EP1710027A2 - Verfahren zur Herstellung einer Metallplatte mit erhabenem und Schlitzen versehenem Teil, Matrize und Formstruktur - Google Patents

Verfahren zur Herstellung einer Metallplatte mit erhabenem und Schlitzen versehenem Teil, Matrize und Formstruktur Download PDF

Info

Publication number
EP1710027A2
EP1710027A2 EP06251920A EP06251920A EP1710027A2 EP 1710027 A2 EP1710027 A2 EP 1710027A2 EP 06251920 A EP06251920 A EP 06251920A EP 06251920 A EP06251920 A EP 06251920A EP 1710027 A2 EP1710027 A2 EP 1710027A2
Authority
EP
European Patent Office
Prior art keywords
punch
die
leading end
metal base
projected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06251920A
Other languages
English (en)
French (fr)
Other versions
EP1710027A3 (de
EP1710027B1 (de
Inventor
Takafunmi c/o Ricoh Company Ltd Kondo
Hideto c/o Hasama Ricoh Inc Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Publication of EP1710027A2 publication Critical patent/EP1710027A2/de
Publication of EP1710027A3 publication Critical patent/EP1710027A3/de
Application granted granted Critical
Publication of EP1710027B1 publication Critical patent/EP1710027B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/24Perforating, i.e. punching holes
    • B21D28/34Perforating tools; Die holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/24Perforating, i.e. punching holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/24Perforating, i.e. punching holes
    • B21D28/26Perforating, i.e. punching holes in sheets or flat parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D31/00Other methods for working sheet metal, metal tubes, metal profiles
    • B21D31/02Stabbing or piercing, e.g. for making sieves

