EP1342005B1 - Kraftstoffeinspritzsystem für brennkraftmaschinen - Google Patents

Kraftstoffeinspritzsystem für brennkraftmaschinen Download PDF

Info

Publication number
EP1342005B1
EP1342005B1 EP01999740A EP01999740A EP1342005B1 EP 1342005 B1 EP1342005 B1 EP 1342005B1 EP 01999740 A EP01999740 A EP 01999740A EP 01999740 A EP01999740 A EP 01999740A EP 1342005 B1 EP1342005 B1 EP 1342005B1
Authority
EP
European Patent Office
Prior art keywords
pressure
valve
control valve
chamber
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01999740A
Other languages
English (en)
French (fr)
Other versions
EP1342005A1 (de
Inventor
Walter Egler
Peter Boehland
Sebastian Kanne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1342005A1 publication Critical patent/EP1342005A1/de
Application granted granted Critical
Publication of EP1342005B1 publication Critical patent/EP1342005B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0003Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
    • F02M63/0007Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure using electrically actuated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
    • F02M2200/315Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/40Fuel-injection apparatus with fuel accumulators, e.g. a fuel injector having an integrated fuel accumulator

Definitions

  • the invention relates to a fuel injection system for internal combustion engines according to the preamble of claim 1.
  • a fuel injection system for example from the document DE 197 01 879 A1 and comprises a fuel tank from which fuel is conveyed by a high-pressure pump into a high-pressure collecting space.
  • a predetermined high-pressure fuel is maintained by a control device.
  • the high-pressure accumulation lead according to the number of combustion chambers of the engine high-pressure feed lines to a respective fuel injection valve, wherein the fuel injection valve is connectable by a control valve to the high-pressure line.
  • the control valve and the fuel injection valve are often arranged in this case for reasons of space in a housing.
  • the fuel injection valve in this case comprises a valve needle, which is guided in a bore and in the combustion chamber region facing is surrounded by a pressure chamber.
  • a pressure surface is formed, which is acted upon by the fuel in the pressure chamber, so that the valve needle against a closing force performs a longitudinal movement upon reaching a certain opening pressure in the pressure chamber and thus releases at least one injection port, through the fuel from the pressure chamber into the combustion chamber Internal combustion engine passes.
  • the control valve of the fuel injection system is designed as a 3/2-way valve which connects in one position the high-pressure accumulation chamber with the pressure chamber of the fuel injection valve and in a second position, the connection to the high-pressure accumulator interrupts and connects the pressure chamber with a formed in the valve body leakage oil space, which oil leakage space on a Line is connected to the fuel tank, so that there is always a low fuel pressure in the leakage oil space.
  • Switches the control valve from the closed position to the open position a pressure wave is generated, which runs through the inlet channel in the pressure chamber and there leads to a pressure increase, that is, the injection of the fuel is carried out at a pressure which is significantly higher as the pressure in the high-pressure collecting space.
  • the present invention has for its object to construct a fuel injection system that allows accurate metering of injection quantity and precisely deductible main, pre and post injections.
  • the fuel injection system according to the invention with the characterizing features of claim 1 has the advantage that the pressure fluctuations occurring during the closing of the control valve, so when interrupting the connection to the high-pressure accumulation chamber damped by the connection of the first pressure chamber or the high pressure supply line with a damping chamber via a throttle and thus quickly fade away. Therefore, the control valve comes back after closing very quickly in a steady state, so that it is possible to carry out a second injection at a close interval to the previous injection and thereby to be able to control their injection quantity very accurately.
  • the control valve is a 3/2-way valve in a control valve body and includes a control valve member which is longitudinally displaceably guided on a control bore.
  • two pressure chambers are formed in the control bore, wherein the first pressure chamber is connected to the high-pressure accumulation chamber and the second pressure chamber with the pressure chamber formed in the fuel injection valve.
  • the connection In the closed position of the control valve member, the connection is interrupted from the first to the second pressure chamber in the first position, and the second pressure chamber and thus the pressure chamber is connected to a leakage oil chamber and thus depressurized.
  • the connection In the open position of the control valve member, the connection is opened from the first to the second pressure chamber and the connection of the second pressure chamber is interrupted with the leakage oil space, so that the high-pressure accumulation chamber is connected to the pressure chamber.
  • the first pressure chamber is connected via a throttle with a damping chamber, so that pressure oscillations, as in the opening and closing of the control valve in the first pressure chamber and also occur in the high-pressure supply line to be damped.
  • the damping characteristic can be adjusted so that pressure oscillations in the pressure chamber decay completely after a few oscillation periods.
  • the damping chamber is formed as a bore extending in the valve holding body parallel to its longitudinal axis.
  • valve holding body is axially braced against the control valve body with the interposition of an intermediate disc.
  • the bore forming the damping chamber extends in part in the control valve body, through the washer and, to a greater extent, in the valve holding body.
  • the throttle is formed in the intermediate disc, so that by replacing the intermediate disc against one with another throttle, the fuel injection valve can be adapted to the requirements of the respective, without the other fuel injector design changes must be made.
  • the damping chamber consists of two mutually parallel bore sections, both extending in the valve holding body.
  • the two bore portions of the damping chamber are interconnected by a transverse channel, so that it is possible to realize a shorter valve holding body with the same volume of the throttle bore.
  • the two bore sections of the damping chamber are connected by a transverse channel, which is arranged in an intermediate disc, which is arranged between the valve holding body and the valve body. This configuration eliminates a cross connection of the bore sections within the valve holding body, which can only relatively expensive, for example by means of a finger milling cutter, can be made.
  • the formation of the transverse connection in the intermediate disc makes it possible to form both bore sections of the damping chamber starting from one of the end sides of the valve holding body.
  • a closing valve is disposed between the damping chamber and the first pressure chamber, which opens the connection from the first pressure chamber to the damping chamber only when damping is desired.
  • the targeted for injection with the highest possible pressure pressure increase when opening the control valve is slightly lowered by the constant connection of the first pressure chamber with the damping chamber. Therefore, the closing valve interrupts the connection of the first pressure chamber to the damping chamber during the opening phase of the control valve. After completion of the injection, the closing valve is opened, so that the pressure waves in the first pressure chamber are damped quickly as before.
  • the closing valve is controlled by the pressure in the second pressure chamber.
  • the control valve When the control valve is open, at least approximately the same pressure prevails in the second pressure chamber as in the first pressure chamber and the closing valve is closed by this pressure. If the control valve closes the connection from the first to the second pressure chamber, then the pressure in the second pressure chamber drops and the closing valve thereby opens the connection from the first pressure chamber to the damping chamber. Subsequently, the damping of the pressure oscillation takes place in the manner already described. The control by the pressure in the second pressure chamber makes additional electronic activation of the closing valve superfluous.
  • the control valve body is made of a hard steel, while the valve holding body, in which the damping chamber is formed, is made of a relatively soft steel.
  • the control valve is arranged, which contains sealing surfaces, which are exposed to heavy stress. The formation by means of a hard steel wear in the valve seat of the control valve is reduced.
  • a soft steel is advantageous because no seat or sealing surfaces are provided here and thus no strong mechanical stress takes place.
  • the cavity forming the damping space can be formed inexpensively and quickly in the soft steel.
  • a fuel injection valve according to the invention is shown in longitudinal section, which forms a fuel injection system together with the high-pressure fuel supply shown schematically and also shown only schematically drain oil system.
  • fuel is supplied via a fuel line 3 to a high-pressure pump 5, which delivers the fuel under high pressure via a supply line 7 in a high-pressure accumulator 10.
  • a control device not shown in the drawing.
  • high pressure supply lines 12 which are each connected to a fuel injection valve 15, one of which is exemplified in the drawing.
  • the Fuel injection valve 15 is constructed in several parts and comprises a control valve body 17, in which a control valve 50 is arranged.
  • a valve holding body 22 with the interposition of an intermediate disc 19 by means of a clamping nut 20 is axially braced.
  • the valve holding body 22 rests with the interposition of a valve intermediate disk 24 against a valve body 25, which valve body 25 is braced against the valve holding body 22 by means of a clamping nut 27.
  • a bore 30 is formed, at the combustion chamber end of which a substantially conical valve seat 36 is formed, in which at least one injection opening 38 is arranged.
  • a piston-shaped valve needle 32 is arranged, which is sealingly guided in a brennraumabgewandten portion of the bore 30 and which tapers to form a pressure surface 33 to the combustion chamber.
  • the valve needle 32 merges at its combustion-chamber-side end into a substantially conical valve sealing surface 34, which interacts with the valve seat 36 and thus closes the injection openings 38 in the closed position, ie when it rests against the valve seat 36.
  • a pressure chamber 31 which continues as a valve needle 32 surrounded annular channel to the valve seat 36.
  • the pressure chamber 31 is connected via a in the valve body 25, the intermediate valve disc 24, the valve holding body 22, the washer 19 and the control valve body 17 extending inlet bore 28 with the high-pressure accumulator 10 and thus filled with fuel under high pressure.
  • a central opening 83 is formed, which connects the bore 30 with a valve housing 22 formed in the spring chamber 40.
  • the spring chamber 40 is in this case designed as a bore and coaxial with the bore 30 arranged.
  • the central opening 83 has a smaller diameter than the valve needle 32 leading bore 30, so that at the transition of the valve body 25 to the intermediate valve disk 24, a stop shoulder 35 is formed.
  • the axial distance of the combustion chamber facing away from the end face of the valve needle 32 of the stop shoulder 35 of the intermediate valve disc 24 in the closed position of the fuel injection valve defines the opening stroke of the valve needle 32nd
  • the valve needle 32 merges into a pressure pin 37, which is arranged coaxially with the valve needle 32 and is arranged in the central opening 83 of the intermediate valve disk 24.
  • the pressure pin 37 passes into a spring chamber 40 arranged in the spring plate 42, between which and the brennraumabgewandten end of the spring chamber 40 is designed as a helical compression spring closing spring 44 is arranged under pressure bias.
  • the pressure bias of the closing spring 44 can be set across the thickness of a shim 45 which is disposed between the closing spring 44 and the combustion chamber facing away from the end of the spring chamber 40.
  • the valve needle 32 is pressed with the valve sealing surface 34 against the valve seat 36 via the spring plate 42 and the pressure pin 37, thereby closing the injection openings 38.
  • the spring chamber 40 is connected via a drain line 69 to the fuel tank 1, so that in the spring chamber 40 penetrating fuel is discharged into the fuel tank 1, which is why in the spring chamber 40 is always a low fuel pressure.
  • the spring chamber 40 merges into a through hole 46, which is arranged coaxially with the bore 30 and the spring chamber 40 and extends into a discharge chamber 76 formed in the intermediate disk 19.
  • control valve 50 is shown in longitudinal section.
  • the control valve bore 52 is divided into a sealing portion 152 and a smaller diameter guide portion 252.
  • the control valve bore 52 opens the combustion chamber facing away from the combustion chamber formed in a control valve body 17 leakage oil chamber 66 and with its other end in the Abêtraum 76, which via the through hole 46 with the Spring chamber 40 is connected.
  • a first pressure chamber 57 is formed, which is connected via a formed in the control valve body 17 inlet channel 13 with the high-pressure feed line 12 and thus with the high-pressure accumulator 10.
  • a second pressure chamber 58 is formed.
  • the inlet bore 28, which connects the second pressure chamber 58 with the pressure chamber 31 opens.
