EP1727978A1 - Kraftstoffeinspritzanlage mit verringerten druckschwingungen im r cklaufrail - Google Patents

Kraftstoffeinspritzanlage mit verringerten druckschwingungen im r cklaufrail

Info

Publication number
EP1727978A1
EP1727978A1 EP04729610A EP04729610A EP1727978A1 EP 1727978 A1 EP1727978 A1 EP 1727978A1 EP 04729610 A EP04729610 A EP 04729610A EP 04729610 A EP04729610 A EP 04729610A EP 1727978 A1 EP1727978 A1 EP 1727978A1
Authority
EP
European Patent Office
Prior art keywords
pressure
fuel
valve
injector
slide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04729610A
Other languages
English (en)
French (fr)
Other versions
EP1727978B1 (de
Inventor
Patrick Mattes
Wolfgang Stoecklein
Holger Rapp
Hans Brekle
Markus Erhardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1727978A1 publication Critical patent/EP1727978A1/de
Application granted granted Critical
Publication of EP1727978B1 publication Critical patent/EP1727978B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/46Details, component parts or accessories not provided for in, or of interest apart from, the apparatus covered by groups F02M69/02 - F02M69/44
    • F02M69/54Arrangement of fuel pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0047Layout or arrangement of systems for feeding fuel
    • F02M37/0052Details on the fuel return circuit; Arrangement of pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/002Arrangement of leakage or drain conduits in or from injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/04Fuel-injection apparatus having means for avoiding effect of cavitation, e.g. erosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/28Details of throttles in fuel-injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
    • F02M2200/315Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations

Definitions

  • the invention is based on a fuel injection system according to the preamble of claim 1.
  • the injector may be provided with an electrically operated solenoid valve that controls the injection process of the injector by changing the pressure in a control chamber.
  • the pressure holding valve may be set relatively to a pressure of 30 bar, for example.
  • the injector is generally equipped with a hydraulic coupler that is actuated by a piezo actuator.
  • the hydraulic coupler is functionally surrounded by fuel, which is under the pressure of about 30 bar, so that the hydraulic coupler is always functional.
  • the fuel return line may lead directly to the fuel tank of the internal combustion engine.
  • the line connected to the end of the pressure control valve facing away from the injector is connected to a connecting line between a fuel from the fuel tank to a moderate pressure of, for. B. 5 bar lifting first pump and the input of a high pressure pump.
  • the invention can be used in the systems mentioned above. It is known (EP 0780 569 B1, Fig.
  • valve 13B to switch on the pressure accumulator a valve in the high-pressure line to the injector, which has a spherical movable valve member biased by a spring.
  • This opens when fuel flows to the injector and closes almost completely when no fuel is flowing.
  • a complete closing is prevented by the fact that the circularly circular cross-section behind the valve seat is radially expanded by grooves running in the longitudinal direction, which are not covered by the movable valve part.
  • the valve When the valve is closed, the valve thus forms a throttle which, as can be seen from the use of specialist knowledge, is suitable for damping the first pressure wave arriving on the high-pressure line from the injector, and which can therefore also prevent the formation of further pressure fluctuations in the high-pressure line.
  • the advantage of the fuel injection system according to the invention is that a disadvantage recognized by the inventors is reduced or avoided. This disadvantage is due to the following processes: If the injector triggers an injection process, a control quantity flows into the leakage line when the above-mentioned control valve is actuated and, during operation, causes the counterpressure valve to open and essentially the same amount as the control quantity the pressure control valve flows off.
  • the inflow of the above-mentioned control quantity causes a flow surge into the leakage line and triggers a pressure wave towards the counter-pressure valve, which is reflected there as a vacuum wave when it is opened (reflections of a pressure wave at an open line end or a pressure node as opposed to a pressure belly occur as a vacuum wave) ,
  • Such negative pressure waves can lead to cavitation, which in the long run causes damage to the injector and thereby reduces its service life. Cavitation occurs when the vapor pressure of the fuel falls below. It is believed that the lower the normal pressure in the leakage manifold and thus in the individual, the greater the risk of cavitation Leakage lines of the injectors is.
  • negative pressure waves running from the pressure maintaining valve are weakened or prevented for the leakage connection of the injector.
  • the throttle should be in the vicinity of the pressure-maintaining valve, the following is understood: the distance should not be so great that the throttle's effect on the suppression of negative pressure waves is adversely affected thereby; in addition, the leakage quantities of several, preferably all, of the injectors which are connected to a single pressure holding valve are intended to flow through said throttle.
  • the throttle may be arranged in front of the pressure-maintaining valve, or behind it, or be structurally combined with the valve element of the pressure-maintaining valve, seen from the injector.
  • a slide which is preferably designed as a solid cylinder, and is displaceably guided in a recess, in particular a bore, against the force of a spring and has to be displaced against this spring force when coming out of the leakage collecting line should leak fuel through the pressure control valve.
  • at least one groove is incorporated in the wall of the cylinder, which is closed by the wall of the bore at its rear end when the pressure holding valve is at rest and is open at its front end and with its rear end from the rear when the cylinder is displaced sufficiently Area of the hole so that the groove, which also forms a throttle, is completely continuous.
  • the solid cylinder is without grooves in its wall, instead a groove is incorporated in the wall of the bore, which is expediently closed at the front end by the cylinder surface of the cylinder when the valve is at rest, whereas its rear end is always free , and if the cylinder is shifted sufficiently, the front one Free end of the groove, which also forms a throttle.
  • at least one of the above-mentioned grooves is present both in the wall of the cylinder and in the wall of the bore. It goes without saying that instead of a single groove, there can also be several grooves.
  • the throttle by exchanging generally a single part or selecting a suitable part of this type when mounting the valve, is based on the conditions prevailing in a specific fuel injection system and are generally known for every internal combustion engine , can be adjusted.
  • the characteristic impedance of the choke or, if there are several chokes, the combination of such chokes should be adjusted correctly.
  • FIG. 1 shows an illustration of a fuel injection system according to the invention with a plurality of injectors and a pressure holding valve, in the area of which a throttle is provided;
  • Fig. 2 shows the combination of provided in the arrangement of Fig. 1
  • FIG. 3 shows a combination of pressure holding valve and throttle provided in another embodiment of the invention, modified from FIG. 2; 4 shows an arrangement provided in a further fuel injection system according to the invention instead of the valve arrangement according to FIGS. 2 and 3, in which a throttle is provided in a wall of a bore slidingly receiving a full cylinder,
  • Fig. 6 essential components of the injector of the fuel injection system used in Fig. 1 with an electromagnetically operated control valve.
  • a fuel injection system 1 which is provided in the example for diesel fuel, has a number of known injectors 3 (6 injectors in the example) which, during operation, fuel through injection openings 5 (see FIG. 6) inside a respectively assigned combustion chamber Inject the diesel engine.
