EP1738160A1 - Capteur base sur un transistor a effet de champ pour detecter des gaz reducteurs ou de l'alcool, procedes de fabrication et d'utilisation associes - Google Patents

Capteur base sur un transistor a effet de champ pour detecter des gaz reducteurs ou de l'alcool, procedes de fabrication et d'utilisation associes

Info

Publication number
EP1738160A1
EP1738160A1 EP05743105A EP05743105A EP1738160A1 EP 1738160 A1 EP1738160 A1 EP 1738160A1 EP 05743105 A EP05743105 A EP 05743105A EP 05743105 A EP05743105 A EP 05743105A EP 1738160 A1 EP1738160 A1 EP 1738160A1
Authority
EP
European Patent Office
Prior art keywords
gas
gas sensor
sensor according
layer
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05743105A
Other languages
German (de)
English (en)
Inventor
Maximilian Fleischer
Hans Meixner
Gabor Kiss
Uwe Lampe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Micronas GmbH
Original Assignee
TDK Micronas GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Micronas GmbH filed Critical TDK Micronas GmbH
Publication of EP1738160A1 publication Critical patent/EP1738160A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/117Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means by using a detection device for specific gases, e.g. combustion products, produced by the fire
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4141Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for gases

Definitions

  • Carbon monoxide for example, is an odorless, toxic and explosive gas that arises from the incomplete combustion of carbon or its compounds.
  • MAK maximum workplace concentration
  • CO Since CO is also generally formed in the event of fire, the detection of an increased concentration can also be used as a fire warning.
  • Another very important application is in automotive air quality sensors, which measure the quality of the outside air and switch the ventilation of the passenger cabin to recirculating air if the air quality is significantly impaired by vehicles in front.
  • the exhaust gases from internal combustion engines are recognized by the key gas CO in the range of several ppm.
  • CO sensors are only used where they are required by law and therefore the necessary expenses (high sensor costs, supplying the sensors with the required operating energy) must be incurred.
  • CO sensors are only used if this is e.g. is indispensable for the control of devices and systems and the operating energy is available without further effort, for example in motor vehicles or small combustion systems.
  • the use of CO sensors is dispensed with, even if e.g. is desirable for security reasons.
  • Gas sensors that change the electronic work function of materials when interacting with gases use sensitive measuring principle, are in principle suitable to be operated at low temperatures and thus with low energy consumption.
  • the opportunity is used to couple the change in the work function of gas-sensitive materials into a field effect transistor (GasFET) and thereby measure the change in the work function as a change in the current between the source and drain of the transistor.
  • GasFET field effect transistor
  • Typical structures are known from DE 42 39 319. The relevant construction technology is described in DE 19956744.
  • the measurement of ethanol in the gas phase is used, for example, to infer the corresponding concentration in the blood from the concentration of the alcohol vapor in exhaled air.
  • Small mobile devices that use battery or rechargeable batteries, for example, are of particular interest here.
  • the object of the invention is to provide a sensor for detection, in particular for reducing gases or gaseous alcohol, which uses as little operating energy as possible, and an operating and manufacturing method therefor.
  • the invention has many advantages. The most important are: - Operation with low energy consumption, battery operation or direct connection to data bus lines, the small geometric size, which facilitates the implementation of sensor arrays, the possible monolithic integration of the electronics in the sensor chip, the use of sophisticated, cost-effective semiconductor manufacturing processes.
  • SGFET Small Gate Field Effect Transistor
  • CCFET Capacitively Controlled Field Effect Transistor
  • Thick or thin film technology can be applied.
  • the invention relating to a sensor which is aimed at reducing gases, such as CO or H 2 / at alcohols or hydrocarbons, is realized in that a sensitive material consisting of a metal oxide and a on the surface of the oxidation catalyst accessible to the sample gas. Fine dispersions of the catalyst are most commonly used.
  • such systems show a rapid and reversible change in their electron work function when exposed to reducing gases in moist air and typical operating temperatures between room temperature and 150 ° C.
  • An example described below is shown in FIG. 1.
  • the change in electron work function is for the relevant gas concentration range of the above. Applications at around 10-100mV and is therefore large enough to be read out with hybrid FET gas sensors.
  • the functioning of these layers is based on the charged adsorption of molecules to be detected on the metal oxide.