Definitions

  • the present invention relates to a process, a die and a mold structure for producing a metal base plate or a metal base sheet having a cylindrical (tubular) projected portion formed with at least one slit which extends from a leading end toward a base end of the cylindrical projected portion.
  • JP3625938B discloses a burring punch and burring
  • JP-H09-267140A discloses a joining method of a plate material and a punch used in the joining method.
  • JP-H09-267140A forms the cylindrical projected portion having the slits by a piercing process, a slit incising process, and a burring process.
  • the processing disclosed in JP-H09-267140A has characteristics that an incision of the slits formed by the slit incising process has a non-penetrated, alphabet "V"-shaped cross section, and the burring process is applied to the plate material from a back surface side of a slit incised portion formed by the slit incising process.
  • JP-H09-267140A discloses the punch in which an alphabet "V"-shaped protrusion is arranged on a flat part of a leading end of the punch, as a tool used in the slit incising process.
  • the present invention has been made in view of the above-mentioned circumstances, and therefore, at least one objective of the present invention is to provide a process for producing a metal base plate or a metal base sheet having a cylindrical (tubular) projected portion formed with at least one slit which extends from a leading end toward a base end of the cylindrical projected portion in which a slit incising process is unnecessary, and to provide a die and a mold structure used in the producing process.
  • the invention provides a process for producing a metal base plate having a cylindrical projected portion formed with at least one slit which extends from a leading end toward a base end of the cylindrical projected portion by inserting a punch into a die through a metal base plate, wherein the producing process comprises: preparing the punch including a leading end portion having at least one ridge line, the at least one ridge line extends substantially from a center portion of the leading end portion of the punch substantially to an edge portion of a peripheral surface of the punch, and each side face of the at least one ridge line of the punch is inclined from the at least one ridge line in a direction opposite to the leading end portion of the punch; preparing the die including a hole into which the punch is inserted and which has at least one projected portion projected from an inner surface of the hole; interposing the metal base plate between the punch and the die, while the hole of the die and the punch are aligned with a location of the
  • the wording "center portion" of the leading end portion of the punch means an area which includes a center point defined as an intersection point between a leading end face of the punch and a central axis of the punch and which excludes a peripheral portion of the leading end face near the edge of the peripheral surface of the punch.
  • the at least one ridge line of the punch may extend from the center point of the leading end portion of the punch, or may extend from a part of the center portion of the leading end of the punch which is slightly away from the center point, toward the edge portion of the peripheral surface of the punch.
  • the at least one ridge line may be disposed to cross the center portion or to substantially cross the center portion for example, so as to connect one edge portion and the other edge portion of the peripheral surface of the punch.
  • the at least one ridge line extends from the center point to the edge portion of the peripheral surface of the punch, or extends to cross the center portion from one edge portion to the other edge portion of the peripheral surface of the punch.
  • ridge lines may be disposed to extend from the center portion to the edge portions of the peripheral surface of the punch.
  • each of the ridge lines may be disposed to extend from the part of the center portion of the punch slightly away from the central axis of the punch to the edge portion of the peripheral surface of the punch.
  • metal base plate also includes a term “metal base sheet”.
  • the present invention also provides a die used in the producing process according to any one of the producing process described above, wherein the projected portion is formed at an angle from 60 degrees to 90 degrees or wherein the projected portion is formed angular.
  • the apex portion of the projected portion is formed in a minute rounded shape.
  • the present invention also provides a mold structure for forming a metal base plate having a cylindrical projected portion formed with at least one slit which extends from a leading end toward a base end of the cylindrical projected portion by inserting a punch into a die through a metal base plate, comprising: the punch; and the die, wherein the punch includes a leading end portion having at least one ridge line, the at least one ridge line extends substantially from a center portion of the leading end portion of the punch substantially to an edge portion of a peripheral surface of the punch, and each side face of the at least one ridge line of the punch is inclined from the at least one ridge line in a direction opposite to the leading end portion of the punch, the die includes a hole into which the punch is inserted and which has at least one projected portion projected from an inner surface of the hole, and an apex portion of the at least one projected portion and the at least one ridge line of the punch are configured to be aligned with each other when the punch is to be inserted into the hole of the die through the metal base plate
  • the metal base plate or the metal base sheet is processed by combining the punch having at least one ridge line on the leading end portion thereof and the die having at least one projected portion, and the apex portion of the projected portion of the die are arranged substantially on a same line with the at least one ridge line of the leading end portion of the punch, so as to form the cylindrical (tubular) projected portion in which at least one slit is formed from the leading end toward the base end of the cylindrical (tubular) projected portion on the metal base plate or the metal base sheet as a material. Therefore, it is possible to produce the metal base plate or the metal base sheet having the cylindrical (tubular) projected portion formed with at least one slit which extends from the leading end to the base end thereof without requiring a slit incising process performed in the conventional technology.
  • FIGS. 1 to 3 show a die 1, and FIGS. 4 and 5 show a punch 3 which are used in burring processing according to a first embodiment of the present invention.
  • the die 1 includes four angular projected portions 2 which are arranged evenly relative to the die 1.
  • a leading end portion of the punch 3 has a pyramid-like shape structured by four ridge lines 4.
  • the ridge lines 4 are arranged evenly relative to the punch 3.
  • Each of the angular projected portions 2 is so disposed that a positional relation in which a leading end portion of each of the angular projected portions 2 is substantially on the same line of the corresponding one of the ridge lines 4 of the punch 3 is satisfied (see FIGS. 7 and 8).
  • FIG. 6 schematically shows the positional relation between the die 1 and the punch 3.
  • FIG. 7 is a cross sectional view taken along a line 7-7 shown in FIG. 6, and
  • FIG. 8 is an enlarged view partially showing the cross sectional view of FIG. 7.
  • the die 1 and the punch 3 are provided in a mold (not shown) according to the positional relation shown in FIG. 6.
