thereby obtain a product tire T.
- the aforementioned process is reversed to take out the product tire T from the vulcanization apparatus 10.
- FIG. 4 is a schematic diagram of piping in a supply system for thermal fluid in which the thermal fluids are supplied to the inner jackets 30, 32, the outer jackets 31, 33 and the tread jackets 34, 35.
- the supply system 40 for the thermal fluid is constituted so as to supply the thermal fluids of two system having different temperatures from each other. It is preferable that steam of higher than 100°C is supplied as a thermal fluid of a high temperature side and water of 20-100°C is supplied as a thermal fluid of a low temperature side.
- FIG. 4 shows the above preferable example, in which a thermal fluid source of the high temperature side comprises a steam generating device 50 generating steam of a predetermined temperature and a main steam pipe 51 distributing the steam from the steam generating device 50 to one or more vulcanization apparatuses 10, and a thermal fluid source of the low temperature side comprises a low-temperature water generating device 60, a low-temperature water supply pipe 61 distributing the low-temperature water form the low-temperature water generating device 60 to one or more vulcanization apparatuses 10 and a low-temperature water return pipe 71 recovering the low-temperature water circularly used in these vulcanization apparatuses 10.
- the steam generating device 50 may be constituted with, for example, a boiler and a reducing valve reducing a pressure so as to render the steam generated in the boiler into a predetermined temperature.
- the low-temperature water generating device 60 may be constituted with, for example, a tank storing water for factory, a temperature adjusting device adjusting the water for factory to a predetermined temperature and a pump sucking the temperature adjusted water from the tank and pumping to the low-temperature water supply pipe 61.
- the steam is diverged from the main steam pipe 51 and supplied through an automatic switching valve 52 to the inner jacket 30 of the upper platen 7 and similarly sullied to the other jackets 31-35 through the respective automatic switching valves 53-56. Moreover, the steams cooled in the jackets 30-35 are rendered into drains and discharged through steam traps not shown to a drain pipe, which can be recovered into the steam generating device 50 or the like.
- the low-temperature water is diverged from the low-temperature supply pipe 61 and supplied to the respective jackets 30-35 through automatic switching valves 62-66. Also, the low-temperature waters circularly discharged from the jackets 30-35 are recovered into the low-temperature return pipe 71 through the corresponding automatic switching valves 72-76.
- the automatic switching valves 52-56, 62-66 and 72-76 can be worked independently. They are opened and closed based on control signals from a vulcanization control device arranged in the vulcanization apparatus 10 (not shown). For example, they are worked, for example, by switching on or off an operation air supplied to a piston moving a valve body up and down.
- the system for the thermal fluid of the low temperature side may be omitted in the jackets 30-33 other than one or more thereof, if necessary. Also, the thermal fluid may be co-used in the inner jacket 30 of the upper platen 7 and the inner jacket 32 of the lower platen 8, while the thermal fluid may be co-used in the outer jacket 31 of the upper platen 7 and the outer jacket 33 of the lower platen 8.
- FIG. 6 is a schematic diagram of piping in a supply system 41 for thermal fluid of the latter case.
- FIGS. 4 and 5 is shown only one vulcanization apparatus 10, but a plurality of tires can be manufactured with one simple supply system for thermal fluid by using a plurality of vulcanization apparatuses 10 connected to such a supply system for thermal fluid.
- the steam and water are supplied to the jackets of the respective vulcanization apparatuses 10 by diverging from the main steam pipe 51 and low-temperature supply pipe 61, respectively.
- the low-temperature water is recovered from the jackets of the respective vulcanization apparatuses 10 to the low-temperature water return pipe 71.
- FIG. 6 is a chart showing an example of setting vulcanization process on a supply timing of thermal fluid supplied to each of the jackets when the thermal fluid is supplied from the supply system 40 for thermal fluid to the vulcanization apparatus 10 to vulcanize the tire, in which an ordinate shows an automatic switching valve represented by reference numerals in FIG. 5 and an abscissa shows a time.
- T s is a timing for the start of the vulcanization
- T e is a timing for the end of the vulcanization.
- the vulcanization of the bead portion BD proceeds most rapidly to arrive at the allowable maximum temperature, and then the vulcanization of the tread portion becomes fast and the proceeding of the vulcanization of the shoulder portion becomes slowest.