  • a substantially conical control valve seat 56 is formed on the wall of the control valve bore 52.
  • a control valve member 54 is arranged longitudinally displaceably, which is sealingly guided in the sealing portion 152 of the control valve bore 52.
  • control valve member 54 tapers the valve holding body 22 to form a control valve sealing surface 55 which is substantially conical and cooperates with the control valve seat 56.
  • the control valve member 54 extends through the second pressure chamber 58 into the discharge space 76 formed in the intermediate disk 19, where the control valve member 54 merges into a control portion 62 which is cylindrical and has a diameter which is only slightly smaller than the diameter of the guide portion 252 of the control valve bore 52.
  • the control valve member 54 is guided in the guide portion 252 of the control valve bore 52, wherein the control valve member 54 recesses 60 are formed so that fuel can flow past the guided portion of the control valve member 54.
  • the control valve body 17 facing annular end face 78 of the control section 62 has in the closed position of the control valve member 54, which is when the Steuerventildicht Chemistry 55 abuts the control valve seat 56, an axial distance from the beginning of the control valve bore 52, which corresponds to a Abêthub h a .
  • the control valve member 54 merges into a magnet armature 67, which is arranged in the leakage oil space 66, wherein the leakage oil space 66 is connected to the fuel tank 1 via a leak oil line 73.
  • the armature 67 In the closed position of the control valve member 54, the armature 67 has an axial distance h g from an electromagnet 65 likewise arranged in the leakage oil space 66.
  • the electromagnet 65 surrounds a valve spring 68, which is arranged between a fixed stop, not shown in the drawing and the armature 67 under bias and the control valve member 54 is acted upon in the closed position.
  • the electromagnet 65 is fixedly arranged in the leakage oil space 66 and can exert an attractive force on the armature 67 by suitable energization, which is thereby pulled in the opening direction of the control valve member 54 until it comes to the electromagnet 65 to the plant.
  • This opening stroke of the control valve member 54 takes place against the closing force of the valve spring 68, so that the control valve member 54 is pressed by eliminating the energization of the electromagnet 65 through the valve spring 68 back into the closed position.
  • a line which is designed as a connecting channel 71.
  • the connecting channel 71 extends inclined to the longitudinal axis of the control valve member 54 to the intermediate disc 19.
  • a throttle 72 is formed, via which the connecting channel 71 is connected to a formed in the valve holding body 22 damping chamber 70.
  • the damping chamber 70 is in this case designed as a blind bore, which runs parallel to the longitudinal axis 23 of the valve holding body 22 and the through hole 46.
  • the blind bore forming the damping chamber 70 can, depending on the desired volume of the damping chamber 70, have a different length. It is also possible to form the blind space forming the damping space 70 with different diameters.
  • FIG. 3 shows a further exemplary embodiment of the fuel injection system according to the invention, wherein the same detail enlargement is shown in FIG.
  • the function and the construction correspond exactly to the embodiment shown in Figure 2, but the damping chamber 70 is shown here by a recess in the control valve body 17, which is cylindrical and parallel to the control valve bore 52.
  • the damping chamber is connected via a line, which is designed as a connecting channel 71, near the first pressure chamber 57 with the inlet channel 13.
  • a throttle 72 is arranged, which dampens the flow of fuel through the connecting channel 71. Since the damping space 70 including the communication passage 71 and the throttle 72 are disposed inside the control valve body 17, the valve holding body 22 does not need to be structurally changed from the fuel injection valve without a damping space 70.
  • the damping chamber 70 is in this embodiment not formed as a simple blind hole, but is divided into two bore portions 170, 270 which are formed parallel to each other in the valve holding body 22.
  • the first bore portion 170 of the damping chamber 70 extends from one end face of the valve holding body 22 to the other end, ie from the intermediate disk 19 to the intermediate valve disk 24.
  • the first bore portion 170 of the damping chamber 70 opens into a cross-connection 85, which in cross section oval to kidney-shaped form, as Figure 5 shows in a cross section of the intermediate valve disc 24.
  • a second bore portion 270 of the damping space 70 is formed, which is designed as a blind bore and which is arranged at an angle ⁇ about the longitudinal axis 23 of the valve holding body 22 in relation to the first bore portion 170.
  • the two bore portions 170 and 270 are connected together so that they together form the damping chamber 70.
  • FIG. 5 shows a cross section through the fuel injection valve along the line V-V of FIG.
  • two further Zentrier dampbohronne 88 and 89 are formed in addition to the central opening 83 and the cross-connection 85.
  • centering pins are inserted during assembly of the fuel injection valve, which dip into corresponding holes in the valve holding body 22 and the valve body 25 and thereby ensure an exact positioning of these bodies to each other.
  • the operation of the fuel injection system is as follows:
  • the high-pressure pump 5 promotes through the fuel line.
  • a predetermined high fuel pressure level is maintained by a control device, not shown in the drawing.
  • the pressure level is up to 140 MPa in the usual today high-pressure collection chambers.
  • From the high-pressure accumulator 10, the fuel is passed through the high-pressure feed lines 12 to the fuel injection valves 15. In the fuel injection valve 15, the fuel passes through the inlet channel 13 in the first pressure chamber 57.
  • the control valve 50 in the closed position that is, the solenoid 65 is de-energized and the control valve member 54 by the valve spring 68 with the control valve sealing surface 55 at
  • the second pressure chamber 58 is connected via the recesses 60 with the Abêtraum 76, which communicates through the through hole 46 with the spring chamber 40 in connection, which is connected to the fuel tank 1 is.
  • the damping chamber 70 prevails because of the connecting channel 71, the same pressure as in the first pressure chamber 57 and thus also the same pressure as in the high-pressure accumulator 10.
  • the electromagnet 65 is energized, so that the armature 67 against the force of the valve spring 68 the electromagnet 65 moves toward.
  • the movement of the magnet armature 67 also moves the control valve member 54 and the control valve sealing surface 55 lifts off the control valve seat 56.
  • the first pressure chamber 57 is connected to the second pressure chamber 58.
  • the second pressure chamber 58 remains on the recesses 60 with the Abberichtraum 76 connected so that at the beginning of the lifting movement of the control valve member 54 fuel from the first pressure chamber 57 flows into the second pressure chamber 58 and from this into the Ab tenuraum 76.
  • valve sealing surface 34 from the valve seat 36 and the injection ports 38 are released so that fuel from the pressure chamber 31 flows past the valve needle 32 to the injection ports 38 and is injected from there into the combustion chamber of the internal combustion engine.
  • the valve needle 32 in this case continues its opening stroke until it lies with its side facing away from the combustion chamber at the abutment shoulder 35 of the intermediate valve disc 24. If the injection is terminated, the solenoid 65 is no longer energized, so that the valve spring 68, the control valve member 54 presses back into the closed position.
  • This pressure oscillation is damped by the throttle 72, so that the pressure oscillation, in contrast to fuel injection systems has subsided without a corresponding damping after a few oscillations and in the first pressure chamber 57 again a constant pressure prevails, which corresponds to the pressure in the high-pressure accumulator 10.
  • the strength of the damping can be adapted to the requirements of the fuel injection valve.
  • FIG. 6 shows a further exemplary embodiment of the fuel injection system according to the invention as a schematic block diagram.
  • the operation of the control valve 50 is, as in the previous embodiments, a 3/2-way valve that connects the first pressure chamber 57, the second pressure chamber 58 and the drain line 69 accordingly.
  • the first pressure chamber 57 is connected via a connecting channel 71 and a throttle 72 with the damping chamber 70, wherein in this embodiment between the throttle 72 and the damping chamber 70, a closing valve 92 is arranged.
  • the closing valve 92 is controlled by the force of a spring 94 and the pressure in the second pressure chamber 58, which acts on the closing valve 92 via a connecting line 96.
  • the closing valve 92 will interrupt the connecting channel 71 and the damping chamber 70 is no longer connected to the first pressure chamber 57, so that a occurring in the first pressure chamber 57 pressure vibration is no longer attenuated. If the fuel pressure in the second pressure chamber 58 is correspondingly low, as is the case when the control valve 50 is closed, then the force of the spring 94 outweighs the force of the fuel pressure in the second pressure chamber 58 and the closing valve 92 opens the connection from the first pressure chamber 57 to the damping chamber 70 ,
  • the advantage of the closing valve 92 is that pressure oscillations in the first pressure chamber 57 are only damped when the control valve 50 is closed, that is, when no injection takes place. Namely, the first pressure chamber 57 is constantly connected to the damping chamber 70 via the throttle 72, so the desired pressure surge at the beginning of the injection is somewhat damped, so that the maximum achievable pressure increase in the pressure chamber 31 is slightly lower than in a closed first pressure chamber 57th which otherwise has no damping. By the closing valve 92 is thus obtained a higher injection pressure at the same pressure in the high-pressure accumulator 10.
  • the closing valve 92 is also advantageously formed in the control valve body 17, so that further a compact design of the fuel injection system is possible and the circuit of the closing valve 92 is not delayed by an unnecessarily long connection line 96.
  • the throttle 72 in the washer 19 it may also be provided to form the throttle point in the control valve body 17 or the valve holding body 22.
  • the intermediate disc 19 can be omitted and it is thus saved a high-pressure sealing surface.
  • the Abgresraum 76 is arranged in accordance with the valve holding body 22.
  • the damping chamber 70 may be formed by two bore sections 170, 270, wherein the connection of the bore sections 170, 270 is not formed in the valve intermediate disk 24 but in the valve holding body 22. This results in a longitudinal section at least approximately U-shaped damping chamber.
  • Such a damping chamber can be produced, for example, with the aid of a milling cutter.
  • FIG. 7 shows a detail of a further exemplary embodiment of the fuel injection system shown in FIG. It is provided here, not to control the closing valve 92 by the pressure in the second pressure chamber 58, but directly, for example by means of an electrical actuator 102 which is controlled by a control unit 100.
  • the control unit can use the pressure in the second pressure chamber 58 as an input variable, the pressure being measured by means of a sensor element 101.
  • damping chamber 70 it may also be provided not to form the damping chamber 70 as a bore, but to form any cavity in the valve holding body 22 and this via a throttled connection with the first pressure chamber 57 to connect.
  • a damping chamber can be optimally adapted to the space conditions of the valve holding body 22.
  • control valve 50 is not controlled directly by means of an electromagnet, as shown in the exemplary embodiments.
  • control valve member 54 may be controlled by a device that causes the control valve member 54 to open and closed by means of hydraulic forces.
  • the control valve seat 56 of the control valve 50 is exposed by the placement of the control valve sealing surface 55 during the longitudinal movement of the control valve member 52 a high mechanical load. It is therefore necessary to manufacture the control valve body 17 from a hard, wear-resistant steel. In contrast, the formation of the damping chamber 70 is possible as a blind bore in the valve holding body 22 in a hard steel only with considerable effort. Since no mechanically highly stressed surfaces are present in the valve holding body 22, the valve holding body 22 can be made of a relatively soft steel, in which bores can be formed well.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Kraftstoffeinspritzsystem mit einem Kraftstoffeinspritzventil (15) und einem Steuerventil (50), welches Steuerventil (50) ein in einer Steuerventilbohrung (52) längsverschiebbares Steuerventilglied (54) aufweist. Am Steuerventilglied (54) ist eine Steuerventildichtfläche (55) ausgebildet, die mit einem Steuerventilsitz (56) zusammenwirkt und so die Verbindung von einem ersten Druckraum (57) zu einem zweiten Druckraum (58) steuert, wobei der erste Druckraum (57) mit einem Hochdrucksammelraum (10) verbunden ist. In einem Ventilkörper (25) ist eine Bohrung (30) ausgebildet, in der eine kolbenförmige Ventilnadel (32) mit ihrem brennraumseitigen Ende die Öffnung wenigstens eine Einspritzöffnung (38) steuert, indem sie druckbeaufschlagt durch den Druck in einer Druckkammer (31) eine Längsbewegung durchfährt, wobei die Druckkammer (31) über einen Zulaufkanal (28) mit dem zweiten Druckraum (58) verbunden ist. Der erste Druckraum (57) ist über eine Drossel (72) mit einem ansonsten abgeschlossenen Dämpfungsraum (70) verbunden, wodurch auftretende Druckschwingungen beim Schließen des Steuerventils (50) rasch abgedämpft werden.