  • the applied catalyst material essentially serves to allow these reactions to take place in the temperature range mentioned. Exemplary embodiments are described below with reference to the schematic figures which do not restrict the invention.
  • Fig. 3 shows a reaction of a Pd-activated Sn0 2 layer on ethanol at different temperatures.
  • Oxides such as Sn0 2 , Ga 2 0 3 or CoO have proven to be particularly suitable as particularly suitable metal oxides for the detection of CO and other reducing gases. These oxides have a very high stability in various environmental conditions. Mixtures of different metal oxides can also be used, preferably with a proportion of one of the materials mentioned.
  • These materials are prepared as layers, whereby both cathode sputtering, screen printing processes and CVD processes can be used.
  • Typical layer thicknesses are between 1 and 3 ⁇ m. It is particularly advantageous if a porous, for example open-pore layer of the metal oxide is produced.
  • the reactivity of metal oxides at low temperatures is supported by the application of catalysts, such as oxidation-active catalysts, preferably from the group of platinum metals or silver.
  • catalysts such as oxidation-active catalysts, preferably from the group of platinum metals or silver.
  • the preferred metals are Pt or Pd, Rh or mixtures of these materials.
  • the metal le should preferably be in the form of small particles, “catalyst dispersion", “catalyst cluster”, with typical dimensions of 1-30 nm. This results from the fact that the catalytically active metals can very often influence, ie increase, the gas reactivity of the metal oxides via the three-phase boundary (metal-metal oxide gas).
  • the catalyst clusters are preferably applied via an impregnation process in which a salt of the noble metal is dissolved in a solvent wetting the surface of the metal oxide and this solution is applied to the surface of the prepared metal oxides. After drying, the salt is chemically decomposed and the metallic catalyst cluster is formed.
  • a very thin ( ⁇ 30 nm) layer of the catalyst can be applied using a PVD process (e.g. cathode sputtering). In a subsequent tempering step in the range of 600-1000 ° C, the entire surface disintegrates and the catalyst clusters in the required size are again obtained.
  • the basis is a sputtered Ga 2 0 3 thin film with a thickness of 2 ⁇ m on sputtered platinum as the back contact.
  • the catalytic activation takes place with a Pt dispersion, which is produced by thermal decomposition (at 600 ° C) of a wet-chemical solution of a water-soluble platinum complex.
  • the work function is measured at temperatures between approx. 220 ° C and 120 ° C in moist synthetic air when exposed to CO (1% by volume), H 2 (1% by volume) and CH 4 (1000 vpm). The result is shown in Fig. 2.
  • the temperature range of the measurement is clearly below the operating temperature of Ga 2 0 3 conductivity sensors (T> 600 ° C) and shows that CO detection is possible with low heating outputs.
  • Example 2 A Kelvin sample is produced on the basis of an open-pored Sn0 2 thick layer which is baked at 600 ° C. The catalytic activation took place in an aqueous solution of a Pd complex, which is thermally decomposed to Pd at temperatures between 100 ° C and 250 ° C
  • Fig. 1 shows the Kelvin signal at room temperature on / at CO concentrations between 2 and 30 vpm CO. The measurement shows that with this sensitive layer CO with high CO at low temperatures
  • FIG. 3 shows a reaction of a
  • the gas-sensitive layers tend to lose their high sensitivity to the target gases at room temperature when operated continuously for several weeks. This is noticeable by a decrease in the signal level as well as an increase in the response times. This can be remedied by "reactivating" the layer at regular intervals (e.g. every 4 - 5 days).
  • the “reactivation” of the layer is carried out by heating the layer in moist ambient air to temperatures between 180 - 250 ° C for a time from a few minutes to max. 1 h. Further requirements, such as the presence of the target gases or the like, do not have to be met.
  • Systems for the detection of ethanol using a gas-sensitive field effect transistor in moist air have typical values, such as operating temperature between room temperature and 100 ° C, as well as rapid and reversible changes in the electron work.
  • the signal level is sufficiently large to be able to carry out measurements. With a uniform layer thickness of the tin oxide there is a uniform air gap and there are constant signal levels.
  • Tin oxide and gallium oxide are particularly suitable for that
  • a layer preparation for example using cathode sputtering, screen printing or CVD processes, should produce a representation of layer thicknesses of 15 to 20 ⁇ m. Porous, particularly open-porous layers made of metal oxide are advantageous.
  • the catalyst clusters are produced by applying a dispersion followed by moderate tempering of the layer. Alternatively, for thin films, sputtering technology can be used, but tempering is also necessary. Pt or Pd can be used as catalyst material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochemistry (AREA)
  • Pathology (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

