EP1733029A2 - Pufa-pks gene aus ulkenia - Google Patents

Pufa-pks gene aus ulkenia

Info

Publication number
EP1733029A2
EP1733029A2 EP05751638A EP05751638A EP1733029A2 EP 1733029 A2 EP1733029 A2 EP 1733029A2 EP 05751638 A EP05751638 A EP 05751638A EP 05751638 A EP05751638 A EP 05751638A EP 1733029 A2 EP1733029 A2 EP 1733029A2
Authority
EP
European Patent Office
Prior art keywords
pufa
orf
pks
seq
particularly preferably
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP05751638A
Other languages
English (en)
French (fr)
Inventor
Thomas Kiy
Markus Luy
Matthias RÜSING
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lonza AG
Original Assignee
Nutrinova Nutrition Specialties and Food Ingredients GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nutrinova Nutrition Specialties and Food Ingredients GmbH filed Critical Nutrinova Nutrition Specialties and Food Ingredients GmbH
Publication of EP1733029A2 publication Critical patent/EP1733029A2/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6472Glycerides containing polyunsaturated fatty acid [PUFA] residues, i.e. having two or more double bonds in their backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression

Definitions

  • the invention describes genes which code for sequences specific to polyketide synthases (PKS).
  • PKS polyketide synthases
  • the PKS synthesized from it is characterized by its enzymatic ability to produce PUFAs (polyunsaturated fatty acids).
  • the invention further includes the identification of the corresponding DNA sequences and the use of the nucleotide sequences for the production of recombinant or transgenic organisms.
  • PUFAs polyunsaturated fatty acids
  • PUFAs are understood as meaning polyunsaturated long-chain fatty acids with a chain length> C12 and at least two double bonds.
  • PUFA PUFA
  • omega-3 n-3
  • omega-6 n-6 fatty acids
  • They are important components of the cell membrane, where they are in the form of lipids, especially phospholipids.
  • PUFAs also serve as standard stages of important molecules in humans and animals, such as, for example, prostaglandins, leukotrienes and prostacyclins (Simopoulos, AP Essential fatty acids in health and chronic disease. Am. J Clin. 1999utr. 1999 (70) pp. 560-569).
  • DHA docosahexaenoic acid
  • EPA eicosapentaenoic acid
  • An important step in omega-6 fatty acids is ERA (arachidonic acid), which occurs in filamentous fungi, for example, but can also be isolated from animal tissues such as the liver and kidney.
  • DHA and ERA occur side by side in human breast milk.
  • PUFA are essential for humans in terms of adequate development, especially for the developing brain, tissue formation and its repair.
  • DHA is an important component of human cell membranes, especially those of the nerves. It plays an important role in the maturation of brain function and is essential for the development of eyesight.
  • Omega-3 PUFAs such as DHA and EPA are used as food supplements, since a balanced diet with sufficient DHA supply is advantageous for the prophylaxis of certain diseases (Simopoulos, AP Essential fatty acids in health and chronic disease American Journal of Clinical ⁇ utrition 1999; 70: 560S-569S).
  • certain diseases Simopoulos, AP Essential fatty acids in health and chronic disease American Journal of Clinical ⁇ utrition 1999; 70: 560S-569S.
  • DHA fatty acids
  • EPA Omega-3 PUFAs
  • Microorganisms which are suitable for obtaining n-3 PUFA can be found, for example, in the bacteria under the Vibrio genus (e.g. Vibrio marinus) or under the Dinoflagellates (Dinophyta), in particular the Crypthecodinium genus, such as C. cohnii or among the Stramenopiles (or Labyrinthulomycota), such as the Pinguiophyceae such as Glossomastix, Phaeomonas, Pinguiochrysis, Pinguiococcus and Polypodochysis.
  • Vibrio genus e.g. Vibrio marinus
  • Dinoflagellates Dinophyta
  • Crypthecodinium genus such as C. cohnii or among the Stramenopiles (or Labyrinthulomycota)
  • Pinguiophyceae such as Glossomastix, Phaeomonas, Pinguioch
  • Thraustochytriales Thraustchytriidea
  • the oils obtained from commercially known PUFA sources such as plants or animals are often characterized by a very heterogeneous composition.
  • the oils obtained in this way have to be subjected to complex cleaning processes in order to be able to enrich one or more PUFAs.
  • the supply of PUFA from such sources is still subject to uncontrollable fluctuations. Diseases and weather influences can reduce both animal and plant yields.
  • DHA is present in amounts of approximately 50% of the total fat content of the cell and they can be cultivated relatively inexpensively in large fermenters.
  • Another advantage of microorganisms is a composition of the oils obtained from them that is limited to a few components.
  • PUFAs such as docosahexaenoic acid (DHA; 22: 6, n-3) and eicosapentaenoic acid (EPA; 20: 5, n-3).
  • the conventional biosynthetic route for producing long-chain PUFA in eukaryotic organisms begins with the delta-6 desaturation of linoleic acid (LA; 18: 2, n-6) and alphalinolenic acid (ALA; 18: 3, n-3). It results in the synthesis of gammalinolenic acid (GLA; 18: 3, n-6) from linoleic acid and octadecatetraenoic acid (OTA; 18: 4, n-3) from alphalinolenic acid.
  • LA delta-6 desaturation of linoleic acid
  • ALA alphalinolenic acid
  • GLA gammalinolenic acid
  • OTA octadecatetraenoic acid
  • This desaturation step is followed by an elongation step for both the n-6 and the n-3 fatty acid and a delta-5 desaturation, resulting in arachidonic acid (ERA; 20: 4, n-6) and eicosapentaenoic acid (EPA; 20: 5, n-3).
  • ERA arachidonic acid
  • EPA eicosapentaenoic acid
  • DHA docosahexaenoic acid
  • EPA eicosapentaenoic acid
  • eicosapentaenoic acid EPA; 20: 5, n-3
  • DHA docosahexaenoic acid
  • EPA eicosapentaenoic acid
  • DHA docosahexaenoic acid
  • DHA docosahexaenoic acid
  • EPA eicosapentaenoic acid
  • the so-called speaker pathway is independent of delta-4 desaturation. It consists of two successive elongation steps by 2 carbon units each to tetracosapentaenoic acid (24: 5, n-3) and a subsequent delta-6 desaturation to tetracosahexaenoic acid (24: 6, n-3).
  • docosahexaenoic acid is formed by shortening by two carbon units as a result of peroxisomal ⁇ -oxidation (Speaker, H.
  • the alternative C20 PUFA synthesis consists in an elongation of the C18 fatty acids, linoleic acid (LA; 18: 2, n-6) and alphalinolenic acid (ALA; 18: 3, n-3) by two carbon units each.
  • eicosadienoic acid (20: 2, n-6) and eicosatrienoic acid (20: 3, n-3) are then subjected to delta-8 desaturation followed by delta-5 desaturation in arachidonic acid (ERA; 20: 4, n- 6) or eicosapentaenoic acid (EPA; 20: 5, n-3) (Sayanova and Napier, Eicosapentaenoic acid: biosynthetic routes and the potential for synthesis in transgenic plants.
  • ERA arachidonic acid
  • EPA eicosapentaenoic acid
  • PUFA-producing microorganisms include marine representatives of the gamma proteobacteria and some species of the Cytophaga-Flavobacterium-Bacteroides group and so far a eukaryotic protist, Schizochytrium sp. ATCC 20888 (Metz et al. 2001, Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293: 290-293). They synthesize long-chain PUFA via so-called polyketide synthases (PKS).
  • PKS polyketide synthases
  • PKS PKS are large enzymes that catalyze the synthesis of secondary metabolites consisting of ketide units (Wallis, GW, Watts, JL and Browse, J. Polyunsaturated fatty acid synthesis: what will they think of next? Trends in Biochemical Sciences 27 (9) ( 2002) pp. 467-473).
  • the synthesis of the polyketides involves a series of enzymatic reactions which are analogous to those of the fatty acid synthesis (Hopwood & Sherman Annu. Rev. Genet. 24 (1990) pp. 37-66; Katz & Donadio Annu. Rev. of Microbiol. 47 (1993 ) Pp. 875-912).
  • PUFA-PKS characterized in that it a. at least one of the amino acid sequences shown in SEQ ID NOs 6 (ORF 1), 7 (ORF 2), 8 and / or 80 (ORF 3) and homologous sequences thereto with at least 70%, preferably 80%, particularly preferably at least 90% and very particularly preferably at least 99%, most preferably 100% sequence homology which have the biological activity of at least one domain of the PUFA-PKS, or b.
  • Isolated PUFA-PKS according to claim 1 with 10 or more ACP domains.
  • the invention relates to such a PUFA-PKS which has at least one amino acid sequence with at least 70%, preferably at least 80%, particularly preferably at least 90% and very particularly preferably at least 99% identity to at least 500 directly consecutive amino acids of the sequences SEQ ID NO 6 (ORF 1), 7 (ORF 2) and / or 8 and / or 80 (ORF 3).
  • the invention relates to an amino acid sequence with at least 70%, preferably at least 80%, particularly preferably at least 90% and very particularly preferably at least 99%) identity to at least 500 directly successive amino acids of the sequences SEQ ID NO 6 (ORF 1 ), 7 (ORF 2) and / or 8 and / or 80 (ORF 3).
  • the invention relates to an isolated DNA molecule coding for a PUFA-PKS according to one of the preceding claims.
  • This is preferably characterized in that it encodes an amino acid sequence which is at least 70% identical to at least 500 directly consecutive amino acids of the sequences SEQ ID NO 6 (ORF 1), 7 (ORF 2), 8 and / or 80 (ORF 3 ).
  • the present invention relates to such an isolated DNA molecule which has at least 70%, preferably at least 80%, particularly preferably at least 90% and very particularly preferably at least 95% identity with at least 500 consecutive nucleotides from the SEQ ID NOs 3, 4, 5 and / or 9 has.
  • the invention relates to a recombinant DNA molecule comprising one of the DNA molecules described above, which is functional with at least one DNA sequence which controls the transcription, preferably selected from the group consisting of SEQ ID NOs 3, 4 and 5 and / or 9, or parts thereof of at least 500 nucleotides and functional variants thereof.
  • the invention relates to a recombinant host cell comprising a recombinant DNA molecule described above.
  • the invention relates to a recombinant host cell which endogenously expresses the PUFA PKS according to the invention with at least 10 ACP domains.
  • the invention relates to a method for producing oil containing PUFA, preferably DHA, comprising the cultivation of such a recombinant host cell, and the oil thus produced.
  • the invention relates to a process for the production of biomass containing PUFA, preferably DHA, comprising the cultivation of such a recombinant host cell, and the biomass produced in this way. Therefore, in a further preferred aspect, the invention also relates to a recombinant biomass according to claim 15, comprising a nucleic acid according to claim 8 and / or an amino acid sequence according to claim 1 or parts of at least 500 consecutive amino acids homologous thereto.
  • the invention relates to the use of individual enzyme domains from the PUFA-PKS comprising SEQ ID NOs 6, 7, 8 and / or 80, shown in SEQ ID NOs 32, 33, 34, 45, 58, 59 , 60, 61, 72, 74 and / or 77 for the production of artificial polyketides, for example polyketide antibiotics and / or new, modified fatty acids.
  • identity in the case of nucleic acids means identical base pairs at the respective position of the strands to be compared.
  • gaps are possible.
  • the programs blastn and fasta represent one possibility for calculating the identity values in%.
  • homology also includes, for example, conservative exchanges in the amino acid sequence which do not significantly influence the function or structure of the protein. Such homology values are also calculated by programs known to those skilled in the art, such as blastp, Matrix PAM30, gap penalties: 9, extension: 1 (Altschul et al., NAR 25, 3389-3402).
  • sequence information of PUFA-PKS genes from Ulkenia sp. is provided by the nucleic acid and amino acid sequences defined in SEQ ID NOs 3 to 5 and / or 9.
  • SEQ ID NOs 1 and 2 represent the entire genomic DNA sequence on the two cosmids isolated here (see Examples 2 and 3).
  • the invention further comprises a method for the homologous and heterologous transformation of host organisms with nucleic acids according to the invention for the production of high-purity PUFAs.
  • the isolated open reading frames in the syngeneic and in the transgenic organism preferably lead to the production of PUFA, in particular DHA, EPA and DPA.
  • the PUFAs produced are preferably in the form of biomass or as oil.
  • the chromosomal sequence information provides insight into the location and arrangement of the individual PUFA-PKS genes. It was completely surprising that the cluster as such, as it is known from prokaryotic PUFA-PKS nerds such as Shewanella, Photobacterium or Moritella, no longer exists.
  • the initially identified Cosmid (Seq ID No. 1) showed that the linear arrangement of the individual ORFs is interrupted in Ulkenia and that the reading direction of individual ORFs is opposite ( Figure 1). This may be the result of massive gene rearrangements. As a result of the rearrangements, the individual ORFs also showed significantly greater distances from one another.
  • the two ORFs 1 and 2 are spaced about 13 kb apart.
  • the third ORF could only be identified on another cosmid (Seq ID No. 2), whereby no partial identities between the two cosmids (Seq ID No. 1 and 2) could be found (FIG. 1).
  • ORF 3 from Ulkenia sp. is no longer spatially close to the two ORFs 1 and 2.
  • the PUFA gene cluster as is known from the prokaryotic representatives mentioned above, is found in the eukaryote Ulkenia sp. does not exist anymore.
  • the location and arrangement of the individual PUFA-PKS genes of the protist Schizochytrium on the genome has been determined in part (WO 02/083870) and also shows an opposite orientation of the two ORFs A and B.
  • ORF 1 from Ulkenia sp. contains, on the one hand, a so-called beta-ketoacyl synthase domain (Seq ID No. 14 and 32), which is identified by the motif (DXAC) (Seq ID No.
  • This motif for the active center of the enzyme domain in Ulkenia ORF 1 can be extended in a preferred form to a range of 17 amino acids (GMNCVVDAACASSLIAV) (Seq ID No. 11 and 29).
  • the ketoacyl synthase domain can be divided into an N-terminal (Seq ID No. 10 and 28) and a C-terminal (Seq ID No.
  • the biological function of the beta-ketoacyl synthase domain is Catalysis of the condensation reaction within the fatty acid or PKS synth ese Elongation determined acyl group bound via a thioester bond to the cysteine residue of the active center of the enzyme domain and transferred in several steps to the carbon atom 2 of the fflelonyl group on the acyl carrier protein, with the release of CO 2 .
  • the beta-ketoacyl synthase domain is followed by a malonylCoA-ACP transferase domain (Seq ID No. 15 and 33). This domain catalyzes the transfer of MalonylCoA to the 4 ⁇ -phosphopantethein residue on the acyl carrier protein (ACP).
  • MalonylCoA-ACP transferase domains also transfer methyl or ethyl malonate to the ACP, whereby they can insert branches into the otherwise linear carbon chain.
  • linker region After a linker region there follows an alanine-rich sequence section (Seq ID No. 16 and 34) which contains 10 repetitions of an acyl carrier protein domain (ACP domain) (17-26 and 35-44).
  • ACP domain acyl carrier protein domain
  • linker regions consisting primarily of alanines and prolines.
  • Each of the ACP domains is characterized by a binding motif for a 4 -phosphopantethein molecule (LGXDS (L / I)). The 4 "-phosphopantethein molecule is bound to the conserved serine within the motif.
  • the ACP domains serve as carriers of the growing fatty acid or polyketide chain via the 4'-phosphopantethein residue.
  • a sequence with partial identities to ketoreductases follows (Seq ID no. 27 and 45)