  • a pressure accumulator 7 is filled with fuel under high pressure (1600 bar in the example) via a line 8.
  • Fuel is fed to a high-pressure connection 10 of each injector 3 via a high-pressure line 9 in each case.
  • Leakage quantities and control quantities of the injectors which occur when a control valve that controls the injection process of the injectors are actuated, are each fed via a leakage line 11 from a low-pressure connection 12 to a leakage collection line 13 (leakage rail).
  • the injectors 3 are such injectors which are controlled by an electrically operated solenoid valve which, when actuated in a known manner, the pressure within a
  • Control chamber lowers, whereby the injection process is started.
  • this control valve opens, fuel emerges from said control chamber and enters leakage line 11. All leakage lines of the injectors shown lead into the leakage line 13.
  • One end of the leakage manifold 13 is closed, the other end, on the right in FIG. 1, is connected to a return line 17 for the fuel via a pressure holding valve 15, and this return line 17 leads to the fuel tank.
  • Fuel is drawn in from the fuel tank in a known manner and finally brought to the high pressure with which the fuel is supplied to the pressure tank 7 by means of one or more pumps.
  • the pressure-maintaining valve 15 opens at an overpressure within the leakage manifold 13 with respect to the pressure in the return line 17 of approximately 0.5 bar.
  • a throttle device 20 is provided in the vicinity of the counterbalance valve 15, which serves to largely prevent undesired pressure wave reflections in the leakage manifold 13.
  • Fig. 2 shows the combination of throttle device and provided in Fig. 1
  • the throttle device is formed by a single throttle 27, which is introduced as a bore in a block 28 that can be selected appropriately during assembly.
  • the block 28 is arranged in the flow direction of FIG. 1, that is to say from left to right, upstream of the back pressure holding valve.
  • the assembly 25 is mounted pressure-tight in the arrangement according to FIG. 1 by screw connections.
  • the combination 30 shown in FIG. 3 of the counter pressure holding valve and throttle device differs from FIG. 2 only in that the throttle device is arranged downstream of the actual counter pressure holding valve.
  • FIGS. 2 and 3 can in embodiments of the invention in a completely identical manner by suitable connection, for. B. screwing of two separately manufactured parts, namely a component that essentially only contains the throttle bore, and a conventional counter pressure valve.
  • the throttle and the back pressure holding valve form a unit which cannot be separated from one another.
  • the valve arrangement 40 opens again when there is a counter pressure on the left side in FIG. 4 compared to the pressure on the right side in FIG. 4.
  • the valve arrangement is essentially designed as a slide valve.
  • a slide 41 full cylinder
  • a guide surface is guided in the longitudinal direction of the essentially circular cylindrical valve arrangement 40 through a guide surface.
  • the slide 41 is displaceable in a bore 42 in a center piece 43 against the force of a compression spring 44.
  • a stop device 45 which is formed by a perforated plate and does not overall hinder the flow of the fuel.
  • a longitudinal groove 47 is machined, which is open to the right, but to the left ends before the end of the slide 41, so that in the position of the slide 41 shown, fuel does not enter the groove from the left 47, which simultaneously forms the throttle, can occur. If the pressure on the left-hand side of FIG. 4 is so great that the slide 41 moves sufficiently far to the right, the groove 47 is finally also free at its front end and fuel can enter there and flow through the groove 47, so that the valve assembly is now open. Functions, the throttle can be seen as lying behind the valve opening.
  • the embodiment of a combination 50 of a valve with a throttle shown in FIG. 5 differs from that shown in FIG. 4 only in that the throttle groove 51 is now arranged on the cylindrical outer surface of the slide 52, whereas the bore of the part 54 is smooth.
  • the groove 51 is always open to the left and its right end is only for one
  • Control chamber is always connected via a throttle to the connection of the injector that is connected to the high-pressure line.
  • an outflow also occurs because when the valve mentioned is opened, a force acting on the valve piston, which with its lower end opens and closes the injection openings, additionally leads to fuel being drawn out of the
  • Control chamber is pushed out.
  • This opening of the control valve leads to a sudden increase in pressure in the leakage manifold.
  • This increase in pressure opens the back pressure holding valve, the connection of which points to the right in FIGS. 1 and 2 then forms an open line end which reflects the pressure wave arriving from the injector as a vacuum wave.
  • This reflection is mitigated by the throttle device and suppressed if the throttle is dimensioned exactly.
  • the following dimensioning is expedient for the throttle:
  • the anti-reflection effect of the throttle occurs when the pressure control valve is open (fuel-conducting). When the pressure control valve is blocked, no fuel flows through the throttle.
  • the leakage collecting line has a characteristic impedance of approximately 0.8 bar • ms / mm 3 .
  • the flow coefficient of the throttle is 660 cm 3 / min at 100 bar differential pressure. The above values are based on a round cable cross section of 3 mm 2 below
  • the single throttle provided in FIG. 2 which is designed as a round bore, has a diameter of approximately 0.4 mm.
  • the length of the choke which is 1 mm in the example, is chosen based on practical considerations; their length itself is less important for the function as a throttle.
  • the injector 3 has a stroke-controlled valve piston 60, the movement of which is controlled by the pressure in a control chamber 62. If this pressure is reduced by opening a (in the example electromagnetic) control valve 64, the valve piston 60 opens and fuel is injected into the combustion chamber of a cylinder of the internal combustion engine via the injection openings 5.
  • a (in the example electromagnetic) control valve 64 the valve piston 60 opens and fuel is injected into the combustion chamber of a cylinder of the internal combustion engine via the injection openings 5.
  • the fuel which is at a pressure suitable for injection, is fed from a pressure accumulator to the injectors.
