EP1697402A2 - Genvarianten die fur proteine aus dem stoffwechselweg von feinchemikalien kodieren - Google Patents

Genvarianten die fur proteine aus dem stoffwechselweg von feinchemikalien kodieren

Info

Publication number
EP1697402A2
EP1697402A2 EP04803951A EP04803951A EP1697402A2 EP 1697402 A2 EP1697402 A2 EP 1697402A2 EP 04803951 A EP04803951 A EP 04803951A EP 04803951 A EP04803951 A EP 04803951A EP 1697402 A2 EP1697402 A2 EP 1697402A2
Authority
EP
European Patent Office
Prior art keywords
nucleic acid
amino acid
protein
organism
proteins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04803951A
Other languages
English (en)
French (fr)
Inventor
Corinna Klopprogge
Oskar Zelder
Burkhard Kröger
Hartwig Schröder
Stefan Haefner
Uwe Ruffer
Claudia Isabella Graef
Gregor Haberhauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paik Kwang Industrial Co Ltd
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1697402A2 publication Critical patent/EP1697402A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)

Definitions

  • the present invention relates to mutated nucleic acids and proteins from the metabolic pathway of fine chemicals, processes for the production of genetically modified production organisms, processes for the production of fine chemicals by cultivating the genetically modified organisms, and the genetically modified organisms themselves.
  • fine chemicals include, for example, organic acids, both proteinogenic and non-proteinogenic amino acids, nucleotides and nucleosides, lipids and fatty acids, diols, carbohydrates, aromatic compounds, vitamins and cofactors and enzymes ,
  • strains that are improved in terms of producing a particular compound are a time consuming and difficult process.
  • EP 1 108790 A2 describes, based on the wild-type sequence, coding a homoserine dehydrogenase from Corynebacterium glutamicum, a mutated nucleic acid sequence which encodes a homoserine dehydrogenase which has the mutation Val59Ala compared to the wild-type sequence. Furthermore, a mutated nucleic acid sequence encoding a pyruvate carboxylase is described which has the mutation Pro458Ser in comparison to the wild-type amino acid sequence from Corynebacterium glutamicum. The Introduction of the mutations in Corynebacterium glutamicum leads to an increase in the lysine yield.
  • WO 0063388 a mutated ask gene is also known that encodes an aspartokinase with the mutation T3111.
  • the object of the present invention is to provide further mutated genes and proteins which lead to an increase in productivity in production organisms of fine chemicals and thus to an improvement in bio-technological processes for the production of fine chemicals.
  • proteins were found with the function given in table / column 7 with an amino acid sequence which is at least one of the amino acid positions which, starting from the amino acid sequence referred to in table / column 2, that in table / column 4 for this amino acid sequence Amino acid positions correspond, has a different proteinogenic amino acid than the respective amino acid indicated in table / column ⁇ in the same row, with the proviso that the mutated proteins according to Table 2 are excluded.
  • This invention provides novel nucleic acid molecules and proteins which can be used on the one hand for the identification or classification of Corynebacterium glutamicum or related types of bacteria and on the other hand lead to an increase in productivity in production organisms of fine chemicals and thus to an improvement in bio-technological processes for the production of fine chemicals.
  • C. glutamicum is a gram-positive, aerobic bacterium that is used in the industry
  • the nucleic acid molecules can therefore also be used to identify microorganisms that can be used for the production of fine chemicals, for example by fermentation processes.
  • C. glutamicum itself is not pathogenic, but it is related to other Corynebacterium species, such as Corynebacterium diphtheriae (the causative agent of diphtheria), which are important pathogens in humans. The ability to identify the presence of Corynebacterium species can therefore also be of significant clinical importance, for example in diagnostic applications.
  • These nucleic acid molecules can also serve as reference points for mapping the C. glutamicum genome or organisms related to genomes.
  • the erfindugsdorfen proteins me to hereinafter pathway proteins, meta- bolic pathway Prote 'or MP proteins called the function specified in Tabel- Ie 1 / Column 7 each have. Furthermore, they each have an amino acid sequence which has at least one of the amino acid positions which, based on the amino acid sequence respectively referred to in Table / Column2 and the amino acid positions given in Table / Column4 for this amino acid sequence, has a different proteinogenic amino acid than the respective amino acid given in table / column ⁇ in the same line.
  • the “corresponding” amino acid position is preferably understood to mean the amino acid position of the amino acid sequence of the MP proteins according to the invention, which the person skilled in the art a) by comparing the homology of the amino acid sequence or b) by structurally comparing the secondary, tertiary and / or quaternary structure of this amino acid sequence
  • a preferred method for homology comparison of the amino acid sequences uses, for example, the laser gene software from DNASTAR, ine. Madison, Wisconsin (USA) using the Clustal method (Higgins DG, Sharp PM. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl. Biosci. 1989 Apr; 5 (2): 151-1) with the following parameters:
  • the proteins have the function given in Table Ie1 / column 7 and an amino acid sequence which is at an amino acid position which, starting from the amino acid sequence respectively referred to in Table 1 / column 2, that in Table 1 / Column 4 corresponds to the amino acid position indicated for this amino acid sequence, has a different proteinogenic amino acid than the respective amino acid indicated in Table 1 / Column 5 in the same row, with the proviso that the mutated proteins according to Table 2 are excluded.
  • the proteins according to the invention each have the amino acid sequence referred to in table / column 2, the protein having at least one of the amino acid positions indicated in table / column 4 for this amino acid sequence having a different proteinogenic amino acid than the respective one in table / column ⁇ in amino acid given on the same line.