L'invention concerne des capteurs servant à détecter des gaz, notamment des gaz réducteurs, ainsi que des procédés de fabrication et des modes d'emploi associés. Un capteur de gaz basé sur un transistor à effet de champ comprend au moins un transistor à effet de champ et au moins une couche sensible au gaz ainsi qu'une couche de référence. Selon l'invention, les modifications de travail d'extraction résultant de l'alimentation en gaz des deux matières des couches servent à la commande des structures à effet de champ, la couche sensible au gaz constituée par un oxyde métallique comportant un catalyseur à oxydation sur sa surface accessible au gaz de mesure.
EP05743105A 2004-04-22 2005-04-21 Capteur base sur un transistor a effet de champ pour detecter des gaz reducteurs ou de l'alcool, procedes de fabrication et d'utilisation associes Withdrawn EP1738160A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004019638A DE102004019638A1 (de) 2004-04-22 2004-04-22 FET-basierter Sensor zur Detektion von insbesondere reduzierenden Gasen, Herstellungs- und Betriebsverfahren
PCT/EP2005/004275 WO2005103665A1 (fr) 2004-04-22 2005-04-21 Capteur base sur un transistor a effet de champ pour detecter des gaz reducteurs ou de l'alcool, procedes de fabrication et d'utilisation associes

Publications (1)

Publication Number Publication Date
EP1738160A1 true EP1738160A1 (fr) 2007-01-03

Family

ID=34967888

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05743105A Withdrawn EP1738160A1 (fr) 2004-04-22 2005-04-21 Capteur base sur un transistor a effet de champ pour detecter des gaz reducteurs ou de l'alcool, procedes de fabrication et d'utilisation associes

Country Status (6)