  • the invention is also applicable to other fuel injection systems in which a control quantity in the leakage line causes a pressure surge when controlling the injection.
  • systems are known in which each cylinder is assigned its own pump-injector unit. A pump of this unit may already be supplied with a certain fuel pressure, but this is not sufficient for the injection and is increased by the pump to the required injection pressure.
  • a control valve leading to a leakage channel is arranged in the injector or in the pump and is blocked during the duration of the desired injection, so that the pump supplies the fuel can promote the injection ports.
  • the control valve When the control valve is opened, the fuel delivered by the pump is discharged to the leakage channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Kraftstoffeinspritzanlage mit verringerten Druckschwingungen im Rücklaufrail
Stand der Technik
Die Erfindung geht aus von einer Kraftstoffeinspritzanlage nach dem Oberbegriff des Patentanspruchs 1. Das Druckhalteventil mag auf einen Druck von 0,5 bar relativ (d. h. gegenüber dem Umgebungsdruck der Kraftstoffeinspritzanlage) eingestellt sein, und dient dann lediglich dazu, das Leerlaufen einer den mindestens einen Injektor mit einer Leckage-Sammelleitung (= Rücklaufrail) verbindenden Leckageleitung und/oder der Leckage-Sammelleitung zu verhindern. Bei einer solchen Anlage mag der Injektor mit einem elektrisch betätigten Magnetventil versehen sein, dass durch Verändern des Drucks in einer Steuerkammer den Einspritzvorgang des Injektors steuert. Bei anderen Kraftstoffeinspritzanlagen mag das Druckhalteventil beispielsweise auf einen Druck von 30 bar relativ eingestellt sein. Bei diesen Anlagen ist der Injektor im allgemeinen mit einem hydraulischen Koppler ausgerüstet, der durch einen Piezo-Aktor betätigt wird. Der hydraulische Koppler ist funktionsbedingt von Kraftstoff umgeben, der unter dem genannten Druck von etwa 30 bar steht, damit der hydraulische Koppler stets funktionsfähig ist. Bei beiden genannten Kraftstoffeinspritzanlagen mag die Kraftstoffrückleitung direkt zum Kraftstofftank des Verbrennungsmotors führen. Bei einer Untergruppe der zuletzt genannten Kraftstoffeinspritzanlagen ist die mit dem dem Injektor abgewandten Ende des Druckhalteventils verbundene Leitung mit einer Verbindungsleitung zwischen einer den Kraftstoff aus dem Kraftstofftank auf einen mäßigen Druck von z. B. 5 bar anhebenden ersten Pumpe und dem Eingang einer Hochdruckpumpe verbunden. Die Erfindung ist bei den oben genannten Anlagen verwendbar. Es ist bekannt (EP 0780 569 B1 , Fig. 13B), am Druckspeicher ein Ventil in die Hochdruckleitung zum Injektor einzuschalten, das ein durch eine Feder vorgespanntes kugelförmiges bewegliches Ventilglied aufweist. Dieses öffnet bei einer Strömung von Kraftstoff zum Injektor und schließt fast vollständig, wenn kein Kraftstoff strömt. Ein vollständiges Schließen ist dadurch verhindert, dass der im Querschnitt kreisförmige Ablauf hinter dem Ventilsitz durch in Längsrichtung verlaufende Nuten radial erweitert ist, die von dem beweglichen Ventilteil nicht abgedeckt werden. Bei geschlossenem Ventil bildet das Ventil somit eine Drossel, die, wie man unter Heranziehen des Fachwissens erkennt, geeignet ist, die erste vom Injektor her auf der Hochdruckleitung eintreffende Druckwelle zu dämpfen, und die daher auch die Entstehung weiterer Druckschwankungen in der Hochdruckleitung verhindern kann.
Vorteile der Erfindung
Der Vorteil der erfindungsgemäßen Kraftstoffeinspritzanlage gemäß dem Patentanspruch 1 besteht darin, dass ein von den Erfindern erkannter Nachteil verringert oder vermieden wird. Dieser Nachteil beruht auf folgenden Vorgängen: Wenn der Injektor einen Einspritzvorgang auslöst, strömt eine Steuermenge beim Betätigen des oben genannten Steuerventils in die Leckageleitung ein und führt im laufendem Betrieb dazu, dass sich das Gegendruckhalteventil öffnet und im wesentlichen eine gleich große Menge wie die Steuermenge durch das Druckhalteventil abfließt. Das Einströmen der genannten Steuermenge bewirkt einen Strömungsstoß in die Leckageleitung hinein und löst eine Druckwelle zum Gegendruckhalteventil hin aus, die dort bei dessen Öffnen als Unterdruckwelle reflektiert wird (Reflektionen einer Druckwelle an einem offenen Leitungsende beziehungsweise einem Druckknoten im Gegensatz zu einem Druckbauch erfolgen als Unterdruckwelle). Solche Unterdruckwellen können zu Kavitation führen, die auf Dauer Schäden am Injektor verursacht und dadurch dessen Lebensdauer verringert. Kavitation tritt auf, wenn der Dampfdruck des Kraftstoffs unterschritten wird. Es wird angenommen, dass die Gefahr von Kavitation umso größer ist, je niedriger der normale Druck in der Leckage-Sammelleitung und somit in den einzelnen Leckageleitungen der Injektoren ist. Die Gefahr von Kavitation dürfte dann besonders groß sein, wenn eine Unterdruckwelle dann am Steuerventil eintrifft, wenn dieses gerade in den Sperrzustand gelangt ist und daher wegen der plötzlichen Unterbrechung der Strömung aus dem Steuerventil heraus der Druck hinter dem Steuerventil ohnehin den Dampfdruck des Kraftstoffs unterschreitet.
Erfindungsgemäß werden zum Leckageanschluss des Injektors vom Druckhalteventil her laufende Unterdruckwellen abgeschwächt oder verhindert.
Unter der Angabe, dass sich die Drossel in der Nähe des Druckhalteventils befinden soll, wird Folgendes verstanden: der Abstand soll nicht so groß sein, dass dadurch die Wirkung der Drossel bezüglich der Unterdrückung von Unterdruckwellen störend beeinflusst wird; außerdem sollen die Leckagemengen mehrerer, vorzugsweise aller Injektoren, die mit einem einzigen Druckhalteventil in Verbindung stehen, durch die genannte Drossel fließen. Die Drossel mag bei Ausführungsformen der Erfindung vom Injektor her gesehen vor dem Druckhalteventil angeordnet sein, oder hinter diesem, oder mit dem Ventilelement des Druckhalteventils baulich vereinigt sein.