Description

    Stand der Technik
  • Die Erfindung geht von einem Kraftstoffeinspritzsystem für Brennkraftmaschinen nach der Gattung des Patentanspruchs 1 aus. Ein solches Kraftstoffeinspritzsystem ist beispielsweise aus der Schrift DE 197 01 879 A1 bekannt und umfaßt einen Kraftstofftank, aus dem durch eine Hochdruckpumpe Kraftstoff in einen Hochdrucksammelraum gefördert wird. In dem Hochdrucksammelraum wird durch eine Regeleinrichtung ein vorgegebener Kraftstoffhochdruck aufrecht erhalten. Von dem Hochdrucksammelraum führen entsprechend der Anzahl der Brennräume der Brennkraftmaschine Hochdruckzuleitungen zu je einem Kraftstoffeinspritzventil, wobei das Kraftstoffeinspritzventil durch ein Steuerventil mit der Hochdruckleitung verbindbar ist. Das Steuerventil und das Kraftstoffeinspritzventil werden hierbei häufig aus Platzgründen in einem Gehäuse angeordnet. Das Kraftstoffeinspritzventil umfaßt hierbei eine Ventilnadel, die in einer Bohrung geführt ist und im Brennraum zugewandten Bereich von einem Druckraum umgeben ist. An der Ventilnadel ist eine Druckfläche ausgebildet, die vom Kraftstoff im Druckraum beaufschlagt wird, so daß die Ventilnadel bei Erreichung eines bestimmten Öffnungsdrucks im Druckraum entgegen einer Schließkraft eine Längsbewegung ausführt und so wenigstens eine Einspritzöffnung freigibt, durch die Kraftstoff aus dem Druckraum in den Brennraum der Brennkraftmaschine gelangt. Das Steuerventil des Kraftstoffeinspritzsystems ist als 3/2-Wegeventil ausgebildet, das in einer Stellung den Hochdrucksammelraum mit der Druckkammer des Kraftstoffeinspritzventils verbindet und in einer zweiten Stellung die Verbindung zum Hochdrucksammelraum unterbricht und die Druckkammer mit einem im Ventilkörper ausgebildeten Leckölraum verbindet, welcher Leckölraum über eine Leitung mit dem Kraftstofftank verbunden ist, so daß im Leckölraum stets ein niedriger Kraftstoffdruck herrscht. Schaltet das Steuerventil von der geschlossenen Stellung in die geöffnete Stellung, so wird eine Druckwelle erzeugt, die durch den Zulaufkanal in den Druckraum läuft und dort zu einer Drucküberhöhung führt, das heißt, daß die Einspritzung des Kraftstoffs mit einem Druck erfolgt, der deutlich höher ist als der Druck im Hochdrucksammelraum. Hierdurch erhält man hohe Einspritzdrücke bei einem moderaten Hochdruck im Hochdrucksammelraum und in den Kraftstoffhochdruck führenden Teilen des Kraftstoffeinspritzsystems. Da der Kraftstoff in den Zuleitungen durch das geöffnete Steuerventil während der Einspritzung in Bewegung ist, wird er beim Schließen des Steuerventils abrupt gestoppt, so daß die kinetische Energie des Kraftstoffs in Kompressionsarbeit umgewandelt wird. Dadurch entstehen Druckschwingungen, die bei einer der ersten Einspritzung unmittelbar folgenden zweiten Einspritzung die genaue Dosierung und die exakte Zumessung der Einspritzmenge erschwert, da der Zustand am Steuerventil aufgrund der Druckschwingungen nicht genau bekannt ist.
  • Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde, ein Kraftstoffeinspritzsystem zu konstruieren, das eine genaue Dosierung der Einspritzmenge und genau absetzbare Haupt-, Vor- und Nacheinspritzungen ermöglicht.
  • Vorteile der Erfindung
  • Das erfindungsgemäße Kraftstoffeinspritzsystem mit den kennzeichnenden Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, daß die beim Schließen des Steuerventils, also bei der Unterbrechung der Verbindung zum Hochdrucksammelraum auftretenden Druckschwingungen durch die Verbindung des ersten Druckraums bzw. der Hochdruckzuleitung mit einem Dämpfungsraum über eine Drossel abgedämpft werden und somit schnell abklingen. Das Steuerventil kommt daher nach dem Schließen sehr rasch wieder in einen stationären Zustand, so daß es möglich ist, in einem engen zeitlichen Abstand zur vorausgegangenen Einspritzung eine zweite Einspritzung durchzuführen und dabei deren Einspritzmenge sehr genau kontrollieren zu können. Das Steuerventil ist ein 3/2-Wegeventil in einem Steuerventilkörper und beinhaltet ein Steuerventilglied, das an einer Steuerbohrung längsverschiebbar geführt ist. Durch eine radiale Erweiterung der Steuerbohrung sind in der Steuerbohrung zwei Druckräume ausgebildet, wobei der erste Druckraum mit dem Hochdrucksammelraum verbunden ist und der zweite Druckraum mit der im Kraftstoffeinspritzventil ausgebildeten Druckkammer. In Schließstellung des Steuerventilglieds wird in der ersten Stellung die Verbindung vom ersten zum zweiten Druckraum unterbrochen, und der zweite Druckraum und damit die Druckkammer ist mit einem Leckölraum verbunden und somit drucklos. In der Öffnungsstellung des Steuerventilglieds wird die Verbindung vom ersten zum zweiten Druckraum geöffnet und die Verbindung des zweiten Druckraums mit dem Leckölraum unterbrochen, so daß der Hochdrucksammelraum mit der Druckkammer verbunden ist.
  • Der erste Druckraum ist über eine Drossel mit einem Dämpfungsraum verbunden, so daß Druckschwingungen, wie sie beim Öffnen und Schließen des Steuerventils im ersten Druckraum und auch in der Hochdruckzuleitung auftreten, abgedämpft werden. Durch eine geeignete Ausgestaltung der Drossel läßt sich die Dämpfungs-Charakteristik so einstellen, daß Druckschwingungen im Druckraum bereits nach wenigen Schwingungsperioden vollständig abklingen.
  • In einer ersten vorteilhaften Ausgestaltung des Gegenstandes der Erfindung ist der Dämpfungsraum als Bohrung ausgebildet, die im Ventilhaltekörper parallel zu dessen Längsachse verläuft. Dadurch läßt sich der Dämpfungsraum in den bereits bekannten Kraftstoffeinspritzventilen ohne Umbauten realisieren und ohne daß der Außendurchmesser des Kraftstoffeinspritzventils geändert werden muß.
  • In einer weiteren vorteilhaften Ausgestaltung ist der Ventilhaltekörper gegen den Steuerventilkörper unter Zwischenlage einer Zwischenscheibe axial verspannt. Die den Dämpfungsraum bildende Bohrung verläuft zum Teil im Steuerventilkörper, durch die Zwischenscheibe und, zum größeren Teil, im Ventilhaltekörper. Die Drossel ist in der Zwischenscheibe ausgebildet, so daß durch Austausch der Zwischenscheibe gegen eine mit einer anderen Drossel das Kraftstoffeinspritzventil an die Erfordernisse des jeweiligen angepaßt werden kann, ohne daß am übrigen Kraftstoffeinspritzventil konstruktive Änderungen erfolgen müssen.
  • In einer weiteren vorteilhaften Ausgestaltung des Gegenstandes der Erfindung besteht der Dämpfungsraum aus zwei zueinander parallelen Bohrungsabschnitten, die beide im Ventilhaltekörper verlaufen. Die beiden Bohrungsabschnitte der Dämpfungsraums sind durch einen Querkanal miteinander verbunden, so daß sich ein kürzerer Ventilhaltekörper bei gleichem Volumen der Drosselbohrung realisieren läßt. In einer weiteren vorteilhaften Ausgestaltung sind die beiden Bohrungsabschnitte des Dämpfungsraums durch einen Querkanal verbunden, der in einer Zwischenscheibe angeordnet ist, welche zwischen dem Ventilhaltekörper und dem Ventilkörper angeordnet ist. Durch diese Ausgestaltung entfällt eine Querverbindung der Bohrungsabschnitte innerhalb des Ventilhaltekörpers, welche nur relativ aufwendig, beispielsweise mit Hilfe eines Fingerfräsers, gefertigt werden kann. Die Ausbildung der Querverbindung in der Zwischenscheibe ermöglicht es, beide Bohrungsabschnitte des Dämpfungsraums ausgehend von einer der Stirnseite des Ventilhaltekörpers auszubilden.
  • In einer weiteren vorteilhaften Ausgestaltung des Gegenstandes der Erfindung ist zwischen dem Dämpfungsraum und dem ersten Druckraum ein Schließventil angeordnet, das die Verbindung vom ersten Druckraum zum Dämpfungsraum nur dann öffnet, wenn eine Dämpfung erwünscht ist. Die zur Einspritzung mit höchstmöglichem Druck angestrebte Drucküberhöhung beim Öffnen des Steuerventils wird durch die ständige Verbindung des ersten Druckraums mit dem Dämpfungsraum etwas erniedrigt. Deshalb unterbricht das Schließventil die Verbindung des ersten Druckraums zum Dämpfungsraum während der Öffnungsphase des Steuerventils. Nach Beendigung der Einspritzung wird das Schließventil geöffnet, so daß die Druckwellen im ersten Druckraum wie bisher schnell abgedämpft werden. Durch dieses Schließventil erhält man somit einen optimalen Einspritzdruck und gleichzeitig eine Dämpfung der Druckschwingungen, die eine exakte Dosierung der Einspritzungen möglich macht.