  • the proteins according to the invention each have the amino acid sequence referred to in table / column 2, the protein having a different proteinogenic amino acid at one of the amino acid positions given in table 1 / column 4 for this amino acid sequence than the particular one in table / Column ⁇ amino acid indicated in the same line.
  • the amino acid sequences given in Table 1 / column 2 are wild-type sequences from Corynebacterium glutamicum.
  • Table / column 4 specifies at least one amino acid positions for the respective wild-type amino acid sequence at which the amino acid sequence of the proteins according to the invention have a different proteinogenic amino acid than the respective amino acid specified in table / column ⁇ in the same line.
  • the proteins have at least one of the amino acid positions given in Table 1 / column 4 for the amino acid sequence with the amino acid given in table / column ⁇ in the same line.
  • Another aspect of the invention relates to an isolated MP protein or a section, for example a biologically active section thereof.
  • the isolated MP protein or in a preferred embodiment, its section regulates one or more metabolic pathways in organisms, in particular in corynebacteria and brevibacteria, transcriptionally, translationally or post-translationally.
  • the MP polypeptide or a biologically active portion thereof can be operably linked to a non-MP polypeptide to form a fusion protein.
  • this fusion protein has a different activity than the MP protein alone and, in other preferred embodiments, regulates one or more metabolic pathways in organisms, in particular in Corynebacteria and Brevibacteria, preferably in Corynebacterium glutamicum, transcriptionally, translationally or post-translationally.
  • the integration of this fusion protein into a host cell modulates the production of a desired compound from the cell in particularly preferred embodiments.
  • the invention further relates to isolated nucleic acids encoding a protein according to the invention described above.
  • These nucleic acids are also referred to below as Mete6o // c-Pat / 7way nucleic acids or MP nucleic acids or MP genes.
  • These new MP nucleic acid molecules encode the MP proteins according to the invention.
  • These MP proteins can, for example, perform a function which is involved in the transcription, translation or post-translational regulation of proteins which are important for the normal metabolic functioning of cells. Due to the availability of cloning vectors for use in Corynebacterium glutamicum, as disclosed, for example, in Sinskey et al., US Pat. No. 4,649,119, and techniques for the genetic manipulation of C.
  • nucleic acid molecules according to the invention can be used for the genetic manipulation of this organism in order to make it better and more efficient as a producer of one or more fine chemicals.
  • a suitable starting point for producing the nucleic acid sequences according to the invention is, for example, the genome of a Corynebacterium glutamicum strain, which is available from the American Type Culture Collection under the name ATCC 13032.
  • the nucleic acid sequences according to the invention can be produced from these nucleic acid sequences by conventional methods using the changes described in Table 1.
  • the codon usage of the respective organism can be determined in a manner known per se from databases or patent applications which describe at least one protein and one gene which codes for this protein from the desired organism.
  • An isolated nucleic acid molecule encoding an MP protein can be generated by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence from Table 1 / Column 1, so that one or more amino acid substitutions, additions or deletions into the encoded protein are introduced.
  • the mutations can be introduced into one of the sequences from Table 1 / column 1 by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis.
  • conservative amino acid substitutions are introduced on one or more of the predicted non-essential amino acid residues.
  • the amino acid residue is replaced by an amino acid residue with a similar side chain. Families of amino acid residues with similar side chains have been defined in the art.
  • amino acids with basic side chains e.g. lysine, arginine, histidine
  • acidic side chains e.g. aspartic acid, glutamic acid
  • uncharged polar side chains e.g. glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine
  • non-polar side chains e.g. alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
  • beta-branched side chains e.g. threonine, valine, isoleucine
  • aromatic side chains e.g.
  • a predicted non-essential amino acid residue in an MP protein is thus preferably replaced by another amino acid residue of the same side chain family.
  • the mutations can alternatively be introduced randomly over all or part of the MP coding sequence, e.g., by saturation mutagenesis, and the resulting mutants can be screened for the MP activity described herein to identify mutants that have an MP - Maintain activity. After mutagenesis of one of the sequences from Appendix A, the encoded protein can be expressed recombinantly, and the activity of the protein can be determined, for example, using the tests described here (see Example 8 of the example part).
  • the present invention is based on the provision of new molecules, which are referred to here as MP nucleic acid and protein molecules and which, by means of transcriptional, translational or post-translational measures, one or more metabolic pathways in organisms, in particular in Corynebacteria or Brevibacteria, regulate particularly preferably in C. glutamicum.
  • the MP molecules regulate a metabolic pathway in organisms, in particular in Corynebacteria or Brevibacteria, particularly preferably in C. glutamicum transcriptionally, translationally or post-translationally.
  • the MP molecules according to the invention have modulated activity so that the metabolic pathways of organisms, in particular in Corynebacteria or Brevibacteria, particularly preferably in C. glutamicum, which regulate the MP proteins according to the invention, with regard to their efficiency or their throughput be modulated, which modulates either directly or indirectly the yield, production and / or efficiency of the production of a desired fine chemical by organisms, in particular in Corynebacteria or Brevibacteria, particularly preferably in C. glutamicum.
  • MP protein or “MP polypeptide” encompasses proteins which regulate a metabolic pathway in organisms, in particular in Corynebacteria or Brevibacteria, particularly preferably in C. glutamicum transcriptionally, translationally or post-translationally.
  • MP proteins include those listed in Table 1.
  • MP gene or “MP nucleic acid sequence” encompass nucleic acid sequences which encode an MP protein which consists of a coding region and corresponding untranslated 5 'and 3' sequence regions. Examples of MP genes are listed in Table 1.