Bei erfindungsgemäßen Ausgestaltungen der zuletzt genannten Ausführungsform ist ein Schieber vorgesehen, der vorzugsweise als Vollzylinder ausgebildet ist, und in einer zu ihm passenden Aussparung, insbesondere Bohrung, entgegen der Kraft einer Feder verschiebbar geführt ist und entgegen dieser Federkraft verschoben werden muss, wenn aus der Leckagesammelleitung durch das Druckhalteventil hindurch Treibstoff austreten soll. Bei einer ersten Modifikation ist in der Wandung des Zylinders mindestens eine Nut eingearbeitet, die bei Ruhezustand des Druckhalteventils durch die Wandung der Bohrung an ihrem hinteren Ende verschlossen ist und an ihrem vorderen Ende offen ist und bei ausreichend weit verschobenem Zylinder mit ihrem hinteren Ende aus dem Bereich der Bohrung herausgelangt, so dass die Nut, die gleichzeitig eine Drossel bildet, insgesamt durchgängig ist. Bei einer anderen Modifikation ist der Vollzylinder ohne Nuten in seiner Wandung, statt dessen ist in der Wandung der Bohrung eine Nut eingearbeitet, die zweckmäßig bei Ruhezustand des Ventils an ihrem vorderen Ende von der Zylinderfläche des Zylinders verschlossen ist, wogegen ihr hinteres Ende stets frei ist, und bei ausreichend stark verschobenem Zylinder wird das vordere Ende der Nut frei, die ebenfalls eine Drossel bildet. Bei einer weiteren kombinierten Modifikation ist sowohl in der Wand des Zylinders als auch in der Wand der Bohrung mindestens eine der oben genannten Nuten vorhanden. Es versteht sich, dass statt einer einzigen Nut auch mehrere Nuten vorhanden sein können.
Bei allen geschilderten Ausführungsformen ist von Vorteil, dass sich die Drossel durch Austauschen im allgemeinen eines einzigen Teiles bzw. bei Auswahl eines passenden derartigen Teiles bei der Montage des Ventils an die Verhältnisse, die in einer bestimmten Kraftstoffeinspritzanlage herrschen und für jeden Verbrennungsmotor im allgemeinen bekannt sind, anpassen lässt. Es soll nämlich der Wellenwiderstand der Drossel, bzw. beim Vorhandensein mehrerer Drosseln der Kombination solcher Drosseln (wie erläutert eine Parallelschaltung von Drosseln, aber auch eine Serienschaltung solcher Drosseln ist möglich) in richtiger Weise angepasst sein.
Weitere Vorteile und vorteilhafte Ausgestaltungen der Erfindung sind der Beschreibung, der Zeichnung und den Ansprüchen entnehmbar.
Zeichnung
Ausführungsbeispiele der erfindungsgemäßen Einspritzanlage oder Einspritzvorrichtung werden anhand der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Fig. 1 eine Darstellung einer erfindungsgemäßen Kraftstoffeinspritzanlage mit mehreren Injektoren und einem Druckhalteventil, in dessen Bereich eine Drossel vorgesehen ist; Fig. 2 die in der Anordnung der Fig. 1 vorgesehene Kombination von
Druckhalteventil und Drossel im vergrößerten Längsschnitt;
Fig. 3 eine bei einer anderen Ausführungsform der Erfindung vorgesehene, gegenüber Fig. 2 modifizierte Kombination von Druckhalteventil und Drossel; Fig. 4 eine bei einer weiteren erfindungsgemäßen Kraftstoffeinspritzanlage anstatt der Ventilanordnung nach Fig. 2 und 3 vorgesehene Anordnung, bei der eine Drossel in einer Wandung einer einen Vollzylinder gleitend aufnehmenden Bohrung vorgesehen ist,
Fig. 5 eine gegenüber Fig. 4 modifizierte Ausführungsform eines Druckhalteventils, das bei einer weiteren Ausführungsform der Erfindung eingebaut ist, und bei dem eine Drossel in der Wandung des genannten Vollzylinders als Nut eingearbeitet ist, und
Fig. 6 wesentliche Komponenten des in Fig. 1 eingesetzten Injektors der Kraftstoffeinspritzanlage mit einem elektromagnetisch betätigten Steuerventil.
Beschreibung der Ausführungsbeispiele
In Fig. 1 weist eine Kraftstoffeinspritzanlage 1 , die im Beispiel für Dieselkraftstoff vorgesehen ist, eine Anzahl von bekannten Injektoren 3 auf (im Beispiel 6 Injektoren) die im Betrieb Kraftstoff durch Einspritzöffnungen 5 (siehe Fig. 6) ins Innere eines jeweils zugeordneten Brennraums eines Dieselmotors einspritzen. Ein Druckspeicher 7 wird mit Kraftstoff unter hohem Druck (im Beispiel 1600 bar) über eine Leitung 8 gefüllt. Über jeweils eine Hochdruckleitung 9 wird Kraftstoff einem Hochdruckanschluss 10 jedes Injektors 3 zugeführt. Leckagemengen und Steuermengen der Injektoren, die bei der Betätigung eines Steuerventils anfallen, das den Einspritzvorgang der Injektoren steuert, werden über je eine Leckageleitung 11 von einem Niederdruckanschluss 12 einer Leckagesammelleitung 13 (Leckagerail) zugeführt. Im Beispiel sind die Injektoren 3 solche Injektoren, die durch ein elektrisch betriebenes Magnetventil gesteuert werden, das bei Betätigung in bekannter Weise den Druck innerhalb einer
Steuerkammer absenkt, wodurch der Einspritzvorgang begonnen wird. Wenn sich dieses Steuerventil öffnet, tritt Kraftstoff aus der genannten Steuerkammer aus und tritt in die Leckageleitung 11 ein. In die Leckageleitung 13 führen alle Leckageleitungen der gezeigten Injektoren. Ein Ende der Leckagesammelleitung 13 ist geschlossen, das andere Ende, in Fig. 1 rechts, ist über ein Druckhalteventil 15 mit einer Rücklaufleitung 17 für den Kraftstoff verbunden, und diese Rücklaufleitung 17 führt zum Kraftstofftank. Aus dem Kraftstofftank wird in bekannter Weise Kraftstoff angesaugt und mittels einer oder mehrerer Pumpen schließlich auf den hohen Druck gebracht, mit dem der Kraftstoff dem Druckbehälter 7 zugeführt wird. Das Druckhalteventil 15 öffnet im Beispiel bei einem Überdruck innerhalb der Leckagesammelleitung 13 gegenüber dem Druck in der Rücklaufleitung 17 von etwa 0,5 bar. Dieser Druck von 0,5 bar dient dazu, zu verhindern, dass die Leckageleitungen auslaufen. Soweit die Anordnung bisher erläutert worden ist, ist sie bekannt. Neu gegenüber dem Stand der Technik ist bei der in Fig. 1 gezeigten Anordnung, dass in der Nähe des Gegenhalteventils 15 eine Drosseleinrichtung 20 vorgesehen ist, die dazu dient, unerwünschte Druckwellenreflexionen in der Leckagesammelleitung 13 weitgehend zu verhindern. Fig. 2 zeigt die in Fig. 1 vorgesehene Kombination aus Drosseleinrichtung und
Gegendruckhalteventil als eine Baueinheit 25. Die Drosseleinrichtung ist durch eine einzige Drossel 27 gebildet, die in einem bei der Montage passend auswählbaren Block 28 als Bohrung eingebracht ist. Der Block 28 ist in Strömungsrichtung der Fig. 1 , also von links nach rechts, stromaufwärts des Gegendruckhalteventils angeordnet. Die Baueinheit 25 ist in der Anordnung nach Fig. 1 durch Schraubverbindungen druckdicht montiert.
Die in Fig. 3 gezeigte Kombination 30 von Gegendruckhalteventil und Drosseleinrichtung unterscheidet sich von der Fig. 2 lediglich dadurch, dass die Drosseleinrichtung stromabwärts des eigentlichen Gegendruckhalteventils angeordnet ist.