  • the biological function of this domain is the NADPH-dependent reduction of 3-ketoacyl-ACP compounds, which represents the first reduction reaction in fatty acid biosynthesis, and this reaction also frequently takes place in polyketide synthesis (see also FIG. 3).
  • ORF 2 from Ulkenia sp. (Seq ID No. 4 and 7) also begins with a beta-ketoacyl synthase domain (Seq ID No. 50 and 58) by the motif (DXAC) (Seq ID No.
  • This motif for the active center of the enzyme domain in Ulkenia ORF 2 can be extended in a preferred form to a range of 17 amino acids (PLHYSVDAACATALYVL) (Seq ID No. 47 and 55).
  • the entire beta-ketoacyl synthase domain can be divided into an N-terminal (Seq ID No. 46 and 54) and a C-terminal (Seq ID No. 49 and 57) section.
  • the biological activity of this domain corresponds to the beta-ketoacyl synthase domain described in ORF 1.
  • Ketosynthases play a key role in the elongation cycle and show a higher substrate specificity than other enzymes in fatty acid synthesis.
  • acetyl group can then bind to the active center of a beta-ketoacyl synthase domain and thus represents the so-called priming molecule of the initial condensation reaction.
  • CLF-homologous sequences can also be found as loading domains in modular PKS systems. Domains with CLF sequence properties are present in all PUFA-PKS systems available to date. This is followed by an acyl transferase domain (Seq ID No. 52 and 60). This domain catalyzes a number of acyl transfers, such as the transfer of acyl to CoenzymA or to ACP domains.
  • the final domain from ORF 2 shows partial identities to oxidoreductases (Seq ID No.
  • ORF 3 from Ulkenia sp. (Seq ID No. 5 and 8) consists of two dehydrase / isomerase domains (Seq ID No. 66, 68, 72 and 74). Both domains contain an "active site" histidine with a directly adjacent cysteine (Seq ID No. 67 and 73 and Seq ID No. 69 and 75).
  • the biological function of these domains is the insertion of trans double bonds in the fatty acid or polyketide molecule with elimination of H 2 O and the subsequent conversion of the double bond into the cis-isomeric form.
  • the second dehydrase / isomerase domain merges into an alanine-rich region (Seq ID No. 70 and 76) without any known function, but this may be This is followed by an enoyl reductase domain (Seq ID Nos. 71 and 77) with high partial identity to the enoyl reductase domain from Ulkenia already present in ORF 2. Its biological function corresponds to the enoyl reductase domain already described above (see also FIG. 2).
  • the promoter sequence is preferably 2000 bp (sequence ID No. 62) before the start ATG codon. most preferably lOOObp before the start.
  • the termination sequence for ORF 1 is preferably 2000 bp (sequence ID No. 63) after the stop codon TAA. 1500 bp are particularly preferred, very particularly preferred lOOObp after the stop.
  • a potential termination signal for the mRNA synthesis of ORF 1, with the base sequence AATAAA, is 412 bp after the stop codon TAA.
  • the preferred promoter sequence is 2000 bp (sequence ID No. 64) before the start ATG codon.
  • the termination sequence for ORF 2 is preferably 2000 bp (sequence ID No. 65) after the stop codon TAA.
  • a potential termination signal for the mRNA synthesis of ORF 2, with the base sequence AATAAA, is 1650 bp after the stop codon TAA.
  • For ORF 3 from Ulkenia sp. are preferably 2000 bp (sequence ID No. 78) as the promoter sequence before the start ATG codon. These are particularly preferably 1500 bp, very particularly preferably 100 bp before the start.
  • the termination sequence for ORF 3 is preferably 2000 bp (sequence ID No. 79) after the stop codon TAA.
  • a potential termination signal for the mRNA synthesis of ORF 3, with the base sequence AATAAA, is 4229 bp after the stop codon TAA.
  • PUFA such as DHA
  • the nucleic acid sequences according to the invention can be used to increase the production of PUFA, for example by using the number of PUFA-PKS genes within the PUFA-producing organism to increase the number.
  • individual nucleic acid segments such as the sequence segments coding for the ACP domains, can of course also be duplicated in a homologous but also heterologous production organism.
  • the ACP domains as binding sites for the cofactor 4-phosphapanthetein essential for PUFA synthesis, are particularly suitable for increasing production.
  • the use of different regulatory elements such as promoters, terminators and enhancer elements can also lead to an increase in production in genetically modified PUFA producers. Genetic modifications within individual sequence sections can lead to changes in the structure of the resulting product and thus to the production of different PUFAs.
  • the similarity of PUFA synthases to polyketide synthases enables the construction of mixed systems. This so-called combinatorial biosynthesis allows the production of new, artificial bioactive substances.
  • PUFA-PKS units for example, new ones are conceivable Polyketide antibiotics, produced in transgenic microorganisms by a mixed system of PKS and PUFA-PKS units.
  • hosts suitable for the heterologous expression of the PUFA genes present here are, for example, yeasts such as Saccharomyces cerevisiae and Pichia Pastoris or filamentous fungi such as Aspergillus nidulans and Acremonium chysogenum.
  • Plants producing PUFA can be generated by inserting the genes according to the invention into, for example, soybean, rapeseed, sunflower, flax or other, preferably oil-rich, plants.
  • Additional effective genes such as 4-phosphopanthetein transferases can also be used for effective heterologous expression of the PUFA genes.
  • host-specific promoter / operator systems can be used for enhanced or inducible gene expression.
  • a variety of prokaryotic expression systems can be used for heterologous PUFA production.
  • Expression vectors can be constructed which, in addition to the corresponding PUFA genes, also contain promoters, ribosome binding sites and transcription terminators.
  • the promoter / operator region of the E. coli tryptophan biosynthesis and promoters of the lambda phage may be mentioned as examples of such regulatory elements in E. coli.
  • Selectable markers such as resistance to ampicillin, tetracycline or chloramphenicol, can also be used on the corresponding vectors.
  • Very suitable vectors for the transformation of E. coli are pBR322, pCQV2 and the pUC plasmid and their derivatives. These plasmids can contain both viral and bacterial elements. Any strain derived from E. coli K12 such as JM 101, JM109, RR1, HB101, DH1 or AG1 can be used as the E. coli host strain. Of course, all other common prokaryotic expression systems for heterologous PUFA production are also conceivable (see also Sambrook et al.). The use of oil-forming bacteria as host systems is also conceivable. Mammalian, plant and insect cells, but also fungi such as yeasts can be used as eukaryotic expression systems.
  • transcription initiation elements from genes of enzymes from glycolysis can be used. These include regulatory elements of alcohol dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglucoisomerase, phosphoglycerate kinase etc. However, regulatory elements from genes such as acid phosphatase, lactase, metallothionein or glucoamylase can also be used. Here too, promoters find one enhanced or inducible expression allow use. Promoters inducible by galactose (GAL1, GAL7 and GAL10) are also of particular interest (Lue et al. 1987 Mol. Cell. Biol. 7, p.
  • the 3 "termination sequence preferably also comes from a yeast. Since nucleotide sequences directly around the start codon (ATG) influence gene expression in yeast, efficient translation initiation sequences from the yeast are also preferred. In cases in which yeast plasmids are used, these contain one Yeast replication origin and a selection marker. This selection marker is preferably an auxotrophy marker such as LEU, TRP or HIS.
  • yeast plasmids are the so-called YRps (Yeast Replicating plasmids), YCps (Yeast Centromere plasmids) and YEps (Yeast Episomal plasmids)
  • the origin of replication are the YIps (Yeast Integrating plasmids), which are used to integrate the transformed DNA into the genome.
  • the plasmids ⁇ YES2 and pYX424 and the pPICZ plasmids are of particular interest. If filamentous fungi such as Aspergillus nidulans are used as heterologous PUFA producers, come also Prom otoren from the corresponding organism for use.
  • the gpc 4 promoter can be used for enhanced expression and the alcA promoter for inducible expression.
  • Helper plasmids such as pHELP (Ballance, DJ. And Turner G. (1985) Development of a high-frequency transforming vector for Aspergillus nidulans. Gene 36, 321-331) and selectable markers such as ura, bio or paba are preferably used for the transformation of filamentous fungi used. 3 'regulatory elements made of filamentous fungi are also preferred.
  • PUFA can be produced in insect cells using the baculovirus expression system. Such expression systems are commercially available, for example, from Clonetech or Invitrogen.
  • Vectors such as the Ti plasmid from Agrobacterium or whole viruses such as Cauliflower mosaic virus (CaMV), gemini virus, Tomato golden mosaic virus or tobacco mosaic virus (TMV) can be used for the transformation of plants.
  • a preferred promoter is, for example, the 35S promoter from CaMV.
  • Other possibilities for the transformation of plants are the calcium phosphate method, the polyethylene glycol method, microinjection, electroporation or lipofection of protoplasts.
  • the transformation by bombardment with DNA-loaded microparticles (gene gun) is also preferred.
  • An alternative PUFA production in plants results from the transformation of chloroplasts. Proteins can be transported in choroplasts, for example, by N-terminal leaders.
  • leader peptis comes from the small subunit of ribulose bisphosphate carboxylase, but leader peptides of other chloroplastic proteins can also be used. Another possibility is the stable transformation of the chloroplast genome. Above all, biolistic but also other methods come into question (Blowers et al. Plant Cell 1989 1 pp. 123-132, Kline et al. Nature 1987 327 pp. 70-73 and Shrier et al. Embo J. 4 pp.
  • FIG. 25 Commercially available expression systems can also be used for mammalian cells, for example viral and non-viral transformations and expression systems such as the lentiviral or adenoviral systems or the T-Rex system from Invitrogen can be used for the targeted integration of DNA into mammalian cells
  • the Flp-In system is also suitable from Invitrogen.
  • the nucleic acid and amino acid sequences on which the method according to the invention is based are described below with the aid of a few examples. The sequences and the invention are, however, not restricted to these examples. Brief description of the figures: FIG the location of the PUFA-PKS genes from Ulkenia sp. on the genome Furthermore, the individual domains are de r PUFA-PKS encoded by these genes.
  • FIG. 2 shows a comparison of ORF 2 and ORF 3 from Ulkenia sp. with the corresponding homologous ORFs from Moritella marina (GehBank accession no .: AB025342.1), Photobacterium profundum SS9 (GenBank accession no .: AF409100), Shewanella sp.
  • FIG. 3 shows a comparison of ORF 1 from Ulkenia sp. with the corresponding homologous ORFs from Moritella marina (GenBank accession no .: AB025342.1), Photobacterium profundum SS9 (GenBank accession no .: AF409100), Shewanella sp.
  • FIG. 4 contains a sequence comparison of ORF 1 from Ulkenia sp. with ORF A from schizochytrium. The degree of partial identity of both sequences is approximately 81.5%.
  • FIG. 5 contains a sequence comparison of ORF 2 from Ulkenia sp. with ORF B from schizochytrium. The degree of partial identity of both sequences is approximately 75.9%.
  • FIG. 6 contains a sequence comparison of ORF 3 from Ulkenia sp. with ORF C from schizochytrium. The degree of partial identity of both sequences is approximately 80.0%.
  • FIG. 7 describes a sequence comparison carried out with FASTAX of the PCR product described in Example 1 with database sequences (Swiss-PROT All library).
  • FIG. 8 shows a vector map of Cosmid SuperCosI (Stratagene), which was used to produce the cosmid bank from Example 2.
  • FIG. 9 describes a sequence comparison carried out with BLASTX of the PCR product described in Example 3 with database sequences (Swiss-PROT All library).
  • DHI medium 50g / L glucose; 12.5g / L yeast extract; 16.65g / L Tropic Marin; pH 6.0
  • DHI medium 50g / L glucose; 12.5g / L yeast extract; 16.65g / L Tropic Marin; pH 6.0
  • SAM 2179 inoculated xmd cultivated for 48h at 28 ° C and 150rpm.
  • the cells were then washed twice with sterile tap water, centrifuged xmd, the cell sediment frozen at -85 ° C. For further processing, the cell sediment was then transferred to a mortar and ground into a fine powder with a pestle under liquid nitrogen.
  • the PCR primers MOF1 and MOR1 were used as motif-specific oligonucleotides.
  • MOF1 5 '- CTC GGC ATT GAC TCC ATC - 3 (Seq ID No. 81)
  • MOR1 5 "- GAG AAT CTC GAC ACG CTT - 3 V (Seq ID No. 82)
  • the genomic DNA from Ulkenia as described under 1.1 sp. 2179 was diluted 1: 100.
  • PCR reaction mixture (1 x buffer (Sigma); dNTPs (200 ⁇ M each); MOF1 (20pmol), MOR1 (20pmol) and 2.5U Taq- DNA polymerase (Sigma) was transferred and the PCR was performed under The following conditions were carried out: initial denaturation 94 ° C for 3 minutes, followed by 30 cycles with 94 ° C for 1 minute each, 55 ° C for 1 minute, 72 ° C for 1 minute. Finally 8min 72 ° C. The PCR products were then analyzed by gel electrophoresis and fragments of the appropriate size were incorporated into the vector pCR2.1 TOPO via T / A cloning (Invitrogen). After transformation of E. coli TOP10F ", plasmid DNA was isolated (Qiaprep Spin, QIAGEN) and sequenced.
  • the enzyme was then heat inactivated at 65 ° C. for 20 minutes and the cut cosmid was dephosphorylated with SAP (shrimp alkaline phosphatase; Röche) according to the manufacturer. Here too, the enzyme was deactivated by heating the reaction mixture to 65 ° C. for 20 minutes. Xbal cleaved and dephosphorylated Supercos I cosmid was then completely cleaved with BamHI for several hours at 37 ° C. The cut Cos id DNA was then precipitated with phenol / chloroform, precipitated with ethanol and subsequently included in H 2 O est.
  • SAP shrimp alkaline phosphatase
  • ligation For the ligation, 1 ⁇ g of Xbal xmd BamHI digested cosmid DNA and 3.5 ⁇ l Sau3AI digested genomic DNA in a volume of 20 ⁇ l were combined and ligated with T4 ligase (Biolabs) according to the manufacturer for several hours. About 1/7 of the ligation batch was then packaged in phage using the Gigapack III XL Packaging Extract (Stratagene), according to the manufacturer. These were then used to transfect E. coli XLl-Blue MR.
  • PCR primers were used as PUFA-PKS-specific oligonucleotides:
  • CFOR1 5 ⁇ - GTC GAG AGT GGC CAG TGC GAT - 3 ⁇ (Seq ID No. 85)
  • CREV3 5-AAA GTG GCA GGGAAA GTA CCA-3 '(SeqIDNr.86)
  • the genomic DNA from Ulkenia sp. 2179 was diluted 1:10. 2 ⁇ l of this dilution were then transferred to a 50 ⁇ l volume of PCR reaction mixture (1 ⁇ buffer (Sigma); dNTPs (200 ⁇ m each); CFOR1 (20 pmol), CREV3 (20 pmol) and 2.5U Taq DNA polymerase (Sigma) PCR was carried out under the following conditions: initial denaturation at 94 ° C. for 3 minutes, followed by 30 cycles with 94 ° C. for 1 minute each, 60 ° C. for 1 minute, 72 ° C. for 1 minute, and finally 8 minutes at 72 ° C.
  • PCR products were then run through Gel electrophoresis was analyzed and fragments of the appropriate size were incorporated into the vector pCR2.1 TOPO via T / A cloning (Invitrogen) After transformation of E. coli TOP10F ', plasmid DNA was isolated (Qiaprep Spin, QIAGEN) and partially sequenced.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