  • production or “productivity” are known in the art and include the concentration of the fermentation product (for example the desired fine chemical which is formed within a defined period of time and a defined fermentation volume (for example kg product per hour per I) ,
  • production efficiency encompasses the time required to achieve a specific production quantity (for example how long it takes the cell to establish a specific throughput rate of a fine chemical).
  • yield or “product / carbon yield” is known in the art and encompasses the efficiency of converting the carbon source into the product (ie, the fine chemical). For example, this is usually expressed as kg product per kg carbon source.
  • biosynthesis or “biosynthetic pathway” are known in the art and include the synthesis of a compound, preferably an organic compound, by a cell from intermediate compounds, for example in a multi-step or highly regulated process.
  • degradation or “degradation path” are known in the art and include the cleavage of a compound, preferably an organic compound, by a cell into degradation products (more generally, smaller or less complex molecules), e.g. in a multi-step or highly regulated Process.
  • metabolism is known in the art and encompasses all of the biochemical reactions that take place in an organism.
  • the metabolism of a particular compound e.g. the metabolism of an amino acid such as glycine
  • the metabolism of a particular compound then encompasses all the biosynthetic, modification and degradation pathways of this compound in the cell.
  • regulation is known in the art and encompasses the activity of one protein to control the activity of another protein.
  • transcription regulation is known in the art and encompasses the activity of a protein
  • translation regulation is known in the art and includes the activity of a protein to inhibit or activate the conversion of an mRNA encoding a target protein to a protein molecule.
  • post-translational regulation is known in the art "and encompasses the activity of a protein for
  • Inhibition or improvement of the activity of a target protein by covalently modifying the target protein e.g. by methylation, glycosylation or phosphorylation.
  • the improved yield, production and / or efficiency of the production of a fine chemical can be based on a direct or indirect effect of the manipulation of a gene according to the invention. Specifically, changes in MP proteins that usually regulate the yield, production and / or efficiency of production of a fine chemical from a metabolic fine chemical pathway can have a direct impact on the overall production or rate of production of one or more of these desired compounds from this organism.
  • Changes in the proteins involved in these metabolic pathways can also have an indirect effect on the yield, production and / or efficiency of production of a desired fine chemical.
  • the metabolism Regulation is necessarily complex, and the regulatory mechanisms that accomplish the different pathways can overlap in many places, so that more than one metabolic pathway can be quickly adjusted according to a particular cell event. This enables the modification of a regulatory protein for one pathway to have an effect on many other pathways, some of which may be involved in the biosynthesis or degradation of a desired fine chemical.
  • modulating the action of an MP protein can have an impact on the production of a fine chemical that is produced by a metabolic pathway that is different from that which is directly regulated by that MP protein.
  • the MP nucleic acid and MP protein molecules of the invention can be used to directly improve the yield, production and / or efficiency of production of one or more desired fine chemicals from non-human organisms.
  • one or more regulatory proteins according to the invention can be manipulated in such a way that their function is modulated.
  • the mutation of an MP protein involved in repression of the transcription of a gene encoding an enzyme necessary for the biosynthesis of an amino acid so that it is no longer capable of repression of the transcription may result in an increase in Effect production of this amino acid.
  • an MP protein of the invention which usually represses the nucleoside biosynthesis in response to an underoptimal extracellular nutrient supply (thereby preventing cell division), so that it has less repressor activity, one can do the nucleoside biosynthesis and perhaps cell division increase.
  • Changes in the MP proteins that cause increased cell growth and division in culture, at least due to the increased number of cells that produce the chemical in culture, can increase the yield, production, and / or efficiency of production of one or more cause several desired fine chemicals from the culture.
  • the invention provides new nucleic acid molecules which encode proteins which can carry out an enzymatic step which are involved in the transcription, translation or post-translational regulation of metabolic pathways in non-human organisms.
  • Nucleic acid molecules that encode an MP protein are referred to here as MP nucleic acid molecules.
  • the MP protein is involved in the transcription, translation or post-translational regulation of one or more metabolic pathways. Examples of such proteins are those encoded by the genes shown in Table 1.
  • One aspect of the invention consequently relates to isolated nucleic acid molecules (for example cDNAs) comprising a nucleotide sequence which encodes an MP protein or biologically active sections thereof, and also nucleic acid fragments which act as primers or hybridization probes for detecting or amplifying MP-encoding Nucleic acid (eg DNA or mRNA) are suitable.
  • the isolated nucleic acid molecule encodes one of the amino acid sequences listed in Table.
  • the preferred MP proteins according to the invention likewise preferably have at least one of the MP activities described here.
  • the isolated nucleic acid molecule is at least 15 nucleotides long and hybridizes under stringent conditions to a nucleic acid molecule according to the invention.
  • the isolated nucleic acid molecule preferably corresponds to a naturally occurring nucleic acid molecule.
  • the isolated nucleic acid more preferably encodes a naturally occurring C. glutamicum MP protein or a biologically active section of it.
  • All living cells have complex catabolic and anabolic abilities with many interconnected metabolic pathways.
  • the cell uses a fine-tuned regulatory network. By regulating enzyme synthesis and enzyme activity, either independently or simultaneously, the cell can regulate the activity of completely different metabolic pathways, so that the changing needs of the cell are satisfied.