Die Anordnungen nach Fig. 2 und 3 können bei Ausführungsformen der Erfindung in völlig gleich wirkender Weise durch geeignetes Verbinden, z. B. Verschrauben von zwei separat hergestellten Teilen, verwirklicht werden, nämlich eines Bauteils, das im wesentlichen lediglich die Drosselbohrung enthält, und eines herkömmlichen Gegendruckhalteventils. Bei der Anordnung nach Fig. 4 bilden die Drossel und das Gegendruckhalteventil eine voneinander nicht trennbare Einheit. Die Ventilanordnung 40 öffnet wieder bei einem Gegendruck auf der in Fig. 4 linken Seite gegenüber dem Druck auf der Fig. 4 rechten Seite. Die Ventilanordnung ist im wesentlichen als Schieberventil ausgebildet. Ein Schieber 41 (Vollzylinder) ist in Längsrichtung der im wesentlichen kreiszylindrischen Ventilanordnung 40 durch eine Führungsfläche geführt. Hierzu ist der Schieber 41 in einer Bohrung 42 eines Mittelstücks 43 entgegen der Kraft einer Druckfeder 44 verschiebbar. In der in Fig. 4 gezeigten Ruhestellung liegt der Schieber 41 an einer Anschlagvorrichtung 45 an, die durch eine gelochte Platte gebildet ist und insgesamt den Durchfluss des Treibstoffs nicht behindert. In der Wandung der Bohrung des Teils 43 ist eine Längsnut 47 eingearbeitet, die nach rechts hin offen ist, nach links hin aber vor dem Ende des Schiebers 41 endet, so dass in der dargestellten Stellung des Schiebers 41 Kraftstoff von links her nicht in die Nut 47, die gleichzeitig die Drossel bildet, eintreten kann. Wenn der Druck auf der linken Seite der Fig. 4 so groß ist, dass sich der Schieber 41 ausreichend weit nach rechts verschiebt, wird schließlich die Nut 47 auch an ihrem vorderen Ende frei und dort kann Kraftstoff eintreten und durch die Nut 47 fließen, so dass nun die Ventilanordnung offen ist. Funktionen kann man die Drossel als hinter der Ventilöffnung liegend ansehen.
Die in Fig. 5 gezeigte Ausführungsform einer Kombination 50 eines Ventils mit einer Drossel unterscheidet sich von der in Fig. 4 gezeigten lediglich dadurch, dass die eine Drossel bildende Nut 51 nun an der zylindrischen Außenfläche des Schiebers 52 angeordnet ist, wohingegen die Bohrung des Teils 54 glatt ist. Hier ist die Nut 51 stets nach links offen und ihr rechtes Ende wird erst dann für eine
Durchströmung der Nut freigegeben, wenn sich der Schieber 54 ausreichend weit nach rechts verschoben hat. Funktionen kann man die Drossel als vor der Ventilöffnung liegend ansehen. Bei einer nicht gezeigten Ausführungsform sind sowohl eine Nut 47 gemäß
Fig. 4, als auch eine Nut 51 gemäß Fig. 5 vorgesehen. In diesem Fall dürfen im Sperrzustand der Ventilanordnung die beiden Nuten nicht überlappen. Diese Ausgestaltung der Ventilanordnung ermöglicht eine weitere Betätigung in der Weise, dass zum Öffnen des Ventils keine Verschiebung des Zylinders erforderlich ist, sondern eine Drehung möglich ist, oder aber bei einer anderen Ausführungsform nur eine geringe Verschiebung aber demgegenüber eine merkliche Verdrehung. Dies würde bedeuten, dass die Verschiebebewegung an sich nicht zum zur Freigabe der Durchströmung der Drossel führt, aber die mit der Verschiebung gekoppelte Drehung, bei der die Drosseln Nuten in eine überlappende Position kommen. Am einfachsten dürfte eine Betätigung durch lineares Verschieben sein.
Anhand der Fig. 1 und Fig. 2 wird die Funktion der Anordnung beschrieben. Es wird angenommen, dass sich in der Leckagesammelleitung 13 ein Druck aufgebaut hat, der dazu führt, dass bei einem etwas darüber hinaus gehenden Druck das Gegendruckhalteventil 15 öffnet. Wird nun in einem der Injektoren eine Einspritzung veranlasst, so geschieht dies, wie oben erwähnt, dadurch, dass ein Steuerventil geöffnet wird, welches das Ausströmen einer gewissen Menge von Treibstoff (Steuermenge) aus einer Steuerkammer des Injektors ermöglicht. Das Ausströmen erfolgt einerseits deswegen, weil bei üblichen Injektoren die
Steuerkammer über eine Drossel stets mit demjenigen Anschluss des Injektors in Verbindung ist, der mit der Hochdruckleitung verbunden ist. Andererseits erfolgt ein Ausströmen auch deswegen, weil beim Öffnen des genannten Ventils eine auf den Ventilkolben, der mit seinem unteren Ende die Einspritzöffnungen freigibt und verschließt, wirkende Kraft zusätzlich dazu führt, dass Treibstoff aus der
Steuerkammer herausgedrückt wird. Dieses Öffnen des Steuerventils führt zu einem plötzlichen Druckanstieg in der Leckagesammelleitung. Dieser Druckanstieg öffnet das Gegendruckhalteventil, dessen in den Fig. 1 und 2 nach rechts weisender Anschluss dann ein offenes Leitungsende bildet, das die vom Injektor her eintreffende Überdruckwelle als Unterdruckwelle reflektiert. Diese Reflexion wird durch die Drosseleinrichtung gemildert und bei einer genau passenden Dimensionierung der Drossel unterdrückt. Für eine derartige maximale Unterdrückung der Reflexion ist für die Drossel folgende Bemessung zweckmäßig: Bei der Erfindung tritt die reflexionsverhindernde Wirkung der Drossel bei offenem (Kraftstoff leitenden) Druckhalteventil auf. Bei gesperrtem Druckhalteventil fließt kein Treibstoff durch die Drossel. Im Ausführungsbeispiel hat die Leckagesammelleitung einen Wellenwiderstand von ca. 0,8 bar • ms / mm3. Der Durchflussbeiwert der Drossel hat einen Wert von 660 cm3 / min bei 100 bar Differenzdruck. Obige Werte basieren auf einem runden Leitungsquerschnitt von 3 mm2 unter
Verwendung von Dieselkraftstoff. Demzufolge hat die in Fig. 2 vorgesehene einzige Drossel, die als runde Bohrung ausgebildet ist, einen Durchmesser von ca. 0,4 mm. Die Länge der Drossel, die im Beispiel 1 mm beträgt, ist aufgrund praktischer Erwägungen gewählt; ihre Länge selbst ist für die Funktion als Drossel weniger wesentlich.
Wie Fig. 6 zeigt, weist der Injektor 3 einen hubgesteuerten Ventilkolben 60 auf, dessen Bewegung durch den Druck in einer Steuerkammer 62 gesteuert wird. Wird dieser Druck durch Öffnen eines (im Beispiel elektromagnetischen) Steuerventils 64 verringert, so öffnet der Ventilkolben 60 und es wird über die Einspritzöffnungen 5 Kraftstoff in den Brennraum eines Zylinders der Brennkraftmaschine eingespritzt.
Bei dem bisher beschriebenen Beispiel wird der unter einem für die Einspritzung geeigneten Druck stehende Kraftstoff von einem Druckspeicher den Injektoren zugeführt. Die Erfindung ist jedoch auch bei anderen Kraftstoffeinspritzanlagen anwendbar, bei denen beim Steuern der Einspritzung eine Steuermenge in der Leckageleitung einen Druckstoß verursacht. So sind beispielsweise Anlagen bekannt, bei denen jedem Zylinder eine eigene Pumpe- Düse-Einheit (Unit Pump Injector) zugeordnet ist. Eine Pumpe dieser Einheit mag bereits mit einem gewissen Kraftstoffdruck versorgt werden, der aber für die Einspritzung nicht ausreicht und von der Pumpe auf den erforderlichen Einspritzdruck erhöht wird. Da Beginn und / oder Ende der gewünschten Einspritzung nicht immer mit der Dauer eines Pumphubs übereinstimmen, ist im Injektor oder in der Pumpe ein zu einem Leckagekanal führendes Steuerventil angeordnet, das während der Dauer der gewünschten Einspritzung gesperrt ist, so dass die Pumpe den Kraftstoff zu den Einspritzöffnungen fördern kann. Wenn das Steuerventil geöffnet wird, dann wird der von der Pumpe geförderte Kraftstoff zum Leckagekanal abgeführt. Auch hier entsteht ein Druckstoß in der Leckageleitung beim Öffnen des Steuerventils, aber auch dann, wenn beim Beginn eines Pumphubs das Steuerventil bereits offen ist.