- the automatic switching valves 52-56 are first opened at a timing of to minute just before the vulcanization start T s and steams as a thermal fluid of the high temperature side are supplied to all of the jackets 30-35. Then, the automatic switching valves 52, 54 are closed at a timing t 1 that the bead portion BD most rapidly proceeding the vulcanization arrives at the predetermined range of the vulcanization degree and just before the predetermined allowable maximum temperature, and at the same time the automatic switching valves 62, 64, 72, 74 are opened to change the thermal fluid in the inner jackets 30, 32 located at positions corresponding to the bead portion BD from the steam to the low-temperature water, whereby the circulation of the low-temperature water is started.
- the vulcanization degree of the bead portion BD is rendered into the predetermined range irrespectively of the vulcanization conditions of the other tire sites, whereby the over vulcanization can be prevented and the temperature rise can be suppressed to prevent the deterioration of rubber.
- the vulcanization degree in the tire sites other than the bead portion BD does not yet arrive at the predetermined range, so that the supply of the steam is continued in the jackets located at positions corresponding to these tire sites.
- the automatic switching valves 62, 64, 72, 74 are closed to end the circulation of the low-temperature water.
- the bead portion BD is sufficiently cooled because the vulcanization degree and temperature are within the expected ranges at the end of the vulcanization even considering the thermal conduction from the other tire sites.
- the automatic switching valve 56 is closed at a timing t 3 that the tread portion TR satisfies the predetermined range of the vulcanization degree before the arrival of the predetermined allowable maximum temperature, and at the same time the automatic switching valves 66, 76 are opened change the thermal fluid in the jackets 34, 35 located at positions corresponding to the tread portion TR from the steam to the low-temperature water, whereby the circulation of the low-temperature water is started. This circulation is continued up to the vulcanization end point T e .
- the automatic switching valves 53, 55 are closed to stop the supply of the steam to the outer jackets 31, 33 located at positions corresponding to the shoulder portion SH when the vulcanization degree of the shoulder portion SH arrives at the predetermined range.
- the other tire sites already satisfy the required range of the vulcanization degree, so that the vulcanization is ended at this point T e .
- the mold can be opened to take out the tire therefrom.
- the automatic switching valves 63, 65, 73, 75 are closed from the start of the vulcanization to the end thereof.
- the optimum vulcanization conditions can be selected every the tire site without influencing on the vulcanization conditions of the other tire sites. Also, such conditions are not realized supplying the thermal fluids having various temperatures every the jackets corresponding to the tire sites but are realized by changing over the thermal fluids of the previously provided two systems at the timing suitable for the vulcanization conditions, so that the installation can be simplified.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Thermal Sciences (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004137291A JP4436712B2 (ja) | 2004-05-06 | 2004-05-06 | タイヤの加硫方法 |
PCT/JP2005/007157 WO2005108038A1 (fr) | 2004-05-06 | 2005-04-13 | Procédé de vulcanisation des pneus et procédé de réglage du processus de vulcanisation des pneus |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1743755A1 true EP1743755A1 (fr) | 2007-01-17 |
EP1743755A4 EP1743755A4 (fr) | 2008-03-12 |