Die Erfindung beschreibt Gene, welche für Polyketidsynthasen (PKS) spezifische Sequenzen kodieren. Die daraus synthetisierte PKS ist charakterisiert durch ihre enzymatische Fähigkeit PUFAs (polyunsaturated fatty acids) zu produzieren. Die Erfindung umfasst weiterhin die Identifizierung der entsprechenden DNA-Sequenzen sowie den Einsatz der Nukleotidsequenzen für die Herstellung rekombinanter bzw. transgener Organismen.

Description

PUFA-PKS Gene aus Ulkenia
Die Erfindung beschreibt Gene, welche für Polyketidsynthasen (PKS) spezifische Sequenzen kodieren. Die daraus synthetisierte PKS ist charakterisiert durch ihre enzymatische Fähigkeit PUFAs (polyunsaturated fatty acids) zu produzieren. Die Erfindung umfasst weiterhin die Identifizierung der entsprechenden DNA-Sequenzen sowie den Einsatz der Nukleotidsequenzen für die Herstellung rekombinanter bzw. transgener Organismen. Unter PUFAs (polyunsaturated fatty acids) werden mehrfach ungesättigte langkettige Fettsäuren mit einer Kettenlänge > C12 und mindestens zwei Doppelbindungen verstanden. Es gibt zwei Hauptfamilien von PUFA, die je nach Lage der ersten Doppelbindung, bezogen auf das Alkylende, in Omega-3 (n-3) und in Omega-6 (n-6) Fettsäuren unterschieden werden. Sie sind wichtige Bestandteile der Zellmembranen, wo sie in Form von Lipiden, insbesondere Phospholipiden vorliegen. PUFAs dienen auch als Norstufen wichtiger Moleküle in Mensch und Tier, wie zum Beispiel Prostaglandinen Leukotrienen und Prostacyclinen (Simopoulos, A.P. Essential fatty acids in health and chronic disease. Am. J Clin. Νutr. 1999 (70) S. 560- 569). Wichtige Nertreter der Gruppe der Omega-3 Fettsäuren sind DHA (Docosahexaensäure) und EPA (Eicosapentaensäure), die in Fischölen und in marinen Mikroorganismen zu finden sind. Ein wichtiger Nertreter der Omega-6 Fettsäuren ist ÄRA (Arachidonsäure), die zum Beispiel in filamentösen Pilzen vorkommt, aber auch aus tierischen Geweben wie Leber und Niere isoliert werden kann. In der menschlichen Muttermilch kommen DHA und ÄRA nebeneinander vor. PUFA sind für den Menschen essentiell in bezug auf eine angemessene Entwicklung, vor allem für das sich entwickelnde Gehirn, die Gewebebildung und dessen Reparatur. So ist DHA ein wichtiger Bestandteil menschlicher Zellmembranen, speziell die der Nerven. Sie spielt eine wichtige Rolle in der Ausreifung der Hirnfunktion und ist essentiell für die Entwicklung des Sehvermögens. Omega-3 PUFA wie DHA und EPA werden als Nahrungsergänzung eingesetzt, da eine ausgewogene Ernährung mit einer ausreichenden DHA-Nersorgung für die Prophylaxe bestimmter Erkrankungen von Vorteil ist (Simopoulos, A.P. Essential fatty acids in health and chronic disease American Journal of Clinical Νutrition 1999;70: 560S-569S). Beispielsweise zeigen Erwachsene mit nichtinsulinabhängiger Diabetes einen Mangel oder zumindest einen unausgeglichenen DHA- Haushalt, der im Zusammenhang mit später auftretenden Herzproblemen steht. Ebenso werden neuronale Erkrankungen wie zum Beispiel Alzheimer oder Schizophrenie von niedrigen DHA-Spiegeln begleitet. Es existiert eine große Anzahl von Quellen für die kommerzielle Gewinnung von DHA, wie zum Beispiel Öle aus marinen Kaltwasserfischen, Eidotterfraktionen oder marinen Mikroorganismen. Mikroorganismen, welche sich zur Gewinnung von n-3 PUFA eignen, finden sich beispielsweise bei den Bakterien unter der Gattung Vibrio (z. B.: Vibrio marinus) oder unter den Dinoflagellaten (Dinophyta), dort insbesondere die Gattung Crypthecodinium, wie C. cohnii oder unter den Stramenopiles (oder Labyrinthulomycota), wie die Pinguiophyceae wie z.B. Glossomastix, Phaeomonas, Pinguiochrysis, Pinguiococcus und Polypodochysis. Weitere bevorzugte Mikroorganismen zur Herstellung von PUFA gehören insbesondere zur Ordnung Thraustochytriales, (Thraustchytriidea) mit den Gattungen Japonochytrium, Schizochytrium, Thraustochytrium, Althornia, Labyrinthuloides, Aplanochytrium und Ulkenia. Die aus kommerziell bekannten PUFA-Quellen wie Pflanzen oder Tiere gewonnenen Öle sind oft durch eine sehr heterogene Zusammensetzung charakterisiert. Die so gewonnenen Öle müssen aufwendigen Reinigungsverfahren unterworfen werden, um eine oder mehrere PUFA anreichern zu können. Die Versorgung mit PUFA aus solchen Quellen ist weiterhin unkontrollierbaren Fluktuationen unterworfen. So können Erkrankungen und Witterungseinflüsse sowohl tierische als auch pflanzliche Erträge mindern. Die Gewinnung von PUFA aus Fischen unterliegt saisonalen Schwankungen und kann durch Überfischung oder klimatische Veränderungen (z.B. El Nino) vorübergehend sogar ganz ausfallen. Tierische Öle, vor allem Fischöle, können über die Nahrungskette Schadstoffe aus der Umwelt akkumulieren. Vor allem in kommerziellen Fischfarmen sind hohe Belastungen der Tiere durch Organochloride, wie zum Beispiel polychlorierte Biphenyle, bekannt geworden, die den gesundheitsfördernden Aspekten des Fischkonsums entgegenstehen (Hites et al. 2004, Global assessment of organic contaminants in farmed salmon, Science 303, S. 226- 229). Der resultierende Qualitätsverlust der Fischprodukte führt zu einer abnehmenden Akzeptanz der Konsumenten für Fisch bzw. Fischöle als Omega-3 PUFA-Quellen. Weiterhin ist die Aufkonzentrierung von DHA aus Fisch aufgrund hoher technischer Anforderungen relativ teuer. In einigen marinen Mikroorganismen hingegen liegt DHA in Mengen von annähernd 50% des Gesamtfettanteils der Zelle vor und sie lassen sich in großen Fermentern relativ kostengünstig kultivieren. Ein weiterer Vorteil von Mikroorganismen ist eine auf wenige Bestandteile beschränkte Komposition der aus ihnen gewonnenen Öle. Für die Biosynthese langkettiger PUFA wie Docosahexaensäure (DHA; 22:6, n-3) und Eicosapentaensäure (EPA; 20:5, n-3) sind verschiedene biokatalytische Wege bekannt. Der konventionelle Biosyntheseweg zur Herstellung langkettiger PUFA in eukaryontischen Organismen beginnt mit der delta-6 Desaturierung von Linolsäure (LA; 18:2, n-6) und Alphalinolensäure (ALA; 18:3, n-3). Sie resultiert in der Synthese von Gammalinolensäure (GLA; 18:3, n-6) aus Linolsäure und von Octadecatetraensäure (OTA; 18:4, n-3) aus Alphalinolensäure. Diesem Desaturierungsschritt folgt sowohl für die n-6, als auch für die n- 3 Fettsäure ein Elongationsschritt sowie eine delta-5 Desaturierung, resultierend in Arachidonsäure (ÄRA; 20:4, n-6) und Eicosapentaensäure (EPA; 20:5, n-3). Die Synthese von Docosahexaensäure (DHA; 22:6, n-3) ausgehend von Eicosapentaensäure (EPA; 20:5, n- 3) kann dann über zwei verschiedene Biosynthesewege ablaufen. Beim sogenannten linearen Biosyntheseweg erfolgt eine Elongation von Eicosapentaensäure (EPA; 20:5, n-3) um zwei weitere Kohlenstoffeinheiten mit anschließender delta-4 Desaturierung zur Bildung von Docosahexaensäure (DHA; 22:6, n-3). Die Existenz dieses Biosyntheseweges konnte durch das Vorhandensein einer delta-4 Desaturase in Organismen wie Thraustochytrium und Euglena bestätigt werden (Qiu, et al. Identification of a delta 4 fatty acid desaturase from Thraustochytrium sp. involved in the biosythesis of docosahexaenoic acid by heterologous expression in Saccharomyces cerevisiae and Brassica juncea. J. Biol. Chem. 276 (2001), S. 31561-31566 und Meyer et al. Biosynthesis of docosahexaenoic acid in Euglena gracilis: biochemical and molecular evidence for the involvement of a delta 4 fatty acyl group desaturase. Biochemistry 42 (2003), S. 9779-9788). Der zweite Weg zur Synthese von Docosahexaensäure (DHA; 22:6, n-3) ausgehend von Eicosapentaensäure (EPA; 20:5, n-3), der sogenannte Sprecher-Pathway, ist unabhängig von einer delta-4 Desaturierung. Er besteht aus zwei aufeinander folgenden Elongationsschritten um je 2 Kohlenstoffeinheiten zu Tetracosapentaensäure (24:5, n-3) und einer anschließenden delta-6 Desaturierung zu Tetracosahexaensäure (24:6, n-3). Abschließend erfolgt dann die Bildung von Docosahexaensäure durch eine Verkürzung um zwei Kohlenstoffeinheiten in Folge einer peroxisomalen ß-Oxidation (Sprecher, H. Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochimica et Biophysica Acta 1486 (2000) S. 219-231). Dieser zweite Biosyntheseweg ist der in den Säugetieren vorherrschende DHA-Syntheseweg (Leonard et al. Identification and expression of mammalian long-chain PUFA elongation enzymes. Lipids 37 (2002) S. 733-740). Ein alternativer Biosyntheseweg zur Bildung von C20 PUFA liegt in einigen Organismen vor, denen eine delta 6-Desaturaseaktivität fehlt. Zu diesen Organismen zählen zum Beispiel die Protisten Acanthamoeba sp. und Euglena gracilis. Der erste Schritt der alternativen C20 PUFA-Synthese besteht in einer Elongation der C18-Fettsäuren, Linolsäure (LA; 18:2, n-6) und Alphalinolensäure (ALA; 18:3, n-3), um je zwei Kohlenstoffeinheiten. Die resultierenden Fettsäuren Eicosadiensäure (20:2, n-6) und Eicosatriensäure (20:3, n-3) werden dann durch eine delta-8 Desaturierung und eine nachfolgende delta-5 Desaturierung in Arachidonsäure (ÄRA; 20:4, n-6) bzw. Eicosapentaensäure (EPA; 20:5, n-3) überführt (Sayanova and Napier, Eicosapentaenoic acid: biosynthetic routes and the potential for synthesis in transgenic plants. Phytochemistry 65 (2004) S. 147-158; Wallis and Browse; The delta-8 desaturase of Euglena gracilis: an alternate pathway for synthesis of 20-carbon polyunsaturated fatty acids Arch. Biochem. Biophys. 362 (1999) S. 307-316). Höhere Pflanzen besitzen nicht die Fälligkeit C20 PUFA aus Vorstufen zu synthetisieren. Sie bilden ausgehend von Stearinsäure (18:0) über verschiedene Desaturasen Ölsäure (C18:l; delta-9 Desaturase), Linolsäure (18:2, n-6; delta 12 Desaturase) und Alphalinolensäure (18:3, n-3; delta 15 Desaturase). Eine gewisse Anzahl von marinen Mikroorganismen beschreitet jedoch einen völlig anderen Biosyntheseweg zur Produktion von EPA und DHA. Zu diesen PUFA- produzierenden Mikroorganismen zählen marine Vertreter der Gamma-Proteobakterien sowie einige Spezies der Cytophaga-Flavobacterium-Bacteroides-Gruppe und bislang ein eukaryotischer Protist, Schizochytrium sp. ATCC 20888 (Metz et al. 2001, Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290-293). Sie synthetisieren langkettige PUFA über sogenannte Polyketidsynthasen (PKS). Diese PKS stellen große Enzyme dar, welche die Synthese von Sekundärmetaboliten bestehend aus Ketideinheiten katalysieren (Wallis, G.W., Watts, J.L. and Browse, J. Polyunsaturated fatty acid synthesis: what will they think of next? Trends in Biochemical Sciences 27 (9) (2002) S. 467-473). Die Synthese der Polyketide beinhaltet eine Reihe enzymatischer Reaktionen, die analog zu denen der Fettsäuresynthese sind (Hopwood & Sherman Annu. Rev. Genet. 