  • Their activity can be regulated, for example, by binding small-molecule compounds to the DNA-binding protein, whereby the binding of these proteins to the appropriate binding site on the DNA is stimulated (as in the case of arabinose for the ara operon) or inhibited (as in Case of lactose for the lac operon) (see, for example, Helmann, JD and Chamberlin, MJ (1988) "Structure and function of bacterial sigma factors" Ann. Rev. Biochem. 57: 839-872; Adhya , S. (1995) "The lac and gal operons today” and Boos, W.
  • Protein synthesis is regulated not only at the level of transcription, but often also at the level of translation. This regulation can be accomplished through many mechanisms, including changing the ability of the ribosome to bind to one or more mRNAs, binding the ribosome to mRNA, maintaining or removing the mRNA secondary structure, using more or less common Common codons for a specific gene, the degree of abundance of one or more tRNAs and special regulatory mechanisms such as attenuation (see Vella-noweth, Rl (1993) Translation and its regulation in Bacillus subtilis and other grampositive bacteria, Sonenshein, AL et al. ed ASM: Washington, DC, pp. 699-711 and references cited therein.
  • the transcription and translation regulation can be directed to a single protein (successive regulation) or simultaneously to several proteins in different metabolic pathways (coordinated regulation). Genes whose expression is regulated in a coordinated manner are often close together in an operon or regulon in the genome. This up or down regulation of gene transcription and translation is controlled by the cellular or extracellular amounts of various factors, such as substrates (precursors and intermediate molecules that are used in one or more metabolic pathways), catabolites (molecules that are caused by biochemical substances - metabolic pathways are produced that are related to the production of energy from the breakdown of complex organic molecules such as sugar) and end products (the molecules obtained at the end of a metabolic pathway).
  • substrates precursors and intermediate molecules that are used in one or more metabolic pathways
  • catabolites molecules that are caused by biochemical substances - metabolic pathways are produced that are related to the production of energy from the breakdown of complex organic molecules such as sugar
  • end products the molecules obtained at the end of a metabolic pathway.
  • genes that encode enzymes that are necessary for the activity of a particular metabolic pathway is induced by high amounts of substrate molecules for this metabolic pathway. Accordingly, this gene expression is repressed when there are high intracellular amounts of the end product of the route (Snyder, L. and Champness, W. (1977) The Molecular Biology of Bacteria ASM: Washington). Gene expression can also be regulated by other external and internal factors, such as environmental conditions (e.g. heat, oxidative stress, or hunger).
  • Another mechanism by which cellular metabolism can be regulated is at the level of the protein. This regulation takes place either via the activities of other enzymes or by binding low-molecular components that prevent or enable the normal function of the protein. Examples of protein regulation by binding small molecules include binding GTP or NAD. The binding of low molecular weight chemicals is usually reversible as with the GTP-binding proteins. These proteins occur in two states (with bound GTP or GDP), one state being the active form of the protein and the other the inactive form. The regulation of protein activity by the action of other enzymes is usually done by covalent modification of the protein (ie phosphorylation of the amino acid residues such as histidine or aspartate, or methylation).
  • This covalent modification is usually reversible, which is accomplished by an enzyme with the opposite activity.
  • An example of this is the opposite activity of kinases and phosphorylases in protein phosphorylation: protein kinases phosphorylate specific residues on a target protein (eg serine or threonine), whereas protein phosphorylases remove the phosphate groups from these proteins.
  • Enzymes that modulate the activity of other proteins are usually modulated by external stimuli themselves. These stimuli are mediated by proteins that act as sensors. A well-known mechanism by which these sensor proteins mediate these external signals is by dimerization, but others are also known (see, for example, Msadek, T. et al.
  • Control systems for downward regulation of the metabolic pathways can be removed or reduced to improve the synthesis of desired chemicals, and accordingly those for the upward regulation of the metabolic pathway for a desired product can be constitutively activated or optimized for activity (as shown in Hirose, Y . and Okada, H. (1979) "Microbial Production of Amino Acids", in: Peppler, H. and Perlman, D. (ed.) Microbial Technology 2nd Edition, Vol. 1, Chap. 7, Academic Press, New York).
  • nucleic acid constructs such as, for example, vectors, such as, for example, recombinant expression vectors, which contain at least one nucleic acid according to the invention.
  • This nucleic acid construct preferably contains, functionally linked, a promoter and optionally a terminator. Promoters which are heterologous with respect to the nucleic acid and are capable of expressing the nucleic acid in the non-human organisms are particularly preferred. A particularly preferred promoter in the preferred organisms of the genus Corynebacteria or Brevibacterium is, for example, the tac promoter.
  • the invention further relates to a method for producing a non-human, genetically modified organism by transforming a non-human parent organism by going into the parent organism a) at least one above-described MP nucleic acid according to the invention or b) at least one above-described inventive nucleic acid construct or c) a promoter which is heterologous with respect to the above-described endogenous MP-nucleic acid and which is the expression of the inventive enables endogenous MP nucleic acid in the organism.
  • the promoter according to embodiment c) is preferably introduced into the organism in such a way that the promoter in the organism is functionally linked to the endogenous MP nucleic acid according to the invention; a “functional link” is understood to mean a link that is functional, ie a link which enables expression of the endogenous MP nucleic acid according to the invention by the introduced promoter.
  • parent organism is understood to mean the corresponding non-human organism that is transformed into the genetically modified organism.
  • a starting organism can be a wild-type organism or an already genetically modified organism. Furthermore, the starting organisms may already be able to produce the desired fine chemical or be enabled by the transformation according to the invention to produce the desired fine chemical.
  • genetically modified organism is preferably understood to mean an organism which is genetically modified in comparison to the starting organism.