EP1743755B1 EP1743755B1 (fr) | 2009-10-28 |
Family
ID=35320104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05730508A Expired - Fee Related EP1743755B1 (fr) | 2004-05-06 | 2005-04-13 | Procédé de vulcanisation des pneus et procédé de réglage du processus de vulcanisation des pneus |
Country Status (5)
Country | Link |
---|---|
US (1) | US20080277815A1 (fr) |
EP (1) | EP1743755B1 (fr) |
JP (1) | JP4436712B2 (fr) |
ES (1) | ES2334150T3 (fr) |
WO (1) | WO2005108038A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2929878A1 (fr) * | 2008-04-11 | 2009-10-16 | Michelin Soc Tech | Moule de vulcanisation d'un pneumatique, installation et procede de regulation thermique du moule |
EP2633986A4 (fr) * | 2010-10-29 | 2015-10-14 | Bridgestone Corp | Procédé de production de pneumatique de base et procédé relatif au temps de production |
EP2468469B1 (fr) * | 2009-08-21 | 2018-05-09 | Kabushiki Kaisha Bridgestone | Procédé de fabrication de pneu de base, dispositif de vulcanisation |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5258501B2 (ja) * | 2008-10-21 | 2013-08-07 | 株式会社ブリヂストン | タイヤ加硫設備および加硫タイヤの製造方法 |
JP5004196B2 (ja) * | 2009-09-18 | 2012-08-22 | 住友ゴム工業株式会社 | 空気入りタイヤの製造方法 |
JP5705132B2 (ja) * | 2009-12-24 | 2015-04-22 | 不二商事株式会社 | タイヤの加硫装置 |
WO2012057355A1 (fr) * | 2010-10-29 | 2012-05-03 | 株式会社ブリヂストン | Carcasse de pneu et procédé de production de pneu |
JP5749519B2 (ja) * | 2011-02-23 | 2015-07-15 | 株式会社ブリヂストン | 台タイヤ製造方法 |
JP5068875B1 (ja) * | 2011-05-13 | 2012-11-07 | 住友ゴム工業株式会社 | 空気入りタイヤの製造方法 |
US9138950B2 (en) | 2011-08-30 | 2015-09-22 | Bridgestone Americas Tire Operations, Llc | Tire molding apparatus |
US20130204655A1 (en) * | 2012-02-07 | 2013-08-08 | Scott Damon | System and method for customizing and manufacturing tires near point-of-sale |
FR3014009B1 (fr) * | 2013-12-04 | 2016-11-04 | Michelin & Cie | Moule a secteurs pour pneumatique et procede de moulage associe |
FR3028444B1 (fr) * | 2014-11-19 | 2017-10-06 | Michelin & Cie | Dispositif et procede de vulcanisation de pneumatiques |
JP6919204B2 (ja) * | 2017-01-26 | 2021-08-18 | 横浜ゴム株式会社 | タイヤ加硫システムおよびタイヤ加硫方法 |
JP6899996B2 (ja) * | 2017-05-17 | 2021-07-07 | 住友ゴム工業株式会社 | タイヤ加硫方法およびタイヤ加硫装置 |
JP7255933B1 (ja) | 2022-04-11 | 2023-04-11 | 新興金型工業株式会社 | タイヤ加硫金型のコンテナリング及びそのコンテナリングを有するタイヤ加硫金型 |
CN115284654B (zh) * | 2022-09-28 | 2023-01-24 | 山东豪迈机械科技股份有限公司 | 一种轮胎模具及硫化设备 |
CN115256734B (zh) * | 2022-09-28 | 2022-11-29 | 山东银宝轮胎集团有限公司 | 一种轮胎硫化加热装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6478991B1 (en) * | 1999-07-14 | 2002-11-12 | Pirelli Pneumatici S.P.A. | Method for vulcanizing a tire by predetermining its degree of vulcanization |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07195370A (ja) * | 1993-12-28 | 1995-08-01 | Bridgestone Corp | タイヤ加硫金型及びタイヤ加硫方法 |
JP2002172622A (ja) * | 2000-12-07 | 2002-06-18 | Bridgestone Corp | 大型タイヤ加硫方法 |
JP4511018B2 (ja) * | 2000-12-07 | 2010-07-28 | 株式会社ブリヂストン | 大型タイヤ加硫装置及び加硫方法 |
-
2004
- 2004-05-06 JP JP2004137291A patent/JP4436712B2/ja not_active Expired - Fee Related
-
2005
- 2005-04-13 US US11/579,447 patent/US20080277815A1/en not_active Abandoned
- 2005-04-13 ES ES05730508T patent/ES2334150T3/es active Active
- 2005-04-13 EP EP05730508A patent/EP1743755B1/fr not_active Expired - Fee Related
- 2005-04-13 WO PCT/JP2005/007157 patent/WO2005108038A1/fr not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6478991B1 (en) * | 1999-07-14 | 2002-11-12 | Pirelli Pneumatici S.P.A. | Method for vulcanizing a tire by predetermining its degree of vulcanization |
Non-Patent Citations (1)
Title |
---|
See also references of WO2005108038A1 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2929878A1 (fr) * | 2008-04-11 | 2009-10-16 | Michelin Soc Tech | Moule de vulcanisation d'un pneumatique, installation et procede de regulation thermique du moule |