24 (1990) S. 37-66; Katz & Donadio Annu. Rev. of Microbiol. 47 (1993) S. 875-912). Es sind bereits Gensequenzen verschiedener PUFA - PKS (PUFA synthetisierende PKS) bekannt. So wurde aus dem marinen Bakterium Shewanella sp. ein 38kb genomisches Fragment isoliert, welches die Information für die Produktion von Eicosapentaensäure (EPA) enthält. Anschließende Sequenzierung dieses Fragmentes fühlte zur Identifizierung von 8 offenen Leserastern (ORFs. open reading firames) (Takeyama, H. et al. Microbiology 143 (1997) S. 2725-2731). Fünf dieser offenen Leseraster aus Shewanella sind nahe Verwandt zu Polyketidsynthasegenen. Ebenso beschreibt das US Patent No. 5,798,259 den EPA- Gencluster aus Shewanella putrefaciens SCRC-2874. In den marinen Prokaryonten Photobacterium profundum Stamm SS9 (Allen and Bartlett, Microbiology 2002, 148 S.1903- 1913) und Moritella marina Stamm MP-1, früher Vibrio marinus (Tanaka et al, Biotechnol. Letters 1999, 21, S. 939-945) sind ebenfalls PUFA-PKS-Gene gefunden worden. Analoge PUFA produzierende PKS ähnliche ORFs konnten auch in dem eukaryontischen Protisten Schizochytrium identifiziert werden (Metz et al. Science 293 (2001) S. 290-293 und US Pat. No. 6,566,583, WO02/083870 A2). Hierbei wurden in Schizochytrium drei ORFs ermittelt, die Teilidentitäten zu dem EPA Gencluster aus Shewanella zeigen. Die Existenz dieser konservierten PKS Gene in einigen Prokaryonten und dem Eukaryonten Schizochytrium gibt einen Hinweis auf einen möglichen horizontalen Gentransfer von PUFA-PKS -Genen zwischen Pro- und Eukaryonten. Es konnte bereits auch die transgene Produktion von PUFAs unter Verwendung von isolierten Genclustern in Mikroorganismen, die normalerweise keine PUFAs generieren, gezeigt werden. So sind die fünf oben genannten in einem Cluster vorliegenden ORFs (open reading frames; offene Leseraster) aus Shewanella sp. SCRC-2738 ausreichend, um in den Nicht-EPA-Produzenten E. coli und Synechococcus sp. messbare Mengen von EPA herzustellen (Yazawa, Lipids 1996, 31 S. 297-300 und Takeyama et al. Microbiology 1997, 143 S. 2725-2731). Generell besteht immer ein Bedarf an neuen PUFA-Produzenten für die großtechnische Produktion von PUFAs. Dabei ist es zunächst unerheblich ob diese Produktion in zum Beispiel einem Prokaryonten, einem Protisten oder in einer Pflanze erfolgt. Das Ziel ist immer möglichst kostengünstig und umweltschonend, hochqualitative PUFAs in großen Mengen zu produzieren. Die hier vorliegende Erfindung verfolgt dieses Ziel, indem sie die entsprechenden PUFA-PKS-Gene aus einem besonders effizienten PUFA Produzenten Ulkenia sp. beschreibt. In Anbetracht des Standes der Technik war es daher die Aufgabe der vorliegenden Erfindung weitere PUFA-PKS-Gene aus dem DHA produzierenden Mikroorganismus Ulkenia sp. zu identifizieren und zu isolieren, die für die Produktion von PUFAs hervorragend geeignet sind. Darüber hinaus sollten Kenntnisse über die Lage und Anordnung solcher Gene sowie deren regulatorische Elemente erlangt werden. Das daraus erzielte Wissen, insbesondere das dabei gewonnene Nukleinsäurematerial, soll die verstärkte Expression von PUFA-PKS-Genen im syngenen als auch im transgenen Organismus ermöglichen. Gelöst werden diese sowie weitere, nicht explizit genannte Aufgaben, die jedoch aus den hierin einleitend diskutierten Zusammenhängen ohne weiteres ableitbar oder erschließbar sind, durch den Gegenstand, der in den Ansprüchen der vorliegenden Erfindung definiert ist.
1. PUFA-PKS, dadurch gekennzeichnet, dass sie a. mindestens eine der Aminosäuresequenzen dargestellt in den SEQ ID NOs 6 (ORF 1), 7 (ORF 2), 8 und/oder 80 (ORF 3) und homologe Sequenzen dazu mit mindestens 70%, bevorzugt 80%, besonders bevorzugt mindestens 90% und ganz besonders bevorzugt mindestens 99%, am meisten bevorzugt 100% Sequenzhomologie, welche die biologische Aktivität mindestens einer Domäne der PUFA-PKS besitzen, oder b. mindestens eine der Aminosäuresequenzen dargestellt in den SEQ ID NOs 32, 33, 34, 45, 58, 59, 60, 61, 72, 74 und/oder 77 und homologe Sequenzen dazu, welche mindestens 70%, bevorzugt 80%, besonders bevorzugt mindestens 90%o und ganz besonders bevorzugt mindestens 99%, am meisten bevorzugt 100%) Sequenzhomologie aufweisen und welche die biologische Aktivität mindestens einer Domäne der PUFA-PKS besitzen, umfasst.
2. Isolierte PUFA-PKS nach Anspruch 1 mit 10 oder mehr ACP-Domänen.
Weiterhin betrifft die Erfindung unter einem bevorzugten Gesichtspunkt eine solche PUFA-PKS, welche mindestens eine Aminosäuresequenz mit mindestens 70%, bevorzugt mindestens 80%, besonders bevorzugt mindestens 90% und ganz besonders bevorzugt mindestens 99% Identität zu mindestens 500 direkt aufeinanderfolgenden Aminosäuren der Sequenzen SEQ ID NO 6 (ORF 1), 7 (ORF 2) und/oder 8und/oder 80 (ORF 3) aufweist.
Weiterhin betrifft die Erfindung unter einem bevorzugten Gesichtspunkt eine Aminosäuresequenz mit mindestens 70%, bevorzugt mindestens 80%, besonders bevorzugt mindestens 90%» und ganz besonders bevorzugt mindestens 99%) Identität zu mindestens 500 direkt aufeinanderfolgenden Aminosäuren der Sequenzen SEQ ID NO 6 (ORF 1), 7 (ORF 2) und/oder 8 und/oder 80 (ORF 3). Unter einem weiteren bevorzugten Gesichtspunkt betrifft die Erfindung ein isoliertes DNA-Molekül kodierend für eine PUFA-PKS nach einem der vorstehenden Ansprüche.
Bevorzugt ist dieses dadurch gekennzeichnet, dass es eine Aminosäuresequenz kodiert, die zu mindestens 70% identisch ist zu mindestens 500 direkt aufeinanderfolgenden Aminosäuren der Sequenzen SEQ ID NO 6 (ORF 1), 7 (ORF 2), 8 und/oder 80 (ORF 3).
Weiterhin betrifft die vorliegende Erfindung ein solches isoliertes DNA-Molekül, welches eine mindestens 70%ige, bevorzugt mindestens 80%ige, besonders bevorzugt mindestens 90%ige und ganz besonders bevorzugt mindestens eine 95%ige Identität mit mindestens 500 aufeinanderfolgenden Nukleotiden aus den SEQ ID NOs 3, 4, 5 und/oder 9 aufweist.
Unter einem weiteren bevorzugten Gesichtspunkt betrifft die Erfindung ein rekombinantes DNA-Molekül umfassend eines der vorstehend beschriebenen DNA- Moleküle, welches funktioneil mit mindestens einer DNA-Sequenz, die die Transkription steuert, bevorzugt ausgewählt aus der Gruppe bestehend aus SEQ ID NOs 3, 4 und 5 und/oder 9, oder Teile daraus aus mindestens 500 Nukleotiden sowie funktioneilen Varianten hiervon, verbunden ist.
Unter noch einem weiteren bevorzugten Gesichtspunkt betrifft die Erfindung eine rekombinante Wirtszelle umfassend ein vorstehend beschriebenes rekombinantes DNA- Molekül.
Unter einem weiteren bevorzugten Gesichtspunkt betrifft die Erfindung eine rekombinante Wirtszelle, welche die erfindungsgemäße PUFA PKS mit mindestens 10 ACP- Domänen endogen exprimiert.
Weiterhin betrifft die Erfindung unter noch einem weiteren bevorzugten Gesichtspunkt ein Verfahren zur Herstellung von Öl enthaltend PUFA, bevorzugt DHA, umfassend die Kultivierung einer solchen rekombinanten Wirtszelle, sowie das so hergestellte Öl.
Weiterhin betrifft die Erfindung unter noch einem weiteren bevorzugten Gesichtspunkt ein Verfahren zur Herstellung von Biomasse enthaltend PUFA, bevorzugt DHA, umfassend die Kultivierung einer solchen rekombinanten Wirtszelle, sowie die so hergestellte Biomasse. Daher betrifft die Erfindung daher unter noch einem weiteren bevorzugten Gesichtspunkt auch eine rekombinante Biomasse nach Anspruch 15, aufweisend eine Nukleinsäure nach Anspruch 8 und/oder eine Aminosäuresequenz nach Anspruch 1 oder hierzu homologe Teile von mindestens 500 aufeinanderfolgenden Aminosäuren.
Weiterhin betrifft die Erfindung unter noch einem weiteren bevorzugten Gesichtspunkt die Verwendung einzelner Enzymdomänen aus der PUFA-PKS umfassend SEQ ID NOs 6, 7, 8 und/oder 80, dargestellt in den SEQ ID NOs 32, 33, 34, 45, 58, 59, 60, 61, 72, 74 und/oder 77 zur Herstellung artifizieller Polyketide, beispielsweise Polyketidantibiotika und/oder neuer, veränderter Fettsäuren.
Erfindungsgemäß bedeutet Identität bei Nukleinsäuren gleiche Basenpaare an der jeweiligen Position der zu vergleichenden Stränge. Lücken sind jedoch möglich. Eine Möglichkeit zur Berechnung der Identitätswerte in % stellen die Programme blastn und fasta dar.