Claims

Patentansprüche
I . Kraftstoffeinspritzanlage (1 ) für einen Verbrennungsmotor, die aufweist: mindestens einen Injektor (3) zum Einspritzen von Kraftstoff in einen Brennraum des Motors, wobei der Injektor einen Hochdruckanschluss (10) aufweist, über den er mit Kraftstoff unter hohem Druck zu versorgen ist, ein Steuerventil (64) zum Steuern von Einspritzungen des Injektors, wobei ein Niederdruckanschluss (12) des Injektors zum Abführen von einer Steuermenge vorgesehen ist, die beim Steuern der Einspritzung anfällt, eine Leckageleitung (11), die mit einer Kraftstoffrucklaufleitung (17) unter Zwischenschaltung eines Druckhalteventils (15) verbunden ist, das in Richtung zur Kraftstoffrucklaufleitung hin bei Überschreiten eines vorbestimmten Drucks öffnet, dadurch gekennzeichnet, dass in der Nähe des Druckhalteventils (15) eine Drosselvorrichtung (20, 27, 47, 51) vorgesehen ist, die derart ausgebildet und angeordnet ist, dass bei offenem Druckhalteventil eine Reflexion von vom Injektor her kommenden Druckwellen als Unterdruckwellen abgeschwächt ist.
2. Kraftstoffeinspritzanlage nach Anspruch 1 , dadurch gekennzeichnet, dass die Drosselvorrichtung in Strömungsrichtung vom Injektor zur Kraftstoffrucklaufleitung gesehen stromaufwärts des Druckhalteventils angeordnet ist.
3. Kraftstoffeinspritzanlage nach Anspruch 1 , dadurch gekennzeichnet, dass die Drosselvorrichtung in Strömungsrichtung vom Injektor zur Kraftstoffrucklaufleitung gesehen stromabwärts des Druckhalteventils angeordnet ist.
Kraftstoffeinspritzanlage nach Anspruch 1 , dadurch gekennzeichnet, dass das Druckhalteventil als Schieberventil mit einem durch den abzuleitenden Überdruck entgegen einer Vorspannung verschiebbaren Schieber (41 , 52) ausgebildet ist, der in einer Führung gleitet, wobei mindestens eine Nut (47, 51) in mindestens einem der Elemente Schieber und Schieberführung vorgesehen ist, und wobei ein Durchgang für Kraftstoff bei einer als offen definierten Schieberstellung dadurch gebildet ist, dass eine Nut für Kraftstoff durchlässig ist, wogegen in der
Schließstellung des Schiebers ein Ende der Nut durch dasjenige Teil (Schieberführung, Schieber) des Schieberventils verschlossen ist, in dem die Nut nicht vorhanden ist.
Kraftstoffeinspritzanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein einen Teil der Drosselvorrichtung bildender Kanal in einem separaten, bei der Montage des Ventils oder der Drosselvorrichtung einsetzbaren Teil vorgesehen ist.
EP04729610A 2003-06-21 2004-04-27 Kraftstoffeinspritzanlage mit verringerten druckschwingungen im rücklaufrail Expired - Lifetime EP1727978B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10328000A DE10328000A1 (de) 2003-06-21 2003-06-21 Kraftstoffeinspritzanlage mit verringerten Druckschwingungen im Rücklaufrail
PCT/DE2004/000881 WO2005001280A1 (de) 2003-06-21 2004-04-27 Kraftstoffeinspritzanlage mit verringerten druckschwingungen im rücklaufrail

Publications (2)

Publication Number Publication Date
EP1727978A1 true EP1727978A1 (de) 2006-12-06
EP1727978B1 EP1727978B1 (de) 2010-12-22

Family

ID=33520775

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04729610A Expired - Lifetime EP1727978B1 (de) 2003-06-21 2004-04-27 Kraftstoffeinspritzanlage mit verringerten druckschwingungen im rücklaufrail

Country Status (6)