WO2009136071A2 (fr) * | 2008-04-11 | 2009-11-12 | Societe De Technologie Michelin | Moule de vulcanisation d'un pneumatique, installation et procede de regulation thermique du moule |
WO2009136071A3 (fr) * | 2008-04-11 | 2009-12-30 | Societe De Technologie Michelin | Moule de vulcanisation d'un pneumatique, installation et procede de regulation thermique du moule |
CN101990488A (zh) * | 2008-04-11 | 2011-03-23 | 米其林技术公司 | 对轮胎进行硫化的模具以及调节该模具温度的设备和方法 |
CN101990488B (zh) * | 2008-04-11 | 2013-10-30 | 米其林集团总公司 | 对轮胎进行硫化的模具以及调节该模具温度的设备和方法 |
US8974208B2 (en) | 2008-04-11 | 2015-03-10 | Michelin Recherche Et Technique S.A. | Mould for vulcanizing a tire, installation and method for regulating the temperature of the mould |
US9193121B2 (en) | 2008-04-11 | 2015-11-24 | Michelin Recherche Et Technique S.A. | Mould for vulcanizing a tire, installation and method for regulating the temperature of the mould |
EP2468469B1 (fr) * | 2009-08-21 | 2018-05-09 | Kabushiki Kaisha Bridgestone | Procédé de fabrication de pneu de base, dispositif de vulcanisation |
EP2633986A4 (fr) * | 2010-10-29 | 2015-10-14 | Bridgestone Corp | Procédé de production de pneumatique de base et procédé relatif au temps de production |
Also Published As
Publication number | Publication date |
---|---|
ES2334150T3 (es) | 2010-03-05 |
EP1743755A4 (fr) | 2008-03-12 |
EP1743755B1 (fr) | 2009-10-28 |
WO2005108038A1 (fr) | 2005-11-17 |
US20080277815A1 (en) | 2008-11-13 |
JP2005319599A (ja) | 2005-11-17 |
JP4436712B2 (ja) | 2010-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1743755A1 (fr) | Procédé de vulcanisation des pneus et procédé de réglage du processus de vulcanisation des pneus | |
EP2361756B1 (fr) | Vulcanisateur de pneus | |
EP2133193B1 (fr) | Mécanisme de rétention de pneu et gonfleur post vulcanisation | |
EP1923190B1 (fr) | Appareil de vulcanisation de pneus | |
US10124550B2 (en) | Device and method for vulcanizing tires | |
KR101757365B1 (ko) | 타이어의 가류 장치 | |
JP2002172624A (ja) | 大型タイヤ加硫装置及び加硫方法 | |
EP1612022B1 (fr) | Moule pour pneus avec conduit hélicoïdal de chauffage | |
JP5270241B2 (ja) | タイヤ加硫機の中心機構、およびタイヤ加硫機のモールド操作方法 | |
JP2017087615A (ja) | タイヤ製造方法及びタイヤ成型装置 | |
EP1938936A1 (fr) | Vulcanisateur de pneus | |
US10500768B2 (en) | Tire vulcanizer and method for assembling tire vulcanizer | |
CN109689321B (zh) | 轮胎硫化装置 | |
JP4998992B2 (ja) | タイヤ製造方法 | |
JP2014100839A (ja) | 空気入りタイヤの加硫方法および加硫システム | |
US5853769A (en) | Center mechanism of a tire vulcanizer | |
US7661944B2 (en) | Tire vulcanizing device | |
JP2006027208A (ja) | タイヤの加硫方法、およびタイヤ加硫プロセスの設定方法、ならびに、タイヤ加硫用ブラダ | |
EP3153311A1 (fr) | Appareil de vulcanisation de pneus | |
JP6168478B2 (ja) | タイヤ加硫装置の中心機構 | |
JP6662597B2 (ja) | タイヤ加硫用金型及びタイヤ製造方法 | |
JP2007190850A (ja) | タイヤの加硫方法 | |
JP6926790B2 (ja) | タイヤ加硫方法及びタイヤ加硫装置 | |
JP4307013B2 (ja) | タイヤ加硫用金型の開閉制御方法及びその装置 | |
JP2002361631A (ja) | タイヤ加硫機および加硫処理済タイヤの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20061102 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): ES FR |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): ES FR |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20080207 |
|
17Q | First examination report despatched |
Effective date: 20080508 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): ES FR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2334150 Country of ref document: ES Kind code of ref document: T3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20100505 Year of fee payment: 6 Ref country code: FR Payment date: 20100521 Year of fee payment: 6 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20100729 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20111230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110502 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20120604 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110414 |