  • FIG. 9 schematically shows a metal base plate 5 or a metal base sheet 5 formed with a prepared hole 6 and provided in the mold having the punch 3 and the die 1 according to the mold and a producing process of the first embodiment of the present invention.
  • FIG. 10 schematically shows a state that the punch 3 is pressed into the metal base plate 5 or the metal base sheet 5 by a press working device or the like.
  • the metal base plate 5 or the metal base sheet 5, formed with the prepared hole 6 by the application of perforating processing utilizing a known method is disposed in the mold in which the punch 3 and the die 1 are arranged, and the punch 3 is then pressed into the metal base plate 5 or the metal base sheet 5 by the press working device or any other appropriate means, as shown in FIG. 10.
  • FIGS. 9 and 10 also show the projected portions 2, a direction of movement 7 of the die 1, a punch holder 8, and a spring 9.
  • the present invention is not limited by a method described in FIGS. 9 and 10.
  • such a method may be employed wherein the die 1 is fixed, and the punch holder 8, on which the metal base plate (metal base sheet) 5 is located, is configured to move toward the punch 3 together with the punch 3 so as to allow the metal base plate (metal base sheet) 5 to contact with the die 1 and to press the punch 3 into the metal base plate (metal base sheet) 5.
  • the spring 9 may be replaced by an elastic member or other suitable means, or may be omitted where appropriate.
  • FIG. 11 shows the metal base plate 5 or the metal base sheet 5 and a molded portion processed by the mold and the producing process according to the first embodiment of the present invention
  • FIG. 12 shows a formed body shown in FIG. 11. It can be seen from FIGS. 11 and 12 that the formed body comprising the metal base plate (metal base sheet) 5 and the formed portion is processed by the method according to FIGS. 9 and 10, and a cylindrical (tubular) projected portion 11 formed with four slits 10 from a leading end toward a base end thereof is formed.
  • a total of four ridge lines 4 and angular projected portions 2, respectively, are provided.
  • the present invention is not limited to four ridge lines 4 and four angular projected portions 2.
  • the number of the ridge lines 4 and the angular projected portions 2 can be increased or decreased as needs arise unless the number of the ridge lines 4 and the angular projected portions 2 are three or more, respectively.
  • the prepared hole 6 does not necessarily have to be formed on the metal base plate 5 or the metal base sheet 5.
  • the metal base plates (metal base sheets) 5 with and without the prepared hole 6 may be properly used where appropriate.
  • FIGS. 13 to 15 show a die 13, and FIGS. 16 and 17 show a punch 12, which are used in burring processing according to a second embodiment of the present invention.
  • the first embodiment of the invention discloses the exemplary method of forming the cylindrical (tubular) projected portion 11 provided with three or more slits 10.
  • the second embodiment of the invention explains an exemplary method of forming the cylindrical (tubular) projected portion 11 having a pair of slits 10 (i.e. two slits 10).
  • the die 13 is provided with a pair of angular projected portions 2 arranged evenly relative to the die 13, and a leading end portion of the punch 12 has at least one ridge line 4.
  • the leading end portion of the punch 12 includes one ridge line 4.
  • the pair of angular projected portions 2 are disposed such that a leading end portion (or the apex portion) of each of the angular projected portions 2 is arranged substantially on the same line with the ridge line 4 of the leading end portion of the punch 12.
  • FIG. 18 shows the metal base plate 5 or the metal base sheet 5 and a molded portion processed by a mold and a producing process according to the second embodiment of the present invention.
  • FIG. 19 shows a formed body shown in FIG. 18. It can be seen from FIGS. 18 and 19 that the formed body (the metal base plate and the formed portion) is processed by the method according to FIGS. 13 and 17, and a cylindrical (tubular) projected portion 11 formed with two slits 10 from a leading end toward a base end thereof is formed.
  • At least one ridge line 4 is arranged substantially from a center portion of the leading end portion of the punch 3 or the punch 12 substantially to an edge portion of a peripheral surface of the punch 3 or the punch 12, and each side face of the at least one ridge line 4 of the punch 3 or the punch 12 is inclined from the at least one ridge line 4 in a direction opposite to the leading end portion of the punch 3 or the punch 12.
  • the at least one ridge line 4 is disposed substantially across the center of the punch. Therefore, it is possible to form the well-balanced cylindrical (tubular) projected portion 11 with the slits 10 in a process of the burring processing, and to form the cylindrical (tubular) projected portion 11 having substantially uniform height.
  • a combination of the punch 3 and the die 1 is used, in which the leading end portion of the punch 3 is in the pyramid-like shape and the die 1 has the number of angular projected portions 2 corresponding to the pyramid-like shape of the leading end portion of the punch 3, so as to form the cylindrical (tubular) projected portion 11 formed with at least three slits 10 from the leading end portion to the base end portion thereof on the metal base plate 5 or the metal base sheet 5 as a material.
  • the metal base plate (metal base sheet) 5 is subjected to processing by the combination as well as the ridge lines 4 of the pyramid-like shape of the leading end portion of the punch 3 and the apex portions of the angular projected portions 2 are arranged to be substantially on the same line relative to each other, it is possible to form the cylindrical (tubular) projected portion 11 in which three or more slits 10 are formed from the leading end portion to the base end portion thereof without requiring a slit incising process performed in a conventional technology.
  • the pyramid-like shape of the leading end portion of the punch 3 is formed substantially symmetrical. Therefore, it is possible to form the more well-balanced cylindrical (tubular) projected portion 11 with the slits 10 in the burring processing process, and to form the cylindrical (tubular) projected portion 11 having substantially uniform height.
  • the angular projected portions 2 are formed to have angles from 60 degrees to 90 degrees. Therefore, the slits 10 can be efficiently formed in the burring processing process. Additionally, a life of the die 1 or the die 13 can be prolonged, so that it is possible to increase productivity.
  • the die 1 or the die 13 in which the leading end portion of each of the angular projected portions 2 is in a minute rounded shape (R-shape), is used. Therefore, it is possible to prolong the life of the die 1 or the die 13 and to increase the productively.
  • the present invention has been described in terms of exemplary embodiments, it is not limited thereto.
  • the cylindrical (tubular) projected portion 11 formed with the slits 10 from the leading end toward the base end thereof is processed on the metal base plate (metal base sheet) 5 without depending upon the slit incising process
  • the present invention may be applied to production of the metal base plate or the metal base sheet having the projected portion with slits in which a horizontal cross section of the projected portion has a configuration other than cylindrical or tubular, such as a polygonal configuration.
EP20060251920 2005-04-07 2006-04-05 Verfahren zur Herstellung einer Metallplatte mit erhabenem und Schlitzen versehenem Teil, Matrize und Formstruktur Expired - Fee Related EP1710027B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005111094A JP4746904B2 (ja) 2005-04-07 2005-04-07 加工方法、ダイ及び金型構造