Bei Aminosäuren umfasst der Begriff Homologie z.B. auch konservative Austausche in der Aminosäuresequenz, die die Funktion bzw. Struktur des Proteins nicht nennenswert beeinflusst. Auch solche Homologiewerte werden von dem Fachmann bekannten Programmen wie z.B. blastp, Matrix PAM30, Gap Penalties: 9, Extension: 1 (Altschul et al., NAR 25, 3389-3402) errechnet. Die Sequenzinformation von PUFA-PKS-Genen aus Ulkenia sp. wird durch die in den SEQ ID NOs3 bis 5 und/oder 9 definierten Nukleinsäure- und Aminosäuresequenzen zur Verfügung gestellt. SEQ ID NOs 1 und 2 stellen die gesamte genomische DNA-Sequenz auf den beiden vorliegend isolierten Cosmiden dar (s. Beispiele 2 und 3). Diese enthalten ihrerseits die Information für die drei relevanten zur PUFA-Synthese essentiellen offenen Leseraster ORFs 1-3 sowie deren flankierende regulatorische Sequenzen. Weiterhin sind dadurch die von den genomischen Sequenzen ableitbaren Proteinsequenzen repräsentiert. Die Erfindung umfasst weiterhin ein Verfahren zur homologen und heterologen Transformation von Wirtsorganismen mit erfmdungsgemässen Nukleinsäuren zur Produktion hochreiner PUFAs. Bevorzugterweise führen die isolierten offenen Leseraster im syngenen als auch im transgenen Organismus zur Produktion von PUFA, insbesondere von DHA, EPA und DPA. Die dabei produzierten PUFA liegen bevorzugterweise als Bestandteil der Biomasse oder als Öl vor. Bis zur vorliegenden Erfindung waren erst die PUFA-PKS-Gene eines eukaryontischen Organismus, dem Protisten Schizochytrium bekannt (US Patent No. 6,566,583, WO02/083870). Die dabei ermittelten Sequenzdaten stammten teilweise aus cDNA und aus chromosomaler DNA. In der nun vorliegenden Erfindung werden erstmals alle zur PUFA-Synthese essentiellen PUFA-PKS-Gene eines eukaryontischen Protisten komplett aus chromosomaler DNA beschrieben. Dies führt nicht nur zur Bestimmung der bislang unbekannten PUFA-PKS kodierenden Geninformation aus Ulkenia sp., sondern liefert zusätzlich auch Daten über flankierende regulatorische Elemente, wie Promotoren und Terminatoren der Transkription. Darüber hinaus ermöglicht die chromosomale Sequenzinformation Einblick auf die Lage und Anordnung der einzelnen PUFA-PKS-Gene. Hierbei war völlig überraschend, dass der Cluster als solches, wie er bislang aus den prokaryontischen PUFA-PKS-Nertretern wie Shewanella, Photobacterium oder Moritella bekannt ist, nicht mehr vorliegt. Das zunächst identifizierte Cosmid (Seq ID Nr. 1) zeigte, dass die lineare Anordnung der einzelnen ORFs ist in Ulkenia unterbrochen und auch die Leserichtung einzelner ORFs gegenläufig ist (Figur 1). Dies ist möglicherweise die Folge massiver Genumlagerungen. Die einzelnen ORFs zeigten infolge der Umlagerungen ebenfalls deutlich grössere Abstände zueinander. So besitzen die beiden ORFs 1 und 2 einen Abstand von etwa 13 kb. Der dritte ORF konnte in diesem Zusammenhang erst auf einem weiteren Cosmid (Seq ID Nr. 2) identifiziert werden, wobei keine Teilidentitäten zwischen den beiden Cosmiden (Seq ID Nr. 1 und 2) gefunden werden konnten (Figur 1). Das bedeutet, dass ORF 3 aus Ulkenia sp. räumlich nicht mehr in der Nähe der beiden ORFs 1 und 2 liegt. Dies lässt schließen, dass der PUFA-Gencluster, wie er aus den oben genannten prokaryontischen Vertretern bekannt ist, im Eukaryonten Ulkenia sp. nicht mehr existiert. Die Lage und Anordnung der einzelnen PUFA-PKS-Gene des Protisten Schizochytrium auf dem Genom ist teilweise bestimmt worden (WO 02/083870) und zeigt ebenfalls eine entgegengesetzte Orientierung der beiden ORFs A und B. Diese liegen jedoch nur 4244 Basenpaare voneinander entfernt. In der Patentanmeldung WO 02/083870 wird dieser Sequenzabschnitt als intergene Region mit bidirektionalem Promotorelement diskutiert. Aufgrund des für Ulkenia ermittelten Abstands von 12,95 kb ist ein bidirektionales Promotorelement zwischen den homologen ORFs 1 und 2, zumindest für Ulkenia, unwahrscheinlich. Innerhalb der 12,95 kb großen Region zwischen ORF1 und ORF2 aus Ulkenia liegen keine weiteren offensichtlichen ORFs. Dies spricht für eine Region in der massive Rekombinations bzw. Umlagerungsereignisse stattgefunden haben. Aufgrund einiger repetetiver Sequenzwiederholungen können auch transposaseähnliche Ereignisse stattgefunden haben. Ganz besonders überraschend war, dass die PUFA-PKS aus Ulkenia sp. im Vergleich zu den PUFA-PKS der EPA-Produzenten Shewanella (6 x ACP) und Photobacterium (5 x ACP) sowie die der DHA-Produzenten Moritella (5 x ACP) und Schizochytrium (9 x ACP) mit 10 ACP-Domänen die grösste Anzahl an Wiederholungen des Acyl-Carrier-Proteins besitzt (Figur 3). Dies bedeutet, dass die aus Ulkenia sp. isolierte PUFA-PKS nicht nur gegenüber der PUFA-PKS aus dem verwandten Protisten Schizochytrium eine abweichende Aminosäuresequenz besitzt, sondern auch strukturell einzigartig ist. Eine weitere Besonderheit ist, dass der dritte ORF aus Ulkenia sp. gegenüber dem ORF C aus Schizochytrium um 38 Aminosäuren verkürzt ist und zusätzlich eine Alaninreiche Domäne enthält, die so nicht in Schizochytrium vorliegt (Figur 6). Interessanterweise ähnelt diese Sequenz den zwischen den einzelnen ACP-Domänen aus ORF 1 vorliegenden Regionen und stellt möglicherweise eine Linkerregion dar. Die Ähnlichkeit besteht sowohl in der Länge der Sequenz, als auch dadurch, dass die Alaninabfolgen nur durch vereinzelte Proline und Valine unterbrochen wird (Figur 4 und 6). Der größte Anteil der gegenüber Schizochytrium ORF C fehlenden Aminosäuren innerhalb ORF 3 ist Folge einer 30 Aminosäuren langen Deletion zwischen den Dehydrase/Isomerase-Domänen (Figur 6). Hierdurch liegen diese Domänen auf dem korrespondierenden Protein in einem kürzeren Abstand zueinander, was einen Einfluss auf die Enzymaktivität haben kann. Für ORF 3 sind auch weiter 5 "liegende ATG-Codons als Startcodons . denkbar, sodass theoretisch auch ein maximal 1848 Aminosäuren langer ORF vorliegen kann (Seq ID Nr. 9 und 80). Möglich sind in diesem Zusammenhang auch gleichzeitig vorkommende Varianten von ORF 3. Im einzelnen enthält ORF 1 aus Ulkenia sp. (Seq ID Nr. 3 und 6) zum einen eine sogenannte Beta-Ketoacyl Synthase-Domäne (Seq ID Nr. 14 und 32), die durch das Motiv (DXAC) (Seq ID Nr. 12 und 30) charakterisiert ist. Dieses Motiv für das aktive Zentrum der Enzymdomäne in Ulkenia ORF 1 lässt sich in einer bevorzugten Form auf einen Bereich von 17 Aminosäuren (GMNCVVDAACASSLIAV) (Seq ID Nr. 11 und 29) ausdehnen. Die gesamte Beta-Ketoacyl Synthase-Domäne lässt sich in einen N-Terminalen (Seq ID Nr. 10 und 28) und in einen C-Terminalen (Seq ID Nr. 13 und 31) Abschnitt aufteilen. Die biologische Funktion der Beta-Ketoacyl Synthase-Domäne ist die Katalyse der Kondensationsreaktion innerhalb der Fettsäure- bzw. PKS-Synthese. Dabei wird die für die Elongation bestimmte Acylgruppe über eine Thioesterbindung an den Cysteinrest des aktiven Zentrums der Enzymdomäne gebunden und in mehreren Schritten an das Kohlenstoffatom 2 der Mälonylgruppe am Acylcarrierprotein, unter Freisetzung von CO2 übertragen. Im Anschluss an die Beta-Ketoacyl Synthase-Domäne folgt eine MalonylCoA-ACP-Transferase- Domäne (Seq ID Nr. 15 und 33). Diese Domäne katalysiert die Ubertragxmg von MalonylCoA auf den 4λ-Phosphopantetheinrest am Acylcarrierprotein (ACP). MalonylCoA- ACP-Transferase-Domänen übertragen ebenfalls Methyl- oder Ethylmalonat an das ACP, wobei sie Verzweigungen in die ansonsten lineare Kohlenstoffkette einfügen können. Nach einer Linkerregion folgt dann ein Alanin-reicher Sequenzabschnitt (Seq ID Nr. 16 und 34) der 10 Wiederholungen einer Acylcarrier-Protein-Domäne (ACP-Domäne) (17-26 und 35-44) enthält. Diese ACP-Domänen sind wiederum durch Linkerregionen, aus vornehmlich Alaninen und Prolinen, voneinander getrennt. Jede der ACP-Domänen ist durch ein Bindemotiv für ein 4 -Phosphopantetheinmolekül charakterisiert (LGXDS(L/I)). Hierbei ist das 4"-Phosphopantetheinmolekül an das konservierte Serin innerhalb des Motivs gebunden. Die ACP-Domänen dienen über den 4'-Phosphopantetheinrest als Träger der wachsenden Fettsäure- bzw. Polyketidkette. Abschließend folgt eine Sequenz mit Teilidentitäten zu Ketoreduktasen (Seq ID Nr. 27 und 45). Die biologische Funktion dieser Domäne besteht in der NADPH abhängigen Reduktion von 3-Ketoacyl-ACP -Verbindungen. Sie repräsentiert die erste Reduktionsreaktion in der Fettsäurebiosynthese. Diese Reaktion läuft ebenfalls häufig in der Polyketidsynthese ab (siehe auch Figur 3). ORF 2 aus Ulkenia sp. (Seq ID Nr. 4 und 7) beginnt ebenfalls mit einer Beta-Ketoacyl Synthase-Domäne (Seq ID Nr. 50 und 58), die durch das Motiv (DXAC) (Seq ID Nr. 48 und 56) charakterisiert ist. Dieses Motiv für das aktive Zentrum der Enzymdomäne in Ulkenia ORF 2 lässt sich in einer bevorzugten Form auf einen Bereich von 17 Aminosäuren (PLHYSVDAACATALYVL) (Seq ID Nr. 47 und 55) ausdehnen. Die gesamte Beta-Ketoacyl Synthase-Domäne lässt sich in einen N-Terminalen (Seq ID Nr. 46 und 54) und in einen C- Terminalen (Seq ID Nr. 49 und 57) Abschnitt aufteilen. Die biologische Aktivität dieser Domäne entspricht der in ORF 1 beschriebenen Beta-Ketoacyl Synthase-Domäne. Ketosynthasen spielen eine Schlüsselrolle im Elongationszyklus und zeigen eine höhere Substratspezifität als andere Enzyme der Fettsäuresynthese. Im Anschluss daran folgt wiederum ein Sequenzabschnitt mit geringeren Teilidentitäten zu einer Beta-Ketoacyl Synthase-Domäne. Dieser Domäne fehlt weiterhin das Motiv DXAC für das aktive Zentrum. Sie hat Eigenschaften eines sogenannten chain length factors (CLF) aus Typ II PKS- ähnlichen Systemen (Seq ID Nr. 51 und 59). CLF- Aminosäuresequenzen besitzen Teilidentitäten zu Ketosynthasen, haben aber kein charakteristisches aktives Zentrum mit einem entsprechenden Cysteinrest. Die Rolle der CLFs in PKS-Systemen wird derzeit kontrovers diskutiert. Neuere Ergebnisse deuten darauf hin, dass die Rolle der CLF-Domäne in der Decarboxylierung des Malonyl-ACP besteht. Die entstehende Acetyl-Gruppe kann anschließend an das aktive Zentrum einer Beta-Ketoacyl Synthase-Domäne binden und stellt so das sogenannte Priming-Molekül der initialen Kondensationsreaktion dar. CLF-homologe Sequenzen finden sich auch als Ladedomänen in modulären PKS-Systemen. Domänen mit CLF-Sequenzeigenschaften liegen in allen bislang vorliegenden PUFA-PKS-Systemen vor. Daraufhin folgt eine Acyl-Transferase-Domäne (Seq ID Nr. 52 und 60). Diese Domäne katalysiert eine Anzahl von Acyl-Übertragungen, wie den Transfer von Acyl auf CoenzymA oder auf ACP-Domänen. Die abschliessende Domäne aus ORF 2 zeigt Teilidentitäten zu Oxidoreduktasen (Seq ID Nr. 53 und 61) und stellt mit hoher Wahrscheinlichkeit eine Enoylreduktasedomäne dar. Die biologische Aktivität der Enoylreduktasedomäne liegt in der zweiten Reduktionsreaktion der Fettsäuresynthese. Sie katalysiert die Reduktion der Trans- Doppelbindung des Fettsäureacyl-ACP (siehe auch Figur 2). ORF 3 aus Ulkenia sp. (Seq ID Nr. 5 und 8) besteht aus zwei Dehydrase/Isomerase- Domänen (Seq ID Nr. 66, 68, 72 und 74). Beide Domänen enthalten ein „active site" Histidine mit einem direkt benachbarten Cystein (Seq ID Nr. 67 und 73 sowie Seq ID Nr. 69 und 75). Die biologische Funktion dieser Domänen ist das Einfügen von trans Doppelbindungen in das Fettsäure- bzw. Polyketidmolekül unter Abspaltung von H2O und die anschließende Überführung der Doppelbindung in die cis-isomere Form. Die zweite Dehydrase/Isomerase-Domäne geht in eine Alanin-reiche Region (Seq ID Nr. 70 und 76) ohne bekannte Funktion über, die aber möglicherweise eine Linkerregion darstellt. Im Anschluß daran folgt eine Enoylreduktasedomäne (Seq ID Nr.71 und 77), mit hoher Teilidentität zu der bereits in ORF 2 vorliegenden Enoylreduktasedomäne aus Ulkenia. Ihre biologische Funktion entspricht der bereits oben beschriebenen Enoylreduktasedomäne (siehe auch Figur 2). Für ORF 1 aus Ulkenia sp. liegen als Promotorsequenz bevorzugt 2000bp (Sequenz ID Nr. 62) vor dem Start- ATG-Codon vor. Besonders bevorzugt sind dies 1500bp, ganz besonders bevorzugt lOOObp vor dem Start. Als Terminationssequenz für ORF 1 gelten bevorzugt 2000bp (Sequenz ID Nr. 63) nach dem Stopp-Codon TAA. Besonders bevorzugt sind 1500bp, ganz besonders bevorzugt lOOObp nach dem Stopp. Ein potentielles Terminationssignal für die mRNA-Synthese von ORF 1, mit der Basenabfolge AATAAA, liegt 412bp nach dem Stop-Codon TAA. Für ORF 2 aus Ulkenia sp. liegen als Promotorsequenz bevorzugt 2000bp (Sequenz ID Nr. 64) vor dem Start- ATG-Codon vor. Besonders bevorzugt sind dies 1500bp, ganz besonders bevorzugt lOOObp vor dem Start. Als Terminationssequenz für ORF 2 gelten bevorzugt 2000bp (Sequenz ID Nr. 65) nach dem Stopp-Codon TAA. Ein potentielles Terminationssignal für die mRNA-Synthese von ORF 2, mit der Basenabfolge AATAAA, liegt 1650bp nach dem Stop-Codon TAA. Für ORF 3 aus Ulkenia sp. liegen als Promotorsequenz bevorzugt 2000bp (Sequenz ID Nr. 78) vor dem Start- ATG-Codon vor. Besonders bevorzugt sind dies 1500bp, ganz besonders bevorzugt lOOObp vor dem Start. Als Terminationssequenz für ORF 3 gelten bevorzugt 2000bp (Sequenz ID Nr. 79) nach dem Stop-Codon TAA. Ein potentielles Terminationssignal für die mRNA-Synthese von ORF 3, mit der Basenabfolge AATAAA, liegt 4229bp nach dem Stop-Codon TAA. Unter Verwendung der in der vorliegenden Erfindung ermittelten Sequenzinformation können PUFA, wie zum Beispiel DHA, sowohl homolog in Ulkenia sp. als auch heterolog in einem Wirt wie etwa E. coli produziert werden. Die erfindungsgemäßen Nukleinsäuresequenzen können zur Produktionssteigerung von PUFA eingesetzt werden, indem sie zum Beispiel zur Vermehrung die Anzahl der PUFA-PKS-Gene innerhalb des PUFA-produzierenden Organismus eingesetzt werden. Es können natürlich auch einzelne Nukleinsäureabschnitte, wie zum Beispiel die für die ACP-Domänen kodierende Sequenzabschnitte, in einem homologen aber auch heterologen Produktionsorganismus vervielfältigt werden. Die ACP-Domänen, als Bindestellen für den zur PUFA-Synthese essentiellen Kofaktor 4-Phosphapanthetein, bieten sich zur Produktionssteigerung besonders an. Natürlich kann auch der Einsatz unterschiedlicher regulatorischer Elemente, wie zum Beispiel Promotoren, Terminatoren und Enhancerelemente zu einer Produktionssteigerung in genetisch modifizierten PUFA-Produzenten fuhren. Genetische Modifizierungen innerhalb einzelner Sequenzabschnitte können zur Veränderung der Struktur des resultierenden Produktes führen und somit zur Produktion unterschiedlicher PUFAs führen. Darüber hinaus ermöglicht die Ähnlichkeit der PUFA-Synthasen zu Polyketidsynthasen die Konstruktion von gemischten Systemen. Diese sogenannte kombinatorische Biosynthese erlaubt die Herstellung neuartiger, artifizieller bioaktiver Substanzen. Denkbar sind zum Beispiel neue Polyketidantibiotika, produziert in transgenen Mikroorganismen durch ein gemischtes System aus PKS- und PUFA-PKS-Einheiten. Für die heterologe Expression der hier vorliegenden PUFA-Gene geeignete Wirte sind neben E.coli zum Beispiel Hefen wie Saccharomyces cerevisiae und Pichia Pastoris oder filamentöse Pilze wie zum Beispiel Aspergillus nidulans und Acremonium chysogenum. PUFA produzierende Pflanzen können durch Einfügen der erfindungsgemässen Gene in zum Beispiel Soja, Raps, Sonnenblume, Flachs oder andere, vorzugsweise ölreiche Pflanzen generiert werden. Zur effektiven heterologen Expression der PUFA-Gene können auch weitere akzessorische Gene wie zum Beispiel 4-Phosphopanthetein-Transferasen Verwendung finden. Des weiteren können wirtspezifische Promotor/Operatorsysteme zur verstärkten oder induzierbaren Genexpression herangezogen werden. Eine Vielzahl von prokaryontischen Expressionssystemen kann für die heterologe PUFA-Produktion genutzt werden. Es können Expressionsvektoren konstruiert werden, die neben den entsprechenden PUFA-Genen auch Promotoren, Ribosomenbindestellen und Transkriptionsterminatoren enthalten. Als Beispiel für solche regulatorische Elemente in E. coli seien die Promotor/Operator Region der E. coli Tryptophanbiosynthese und Promotoren des Lambda-Phagen genannt. Es können ebenfalls selektierbare Marker wie zum Beispiel Resistenzen gegen Ampicillin, Tetrazyklin oder Chloramphenicol, auf den entsprechenden Vektoren genutzt werden. Sehr geeignete Vektoren für die Transformation von E. coli sind pBR322, pCQV2 und das pUC-Plasmid sowie deren Derivate. Diese Plasmide können sowohl virale als auch bakterielle Elemente beinhalten. Als E. coli Wirtsstamm kann jeder von E. coli K12 abstammender Stamm wie zum Beispiel JM 101, JM109, RR1, HB101, DH1 oder AG1 verwendet werden. Es sind natürlich auch alle weiteren gebräuchlichen prokaryontischen Expressionssysteme für die heterologe PUFA-Produktion denkbar (siehe dafür auch Sambrook et al.). Die Verwendung von ölbildenden Bakterien als Wirtssysteme ist ebenfalls denkbar. Als eukaryontische Expressionssysteme können Säuger-, Pflanzen- und Insektenzellen aber auch Pilze wie zum Beispiel Hefen verwendet werden. Im Falle des Hefesystems können Transkriptionsinitiationselemente aus Genen von Enzymen aus der Glykolyse eingesetzt werden. Dazu zählen regulatorische Elemente der Alkoholdehydrogenase, Glyzerinaldehyd- 3 -Phosphat-Dehydro genäse, Phosphoglukoisomerase, Phosphoglyzeratkinase usw. Es können aber auch regulatorische Elemente aus Genen wie der sauren Phosphatase, Lactase, Metallothionein oder Glukoamylase genutzt werden. Auch hier finden Promotoren, die eine verstärkte oder aber eine induzierbare Expression erlauben, Verwendung. Von besonderem Interesse sind auch durch Galaktose induzierbare Promotoren (GAL1, GAL7 und GAL10) (Lue et al. 1987 Mol. Cell. Biol. 7, S. 3446- und Johnston 1987 Microbiol. Rev. 51, S. 458-). Bevorzugterweise stammt die 3"- Terminationsseqeuenz ebenfalls aus einer Hefe. Da Nukleotisequenzen unmittelbar um das Start-Codon (ATG) die Genexpression in Hefen beeinflussen, sind effiziente Translationsinitiationssequenzen aus der Hefe ebenfalls bevorzugt. In Fällen, in denen Hefeplasmide eingesetzt werden, enthalten diese einen Replikationsursprung aus Hefen und einen Selektionsmarker. Dieser Selektionsmarker ist bevorzugterweise ein Auxotrophiemarker wie zum Beispiel LEU, TRP oder HIS. Solche Hefeplasmide sind die sogenannten YRps (Yeast Replicating plasmids), YCps (Yeast Centromere plasmids) und YEps (Yeast Episomal plasmids). Plasmide ohne Replikationsursprung sind die YIps (Yeast Integrating plasmids), die zur Integration der transformierten DNA ins Genom verwendet werden. Von speziellem Interesse sind die Plasmide ρYES2 und pYX424 sowie die pPICZ-Plasmide. Werden filamentöse Pilze wie etwa Aspergillus nidulans als heterologe PUFA- Produzenten genutzt, kommen ebenfalls Promotoren aus dem entsprechenden Organismus zur Verwendung. Als Beispiele können der gpc 4-Promotor für eine verstärkte und der alcA- Promotor für eine induzierbare Expression eingesetzt werden. Für die Transformation filamentöser Pilze werden bevorzugterweise Helferplasmide wie pHELP (Ballance, DJ. and Turner G. (1985) Development of a high-frequency transforming vector for Aspergillus nidulans. Gene 36, 321-331) und selektierbare Marker wie ura, bio oder paba verwendet. Auch 3 '-regulatorische Elemente aus filamentösen Pilzen werden bevorzugt. Die Produktion von PUFA in Insektenzellen kann durch das Baculovirusexpressionssystem erfolgen. Solche Expressionssysteme sind kommerziell zum Beispiel bei Clonetech oder Invitrogen erhältlich. Für die Transformation von Pflanzen können Vektoren wie zum Beispiel das Ti- Plasmid aus Agrobacterium oder ganze Viren wie Cauliflower Mosaikvirus (CaMV), Geminivirus, Tomato golden Mosaikvirus oder Tabakmosaikvirus (TMV) verwendet werden. Ein bevorzugter Promotor ist zum Beispiel der 35S Promotor von CaMV. Weitere Möglichkeiten zur Transformation von Pflanzen sind die Calciumphosphatmethode, die Polyethylenglykolmethode, Mikroinjektion, Elektroporation oder Lipofektion von Protoplasten. Ebenfalls bevorzugt ist die Transformation durch Beschuss mit DNA-beladenen Mikropartikeln (gene gun). Eine Alternative PUFA-Produktion in Pflanzen ergibt sich durch die Transformation von Chloroplasten. Einen Transport von Proteinen in Choroplasten ermöglichen zum Beispiel N-Terminale Leaderpepüde. Ein bevorzugtes Leaderpeptiά stammt von der kleinen Untereineinheit der Ribulosebisphosphatcarboxylase aber auch Leaderpepüde anderer chloroplastidärer Proteine können verwendet werden. Eine andere Möglichkeit bietet die stabile Tranformation des Chloroplastengenoms. Hierfür kommen vor allem biolistische aber auch andere Methoden in Frage (Blowers et al. Plant Cell 1989 1 S. 123-132, Kline et al. Nature 1987 327 S. 70-73 und Shrier et al. Embo J. 4 S. 25-32 Für Säugerzellen können ebenfalls kommerziell erhältliche Expressionssysteme Verwendung finden. Als Beispiel können unter anderem virale und nichtvirale Transformations und Expressionssysteme wie etwa die lentiviralen oder adenoviralen Systeme oder das T-Rex-System von Invitrogen eingesetzt werden. Für die gezielte Integration von DNA in Säugerzellen bietet sich dass Flp-In-System ebenfalls von Invitrogen an. Nachfolgend wird die dem erfindungsgemäßen Verfahren zugrundeliegenden Nukleinsäure- und Aminosäuresequenzen anhand einiger Beispiele beschrieben. Die Sequenzen sowie die Erfindung sind jedoch nicht auf diese Beispiele beschränkt. Kurze Beschreibung der Figuren: Figur 1 beschreibt die Lage der PUFA-PKS-Gene aus Ulkenia sp. auf dem Genom. Weiterhin sind die einzelnen Domänen der durch diese Gene kodierten PUFA-PKS dargestellt. KS: Keto-Synthase, MAT: Malonyl-CoA:ACP Acyltransferase, ACP: Acyl- Carrier-Protein, KR: Keto-Reduktase, CLF: Chainlength Factor, AT: Acyltransferase, ER: Enoyl-Reduktase und DH: Dehydrase/Isomerase. Figur 