Country Link
US (2) US20070181426A1 (fr)
EP (1) EP1738160A1 (fr)
JP (1) JP2007533986A (fr)
CN (1) CN1997889A (fr)
DE (1) DE102004019638A1 (fr)
WO (1) WO2005103665A1 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004019638A1 (de) * 2004-04-22 2005-11-17 Siemens Ag FET-basierter Sensor zur Detektion von insbesondere reduzierenden Gasen, Herstellungs- und Betriebsverfahren
DE102005046944A1 (de) * 2005-09-30 2007-04-05 Micronas Gmbh Gassensitiver Feldeffekttransistor zur Detektion von Chlor
DE102007040726A1 (de) 2007-08-29 2009-03-05 Robert Bosch Gmbh Gassensor
DE102009015121B4 (de) 2009-03-31 2012-10-31 Siemens Aktiengesellschaft Selektiver Detektor für Kohlenmonoxid und Verfahren zum Betrieb des Detektors
US8008691B2 (en) * 2009-07-21 2011-08-30 National Tsing Hua University Ion sensitive field effect transistor and production method thereof
DE102011002854A1 (de) * 2010-08-10 2012-02-16 Robert Bosch Gmbh Feldeffekt-Gassensor, Verfahren zur Herstellung eines Feldeffekt-Gassensors und Verfahren zur Detektion von Gas
US10143401B2 (en) 2011-06-13 2018-12-04 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Metabolic analyzer
EP3004868B1 (fr) * 2013-05-30 2022-12-28 Vaisala Oyj Structure à double capteur de gaz et procédé de mesure
DE102013016331A1 (de) * 2013-10-05 2015-04-09 Micronas Gmbh Schichtsystem
DE102013016330A1 (de) * 2013-10-05 2015-04-09 Micronas Gmbh Schichtsystem
JP2017516994A (ja) 2014-06-03 2017-06-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 化学感応性電界効果トランジスタセンサ
CN107228927B (zh) * 2017-06-22 2019-08-13 云南大学 一种高灵敏度甲烷气体敏感材料及其制备方法与应用
US11686698B2 (en) * 2018-05-14 2023-06-27 Canon Kabushiki Kaisha Reducing gas detection material and reducing gas detection sensor
CN110455979B (zh) * 2019-07-16 2021-06-08 北京联合大学 一种监测空气中微量乙醇的高选择敏感材料
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3663870A (en) * 1968-11-13 1972-05-16 Tokyo Shibaura Electric Co Semiconductor device passivated with rare earth oxide layer
US4023549A (en) * 1975-05-23 1977-05-17 Hewitt John T Exhaust temperature monitoring system
JPS5466194A (en) * 1977-11-04 1979-05-28 Kuraray Co Fet sensor
US4151060A (en) * 1978-02-01 1979-04-24 Westinghouse Electric Corp. Solid state filter for gas sensors
EP0095277A3 (fr) * 1982-05-26 1984-07-04 City Technology Limited Capteur de gaz
DE3377738D1 (en) * 1982-08-27 1988-09-22 Toshiba Kk Co gas detecting device and circuit for driving the same
JPS60194345A (ja) * 1984-03-14 1985-10-02 Sharp Corp 電界効果型センサの駆動方法
JPS6157847A (ja) * 1984-08-29 1986-03-24 Sharp Corp 電界効果型湿度センサ
JPH03259736A (ja) * 1990-03-09 1991-11-19 Kurabe Ind Co Ltd 水素ガス検知素子
JPH06148115A (ja) * 1992-11-06 1994-05-27 Sumitomo Electric Ind Ltd ガスセンサー
DE4424342C1 (de) * 1994-07-11 1995-11-02 Fraunhofer Ges Forschung Sensorarray
SE507683C2 (sv) * 1994-08-12 1998-07-06 Electrolux Ab Broderienhet för symaskin
DE19517144C1 (de) * 1995-05-10 1996-07-04 Draegerwerk Ag Filter für elektrochemische Meßzelle
US5635628A (en) * 1995-05-19 1997-06-03 Siemens Aktiengesellschaft Method for detecting methane in a gas mixture
DE19613274C2 (de) * 1996-04-03 2002-11-21 Daimlerchrysler Aerospace Ag Verfahren und Vorrichtung zur Bestimmung spezifischer Gas- oder Ionenkonzentrationen
DE19617297A1 (de) * 1996-04-30 1997-11-13 Brand Gerhart Rosemarie Simultane Detektion von oxidierbaren und reduzierbaren Gasen mit Metalloxidsensoren unter Einsatz von Impedanzspektroskopie
US6041643A (en) * 1998-07-27 2000-03-28 General Electric Company Gas sensor with protective gate, method of forming the sensor, and method of sensing
US6554834B1 (en) * 1999-10-07 2003-04-29 Stryker Spine Slotted head pedicle screw assembly
DE19956303A1 (de) * 1999-11-23 2001-06-07 Siemens Ag Brandmelder mit Gassensoren
CA2402776A1 (fr) * 2000-03-17 2001-09-20 Wayne State University Detecteurs d'hydrogene de type mis
US6454834B1 (en) * 2000-08-01 2002-09-24 3M Innovative Properties Company Regenerable air cleaning device
JP2002107322A (ja) * 2000-09-28 2002-04-10 Ngk Spark Plug Co Ltd ガス感応性積層体及びその製造方法並びにガスセンサ
US20020092974A1 (en) * 2001-01-12 2002-07-18 Kouznetsov Andrian I. Gas sensor based on energy absorption
US7041256B2 (en) * 2001-01-30 2006-05-09 Industrial Scientific Corporation Poison resistant combustible gas sensors and method for warning of poisoning
DE10107169B4 (de) * 2001-02-15 2005-06-30 Siemens Ag Verfahren zur Überwachung der Funktion von Ozon in Kraftfahrzeugen
DE10121262A1 (de) * 2001-04-30 2002-11-14 Siemens Ag Vorrichtung zur quantitativen Messung von Stickoxiden in der Ausatemluft und Verwendung
JP4615788B2 (ja) * 2001-09-13 2011-01-19 日本特殊陶業株式会社 抵抗変化式ガスセンサのクリーニング方法
AU2003244059A1 (en) * 2002-06-27 2004-01-19 National Institute Of Advanced Industrial Science And Technology Resistance type oxygen sensor and oxygen sensor device using it and air/fuel ratio control system
WO2004054625A2 (fr) * 2002-12-12 2004-07-01 Mykrolis Corporation Materiaux composites frittes, poreux
US7254986B2 (en) * 2002-12-13 2007-08-14 General Electric Company Sensor device for detection of dissolved hydrocarbon gases in oil filled high-voltage electrical equipment
DE10325718B4 (de) * 2003-06-06 2006-07-06 Micronas Gmbh Halbleitersensor mit einem FET und Verfahren zum Ansteuern eines solchen Halbleitersensors
US7053425B2 (en) * 2003-11-12 2006-05-30 General Electric Company Gas sensor device
WO2005084378A2 (fr) * 2004-03-05 2005-09-15 Board Of Regents Of University Of Texas System Modification de proprietes de dispositif et de materiau par une injection de charge electrochimique en l'absence de contact avec un electrolyte soit pour un etat spatial local ou pour un etat final
DE102004019638A1 (de) * 2004-04-22 2005-11-17 Siemens Ag FET-basierter Sensor zur Detektion von insbesondere reduzierenden Gasen, Herstellungs- und Betriebsverfahren
US7705376B2 (en) * 2004-11-12 2010-04-27 Canon Kabushiki Kaisha Sensor and method of manufacturing the same
JP2007001826A (ja) * 2005-06-24 2007-01-11 Hitachi Ltd 金属酸化物材料とその製造方法及びその利用
US7694547B2 (en) * 2007-03-01 2010-04-13 The Ohio State University Research Foundation Robust high temperature composite and CO sensor made from such composite