Country Link
EP (1) EP1727978B1 (de)
JP (1) JP2006523793A (de)
KR (1) KR20060028699A (de)
AT (1) ATE492720T1 (de)
DE (2) DE10328000A1 (de)
WO (1) WO2005001280A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239536A (ja) * 2006-03-07 2007-09-20 Denso Corp サプライポンプ
JP4793315B2 (ja) * 2006-07-20 2011-10-12 株式会社デンソー 燃料噴射装置
FR2923271A1 (fr) * 2007-11-07 2009-05-08 Renault Sas Dispositif d'injection de carburant.
US8539934B2 (en) 2008-04-10 2013-09-24 Bosch Corporation Injection abnormality detection method and common rail fuel injection control system
EP2249021A1 (de) * 2009-05-06 2010-11-10 Delphi Technologies Holding S.à.r.l. Brennstoffzufuhrsystem
US8302622B2 (en) 2010-02-24 2012-11-06 Continental Automotive Systems Us, Inc. Unbalanced inlet fuel tube for a fuel pressure regulator
JP2020143584A (ja) * 2019-03-04 2020-09-10 株式会社デンソー 圧力調整装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2890718B2 (ja) * 1990-07-12 1999-05-17 株式会社デンソー 燃料噴射装置の安全弁
DE69619949T2 (de) 1995-12-19 2002-11-14 Nippon Soken, Inc. Speicherkraftstoffeinspritzvorrichtung
JPH11257188A (ja) * 1998-03-10 1999-09-21 Hitachi Ltd 燃料リターンバルブ
GB9822653D0 (en) * 1998-10-17 1998-12-09 Lucas Ind Plc Fuel system
DE19927804A1 (de) * 1999-06-18 2000-12-28 Bosch Gmbh Robert Kraftstoffversorgungsanlage für eine Brennkraftmaschine
DE19952513A1 (de) * 1999-10-30 2001-06-07 Bosch Gmbh Robert Kraftstoffeinspritzsystem für Brennkraftmaschinen mit konstantem Lecköldruck im Injektor
DE10046662B4 (de) * 2000-09-20 2004-09-30 Robert Bosch Gmbh Kraftstoffeinspritzventil mit einem Druckhalteventil
JP2002161829A (ja) * 2000-11-27 2002-06-07 Denso Corp 蓄圧式燃料噴射装置
JP2002235635A (ja) * 2001-02-13 2002-08-23 Denso Corp 蓄圧式燃料噴射装置
DE10157884B4 (de) * 2000-11-27 2013-05-08 Denso Corporation Druckspeicherkraftstoffeinspritzsystem zum Vermeiden eines Fehlverhalten eines Entlastungsventils, das durch Druckpulsation bewirkt wird
DE10104634A1 (de) * 2001-02-02 2002-09-19 Bosch Gmbh Robert Kraftstoffeinspritzsystem für Brennkraftmaschinen mit verbesserter Druckversorgung der Injektoren
JP2003021017A (ja) * 2001-07-10 2003-01-24 Bosch Automotive Systems Corp 蓄圧式燃料噴射装置
DE10157411A1 (de) * 2001-11-23 2003-06-26 Bosch Gmbh Robert Injektor zur Hochdruckeinspritzung von Kraftstoff
JP3786002B2 (ja) * 2001-12-14 2006-06-14 トヨタ自動車株式会社 内燃機関の高圧燃料供給装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005001280A1 *

Also Published As

Publication number Publication date
KR20060028699A (ko) 2006-03-31
DE502004012034D1 (de) 2011-02-03
DE10328000A1 (de) 2005-01-13
EP1727978B1 (de) 2010-12-22
JP2006523793A (ja) 2006-10-19
ATE492720T1 (de) 2011-01-15
WO2005001280A1 (de) 2005-01-06

Similar Documents

Publication Publication Date Title
EP1485609B1 (de) Vorrichtung zum einspritzen von kraftstoff an stationären verbrennungskraftmaschinen
EP1654456B1 (de) Kraftstoff-einspritzvorrichtung für eine brennkraftmaschine
EP0678668A2 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE102005028931B4 (de) Kraftstoffversorgungssystem für einen Verbrennungsmotor
EP1342005B1 (de) Kraftstoffeinspritzsystem für brennkraftmaschinen
EP1552137B1 (de) Einrichtung zur unterdrückung von druckwellen an speichereinspritzsystemen
DE4320620B4 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE102009055267A1 (de) Druckausgeglichener Kraftstoffinjektor mit Bypass und minimiertem Ventilraumvolumen
EP1126160B1 (de) Einspritzventil für die Einspritzung von Kraftstoff in eine Verbrennungskraftmaschine
DE10059124B4 (de) Druckgesteuerter Injektor für Einspritzsysteme mit Hochdrucksammelraum
EP1727978B1 (de) Kraftstoffeinspritzanlage mit verringerten druckschwingungen im rücklaufrail
EP1185785B1 (de) Einspritzsystem
DE102013013231A1 (de) Ventilanordnung für eine Kraftstoffversorgungsanlage und Kraftstoffversorgungsanlage
EP1133636A1 (de) Kraftstoffeinspritzsystem für brennkraftmaschinen
EP1651858A1 (de) Kraftstoff-einspritzvorrichtung für eine brennkraftmaschine
EP2807367B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
DE10125982A1 (de) Kraftstoffsystem für eine Brennkraftmaschine, Brennkraftmaschine, sowie Verfahren zum Betreiben einer Brennkraftmaschine
DE19860468A1 (de) Kraftstoffeinspritzanlage
DE102007016625A1 (de) Ventil und Einspritzanlage für eine Brennkraftmaschine mit Ventil
EP2275666A1 (de) Kraftstoff-Injektor mit druckausgeglichenem Steuerventil
EP2204570B1 (de) Kraftstoff-Injektor
EP1907686B1 (de) Kraftstoffinjektor
DE19839579C1 (de) Einspritzsystem
EP0752060B1 (de) Einspritzventil
WO2003054384A1 (de) Kraftstoff-einspritzvorrichtung, kraftstoffsystem sowie brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100408

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502004012034

Country of ref document: DE

Date of ref document: 20110203

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004012034

Country of ref document: DE

Effective date: 20110203

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110322

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110422

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110402

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

26N No opposition filed

Effective date: 20110923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110427

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004012034

Country of ref document: DE

Effective date: 20110923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110427

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 492720

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150423

Year of fee payment: 12

Ref country code: FR

Payment date: 20150422

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220627

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004012034

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231103