  • organism can be understood to mean the non-human parent organism or a non-human, genetically modified organism according to the invention, or both.
  • the MP nucleic acid according to the invention or the nucleic acid construct according to the invention can be introduced chromosomally or plasmidically as a self-replicating plasmid.
  • the MP nucleic acids according to the invention or the nucleic acid constructs according to the invention are preferably integrated chromosomally.
  • organisms which are already able to produce the desired fine chemical are used as starting organisms.
  • the Bacteria of the genus Corynne and the particularly preferred fine chemicals lysine, methionine and threonine, those starting organisms that are already able to produce lysine.
  • such bacteria in the ask gene have a mutation that lead to a reduction or elimination of the feedback inhibition, such as the mutation T311 I.
  • the invention therefore relates in particular to a genetically modified organism, obtainable by the process described above.
  • the invention further relates to a non-human, genetically modified organism which comprises a) at least one MP nucleic acid according to the invention described above or b) at least one nucleic acid construct according to the invention described above or c) a promoter which is used in relation to the above-described endogenous MP nucleic acid according to the invention is heterologous and which enables the expression of the endogenous MP nucleic acid according to the invention in the organism is transformed.
  • an endogenous MP gene in the genome of the parent organism is modified by homologous recombination with an altered MP gene, e.g. functionally disrupted.
  • the expression of the nucleic acid according to the invention preferably leads to modulation of the production of a fine chemical from said organism in comparison with the starting organism.
  • Preferred non-human organisms are plants, algae and microorganisms.
  • Preferred microorganisms are bacteria, yeast or fungi.
  • Particularly preferred microorganisms are bacteria, in particular bacteria of the genus Corynebacterium or Brevibacterium, with Corynebacterium glutamicum being particularly preferred.
  • Particularly preferred bacteria of the genus Corynebacterium or Brevibacterium as starting organisms or organisms or genetically modified organisms are the bacteria listed in Table 3 below.
  • NRRL ARS Culture Collection, Northern Regional Research Laboratory, Peoria, IL,
  • NCIMB National Collection of Industrial and Marine Bacteria Ltd., Aberdeen, UK
  • DSMZ German Collection of Microorganisms and Cell Cultures, Braunschweig,
  • a further preferred embodiment is the genetically modified organisms according to the invention, hereinafter also referred to as "host cells", which have more than one MP nucleic acid molecule according to the invention.
  • host cells can be produced in various ways known to the person skilled in the art of the nucleic acid molecules according to the invention are transfected, but it is also possible to introduce one nucleic acid molecule according to the invention into the host cell with one vector and therefore to use several vectors either at the same time or in a staggered manner, so that host cells can be constructed which contain numerous, up to several hundred of the Such an accumulation often enables superadditive effects on the host cell with regard to the fine chemical productivity to be achieved.
  • the genetically modified organisms contain at least two MP nucleic acids according to the invention or a heterologous promoter functionally linked with an endogenous MP nucleic acid according to the invention in a chromosomally integrated manner.
  • the MP proteins and / or MP genes according to the invention are capable of modulating the production of a desired fine chemical in an organism, in particular in Corynebacteria or Brevibacteria, particularly preferably in C. glutamicum.
  • Genre combination techniques can be used to manipulate one or more regulatory proteins according to the invention for metabolic pathways in such a way that their function is modulated.
  • a biosynthetic enzyme can be improved in efficiency or its allosteric control region can be destroyed so that the inhibition of the production of the compound is prevented.
  • a degradation enzyme can be deleted or modified by substitution, deletion or addition in such a way that its degradation activity for the desired compound is reduced without the viability of the cell being impaired. In any case, the overall yield or production rate of one of these desired fine chemicals can be increased.
  • the growth and division of cells from their extracellular surroundings can be decoupled to a certain degree by modifying the MP proteins according to the invention; by affecting an MP protein that usually represses the nucleotide biosynthesis when the extracellular conditions for growth and cell division are suboptimal so that it now lacks this function, growth can be allowed to occur even if the extracellular conditions are poor are.
  • This is of particular importance in large scale cultivation, where the conditions in the culture in terms of temperature, nutrient supply or aeration are often suboptimal, but which still promote growth and cell division when the cellular regulatory systems for these factors are eliminated.
  • the invention therefore further relates to a method for producing a fine chemical by cultivating a genetically modified organism according to the invention described above.
  • the invention further relates to a method for producing a fine chemical by A) transforming a non-human starting organism with a) at least one MP nucleic acid according to the invention described above or b) at least one nucleic acid construct described above according to the invention or c) a promoter which is related is heterologous to the above-described endogenous MP nucleic acid according to the invention and which enables expression of the endogenous MP nucleic acid according to the invention in the organism, and B) cultivation of the genetically modified organism produced according to feature A).
  • the cultivation of the genetically modified organism is carried out according to the organism in a manner known per se.
  • the bacteria are cultivated in liquid culture in suitable fermentation media.
  • at least one of the fine chemicals is isolated from the genetically modified organisms and / or the cultivation medium after the cultivation step.
  • fine chemical is known in the art and includes compounds produced by an organism and used in various industries, such as, but not limited to, the pharmaceutical, agricultural, cosmetic, food and feed industries. These compounds include organic acids such as tartaric acid, itaconic acid and diaminopimelic acid, both proteinogenic and non-proteinogenic amino acids, purine and pyrimidine bases, nucleosides and nucleotides (as described, for example, in Kuninaka, A. (1996) Nucleotides and related compounds , Pp. 561-612, in Biotechnology Vol. 6, Rehm et al., Ed. VCH: Weinheim and the citations contained therein), lipids, saturated and unsaturated fatty acids (e.g.