2 zeigt einen Vergleich von ORF 2 und ORF 3 aus Ulkenia sp. mit den entsprechenden homologen ORFs aus Moritella marina (GehBank accession no.: AB025342.1), Photobacterium profundum SS9 (GenBank accession no.:AF409100), Shewanella sp. SCRC-2738 (GenBank accession no.: U73935.1) und Schizochytrium (GenBank accession nos.: AF378327, AF378328, AF378329). Neben der Domänenstruktur sind auch die Genumlagerungen innerhalb und zwischen den einzelnen ORFs im Verlauf der Evolution angegeben. Figur 3 zeigt einen Vergleich von ORF 1 aus Ulkenia sp. mit den entsprechenden homologen ORFs aus Moritella marina (GenBank accession no.: AB025342.1), Photobacterium profundum SS9 (GenBank accession no.:AF409100), Shewanella sp. SCRC- 2738 (GenBank accession no.: U73935J) und Schizochytrium (GenBank accession nos.: AF378327, AF378328, AF378329). Hervorgehoben sind die Anzahl der ACP-Domänen und die Wiederholungen der Aminosäureabfolge LGTDSIKRVEIL. Figur 4 enthält einen Sequenzvergleich von ORF 1 aus Ulkenia sp. mit ORF A aus Schizochytrium. Der Grad der Teilidentität beider Sequenzen beträgt etwa 81,5 %. Figur 5 enthält einen Sequenzvergleich von ORF 2 aus Ulkenia sp. mit ORF B aus Schizochytrium. Der Grad der Teilidentität beider Sequenzen beträgt etwa 75,9 %. Figur 6 enthält einen Sequenzvergleich von ORF 3 aus Ulkenia sp. mit ORF C aus Schizochytrium. Der Grad der Teilidentität beider Sequenzen beträgt etwa 80,0 %. Figur 7 beschreibt einen mit FASTAX durchgeführten Sequenzvergleich des in Beispiel 1 beschriebenen PCR-Produktes mit Datenbanksequenzen (Swiss-PROT All library). Figur 8 zeigt eine Vektorkarte von Cosmid SuperCosI (Stratagene), das zur Herstellung der Cosmidbank aus Beispiel 2 verwendet wurde. Figur 9 beschreibt einen mit BLASTX durchgeführten Sequenzvergleich des in Beispiel 3 beschriebenen PCR-Produktes mit Datenbanksequenzen (Swiss-PROT All library).
BEISPIELE
Beispiel 1 :
Amplifϊzierung einer PUFA-PKS spezifischen Sequenz aus von Ulkenia sp. SAM2179 isolierter DNA
1.1 Isolierung genomischer DNA, welche für PUFA-PKS kodierende Gene enthält.
50mL DHl-Medium (50g/L Glukose; 12,5g/L Hefeextrakt; 16,65g/L Tropic Marin; pH6,0) wurde in einem 250mL Erlenmeyerkolben mit Schikane mit Ulkenia sp. SAM 2179 angeimpft xmd 48h bei 28°C und 150rpm kultiviert. Anschließend wurden die Zellen zweimal mit sterilem Leitungswasser gewaschen, abzentrifugiert xmd das Zellsediment bei -85°C eingefroren. Zur weiteren Aufarbeitung wurde dann das Zellsediment in einen Mörser überführt und unter flüssigem Stickstoff mit einem Stößel zu einem feinen Pulver zerrieben. Dann wurde l/10tel des pulverisierten Zellmaterials mit 2mL Lyse-Puffer (50mM Tris/Cl pH 7,2; 50mM EDTA; 3% (v/v) SDS; 0,01% (v/v) 2-Mercaptoethanol) versetzt und lh bei 68°C inkubiert. Anschließend wurde 2mL Phenol/Chloroform/Isoamylalkohol (25:24:1) zugegeben, geschüttelt und 20min bei 10000 rpm zentrifugiert. Nach Abnahme der oberen wässrigen Phase wurde diese zu je 600μl in zwei neue Reaktionsgefäße überführt und erneut mit je 600μl Phenol/Chloroform/Isoamylalkohol (25:24:1) versetzt, geschüttelt und 15min bei 13000rpm zentrifugiert. Je 400μl der jeweiligen oberen Phase wurden dann in ein neues Reaktionsgefäß überführt und nach Zugabe von jeweils lmL Ethanol (100%) zwei bis dreimal invertiert. Danach wurde die gefällte DNA an einem Glasstab aufgewickelt, mit 70% Ethanol gewaschen, getrocknet und in 50μl H2O<3est. gelöst. Bis zur weiteren Verwendung wurde die so gewonnene DNA mit 2μl RNase A versetzt xmd bei 4°C gelagert.
1.2 PCR-Reaktion unter Verwendung von motifspezifischen Oligonukleotiden
Als motifspezifische Oligonukleotide wurden die PCR-Primer MOF1 und MOR1 verwendet.
MOF1: 5' - CTC GGC ATT GAC TCC ATC - 3 (Seq ID Nr. 81) MOR1: 5"- GAG AAT CTC GAC ACG CTT - 3V (Seq ID Nr. 82) Die wie unter 1.1 beschriebene genomische DNA aus Ulkenia sp. 2179 wurde 1:100 verdünnt. 2μl dieser Verdünnung wurden dann in ein 50μl Volumen PCR-Reaktionsgemisch (1 x Puffer (Sigma); dNTPs (je 200μM); MOF1 (20pmol), MOR1 (20pmol) und 2,5U Taq-DNA-Polymerase (Sigma) überführt. Die PCR wurde unter folgenden Bedingungen durchgeführt: Anfangsdenaturierung 94°C für 3min, anschließend folgten 30 Zyklen mit jeweils 94°C für 1min, 55°C für 1min , 72°C 1min. Abschließend 8min 72°C. Die PCR-Produkte wurden dann durch Gelelektrophorese analysiert und Fragmente entsprechender Größe über T/A Klonierung (Invitrogen) in den Vektor pCR2.1 TOPO eingebaut. Nach Transformation von E. coli TOP10F" wurde Plasmid-DNA isoliert (Qiaprep Spin, QIAGEN) und sequenziert.
Die erhaltenen Sequenzdaten wurden gegen die offiziell zugängliche EMBL Nucleotide Sequence Database (http://www.ebi.ac.uk/embl/) verglichen und ausgewertet. Die unter FASTAX erhaltenen Sequenzvergleiche ergaben für das Hauptprodukt der PCR aus Ulkenia sp. SAM 2179 eine auf Aminosäureebene etwa 90%ige Teilidentität zum Acyl-Carrier- Protein der PUFA-PKS (ORF A; ORF: open reading frame) aus Schizochytrium sp. ATCC 20888 (Figur 7). Überraschenderweise musste zur Ermittlung dieser PUFA-PKS in Ulkenia sp. SAM 2179 nur ein einziges PCR-Experiment durchgeführt werden. Dies spricht für eine besonders große Effektivität der eingesetzten Oligonukleotide.
Beispiel 2:
Herstellung einer Genbank aus genomischer DNA von Ulkenia sp. SAM 2179
50μg genomische DNA aus Ulkenia sp. SAM 2179 wurden in einem Volumen von 500μl mit 2,5U Sau3AI für 2min bei 37°C partiell gespalten und anschließend sofort mit einem gleichen Volumen Phenol/Chloroform gefällt. Danach mit Ethanol präzipitiert und in H2O dest aufgenommen. Dann wurde die Sau3AI gespaltene genomische DNA mit SAP (Shrimp alkalische Phosphatase; Röche) nach Angaben des Herstellers dephosphoryliert. Enzyminaktivierung erfolgte anschließend durch 20 minütiges erhitzen des Reaktionsansatzes auf 65°C. Als Vektor wurde Cosmid Supercos I (Stratagene, Figur 8) verwendet. lOμg Supercos I wurden mehrere Stunden mit Xbal bei 37°C komplett gespalten. Das Enzym wurde danach 20min bei 65°C hitzeinaktiviert und das geschnittene Cosmid mit SAP (Shrimp alkalische Phosphatase; Röche) nach Angaben des Herstellers dephosphoryliert. Auch hier erfolgte die Enzyminaktivierang durch 20 minütiges erhitzen des Reaktionsansatzes auf 65 °C. Xbal gespaltenes und dephosphoryliertes Supercos I Cosmid wurde dann mit BamHI vollständig für mehrere Stunden bei 37°C gespalten. Danach wurde die geschnittene Cos id-DNA mit Phenol/Chloroform gefällt, mit Ethanol präzipitiert und anschließend in H2O est aufgenommen. Für die Ligation wurden lμg mit Xbal xmd BamHI gespaltene Cosmid-DNA und 3,5μl Sau3AI gespaltene genomische DNA in einem Volumen von 20μl zusammengegeben und mit T4-Ligase (Biolabs) nach Angaben des Herstellers für mehrere Stunden ligiert. Etwa l/7tel des Ligationsansatzes wurde anschließend in Phagen, unter Verwendung des Gigapack III XL Packaging Extract (Stratagene), nach Angaben des Herstellers verpackt. Diese wurden dann zur Transfektion von E. coli XLl-Blue MR eingesetzt. Die Isolierung von PUFA-PKS spezifischen Cosmiden aus der Genbank erfolgte danach durch die Firma QIAGEN (Hilden, Deutschland) in Form eines PCR-Screenings unter Verwendung der Ulkenia-PKS spezifischen Oligonukleotide PSF2: 5" - ATT ACT CCT CTC TGC ATC CGT - 3" (Seq ID Nr. 83) und PSR2: 5" - GCC GAA GAC AGC ATC AAA CTC - 3Λ (Seq ID Nr. 84). Anschließend wurde die Cosmid-DNA des dabei ermittelte Cosmidklon C19F09 isoliert und sequenziert (Seq ID Nr. 1).
Beispiel 3:
Identifizierung von ORF 3 aus Ulkenia sp.
Zur Identifizierung von ORF 3 aus Ulkenia sp. SAM 2179 wurden Oligonukleotide aus hoch konservierten Sequenzabschnitten unterschiedlicher PUFA-PKS abgeleitet. Interressanterweise zeigten sich im Bereich der für die Dehydrase/Isomerase-Domänen kodierenden Sequenzabschnitte, zwischen den einzelnen Spezies, sehr hohe Teilidentitäten, die für die PCR-Amplifizierung geeignet erschienen.
3.1 Isolierung genomischer DNA, welche für PUFA-PKS kodierende Gene enthält.
Siehe Beispiel 1.1
3.2 PCR-Reaktionen unter Verwendung von PUFA-PKS-spezifischen Oligonukleotiden
Als PUFA-PKS-spezifische Oligonukleotide wurden die nachfolgenden PCR-Primer verwendet:
CFOR1: 5Λ - GTC GAG AGT GGC CAG TGC GAT - 3λ (Seq ID Nr. 85) CREV3: 5-AAA GTG GCA GGGAAA GTA CCA-3'(SeqIDNr.86)
Die wie unter 3.1 beschriebene genomische DNA aus Ulkenia sp. 2179 wurde 1:10 verdünnt. 2μl dieser Verdünnung wurden dann in ein 50μl Volumen PCR-Reaktionsgemisch (1 x Puffer (Sigma); dNTPs (je 200μM); CFOR1 (20pmol), CREV3 (20pmol) und 2,5U Taq- DNA-Polymerase (Sigma) überführt. Die PCR wurde unter folgenden Bedingungen durchgeführt: Anfangsdenaturierung 94°C für 3min, anschließend folgten 30 Zyklen mit jeweils 94°C für 1min, 60°C für 1min , 72°C 1min. Abschließend 8min 72°C. Die PCR- Produkte wurden dann durch Gelelektrophorese analysiert und Fragmente entsprechender Größe über T/A Klonierung (Invitrogen) in den Vektor pCR2.1 TOPO eingebaut. Nach Transformation von E. coli TOP10F' wurde Plasmid-DNA isoliert (Qiaprep Spin, QIAGEN) und teilsequenziert.
Die erhaltenen Sequenzdaten wurden gegen die offiziell zugängliche EMBL Nucleotide Sequence Database (http://www.ebi.ac.uk/embl/) verglichen und ausgewertet. Die unter BLASTX erhaltenen Sequenzvergleiche ergaben für das Hauptprodukt der PCR aus Ulkenia sp. SAM 2179 eine auf Aminosäureebene etwa 80%ige Teilidentität zum ORF C der PUFA- Synthase aus Schizochytrium sp. ATCC 20888 (Figur 9). Überraschenderweise musste zur Ermittlung dieser PUFA-PKS in Ulkenia sp. SAM 2179 nur ein einziges PCR-Experiment durchgeführt werden. Dies spricht für eine ebenfalls besonders große Effektivität der eingesetzten Oligonukleotide. Die Isolierung von PUFA-PKS spezifischen Cosmiden aus der in Beispiel 2 beschriebenen Genbank erfolgte anschließend durch die Firma QIAGEN (Hilden, Deutschland) in Form eines PCR-Screenings unter Verwendung der bereits für die PCR eingesetzten Oligonukleotide CFOR1: 5Λ - GTC GAG AGT GGC CAG TGC GAT - 3' (Seq ID Nr. 85) und CREV3: 5Λ- AAA GTG GCA GGG AAA GTA CCA - 3 (Seq ID Nr. 86). Anschließend wurde die Cosmid-DNA des dabei ermittelte Cosmidklon 058G09 isoliert und sequenziert (Seq ID Nr. 2).