  • In einer weiteren vorteilhaften Ausgestaltung wird das Schließventil durch den Druck im zweiten Druckraum gesteuert. Bei geöffnetem Steuerventil herrscht im zweiten Druckraum zumindest annähernd derselbe Druck wie im ersten Druckraum und das Schließventil wird durch diesen Druck geschlossen. Schließt das Steuerventil die Verbindung vom ersten zum zweiten Druckraum, so fällt der Druck im zweiten Druckraum ab und das Schließventil öffnet dadurch die Verbindung vom ersten Druckraum zum Dämpfungsraum. Anschließend erfolgt die Dämpfung der Druckschwingung in der bereits geschilderten Art und Weise. Die Steuerung durch den Druck im zweiten Druckraum macht eine zusätzliche elektronische Ansteuerung des Schließventils überflüssig.
  • In einer weiteren vorteilhaften Ausgestaltung des Gegenstandes der Erfindung ist der Steuerventilkörper aus einem harten Stahl gefertigt, während der Ventilhaltekörper, in dem der Dämpfungsraum ausgebildet ist, aus einem relativ weichen Stahl gefertigt ist. Im Steuerventilkörper ist das Steuerventil angeordnet, das Dichtflächen enthält, die einer starken Beanspruchung ausgesetzt sind. Durch die Ausbildung mittels eines harten Stahls wird der Verschleiß im Bereich des Ventilsitzes des Steuerventils vermindert. Zur Ausbildung des Ventilhaltekörpers ist hingegen ein weicher Stahl vorteilhaft, da hier keine Sitz- oder Dichtflächen vorgesehen sind und somit keine starke mechanische Beanspruchung stattfindet. Der den Dämpfungsraum bildende Hohlraum kann in dem weichen Stahl kostengünstig und schnell ausgebildet werden.
  • Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Zeichnung, der Beschreibung und den Ansprüchen entnehmbar.
  • Zeichnung
  • In der Zeichnung sind verschiedene Ausführungsbeispiele des erfindungsgemäßen Kraftstoffeinspritzsystems dargestellt. Es zeigt
    • Figur 1, ein Kraftstoffeinspritzventil im Längsschnitt und die Kraftstoffhochdruckversorgung im schematischen Aufbau,
    • Figur 2 eine Vergrößerung von Figur 1 im Bereich des Steuerventils,
    • Figur 3 derselbe Ausschnitt wie Figur 2 eines weiteren Ausführungsbeispiels,
    • Figur 4 ein weiteres Ausführungsbeispiel eines Kraftstoffeinspritzsystems in derselben Darstellung wie Figur 1,
    • Figur 5 einen Querschnitt durch das in Figur 4 dargestellte Kraftstoffeinspritzventil entlang der Schnittlinie V-V,
    • Figur 6 ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Kraftstoffeinspritzsystems im schematischen Aufbau und
    • Figur 7 ein Ausschnitt aus Figur 6 eines weiteren Ausführungsbeispiels.
    Beschreibung der Ausführungsbeispiele
  • In Figur 1 ist ein erfindungsgemäßes Kraftstoffeinspritzventil im Längsschnitt gezeigt, das zusammen mit der in der schematisch dargestellten Kraftstoffhochdruckversorgung und dem ebenso nur schematisch dargestellten Leckölsystem ein Kraftstoffeinspritzsystem bildet. Aus einem Kraftstofftank 1 wird Kraftstoff über eine Kraftstoffleitung 3 einer Hochdruckpumpe 5 zugeleitet, die den Kraftstoff unter hohem Druck über eine Zuleitung 7 in einem Hochdrucksammelraum 10 fördert. Im Hochdrucksammelraum 10 wird durch eine in der Zeichnung nicht dargestellte Regeleinrichtung ein vorgegebener Kraftstoffhochdruck aufrecht erhalten. Vom Hochdrucksammelraum 10 führen Hochdruckzuleitungen 12 ab, die mit je einem Kraftstoffeinspritzventil 15 verbunden sind, von denen in der Zeichnung exemplarisch eines dargestellt ist. Das Kraftstoffeinspritzventil 15 ist mehrteilig aufgebaut und umfaßt einen Steuerventilkörper 17, in dem ein Steuerventil 50 angeordnet ist. Gegen den Steuerventilkörper 17 ist ein Ventilhaltekörper 22 unter Zwischenlage einer Zwischenscheibe 19 mittels einer Spannmutter 20 axial verspannt. Am anderen Ende des Ventilhaltekörpers 22, das dem Brennraum zugewandt ist, liegt der Ventilhaltekörper 22 unter Zwischenlage einer Ventilzwischenscheibe 24 an einem Ventilkörper 25 an, welcher Ventilkörper 25 mittels einer Spannmutter 27 gegen den Ventilhaltekörper 22 verspannt ist. Im Ventilkörper 25 ist eine Bohrung 30 ausgebildet, an deren brennraumseitigen Ende ein im wesentlichen konischer Ventilsitz 36 ausgebildet ist, in dem wenigstens eine Einspritzöffnung 38 angeordnet ist. In der Bohrung 30 ist eine kolbenförmige Ventilnadel 32 angeordnet, die in einem brennraumabgewandten Abschnitt der Bohrung 30 dichtend geführt ist und die sich unter Bildung einer Druckfläche 33 dem Brennraum zu verjüngt. Die Ventilnadel 32 geht an ihrem brennraumseitigen Ende in eine im wesentlichen konische Ventildichtfläche 34 über, die mit dem Ventilsitz 36 zusammenwirkt und so in Schließstellung, also bei Anlage am Ventilsitz 36 die Einspritzöffnungen 38 verschließt. Auf der Höhe der Druckfläche 33 ist durch eine radiale Erweiterung der Bohrung 30 eine Druckkammer 31 ausgebildet, die sich als ein die Ventilnadel 32 umgebener Ringkanal bis zum Ventilsitz 36 fortsetzt. Die Druckkammer 31 ist über einen im Ventilkörper 25, der Ventilzwischenscheibe 24, dem Ventilhaltekörper 22, der Zwischenscheibe 19 und dem Steuerventilkörper 17 verlaufende Zulaufbohrung 28 mit dem Hochdrucksammelraum 10 verbindbar und somit mit Kraftstoff unter hohem Druck befüllbar.
  • In der Ventilzwischenscheibe 24 ist eine zentrale Öffnung 83 ausgebildet, die die Bohrung 30 mit einem im Ventilhaltekörper 22 ausgebildeten Federraum 40 verbindet. Der Federraum 40 ist hierbei als Bohrung ausgeführt und koaxial zur Bohrung 30 angeordnet. Die zentrale Öffnung 83 weist einen geringeren Durchmesser auf als die die Ventilnadel 32 führende Bohrung 30, so daß am Übergang des Ventilkörpers 25 zur Ventilzwischenscheibe 24 eine Anschlagschulter 35 ausgebildet ist. Der axiale Abstand der brennraumabgewandten Stirnseite der Ventilnadel 32 von der Anschlagschulter 35 der Ventilzwischenscheibe 24 in Schließstellung des Kraftstoffeinspritzventils definiert den Öffnungshub der Ventilnadel 32.
  • An ihrem brennraumabgewandten Ende geht die Ventilnadel 32 in einen Druckstift 37 über, der koaxial zur Ventilnadel 32 angeordnet ist und in der zentralen Öffnung 83 der Ventilzwischenscheibe 24 angeordnet ist. Der Druckstift 37 geht in einen im Federraum 40 angeordneten Federteller 42 über, zwischen dem und dem brennraumabgewandten Ende des Federraums 40 eine als Schraubendruckfeder ausgebildete Schließfeder 44 unter Druckvorspannung angeordnet ist. Hierbei kann die Druckvorspannung der Schließfeder 44 über die Dicke einer Ausgleichsscheibe 45 festgelegt werden, die zwischen der Schließfeder 44 und dem brennraumabgewandten Ende des Federraums 40 angeordnet ist. Durch die Kraft der Schließfeder 44 wird über den Federteller 42 und den Druckstift 37 die Ventilnadel 32 mit der Ventildichtfläche 34 gegen den Ventilsitz 36 gepreßt und dadurch die Einspritzöffnungen 38 verschlossen. Der Federraum 40 ist über eine Leckölleitung 69 mit dem Kraftstofftank 1 verbunden, so daß in den Federraum 40 eindringender Kraftstoff in den Kraftstofftank 1 abgeführt wird, weshalb im Federraum 40 stets ein niedriger Kraftstoffdruck herrscht. An seinem brennraumabgewandten Ende geht der Federraum 40 in eine koaxial zur Bohrung 30 und dem Federraum 40 angeordnete Durchgangsbohrung 46 über, die bis in einen in der Zwischenscheibe 19 ausgebildeten Absteuerraum 76 reicht.
  • In Figur 2 ist eine vergrößerte Darstellung des Steuerventils 50 im Längsschnitt dargestellt. Die Steuerventilbohrung 52 unterteilt sich in einen Dichtungsabschnitt 152 und einen im Durchmesser kleineren Führungsabschnitt 252. Die Steuerventilbohrung 52 mündet dabei dem Brennraum abgewandt in einen im Steuerventilkörper 17 ausgebildeten Leckölraum 66 und mit ihrem anderen Ende in den Absteuerraum 76, welcher über die Durchgangsbohrung 46 mit dem Federraum 40 verbunden ist. Durch eine radiale Erweiterung der Steuerventilbohrung 52 ist ein erster Druckraum 57 ausgebildet, der über einen im Steuerventilkörper 17 ausgebildeten Zulaufkanal 13 mit der Hochdruckzuleitung 12 und damit mit dem Hochdrucksammelraum 10 verbunden ist. Ausgehend vom ersten Druckraum 57 ist dem Ventilhaltekörper 22 zugewandt durch eine weitere radiale Erweiterung der Steuerventilbohrung 52 ein zweiter Druckraum 58 ausgebildet. In den zweiten Druckraum 58 mündet die Zulaufbohrung 28, die den zweiten Druckraum 58 mit der Druckkammer 31 verbindet. Am Übergang des ersten Druckraums 57 zum zweiten Druckraum 58 ist an der Wand der Steuerventilbohrung 52 ein im wesentlichen konischer Steuerventilsitz 56 ausgebildet. In der Steuerventilbohrung 52 ist ein Steuerventilglied 54 längsverschiebbar angeordnet, das im Dichtungsabschnitt 152 der Steuerventilbohrung 52 dichtend geführt ist. Vom dichtend geführten Abschnitt des Steuerventilglieds 54 aus verjüngt sich das Steuerventilglied 54 dem Ventilhaltekörper 22 zu unter Bildung einer Steuerventildichtfläche 55, die im wesentlichen konisch ausgebildet ist und mit dem Steuerventilsitz 56 zusammenwirkt. Das Steuerventilglied 54 erstreckt sich durch den zweiten Druckraum 58 bis in den in der Zwischenscheibe 19 ausgebildeten Absteuerraum 76, wo das Steuerventilglied 54 in einen Steuerabschnitt 62 übergeht, der zylindrisch ausgebildet ist und einen Durchmesser aufweist, der nur geringfügig kleiner ist als der Durchmesser des Führungsabschnitts 252 der Steuerventilbohrung 52. Zwischen dem Steuerabschnitt 62 und dem zweiten Druckraum 58 wird das Steuerventilglied 54 im Führungsabschnitt 252 der Steuerventilbohrung 52 geführt, wobei am Steuerventilglied 54 Ausnehmungen 60 ausgebildet sind, so daß Kraftstoff am geführten Abschnitt des Steuerventilglieds 54 vorbei fließen kann. Die dem Steuerventilkörper 17 zugewandte Ringstirnfläche 78 des Steuerabschnitts 62 weist in Schließstellung des Steuerventilglieds 54, das ist, wenn die Steuerventildichtfläche 55 am Steuerventilsitz 56 anliegt, einen axialen Abstand vom Beginn der Steuerventilbohrung 52 auf, der einem Absteuerhub ha entspricht.