  • arachidonic acid arachidonic acid
  • diols e.g. propanediol and Butanediol
  • carbohydrates e.g. hyaluronic acid and trehalose
  • aromatic compounds e.g. aromatic amines, vanillin and indigo
  • vitamins and cofactors as described in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A27, "Vitamins", p. 443-613 (1996) VCH: Weinheim and the citations contained therein; and Ong, AS, Niki, E. and Packer, L.
  • amino acids comprise the basic structural units of all proteins and are therefore essential for normal cell functions.
  • amino acid is known in the art.
  • the proteinogenic amino acids of which there are 20 types, serve as structural units for proteins in which they are linked to one another via peptide bonds, whereas the non-proteinogenic amino acids (of which hundreds are known) are usually not found in proteins (see Ullmann's Encyclopedia of Industrial Chemistry, Vol. A2, pp. 57-97 VCH: Weinheim (1985)).
  • the amino acids can be in the D or L configuration, although L-amino acids are usually the only type found in naturally occurring proteins.
  • Lysine is not only an important amino acid for human nutrition, but also for monogastric animals such as poultry and pigs.
  • Glutamate is most commonly used as a flavor additive (monosodium glutamate, MSG) and is widely used in the food industry, as is aspartate, phenylalanine, glycine and cysteine.
  • Glycine, L-methionine and tryptophan are all used in the pharmaceutical industry.
  • Glutamine, valine, leucine, isoleucine, histidine, arginine, proline, serine and alanine are used in the pharmaceutical and cosmetic industries. Threonine, tryptophan and D- / L-methionine are widespread feed additives (Leuchtenberger, W. (1996) Amino acids - technical production and use, pp. 466-502 in Rehm et al., (Ed.) Biotechnology Vol. 6, chapter 14a, VCH: Weinheim).
  • amino acids can also be used as precursors for the synthesis of synthetic amino acids and proteins such as N-acetylcysteine, S-carboxymethyl-L-cysteine, (S) -5-hydroxytryptophan and others, in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A2, pp. 57-97, VCH, Weinheim, 1985 are suitable substances.
  • the biosynthesis of these natural amino acids in organisms that can produce them, e.g. bacteria has been well characterized (for an overview of bacterial amino acid biosynthesis and its regulation, see Umbarger, HE (1978) Ann. Rev. Biochem. 47: 533-606).
  • Glutamate is synthesized by reductive amination of ⁇ -ketoglutarate, an intermediate in the citric acid cycle.
  • Glutamine, proline and arginine are each produced from glutamate in succession.
  • the biosynthesis of serine is carried out in a three-step process and begins with 3-phosphoglycerate (an intermediate in glycolysis) and, after oxidation, transamination and hydrolysis steps, gives this amino acid.
  • Cysteine and glycine are each produced from serine, the former by condensation of homocysteine with serine, and the latter by transfer of the side chain ⁇ -carbon atom Tetrahydrofolate, in a reaction catalyzed by serine transhydroxymethylase.
  • Phenylalanine and tyrosine are synthesized from the precursors of the glycolysis and pentosephosphate pathways, erythrose-4-phosphate and phosphoenolpyruvate in a 9-step biosynthetic pathway that differs only in the last two steps after the synthesis of prephenate. Tryptophan is also produced from these two starting molecules, but its synthesis takes place in an 11-step way. Tyrosine can also be produced from phenylalanine in a reaction catalyzed by phenylalanine hydroxylase. Alanine, valine and leucine are each biosynthetic products from pyruvate, the end product of glycolysis.
  • Aspartate is made from oxaloacetate, an intermediate of the citrate cycle. Asparagine, methionine, threonine and lysine are each produced by converting aspartate. Isoleucine is made from threonine. In a complex 9-step process, histidine is formed from 5-phosphoribosyl-1-pyrophosphate, an activated sugar.
  • Amino acids the amount of which exceeds the protein biosynthesis requirement of the cell, cannot be stored and are instead broken down, so that intermediates are provided for the main metabolic pathways of the cell (for an overview see Stryer, L., Biochemistry, 3rd ed. Chap. 21 "Amino Acid Degradation and the Urea Cycle”; S 495-516 (1988)).
  • the cell is able to convert unwanted amino acids into useful metabolic intermediates, amino acid production is expensive in terms of energy, precursor molecules and the enzymes required for their synthesis.
  • amino acid biosynthesis is regulated by feedback inhibition, the presence of a certain amino acid slowing down or completely stopping its own production (for an overview of the feedback mechanism in amino acid biosynthetic pathways, see Stryer, L , Biochemistry, 3rd ed., Chapter 24, "Biosynthesis of Amino Acids and Heme", pp. 575-600 (1988)).
  • the output of a certain amino acid is therefore restricted by the amount of this amino acid in the cell.
  • Vitamins, cofactors and nutraceuticals comprise another group of molecules. Higher animals have lost the ability to synthesize them and must therefore absorb them, although they are easily synthesized by other organisms such as bacteria. These molecules are either biologically active molecules per se or precursors of biologically active substances that serve as electron carriers or intermediates in a number of metabolic pathways. In addition to their nutritional value, these compounds also have a significant industrial value as dyes, antioxidants and catalysts or other processing aids. (For an overview of the structure, activity and industrial applications of these compounds see Ullmann's Encyclopedia of Industrial Chemistry, "Vitamins", Vol. A27, pp. 443-613, VCH: Weinheim, 1996).