Publications (3)

Publication Number Publication Date
EP1710027A2 true EP1710027A2 (de) 2006-10-11
EP1710027A3 EP1710027A3 (de) 2008-05-07
EP1710027B1 EP1710027B1 (de) 2009-12-23

Family

ID=36648700

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20060251920 Expired - Fee Related EP1710027B1 (de) 2005-04-07 2006-04-05 Verfahren zur Herstellung einer Metallplatte mit erhabenem und Schlitzen versehenem Teil, Matrize und Formstruktur

Country Status (2)

Country Link
EP (1) EP1710027B1 (de)
JP (1) JP4746904B2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2068204A1 (de) 2007-12-04 2009-06-10 Ricoh Company, Ltd. Befestigungsstruktur, Klingenstruktur, Entwicklereinheit und Bilderzeugungsvorrichtung
CN102770654A (zh) * 2010-02-22 2012-11-07 日本利克雷斯工业株式会社 制造用于汽缸盖的金属垫的方法及用于汽缸盖的金属垫
CN103506466A (zh) * 2012-06-25 2014-01-15 上海贤华内燃机配件有限公司 一种柴油机齿轮室罩盖主轴骨架油封孔的加工方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5683640B2 (ja) * 2013-05-20 2015-03-11 日本航空電子工業株式会社 刃物工具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1044283A (en) * 1912-03-14 1912-11-12 William D Stanger Die for forming metal staying-strips.
US3925875A (en) * 1973-05-29 1975-12-16 Angeles Metal Trim Co Method of constructing a prefabricated wall module
GB1462482A (en) * 1973-01-10 1977-01-26 Nefab Plywoodemballage Ab Production of sheet metal securing plates
JPH09201627A (ja) * 1996-01-23 1997-08-05 Ricoh Co Ltd バーリングポンチ及びバーリング
JPH09267140A (ja) * 1996-04-01 1997-10-14 Nissan Motor Co Ltd 板材の締結方法およびその締結方法に用いるポンチ
JP2002321023A (ja) * 2001-04-26 2002-11-05 Amada Co Ltd パンチ金型

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644489Y2 (ja) * 1988-06-01 1994-11-16 トヨタ自動車株式会社 バーリング成形金型
JPH0810871A (ja) * 1994-06-24 1996-01-16 Toyota Auto Body Co Ltd バーリングかしめ部成形金型及び成形方法
JPH11724A (ja) * 1997-06-11 1999-01-06 Fuji Heavy Ind Ltd バーリング加工用パンチ
JPH11179452A (ja) * 1997-12-19 1999-07-06 Ricoh Co Ltd バーリング締結方法、締結構造、及びバーリング形成用パンチ
JP2001198634A (ja) * 2000-01-17 2001-07-24 Shinko Seisakusho:Kk バーリングパンチ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1044283A (en) * 1912-03-14 1912-11-12 William D Stanger Die for forming metal staying-strips.
GB1462482A (en) * 1973-01-10 1977-01-26 Nefab Plywoodemballage Ab Production of sheet metal securing plates
US3925875A (en) * 1973-05-29 1975-12-16 Angeles Metal Trim Co Method of constructing a prefabricated wall module
JPH09201627A (ja) * 1996-01-23 1997-08-05 Ricoh Co Ltd バーリングポンチ及びバーリング
JPH09267140A (ja) * 1996-04-01 1997-10-14 Nissan Motor Co Ltd 板材の締結方法およびその締結方法に用いるポンチ
JP2002321023A (ja) * 2001-04-26 2002-11-05 Amada Co Ltd パンチ金型