  • An dem dem Ventilhaltekörper 22 abgewandten Ende geht das Steuerventilglied 54 in einen Magnetanker 67 über, der im Leckölraum 66 angeordnet ist, wobei der Leckölraum 66 über eine Leckölleitung 73 mit dem Kraftstofftank 1 verbunden ist. Der Magnetanker 67 weist in Schließstellung des Steuerventilglieds 54 einen axialen Abstand hg von einem ebenfalls im Leckölraum 66 angeordneten Elektromagneten 65 auf. Der Elektromagnet 65 umgibt eine Ventilfeder 68, die zwischen einem in der Zeichnung nicht dargestellten ortsfesten Anschlag und dem Magnetanker 67 unter Vorspannung angeordnet ist und das Steuerventilglied 54 in Schließstellung beaufschlagt. Der Elektromagnet 65 ist im Leckölraum 66 ortsfest angeordnet und kann durch eine geeignete Bestromung eine anziehende Kraft auf den Magnetanker 67 ausüben, der dadurch in Öffnungsrichtung des Steuerventilglieds 54 gezogen wird, bis er am Elektromagneten 65 zur Anlage kommt. Diese Öffnungshubbewegung des Steuerventilglieds 54 erfolgt gegen die Schließkraft der Ventilfeder 68, so daß das Steuerventilglied 54 durch Wegfall der Bestromung des Elektromagneten 65 durch die Ventilfeder 68 wieder in Schließstellung gedrückt wird.
  • Neben dem Zulaufkanal 13 mündet in den ersten Druckraum 57 auch eine Leitung, die als Verbindungskanal 71 ausgebildet ist. Der Verbindungskanal 71 verläuft geneigt zur Längsachse des Steuerventilglieds 54 bis zur Zwischenscheibe 19. In der Zwischenscheibe 19 ist eine Drossel 72 ausgebildet, über die der Verbindungskanal 71 mit einem im Ventilhaltekörper 22 ausgebildeten Dämpfungsraum 70 verbunden ist. Der Dämpfungsraum 70 ist hierbei als Sackbohrung ausgeführt, die parallel zur Längsachse 23 des Ventilhaltekörpers 22 und zur Durchgangsbohrung 46 verläuft. Die den Dämpfungsraum 70 bildende Sackbohrung kann, je nach gewünschtem Volumen des Dämpfungsraums 70, eine unterschiedliche Länge aufweisen. Auch ist es möglich, die den Dämpfungsraum 70 bildende Sackbohrung mit unterschiedlichen Durchmessern auszubilden.
  • In Figur 3 ist ein weiteres Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzsystems dargestellt, wobei dieselbe Ausschnittsvergrößerung wie in Figur 2 dargestellt ist. Die Funktion und der Aufbau entsprechen genau dem in Figur 2 dargestellten Ausführungsbeispiel, jedoch ist der Dämpfungsraum 70 hier durch eine Ausnehmung im Steuerventilkörper 17 dargestellt, die zylinderförmig ausgebildet ist und parallel zur Steuerventilbohrung 52 verläuft. Der Dämpfungsraum ist über eine Leitung, die als Verbindungskanal 71 ausgebildet ist, nahe dem ersten Druckraum 57 mit dem Zulaufkanal 13 verbunden. Innerhalb des Verbindungskanals 71 ist eine Drossel 72 angeordnet, die den Durchfluß von Kraftstoff durch den Verbindungskanal 71 dämpft. Da der Dämpfungsraum 70 einschließlich des Verbindungskanals 71 und der Drossel 72 innerhalb des Steuerventilkörpers 17 angeordnet sind, muß der Ventilhaltekörper 22 gegenüber den Kraftstoffeinspritzventil ohne einen Dämpfungsraum 70 baulich nicht geändert werden.
  • In Figur 4 ist ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Kraftstoffeinspritzsystems dargestellt, wobei gegenüber der Figur 1 nur die Ausbildung des Dämpfungsraums 70 verändert ist. Der Dämpfungsraum 70 ist in diesem Ausführungsbeispiel nicht als einfache Sackbohrung ausgebildet, sondern ist in zwei Bohrungsabschnitte 170, 270 unterteilt, die parallel zueinander im Ventilhaltekörper 22 ausgebildet sind. Der erste Bohrungsabschnitt 170 des Dämpfungsraums 70 reicht von einer Stirnseite des Ventilhaltekörpers 22 bis zur anderen Stirnseite, also von der Zwischenscheibe 19 bis zur Ventilzwischenscheibe 24. In der Ventilzwischenscheibe 24 mündet der erste Bohrungsabschnitt 170 des Dämpfungsraums 70 in eine Querverbindung 85, die im Querschnitt eine ovale bis nierenförmige Form aufweist, wie Figur 5 in einem Querschnitt der Ventilzwischenscheibe 24 zeigt. Im Ventilhaltekörper 22 ist ausgehend von der dem Brennraum zugewandten Stirnseite des Ventilhaltekörpers 22 ein zweiter Bohrungsabschnitt 270 des Dämpfungsraums 70 ausgebildet, der als Sackbohrung ausgeführt ist und der gegenüber dem ersten Böhrungsabschnitt 170 um einen Winkel α um die Längsachse 23 des Ventilhaltekörpers 22 verschwenkt angeordnet ist. Durch die Querverbindung 85 in der Ventilzwischenscheibe 24 werden die beiden Bohrungsabschnitte 170 und 270 miteinander verbunden, so daß sie zusammen den Dämpfungsraum 70 bilden.
  • In der Figur 5 ist ein Querschnitt durch das Kraftstoffeinspritzventil entlang der Linie V-V der Figur 4 gezeigt. In der Ventilzwischenscheibe 24 sind neben der zentralen Öffnung 83 und der Querverbindung 85 noch zwei weitere Zentrierstiftbohrungen 88 und 89 ausgebildet. In diesen Zentrierstiftbohrungen 88 und 89 werden bei der Montage des Kraftstoffeinspritzventils Zentrierstifte eingesteckt, die in entsprechende Bohrungen im Ventilhaltekörper 22 und dem Ventilkörper 25 eintauchen und dadurch eine exakte Positionierung dieser Körper zueinander gewährleisten.
  • Die Funktionsweise des Kraftstoffeinspritzsystems, wie es in den Figuren 1 bis 5 dargestellt ist, ist wie folgt: Die Hochdruckpumpe 5 fördert durch die Kraftstoffleitung 3 Kraftstoff aus dem Kraftstofftank 1 über eine Hochdruckzuleitung 7 in den Hochdrucksammelraum 10. Im Hochdrucksammelraum 10 wird durch eine in der Zeichnung nicht dargestellte Regeleinrichtung ein vorgegebenes hohes Kraftstoffdruckniveau aufrecht erhalten. Das Druckniveau beträgt bei den heute üblichen Hochdrucksammelräumen bis zu 140 MPa. Vom Hochdrucksammelraum 10 wird der Kraftstoff durch die Hochdruckzuleitungen 12 zu den Kraftstoffeinspritzventilen 15 geleitet. Im Kraftstoffeinspritzventil 15 gelangt der Kraftstoff durch den Zulaufkanal 13 in den ersten Druckraum 57. Zu Beginn des Einspritzzyklus ist das Steuerventil 50 in Schließstellung, das heißt, der Elektromagnet 65 ist nicht bestromt und das Steuerventilglied 54 wird durch die Ventilfeder 68 mit der Steuerventildichtfläche 55 an das Steuerventil 56 gepreßt und verschließt den ersten Druckraum 57 gegen den zweiten Druckraum 58. Der zweite Druckraum 58 ist über die Ausnehmungen 60 mit dem Absteuerraum 76 verbunden, der durch die Durchgangsbohrung 46 mit dem Federraum 40 in Verbindung steht, welcher mit dem Kraftstofftank 1 verbunden ist. Auf diese Weise herrscht im zweiten Druckraum 58 und über die Zulaufbohrung 28, die vom zweiten Druckraum 58 ausgeht, auch in der Druckkammer 31 ein niedriger Kraftstoffdruck, der dem Druck im Kraftstofftank 1 entspricht. Im Dämpfungsraum 70 herrscht wegen des Verbindungskanals 71 derselbe Druck wie im ersten Druckraum 57 und damit auch derselbe Druck wie im Hochdrucksammelraum 10. Soll eine Einspritzung erfolgen, so wird der Elektromagnet 65 bestromt, so daß sich der Magnetanker 67 entgegen der Kraft der Ventilfeder 68 auf dem Elektromagneten 65 zubewegt. Durch die Bewegung des Magnetankers 67 bewegt sich auch das Steuerventilglied 54 und die Steuerventildichtfläche 55 hebt vom Steuerventilsitz 56 ab. Hierdurch wird der erste Druckraum 57 mit dem zweiten Druckraum 58 verbunden. Solange der Absteuerhub ha noch nicht vom Steuerventilglied 54 durchfahren ist, bleibt der zweite Druckraum 58 über die Ausnehmungen 60 mit dem Absteuerraum 76 verbunden, so daß zu Beginn der Hubbewegung des Steuerventilglieds 54 Kraftstoff aus dem ersten Druckraum 57 in den zweiten Druckraum 58 fließt und von diesem in den Absteuerraum 76. Dadurch setzt sich die Kraftstoffmenge, die im Zulaufkanal 13 unter hohem Druck steht, in Bewegung und erhält so kinetische Energie. Nach Durchfahren des Absteuerhubs ha taucht der Steuerabschnitt 62 in die Steuerventilbohrung 52 ein und verschließt so den zweiten Druckraum 58 gegen den Absteuerraum 76. Der bereits in Bewegung befindliche Kraftstoff im Zulaufkanal 13 strömt nun in die Zulaufbohrung 28 und weiter in die noch verschlossene Druckkammer 31, wo sich die kinetische Energie des Kraftstoffs in Kompressionsarbeit umwandelt. Damit geht eine Druckerhöhung in der Druckkammer 31 einher und man erhält einen deutlich höheren Druck als im Hochdrucksammelraum 10. Dieser Druck kann einige 10 MPa über dem Druck im Hochdrucksammelraum 10 liegen. Durch den Druck in der Druckkammer 31 ergibt sich eine hydraulische Kraft auf die Druckfläche 33 der Ventilnadel. 