  • vitamin is known in the art and encompasses nutrients which are required by an organism for normal function, but which cannot be synthesized by this organism itself.
  • the group of vitamins can include cofactors and nutraceutical compounds.
  • cofactor includes non-proteinaceous compounds that are necessary for normal enzyme activity to occur. These compounds can be organic or inorganic; the cofactor molecules according to the invention are preferably organic.
  • nutraceutical encompasses food additives which are beneficial to plants and animals, in particular humans. Examples of such molecules are vitamins, antioxidants and also certain lipids (eg polyunsaturated fatty acids).
  • Thiamine (vitamin Bi) is formed by chemical coupling of pyrimidine and thiazole units.
  • Riboflavin (vitamin B 2 ) is synthesized from guanosine 5'-triphosphate (GTP) and ribose 5'-phosphate. Riboflavin in turn is used to synthesize flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD).
  • the family of compounds commonly referred to as "Vitamin B6" e.g. pyridoxine, pyridoxamine, pyridoxal-5'-phosphate and the commercially used pyridoxine hydrochloride are all derivatives of the common structural unit 5-hydroxy-6-methylpyridine.
  • Panthothenate (pantothenic acid, R - (+) - N- (2,4-dihydroxy-3,3-dimethyl-1-oxobutyl) -ß-alanine) can be produced either by chemical synthesis or by fermentation.
  • the final steps in pantothenate biosynthesis consist of the ATP-driven condensation of ß-alanine and pantoic acid.
  • the enzymes responsible for the biosynthesis steps for the conversion into pantoic acid, into ⁇ -alanine and for the condensation into pantothenic acid are known.
  • the metabolically active form of pantothenate is coenzyme A, whose biosynthesis takes place over 5 enzymatic steps.
  • Pantothenate pyridoxal-5'-phosphate, cysteine and ATP are the precursors of coenzyme A. These enzymes not only catalyze the formation of pantothenate, but also the production of (R) -pantoic acid, (R) -pantolactone, (R) - Panthenol (provi- tamin B 5 ), Pantethein (and its derivatives) and coenzyme A.
  • Glutamic acid, p-aminobenzoic acid and 6-methylpterine is derived.
  • the biosynthesis of folic acid and its derivatives, starting from the metabolic intermediates guanosine 5'-triphosphate (GTP), L-glutamic acid and p-aminobenzoic acid, has been extensively investigated in certain microorganisms.
  • Corrinoids such as the cobalamins and especially vitamin B 12
  • the porphyrins belong to a group of chemicals that are characterized by a tetrapyrrole ring system.
  • the biosynthesis of vitamin B 12 is sufficiently complex that it has not been fully characterized, but a large part of the enzymes and substrates involved is now known.
  • Nicotinic acid (nicotinate) and nicotinamide are pyridine derivatives, which are also called “niacin”.
  • Niacin is the precursor of the important coenzymes NAD (nicotinamide adenine dinucleotide) and NADP (nicotinamide adenine dinucleotide phosphate) and their reduced forms.
  • nucleotide includes the basic structural units of the nucleic acid molecules, which comprise a nitrogen-containing base, a pentose sugar (for RNA the sugar is ribose, for DNA the sugar is D-deoxyribose) and phosphoric acid.
  • nucleoside includes molecules which serve as precursors of nucleotides, but which, in contrast to the nucleotides, have no phosphoric acid unit.
  • nucleotides that do not form nucleic acid molecules, but do serve as energy stores (i.e. AMP) or as coenzymes (i.e. FAD and NAD).
  • the purine and pyrimidine bases, nucleosides and nucleotides also have other possible uses: as intermediates in the biosynthesis of various fine chemicals (e.g. thiamine, S-adenosylmethionine, folate or riboflavin), as energy sources for the cell (e.g. ATP or GTP) and for chemicals themselves, are usually used as flavor enhancers (for example IMP or GMP) or for many medical applications (see for example Kuninaka, A., (1996) "Nucleotides and Related Compounds in Biotechnology Vol. 6, Rehm et al. VCH: Weinheim, pp. 561-612)
  • Enzymes that are involved in the purine, pyrimidine, nucleoside or nucleotide metabolism are also increasingly serving as targets against which chemicals for crop protection, including fungicides, Herbicides and insecticides are being developed.
  • the purine nucleotides are synthesized from ribose-5-phosphate via a series of steps via the intermediate compound innosin-5'-phosphate (IMP), which leads to the production of guanosine-5'- monophosphate (GMP) or adenosine 5'-monophosphate (AMP), from which the triphosphate forms used as nucleotides can be easily prepared. These compounds are also used as energy stores so that their degradation provides energy for many different biochemical processes in the cell. Pyrimidine biosynthesis takes place via the formation of uridine 5'-monophosphate (UMP) from ribose 5-phosphate. UMP in turn is converted to cytidine 5'-triphosphate (CTP).
  • IMP intermediate compound innosin-5'-phosphate
  • AMP adenosine 5'-monophosphate
  • the deoxy forms of all nucleotides are produced in a one-step reduction reaction from the diphosphate ribose form of the nucleotide to the diphosphate deoxyribose form of the nucleotide. After phosphorylation, these molecules can participate in DNA synthesis.