Claims

PATENTANSPRÜCHE 1. PUFA-PKS, dadurch gekennzeichnet, dass sie a. mindestens eine der Aminosäuresequenzen dargestellt in den SEQ ID NOs 6 (ORF 1), 7 (ORF 2) und 8 und/oder 80 (ORF 3) und homologe Sequenzen dazu mit mindestens 70%, bevorzugt 80%, besonders bevorzugt mindestens 90% und ganz besonders bevorzugt mindestens 99%, am meisten bevorzugt 100%o Sequenzhomologie, welche die biologische Aktivität mindestens einer Domäne der PUFA-PKS besitzen, oder b. mindestens eine der Aminosäuresequenzen dargestellt in den SEQ ID NOs 32, 33, 34, 45, 58, 59, 60, 61, 72, 74 und/oder 77 und homologe Sequenzen dazu, welche mindestens 70%, bevorzugt 80%, besonders bevorzugt mindestens 90%) und ganz besonders bevorzugt mindestens 99%, am meisten bevorzugt 100% Sequenzhomologie aufweisen und welche die biologische Aktivität mindestens einer Domäne der PUFA-PKS besitzen, umfasst.
2. Isolierte PUFA-PKS nach Anspruch 1 mit 10 oder mehr ACP-Domänen.
3. PUFA-PKS nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass sie mindestens eine Aminosäuresequenz mit mindestens 70%, bevorzugt mindestens 80%, besonders bevorzugt mindestens 90%> xmd ganz besonders bevorzugt mindestens 99% Seuquenzhomologie zu mindestens 500 direkt aufeinanderfolgenden Aminosäuren der Sequenzen SEQ ID NOs 6 (ORF 1), 7 (ORF 2) und 8 und/oder 80 (ORF 3) aufweist, und die die biologische Aktivität mindestens einer Domäne der PUFA-PKS besitzen.
4. Aminosäuresequenz mit mindestens 70%>, bevorzugt mindestens 80%>, besonders bevorzugt mindestens 90% und ganz besonders bevorzugt mindestens 99% Identität zu mindestens 500 direkt aufeinanderfolgenden Aminosäuren der Sequenzen SEQ ID NO 6 (ORF 1), 7 (ORF 2) und 8 und oder 80 (ORF 3), welches die biologische Aktivität mindestens einer Domäne der PUFA-PKS besitzt.
5. Isoliertes DNA-Molekül kodierend für eine Aminosäuresequenz nach einem der vorstehenden Ansprüche und hierzu vollständig komplementäre DNA.
6. Isoliertes DNA-Molekül nach Anspruch 5, dadurch gekennzeichnet, daß es eine mindestens 70%>ige, bevorzugt eine mindestens 80%>ige, besonders bevorzugt eine mindestens 90%ige und ganz besonders bevorzugt eine mindestens 95%ige Identität mit mindestens 500 aufeinanderfolgenden Nukleotiden aus den SEQ ID NOs 3, 4 xmd 5 und/oder 9 aufweist.
7. DNA-Molekül nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass es eine Aminosäuresequenz kodiert, die zu mindestens 70% homolog ist zu mindestens 500 direkt aufeinanderfolgenden Aminosäuren der Sequenzen SEQ ID NOs 6 (ORF 1), 7 (ORF 2) und 8 und/oder 80 (ORF 3).
8. Rekombinantes DNA-Molekül umfassend eines der DNA-Moleküle nach einem der Ansprüche 5, 6 und/oder 7, funktionell verbunden mit mindestens einer DNA- Sequenz, die die Transkription steuert, bevorzugt ausgewählt aus der Gruppe bestehend aus SEQ ID NOs XX- YY (Terminatoren/Promotoren), oder Teile daraus aus mindestens 500 Nukleotiden sowie funktionelle Varianten hierzu.
9. Rekombinante Wirtszelle umfassend ein rekombinantes DNA-Molekül nach Anspruch 8.
10. Rekombinante Wirtszelle nach Anspruch 9, welche die PUFA PKS nach Anspruch 1 mit der Aktivität mindestens einer weiteren Domäne der PUFA-PKS endogen exprimiert.
11. Rekombinante Wirtszelle, umfassend ein rekombinantes DNA-Konstrukt, bei welchem die die Translation steuernden Elemente ausgewählt sind aus der Gruppe bestehend aus SEQ ID NOs XX- YY (Terminatoren Promotoren), oder Teile daraus aus mindestens 500 Nukleotiden sowie funktioneile Varianten hierzu.
12. Verfahren zur Herstellung von Öl enthaltend PUFA, bevorzugt DHA, umfassend die Kultivierung einer Wirtszelle nach einem der Ansprüche 9 oder 10.
13. Öl, hergestellt nach dem Verfahren nach Anspruch 12.
14. Verfahren zur Herstellung von Biomasse enthaltend PUFA, bevorzugt DHA, umfassend die Kultivierung einer Wirtszelle nach einem der Ansprüche 9 oder 10.
15. Biomasse, hergestellt nach dem Verfahren nach Anspruch 14.
16. Rekombinante Biomasse nach Anspruch 15, aufweisend eine Nukleinsäure nach Anspruch 8 und/oder eine Aminosäuresequenz nach Anspruch 1 oder hierzu homologe Teile von mindestens 500 aufeinanderfolgenden Aminosäuren.
17. Verwendung einzelner Enzymdomänen aus der PUFA-PKS umfassend SEQ ID NOs 6, 7, 8 und/oder 80 zur Herstellung artifizieller Polyketide.
EP05751638A 2004-04-08 2005-04-08 Pufa-pks gene aus ulkenia Ceased EP1733029A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004017370A DE102004017370A1 (de) 2004-04-08 2004-04-08 PUFA-PKS Gene aus Ulkenia
PCT/EP2005/003701 WO2005097982A2 (de) 2004-04-08 2005-04-08 Pufa-pks gene aus ulkenia

Publications (1)

Publication Number Publication Date
EP1733029A2 true EP1733029A2 (de) 2006-12-20

Family

ID=35062272

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05751638A Ceased EP1733029A2 (de) 2004-04-08 2005-04-08 Pufa-pks gene aus ulkenia

Country Status (11)

Country Link
US (1) US7939305B2 (de)
EP (1) EP1733029A2 (de)
JP (2) JP2007532104A (de)
KR (2) KR101484097B1 (de)
CN (2) CN101087882A (de)
AU (1) AU2005231964B2 (de)
BR (1) BRPI0509747A (de)
CA (1) CA2563427A1 (de)
DE (1) DE102004017370A1 (de)
IL (1) IL178613A0 (de)
WO (1) WO2005097982A2 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340742A (en) 1988-09-07 1994-08-23 Omegatech Inc. Process for growing thraustochytrium and schizochytrium using non-chloride salts to produce a microfloral biomass having omega-3-highly unsaturated fatty acids
US8003772B2 (en) 1999-01-14 2011-08-23 Martek Biosciences Corporation Chimeric PUFA polyketide synthase systems and uses thereof
KR20090064603A (ko) * 2000-01-28 2009-06-19 마텍 바이오싸이언스스 코포레이션 발효기 내에서 진핵 미생물의 고밀도 배양에 의한 고도불포화 지방산을 함유하는 지질의 증진된 생산 방법
CA3056110C (en) 2004-04-22 2020-07-14 Surinder Pal Singh Synthesis of long-chain polyunsaturated fatty acids by recombinant cells
DK1756280T3 (en) 2004-04-22 2015-02-02 Commw Scient Ind Res Org SYNTHESIS OF CHAIN, polyunsaturated fatty acids BY RECOMBINANT CELLS
CA2647150A1 (en) 2006-03-15 2007-09-20 Martek Biosciences Corporation Plant seed oils containing polyunsaturated fatty acids
EP2059588A4 (de) 2006-08-29 2010-07-28 Commw Scient Ind Res Org Fettsäuresynthese
ES2644883T3 (es) 2008-11-18 2017-11-30 Commonwealth Scientific And Industrial Research Organisation Enzimas y métodos para producir ácidos grasos omega-3
CN102741267B (zh) 2009-03-19 2020-06-23 帝斯曼知识产权资产有限公司 多不饱和脂肪酸合酶核酸分子和多肽,及其组合物、制备方法和用途
CN103415611B (zh) 2010-10-01 2016-08-10 国立大学法人九州大学 原生藻菌的转化方法
US8816111B2 (en) 2012-06-15 2014-08-26 Commonwealth Scientific And Industrial Research Organisation Lipid comprising polyunsaturated fatty acids
CN111154724B (zh) 2013-12-18 2024-02-06 联邦科学技术研究组织 包含二十二碳六烯酸的提取的植物脂质
WO2015196250A1 (en) 2014-06-27 2015-12-30 Commonwealth Scientific And Industrial Research Organisation Lipid comprising docosapentaenoic acid
EP3099782B1 (de) 2014-01-28 2019-03-20 DSM IP Assets B.V. Faktoren zur produktion und aufspeicherung von mehrfach ungesättigten fettsäuren (pufas) aus pufa-synthasen
CA2977271A1 (en) * 2015-03-02 2016-09-09 Synthetic Genomics, Inc. Regulatory elements from labyrinthulomycetes microorganisms
CA3017225A1 (en) 2016-03-16 2017-09-21 Synthetic Genomics, Inc. Production of proteins in labyrinthulomycetes
CN109477079A (zh) 2016-05-12 2019-03-15 帝斯曼知识产权资产管理有限公司 增加微藻中ω-3多不饱和脂肪酸产量的方法
JOP20170154B1 (ar) 2016-08-01 2023-03-28 Omeros Corp تركيبات وطرق لتثبيط masp-3 لعلاج أمراض واضطرابات مختلفة
US10633454B2 (en) 2016-11-01 2020-04-28 Conagen Inc. Expression of modified glycoproteins and glycopeptides
WO2018219171A1 (zh) * 2017-05-31 2018-12-06 厦门汇盛生物有限公司 一株生产dha和epa的细菌、该细菌基因组中的6个基因片段及它们的应用
CN108753810B (zh) * 2018-05-22 2021-06-18 昆明理工大学 一种转录调节蛋白基因orf2的用途
JPWO2020032258A1 (ja) * 2018-08-10 2021-08-12 協和発酵バイオ株式会社 多価不飽和脂肪酸を生産する微生物及び多価不飽和脂肪酸の製造法
CN112601808A (zh) * 2018-08-10 2021-04-02 协和发酵生化株式会社 生产二十碳五烯酸的微生物和二十碳五烯酸的制造方法
CN110577921B (zh) * 2019-05-28 2021-04-02 浙江工业大学 产两性霉素b的重组结节链霉菌及其应用
CN114107074B (zh) * 2021-11-18 2024-04-09 厦门大学 一种过表达3-酮酰基合酶基因的裂殖壶菌基因工程菌株的构建方法及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798259A (en) * 1992-05-15 1998-08-25 Sagami Chemical Research Center Gene coding for eicosapentaenoic acid synthesizing enzymes and process for production of eicosapentaenoic acid
EP2280062A3 (de) * 1996-03-28 2011-09-28 DSM IP Assets B.V. Verfahren zur herstellung mikrobieller polyungesättigten fettsäure enthaltend ölaus pasteurisierter biomasse
US6566583B1 (en) * 1997-06-04 2003-05-20 Daniel Facciotti Schizochytrium PKS genes
TWI426126B (zh) * 2001-04-16 2014-02-11 Dsm Ip Assets Bv 多不飽和脂肪酸(pufa)聚乙醯合成酶系統及其用途(二)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005097982A2 *

Also Published As

Publication number Publication date
DE102004017370A1 (de) 2005-10-27
AU2005231964B2 (en) 2012-03-08
US20090093033A1 (en) 2009-04-09
CA2563427A1 (en) 2005-10-20
IL178613A0 (en) 2007-02-11
CN103981156A (zh) 2014-08-13
AU2005231964A1 (en) 2005-10-20
WO2005097982A2 (de) 2005-10-20
WO2005097982A3 (de) 2007-04-05
BRPI0509747A (pt) 2007-09-25
KR20130114225A (ko) 2013-10-16
KR20070056002A (ko) 2007-05-31
JP2012205595A (ja) 2012-10-25
CN101087882A (zh) 2007-12-12
JP2007532104A (ja) 2007-11-15
US7939305B2 (en) 2011-05-10
KR101484097B1 (ko) 2015-01-23

Similar Documents

Publication Publication Date Title
WO2005097982A2 (de) Pufa-pks gene aus ulkenia
JP7049388B2 (ja) 脂肪アルコールおよび脂肪アルデヒドの半生合成的生産
EP1733053B1 (de) Screeningverfahren zur identifizierung von pufa-pks in proben
US8309796B2 (en) Chimeric PUFA polyketide synthase systems and uses thereof
CN101679990B (zh) △8去饱和酶及其在制备多不饱和脂肪酸中的用途
CN108697072A (zh) 用于产生昆虫信息素及相关化合物的微生物
DE10102337A1 (de) Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren, neue Biosynthesegene sowie neue pflanzliche Expressionskonstrukte
HUT63653A (en) Changing of fatty acids in transgenic plant tissues by delta 9 desaturase
DE10102338A1 (de) Verfahren zur Expression von Biosynthesegenen in pflanzlichen Samen unter Verwendung von neuen multiplen Expressionskonstrukten
AU2014236763B2 (en) Thioesterases and cells for production of tailored oils
WO2003064638A2 (de) Elongase-gen und verfahren zur herstellung mehrfach ungesättigter fettsäuren
US20140256927A1 (en) Increasing the lipid content in microalgae by genetically manipulating a triacylglycerol (tag) lipase
WO2004005442A1 (de) Verfahren zur herstellung von konjugierten mehrfach ungesättigten fettsäuren mit mindestens zwei doppelbindungen in pflanzen
CN103562217A (zh) 在重组含油微生物中表达油体钙蛋白以提高其中的油含量
DE10134660A1 (de) Fettsäure-Desaturase-Gene aus Granatapfel und Verfahren zur Herstellung von ungesättigten Fettsäuren
WO2021198904A1 (en) Process of engineering an oleaginous microorganism
DE60223034T2 (de) Regulation des peroxisomalen fettsäuretransports in pflanzen
US20130160169A1 (en) Fungal desaturase and elongase genes
Tan Cloning and functional analysis of the genes from entomopathogenic fungi involved in the biosynthesis of eicosatetraenoic acid (ETA)
CA2762447A1 (en) Fungal desaturase and elongase genes
US20160298148A1 (en) Enrichment of oils with polyunsaturated fatty acids
DE10063387A1 (de) Neues Elongasegen und Verfahren zur Herstellung mehrfach ungestättigter Fettsäuren
DE10205607A1 (de) Neues Elongasegen und Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren
DE10308850A1 (de) Verfahren zur Herstellung von konjugierten mehrfach ungesättigten Fettsäuren mit mindestens drei Doppelbindungen in Pflanzen
DE10023893A1 (de) Neues Elongasegen und Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061020

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RUESING, MATTHIAS

Inventor name: LUY, MARKUS

Inventor name: KIY, THOMAS

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NUTRINOVA NUTRITION SPECIALTIES & FOOD INGREDIENTS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NUTRINOVA NUTRITION SPECIALTIES & FOOD INGREDIENTS

17Q First examination report despatched

Effective date: 20081216

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LONZA LTD.

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20110518