32, welche dadurch in axialer Richtung vom Brennzaum weg entgegen der Kraft der Schließfeder 44 bewegt wird. Dadurch hebt auch die Ventildichtfläche 34 vom Ventilsitz 36 ab und die Einspritzöffnungen 38 werden freigegeben, so daß Kraftstoff aus der Druckkammer 31 an der Ventilnadel 32 vorbei zu den Einspritzöffnungen 38 fließt und von dort in den Brennraum der Brennkraftmaschine eingespritzt wird. Die Ventilnadel 32 setzt hierbei ihre Öffnungshubbewegung solange fort, bis sie mit ihrer dem Brennraum abgewandten Stirnseite an der Anschlagschulter 35 der Ventilzwischenscheibe 24 anliegt. Soll die Einspritzung beendet werden, so wird der Elektromagnet 65 nicht mehr bestromt, so daß die Ventilfeder 68 das Steuerventilglied 54 zurück in die Schließstellung drückt. Im Verlauf der Schließbewegung des Steuerventilglieds 54 taucht der Steuerabschnitt 62 wieder aus dem Führungsabschnitt 252 der Steuerventilbohrung 52 aus und verbindet den zweiten Druckraum 58 und damit über die Zulaufbohrung 58 auch die Druckkammer 31 mit dem Absteuerraum 76, der mit dem Leckölsystem verbunden ist. Die Druckkammer 31 wird somit entlastet und die Kraft der Schließfeder 44 auf die Ventilnadel 32 überwiegt die hydraulische Kraft auf die Druckfläche 33 und die Ventilnadel 32 fährt zurück in Schließstellung. Da der Kraftstoff im Zulaufkanal 13 nach wie vor kinetische Energie aufweist, wird diese kinetische Energie nach dem Schließen des Steuerventils 50 in Kompressionsarbeit umgewandelt, so daß der Druck im ersten Druckraum 57 ansteigt. Durch diese Drucküberhöhung herrscht im ersten Druckraum 57 ein höherer Druck als im Dämpfungsraum 70, so daß nun Kraftstoff aus dem ersten Druckraum 57 durch den Verbindungskanal 71 und die Drossel 72 in den Dämpfungsraum 70 fließt, wo der Druck dadurch entsprechend erhöht wird. Die so in dem Dämpfungsraum 70 fließende Druckwelle erniedrigt also den Druck im ersten Druckraum 57 und erhöht den Druck im Dämpfungsraum 70, bis der Druck im Dämpfungsraum 70 höher ist als im ersten Druckraum 57. Ein Teil des Kraftstoffs fließt nun wieder durch die Drossel 72 und den Verbindungskanal 71 aus dem Dämpfungsraum 70 zurück in den ersten Druckraum 57, wo der Druck entsprechend wieder ansteigt. Diese Druckschwingung wird durch die Drossel 72 gedämpft, so daß die Druckschwingung im Gegensatz zu Kraftstoffeinspritzsystemen ohne eine entsprechende Dämpfung nach wenigen Schwingungen abgeklungen ist und im ersten Druckraum 57 wieder ein konstanter Druck herrscht, der dem Druck im Hochdrucksammelraum 10 entspricht. Über den Querschnitt der Drossel 72 und das Volumen des Dämpfungsraums 70 kann die Stärke der Dämpfung an die Erfordernisse des Kraftstoffeinspritzventils angepaßt werden.
  • In Figur 6 ist ein weiteres Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzsystems als schematisches Blockschaltbild dargestellt. Die Funktionsweise des Steuerventils 50 ist, wie in den voran gegangenen Ausführungsbeispielen, die eines 3/2-Wegeventils, das den ersten Druckraum 57, den zweiten Druckraum 58 und die Leckölleitung 69 entsprechend verbindet. Der erste Druckraum 57 ist über einen Verbindungskanal 71 und eine Drossel 72 mit den Dämpfungsraum 70 verbunden, wobei in diesem Ausführungsbeispiel zwischen der Drossel 72 und dem Dämpfungsraum 70 ein Schließventil 92 angeordnet ist. Das Schließventil 92 wird durch die Kraft einer Feder 94 und den Druck im zweiten Druckraum 58, der über eine Verbindungsleitung 96 auf das Schließventil 92 wirkt, gesteuert. Herrscht im zweiten Druckraum 58 ein entsprechend hoher Kraftstoffdruck, der eine größere Kraft auf das Schließventil 92 ausübt als die Feder 94, so wird das Schließventil 92 den Verbindungskanal 71 unterbrechen und der Dämpfungsraum 70 ist nicht mehr mit dem ersten Druckraum 57 verbunden, so daß eine im ersten Druckraum 57 auftretende Druckschwingung nicht mehr gedämpft wird. Ist der Kraftstoffdruck im zweiten Druckraum 58 entsprechend niedrig, wie dies bei geschlossenem Steuerventil 50 der Fall ist, so überwiegt die Kraft der Feder 94 gegenüber der Kraft des Kraftstoffdrucks im zweiten Druckraum 58 und das Schließventil 92 öffnet die Verbindung vom ersten Druckraum 57 zum Dämpfungsraum 70.
  • Der Vorteil des Schließventils 92 ist, daß Druckschwingungen im ersten Druckraum 57 nur dann gedämpft werden, wenn das Steuerventil 50 geschlossen ist, also dann, wenn keine Einspritzung erfolgt. Ist nämlich der erste Druckraum 57 ständig mit dem Dämpfungsraum 70 über die Drossel 72 verbunden, so wird auch der erwünschte Druckstoß zu Beginn der Einspritzung etwas abgedämpft, so daß die maximal erreichbare Drucküberhöhung in der Druckkammer 31 etwas niedriger ausfällt als bei einem abgeschlossenen ersten Druckraum 57, der ansonsten über keine Dämpfung verfügt. Durch das Schließventil 92 erhält man somit einen höheren Einspritzdruck bei gleichem Druck im Hochdrucksammelraum 10. Das Schließventil 92 ist hierbei in vorteilhafter Weise ebenfalls im Steuerventilkörper 17 ausgebildet, so daß weiterhin eine kompakte Bauweise des Kraftstoffeinspritzsystems möglich ist und die Schaltung des Schließventils 92 nicht durch eine unnötig lange Verbindungsleitung 96 verzögert wird.
  • Neben der Anordnung der Drossel 72 in der Zwischenscheibe 19 kann es auch vorgesehen sein, die Drosselstelle im Steuerventilkörper 17 oder im Ventilhaltekörper 22 auszubilden. Hierzu kann die Zwischenscheibe 19 entfallen und es wird so eine Hochdruckdichtfläche eingespart. In diesem Fall wird der Absteuerraum 76 entsprechend im Ventilhaltekörper 22 angeordnet. Weiter kann es vorgesehen sein, den Dämpfungsraum 70 durch zwei Bohrungsabschnitte 170, 270 auszubilden, wobei die Verbindung der Bohrungsabschnitte 170, 270 jedoch nicht in der Ventilzwischenscheibe 24, sondern im Ventilhaltekörper 22 ausgebildet ist. Hierdurch erhält man einen im Längsschnitt zumindest näherungsweise U-förmigen Dämpfungsraum. Ein solcher Dämpfungsraum kann beispzelsweise mit Hilfe eines Fingerfräsers hergestellt werden.
  • Figur 7 zeigt in einem Ausschnitt ein weiteres Ausführungsbeispiel des in Figur 6 gezeigten Kraftstoffeinspritzsystems. Es ist hier vorgesehen, das Schließventil 92 nicht durch den Druck im zweiten Druckraum 58 zu steuern, sondern direkt beispielsweise mit Hilfe eines elektrischen Aktors 102, der von einem Steuergerät 100 angesteuert wird. Das Steuergerät kann als Eingabegröße unter anderem den Druck im zweiten Druckraum 58 nutzen, wobei der Druck mittels eines Sensorelements 101 gemessen wird.
  • Darüber hinaus kann es auch vorgesehen sein, den Dämpfungsraum 70 nicht als Bohrung auszubilden, sondern einen beliebigen Hohlraum im Ventilhaltekörper 22 auszubilden und diesen über eine gedrosselte Verbindung mit dem ersten Druckraum 57 zu verbinden. Ein solcher Dämpfungsraum kann optimal an die Platzverhältnisse des Ventilhaltekörpers 22 angepaßt werden. Darüber hinaus ist es auch möglich, den Dämpfungsraum 70 im Steuerventilkörper 17 auszubilden, wodurch eine entsprechende Hochdruckdichtfläche, wie sie zwischen der Zwischenscheibe 19 und dem Ventilhaltekörper 22 bzw. dem Steuerventilkörper 17 und der Zwischenscheibe 19 ausgebildet ist, entfällt.
  • Weiter kann es vorgesehen sein, das Steuerventil 50 nicht, wie in den Ausführungsbeispielen dargestellt, direkt mit Hilfe eines Elektromagneten zu steuern. Alternativ dazu kann das Steuerventilglied 54 durch eine Vorrichtung, die das Steuerventilglied 54 mithilfe hydraulischer Kräfte in Öffnungs- bzw. Schließstellung bringen, gesteuert werden.
  • Der Steuerventilsitz 56 des Steuerventils 50 ist durch das Aufsetzen der Steuerventildichtfläche 55 bei der Längsbewegung des Steuerventilglieds 52 einer hohen mechanischen Belastung ausgesetzt. Es ist deshalb notwendig, den Steuerventilkörper 17 aus einem harten, verschleißfesten Stahl.zu fertigen. Demgegenüber ist die Ausbildung des Dämpfungsraums 70 als Sackbohrung im Ventilhaltekörper 22 in einem harten Stahl nur mit erheblichem Aufwand möglich. Da im Ventilhaltekörper 22 keine mechanisch hochbeanspruchten Flächen vorhanden sind, kann der Ventilhaltekörper 22 aus einem relativ weichen Stahl gefertigt werden, in dem sich Bohrungen gut ausbilden lassen.