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005103665A1 *

Also Published As

Publication number Publication date
US20070181426A1 (en) 2007-08-09
DE102004019638A1 (de) 2005-11-17
JP2007533986A (ja) 2007-11-22
CN1997889A (zh) 2007-07-11
WO2005103665A1 (fr) 2005-11-03
US20090127100A1 (en) 2009-05-21

Similar Documents

Publication Publication Date Title
EP1738160A1 (fr) Capteur base sur un transistor a effet de champ pour detecter des gaz reducteurs ou de l'alcool, procedes de fabrication et d'utilisation associes
DE102009015121B4 (de) Selektiver Detektor für Kohlenmonoxid und Verfahren zum Betrieb des Detektors
EP2252883B1 (fr) Procédé de détection et d'identification de gaz dans les espaces intérieurs d'aéronef
DE19741335C1 (de) Sensormembran einer Optode sowie Verfahren, Vorrichtung und deren Verwendung zur Bestimmung von Gasen in Gasgemischen
DE102017008539A1 (de) Gassensor, katalysatorbestimmungssystem und katalysatorbestimmungsverfahren
EP1756556A1 (fr) Capteur de gaz servant a determiner de l'ammoniac
EP1904837A1 (fr) Procede de detection simultanee de differentes pollutions de l'air par des transistors a effet de champ sensibles au gaz
DE102004008233B4 (de) Verfahren zur Steuerung des Betriebs eines Gassensorelements
EP1707951A1 (fr) Transistor à effet de champ sensible aux gaz pour la détection de l'hydrogène sulfuré
DE102004005115B4 (de) Gasmessfühler mit Elektrodenabdeckung
DE102021116050A1 (de) Messvorrichtung und Verfahren zur Detektion mit Sauerstoff oxidierbarer Stoffe in einem Prüfgas
DE112020005838T5 (de) Gasdetektionsverfahren und informationsverarbeitungsvorrichtung
DE10107169A1 (de) Diagnosesystem für Ozon spaltende Katalysatoren und Betriebsverfahren
DE10110471C2 (de) Alkoholsensor nach dem Prinzip der Austrittsarbeitsmessung
EP1602924B1 (fr) Dispositif et procédé pour detecter des composés organiques volatiles
DE112016000301T5 (de) NOx-Sensor
DE19924083C2 (de) Leitfähigkeitssensor zur Detektion von Ozon
DE102006046225A1 (de) Gassensoren zur Erfassung von Bestandteilen in und Bedingungen von Luft und/oder Optimierung der Konzentration von Bestandteilen und von Bedingungen von Luft in einem Innenraum
DE102005046944A1 (de) Gassensitiver Feldeffekttransistor zur Detektion von Chlor
DE102007052754A1 (de) Gassensor und Verfahren zur Detektion von Teilchen in einem Gasstrom
WO2018206191A1 (fr) Procédé de détermination de la température d'un capteur de gaz à électrolyte solide
DE19701493C1 (de) CO-Sensor
DE19838028C2 (de) Verfahren und Einrichtung zur Messung von Stickoxiden
DE102009000205A1 (de) Gassensor und Verfahren zur quantitativen Bestimmung von Stickoxiden
EP1188053A1 (fr) Dispositif de mesure de monoxyde de carbone

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI NL

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI NL

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 20081021

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20111101