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2068204A1 (de) 2007-12-04 2009-06-10 Ricoh Company, Ltd. Befestigungsstruktur, Klingenstruktur, Entwicklereinheit und Bilderzeugungsvorrichtung
US8204414B2 (en) 2007-12-04 2012-06-19 Ricoh Company, Ltd. Fastening structure, blade structure, develop unit, and image formation apparatus
CN102770654A (zh) * 2010-02-22 2012-11-07 日本利克雷斯工业株式会社 制造用于汽缸盖的金属垫的方法及用于汽缸盖的金属垫
US8939452B2 (en) 2010-02-22 2015-01-27 Nippon Leakless Industry Co., Ltd. Metal gaskets for cylinder heads, and methods for manufacturing same
CN102770654B (zh) * 2010-02-22 2015-03-04 日本利克雷斯工业株式会社 制造用于汽缸盖的金属垫的方法及用于汽缸盖的金属垫
CN103506466A (zh) * 2012-06-25 2014-01-15 上海贤华内燃机配件有限公司 一种柴油机齿轮室罩盖主轴骨架油封孔的加工方法
CN103506466B (zh) * 2012-06-25 2016-01-20 上海贤华内燃机配件有限公司 一种柴油机齿轮室罩盖主轴骨架油封孔的加工方法

Also Published As

Publication number Publication date
JP2006289399A (ja) 2006-10-26
EP1710027A3 (de) 2008-05-07
JP4746904B2 (ja) 2011-08-10
EP1710027B1 (de) 2009-12-23

Similar Documents

Publication Publication Date Title
CN101896322B (zh) 制造剃须刀的切割部件的方法
US7562609B2 (en) Method of forming through-hole and through-hole forming machine
EP0541723B1 (de) Rasiersystem
US3335627A (en) Punch assembly
US6347900B1 (en) Yoke for universal joint, and production process for the same
KR20050037351A (ko) 록홈을 갖는 헤드레스트 록의 구조, 록홈의 성형 방법 및헤드레스트폴의 제조 방법
EP1710027B1 (de) Verfahren zur Herstellung einer Metallplatte mit erhabenem und Schlitzen versehenem Teil, Matrize und Formstruktur
WO2006051893A1 (ja) ころ軸受用保持器およびその製造方法
US6045415A (en) Cylindrical contact tube
US20230147754A1 (en) Metalworking apparatus and metalworking method
US6343533B1 (en) Cutter, method of making the same and apparatus for shaping and cutting tape end
JP2008229710A (ja) プレス打ち抜き工法
JP2008132509A (ja) 打ち抜きダイ及びそれを用いた打ち抜き品の製造方法
EP4302894A1 (de) Herstellungsverfahren für einen fahrzeugaufhängungsarm und fahrzeugaufhängungsarm
JP4632880B2 (ja) プレス金型のダイブッシュ及びプレス金型のダイブッシュのダイプレートにおける固定構造
US6125520A (en) Shake and break process for sheet metal
CN110447064B (zh) 琴键锤、键单元、键单元的制造方法
CN113441589A (zh) 冲孔翻边冲头及冲孔翻边一体机
JP4525920B2 (ja) 筒状ばね
EP0118795A1 (de) Verfahren zur Herstellung einer Feder, die in jeder Richtung schreibt
US11300179B2 (en) Metal belt for belt-driven continuously variable transmission
US20190111580A1 (en) Stripper clip
JP2010082770A (ja) 抜き型用金属刃
JP4857854B2 (ja) 金属サイディングの製造方法
JP2020075352A (ja) 切断装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060425

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIC1 Information provided on ipc code assigned before grant

Ipc: B21D 28/24 20060101AFI20060717BHEP

Ipc: B21D 31/02 20060101ALI20080403BHEP

Ipc: B21D 28/26 20060101ALI20080403BHEP

Ipc: B21D 28/34 20060101ALI20080403BHEP

17Q First examination report despatched

Effective date: 20080728

AKX Designation fees paid

Designated state(s): FR GB

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100924

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210423

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210421

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220405

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430