Claims (9)

  1. Kraftstoffeinspritzsystem für Brennkraftmaschinen mit einem von einer Kraftstoffhochdruckquelle versorgten Kraftstoffeinspritzventil, das ein Ventilglied (32) aufweist, das durch den Druck einer im Kraftstoffeinspritzventil ausgebildeten Druckkammer (31) verstellbar ist und dadurch wenigstens eine mit der Druckkammer (31) verbindbare Einspritzöffnung (38) steuert, und mit einem Steuerventil (50), das ein Steuerventilglied (54) aufweist, welches in einer ersten Stellung einen ständig mit der Kraftstoffhochdruckquelle verbundenen ersten Druckraum (57) von einer zur Druckkammer (31) führenden Zulaufbohrung (28) trennt und in einer zweiten Stellung die Verbindung zwischen der Kraftstoffhochdruckquelle und der Druckkammer (31) öffnet, dadurch gekennzeichnet, daß zwischen Kraftstoffhochdruckquelle und erstem Druckraum (57) eine Leitung (71), die eine Drossel (72) aufweist, zu einem ansonsten abgeschlossenen Dämpfungsraum (70) führt, der innerhalb des Kraftstoffeinspritzventils angeordnet ist.
  2. Kraftstoffeinspritzsystem nach Anspruch 1, dadurch gekennzeichnet, daß die Leitung (71) vom ersten Druckraum (57) zum Dämpfungsraum (70) führt.
  3. Kraftstoffeinspritzsystem nach Anspruch 1, dadurch gekennzeichnet, daß das Kraftstoffeinspritzventil einen Steuerventilkörper (17), einen Ventilhaltekörper (22) und einen Ventilkörper (25) aufweist, wobei der Steuerventilkörper (17) und der Ventilkörper (25) an gegenüberliegenden Stirnseiten des Ventilhaltekörpers (22) angeordnet sind und das Steuerventil (50) im Steuerventilkörper (17) und das Ventilglied (32) im Ventilkörper (25) angeordnet sind.
  4. Kraftstoffeinspritzsystem nach Anspruch 3, dadurch gekennzeichnet, daß der Dämpfungsraum (70) im Steuerventilkörper (17) ausgebildet ist.
  5. Kraftstoffeinspritzsystem nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß in der Leitung (71) zum Dämpfungsraum (70) ein die Öffnung der Leitung (71) steuerndes Schließventil (92) angeordnet ist.
  6. Kraftstoffeinspritzsystem nach Anspruch 5, dadurch gekennzeichnet, daß das Schließventil (92) durch den hydraulischen Druck im Zulaufkanal (28) gesteuert wird.
  7. Kraftstoffeinspritzsystem nach Anspruch 5, dadurch gekennzeichnet, daß das Schließventil (92) bei einem bestimmten Öffnungsdruck im Zulaufkanal (28) die Verbindung vom ersten Druckraum (57) zum Dämpfungsraum (70) öffnet und bei Unterschreiten dieses Öffnungsdrucks schließt.
  8. Kraftstoffeinspritzsystem nach Anspruch 5, dadurch gekennzeichnet, daß das Schließventil (92) durch einen steuerbaren elektrischen Aktor (102) betätigt wird.
  9. Kraftstoffeinspritzsystem nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Kraftstoffhochdruckquelle ein Hochdrucksammelraum (10) ("common rail") ist.
EP01999740A 2000-12-07 2001-12-05 Kraftstoffeinspritzsystem für brennkraftmaschinen Expired - Lifetime EP1342005B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10060811A DE10060811A1 (de) 2000-12-07 2000-12-07 Kraftstoffeinspritzsystem für Brennkraftmaschinen
DE10060811 2000-12-07
PCT/DE2001/004531 WO2002046602A1 (de) 2000-12-07 2001-12-05 Kraftstoffeinspritzsystem für brennkraftmaschinen

Publications (2)

Publication Number Publication Date
EP1342005A1 EP1342005A1 (de) 2003-09-10
EP1342005B1 true EP1342005B1 (de) 2004-12-22

Family

ID=7666133

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01999740A Expired - Lifetime EP1342005B1 (de) 2000-12-07 2001-12-05 Kraftstoffeinspritzsystem für brennkraftmaschinen

Country Status (6)

Country Link
US (1) US7066150B2 (de)
EP (1) EP1342005B1 (de)
JP (1) JP4146229B2 (de)
CN (1) CN100400852C (de)
DE (2) DE10060811A1 (de)
WO (1) WO2002046602A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10143511B4 (de) * 2001-09-05 2006-11-09 Siemens Ag Speichereinspritzsystem mit Drosseleinrichtung
DE10217592A1 (de) * 2002-04-19 2003-11-06 Siemens Ag Injektor zur Einspritzung von Kraftstoff
DE10307871A1 (de) 2003-02-25 2004-09-02 Robert Bosch Gmbh Hochdruckleitung für eine Kraftstoffeinspritzanlage
FR2862352B1 (fr) * 2003-11-14 2006-02-24 Renault Sas Dispositif d'injection de carburant equipe de moyens d'amortissement d'ondes de pression
DE102004061799A1 (de) * 2004-12-22 2006-07-06 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
US8122012B2 (en) 2005-01-14 2012-02-21 International Business Machines Corporation Abstract record timeline rendering/display
DE102005046669A1 (de) * 2005-09-29 2007-04-05 Robert Bosch Gmbh Lochdüse für eine Kraftstoff-Einspritzvorrichtung eines Kraftstoff-Einspritzsystem
DE102006033937A1 (de) * 2006-07-21 2008-01-24 Robert Bosch Gmbh Kraftstoffinjektor
DE102006047294A1 (de) * 2006-10-06 2008-04-24 Man Diesel Se Kraftstoffversorgungsanlage einer Brennkraftmaschine
DE102007025617A1 (de) * 2007-06-01 2008-12-04 Robert Bosch Gmbh Kraftstoffinjektor mit geringem Verschleiß
DE102009015528B4 (de) * 2009-04-02 2021-08-12 Man Energy Solutions Se Ventileinheit einer Kraftstoffversorgungsanlage
US20110297125A1 (en) * 2010-06-03 2011-12-08 Caterpillar Inc. Reverse Flow Check Valve For Common Rail Fuel System
CN102364080A (zh) * 2011-11-22 2012-02-29 哈尔滨工程大学 多级节流稳压电控喷油器
AT512960B1 (de) * 2012-05-22 2014-03-15 Bosch Gmbh Robert Injektor eines modularen Common-Rail-Kraftstoffeinspritzsystems
DE102012220491A1 (de) * 2012-11-09 2014-05-15 Robert Bosch Gmbh Brennstoffeinspritzventil und Brennstoffeinspritzanlage mit einem Brennstoffeinspritzventil
DE102017220328A1 (de) * 2017-11-15 2019-05-16 Robert Bosch Gmbh Schwingungsdämpfungsanordnung für Einspritzanlagen von Kraftfahrzeugen, insbesondere für Brennstoffeinspritzsysteme, und Einspritzanlage mit solch einer Schwingungsdämpfungsanordnung
JP2019199810A (ja) * 2018-05-14 2019-11-21 株式会社デンソー 噴射弁
RU2731155C1 (ru) * 2019-07-05 2020-08-31 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский политехнический университет" (Московский Политех) Форсунка с электрогидравлическим управлением
CN112196710A (zh) * 2020-10-09 2021-01-08 一汽解放汽车有限公司 一种燃料喷射器
CN114458498B (zh) * 2022-02-24 2022-10-28 哈尔滨工程大学 一种基于节流阻容效应实现高稳定喷射的高压共轨喷油器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2344722A1 (fr) * 1976-03-15 1977-10-14 Semt Dispositif d'amortissement des ondes de pr ession dans un systeme d'injection de combustible d'un moteur a combustion interne
EP0147026A3 (de) * 1983-12-27 1985-08-14 Osamu Matsumura Kraftstoffeinspritzvorrichtung
US5156132A (en) * 1989-04-17 1992-10-20 Nippondenso Co., Ltd. Fuel injection device for diesel engines
US5012786A (en) * 1990-03-08 1991-05-07 Voss James R Diesel engine fuel injection system
DE4341543A1 (de) * 1993-12-07 1995-06-08 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE4341545A1 (de) * 1993-12-07 1995-06-08 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE19701879A1 (de) * 1997-01-21 1998-07-23 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE19742320A1 (de) * 1997-09-25 1999-04-01 Bosch Gmbh Robert Kraftstoffeinspritzventil
JP3763698B2 (ja) 1998-10-22 2006-04-05 株式会社日本自動車部品総合研究所 圧力脈動を緩和し得る燃料供給システムの設計方法
GB9906092D0 (en) * 1999-03-18 1999-05-12 Lucas France Fuel injector
JP2000291509A (ja) * 1999-04-01 2000-10-17 Mitsubishi Electric Corp 直噴式ガソリンエンジン用燃料供給装置
JP2000303933A (ja) * 1999-04-20 2000-10-31 Mitsubishi Electric Corp 高圧燃料ポンプ装置
DE19928906A1 (de) * 1999-06-24 2001-01-11 Bosch Gmbh Robert Common-Rail-Injektor

Also Published As

Publication number Publication date
DE50104913D1 (de) 2005-01-27
US7066150B2 (en) 2006-06-27
CN100400852C (zh) 2008-07-09
EP1342005A1 (de) 2003-09-10
CN1396985A (zh) 2003-02-12
JP2004515690A (ja) 2004-05-27
DE10060811A1 (de) 2002-06-13
US20030136382A1 (en) 2003-07-24
JP4146229B2 (ja) 2008-09-10
WO2002046602A1 (de) 2002-06-13

Similar Documents

Publication Publication Date Title
EP1342005B1 (de) Kraftstoffeinspritzsystem für brennkraftmaschinen
EP1332282B1 (de) Magnetventil zur steuerung eines einspritzventils einer brennkraftmaschine
EP1387940B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1234112A1 (de) Kraftstoffeinspritzsystem für brennkraftmaschinen
EP1387937B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen mit einem druckschwingungen reduzierenden dämpfungsraum
EP1399666B1 (de) Kraftstoffeinspritzeinrichtung
EP1045983B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1865192B1 (de) Kraftstoffinjektor mit Servounterstützung
DE19949527A1 (de) Injektor für ein Kraftstoffeinspritzsystem für Brennkraftmaschinen mit in den Ventilsteuerraum ragender Düsennadel
DE102004005451A1 (de) Kraftstoffeinspritzsystem für Brennkraftmaschinen
EP1999363B1 (de) Kraftstoffeinspritzventile für brennkraftmaschinen
DE10132249A1 (de) Kraftstoffinjektor mit kraftausgeglichenem Steuerventil
DE10307002A1 (de) Kraftstoffeinspritzdüse und Pumpe-Düse-Einheit
EP2426348B1 (de) Brennstoffeinspritzventil
DE102009046079A1 (de) Mengensteuerventil, insbesondere zur Mengensteuerung einer Kraftstoff-Hochdruckpumpe
EP1911966A2 (de) Kraftstoffinjektor für eine Brennkraftmaschine
DE10218635A1 (de) Kraftstoffeinspritzeinrichtung
DE19939453A1 (de) Ventileinrichtung
DE10132248A1 (de) Kraftstoffinjektor mit 2-Wege-Ventilsteuerung
DE102006027484A1 (de) Kraftstoffinjektor mit kraftausgeglichenem Steuerventil
WO2007054828A2 (de) Einspritzventil mit verbesserter kühlung
WO2007033861A1 (de) Kraftstoffeinspritzvorrichtung
WO2005026525A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1657427A1 (de) Kraftstoffinjektor mit hydraulisch betätigbarem Druckübersetzer
WO2001063119A2 (de) Einspritzeinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030707

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20031124

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50104913

Country of ref document: DE

Date of ref document: 20050127

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050411

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101221

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101228

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120103

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121205

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130102

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180223

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50104913

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702