  • Trehalose consists of two glucose molecules that are linked by an ⁇ , ⁇ -1,1 bond. It is commonly used in the food industry as a sweetener, as an additive for dried or frozen foods, and in beverages. However, it is also used in the pharmaceutical, cosmetic, and biotechnology industries (see, e.g., Nishimoto et al., (1998) U.S. Patent No. 5759610; Singer, MA and Lindquist, S. Trends Biotech. 16 ( 1998) 460-467; Paiva, CLA and Panek, AD Biotech Ann. Rev. 2 (1996) 293-314; and Shiosaka, MJ Japan 172
  • Trehalose is produced by enzymes from many microorganisms and is naturally released into the surrounding medium from which it can be obtained by methods known in the art.
  • amino acids are selected from the group L-lysine, L-threonine and L-methionine.
  • Another aspect of the invention relates to methods for modulating the production of a fine chemical from a non-human organism. These methods involve contacting the cell with a substance that modulates MP protein activity or MP nucleic acid expression so that a cell-associated activity is changed compared to the same activity in the absence of the substance.
  • the cell is modulated with regard to one or more regulatory systems for metabolic pathways in organisms, in particular in bacteria of the genus Corynebacterium and / or Brevibacterium, in particular C. glutamicum, so that the yields or the rate of production of a desired fine chemical by this host cell is improved.
  • the substance that modulates the MP protein activity stimulates, for example, the MP protein activity or the MP nucleic acid expression.
  • Examples of substances that stimulate MP protein activity or MP nucleic acid expression include small molecules, active MP- Proteins and nucleic acids that encode MP proteins and have been introduced into the cell.
  • Examples of substances that inhibit MP activity or expression include small molecules and antisense MP nucleic acid molecules.
  • Another aspect of the invention relates to methods for modulating the yields of a desired compound from a cell, comprising introducing an MP gene into a cell which either remains on a separate plasmid or is integrated into the genome of the host cell.
  • the integration into the genome can take place randomly or by homologous recombination, so that the native gene is replaced by the integrated copy, which causes the production of the desired compound from the cell to be modulated. In a preferred embodiment, these yields are increased.
  • the fine chemical is an amino acid.
  • this amino acid is L-lysine, L-methionine or L-threonine.
  • nucleic acid molecule as used herein is intended to encompass DNA molecules (e.g. cDNA or genomic DNA) and RNA molecules (e.g. mRNA) as well as DNA or RNA analogs that are generated by means of nucleotide analogs. This term also includes the untranslated sequence located at the 3 'and 5' ends of the coding region: at least about 100 nucleotides of the sequence upstream of the 5 'end of the coding region and at least about 20 nucleotides of the sequence downstream of the 3' end of the coding gene region.
  • the nucleic acid molecule can be single-stranded or double-stranded, but is preferably a double-stranded DNA.
  • An "isolated" nucleic acid molecule is separated from other nucleic acid molecules that are present in the natural source of the nucleic acid.
  • An “isolated” nucleic acid preferably has no sequences that naturally flank the nucleic acid in the genomic DNA of the organism from which the nucleic acid originates (for example, sequences that are located at the 5 'or 3' end of the nucleic acid).
  • the isolated MP nucleic acid molecule can be less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb the nucleofid sequences that naturally flank the nucleic acid molecule in the genomic DNA of the cell from which the nucleic acid originates (for example a C. glutamicum cell).
  • An "isolated" nucleic acid molecule, such as a cDNA molecule may also be substantially free of any other cellular material or culture medium when made by recombinant techniques, or free of chemical precursors or other chemicals if it is chemically synthesized becomes.
  • a nucleic acid molecule can be isolated by polymerase chain reaction, using the oligonucleotide primers which have been created on the basis of this sequence (for example, a nucleic acid molecule comprising a complete sequence from Annex A or a section thereof can be isolated by polymerase chain reaction by Oligonucleotide primers can be used, which were created on the basis of this same sequence from Appendix A).
  • mRNA can be isolated from normal endothelial cells (for example by the guanidinium thiocyanate extraction method of Chirgwin et al.
  • cDNA can be obtained by means of reverse transcriptase (for example Moloney-MLV reverse transcriptase) at Gibco / BRL, Bethesda, MD, or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Louis, FL).
  • reverse transcriptase for example Moloney-MLV reverse transcriptase
  • Gibco / BRL Gibco / BRL
  • Bethesda MD
  • AMV reverse transcriptase available from Seikagaku America, Inc., St. Russia, FL.
  • Synthetic oligonucleotide primers for amplification via the polymerase chain reaction can be created on the basis of one of the nucleotide sequences shown in Appendix A.
  • a nucleic acid according to the invention can be amplified using cDNA or alternatively genomic DNA as a template and suitable oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid amplified in this way can be clo
  • nucleotide sequence can be produced by standard synthesis methods, for example using an automatic DNA synthesizer.
  • an isolated nucleic acid molecule according to the invention comprises one of the nucleofide sequences listed in Table 1 / column 1 with a mutation corresponding to the amino acid position according to Table 1 / column 4.
  • an isolated nucleic acid molecule according to the invention comprises a nucleic acid molecule which is complementary to one of the above-described nucleotide sequences or a section thereof, which is a nucleic acid molecule which is sufficiently complementary to one of the above-described nucleotide sequences to be compatible with one of the sequences described above can hybridize, resulting in a stable duplex.
  • Sections of proteins which are encoded by the MP nucleic acid molecules according to the invention are preferably biologically active sections of one of the MP proteins.
  • biologically active section of an MP protein is intended to include a section, for example a domain or a motif, of an MP protein that transcriptionally, translationally or post-translationally a metabolic pathway in C. glutamicum can regulate, or has an activity given in Table 1.
  • a test of the enzymatic activity can be carried out.
  • nucleotide sequence of Table 1 by further mutation, which in comparison to the wild type leads to a further one Changing the amino acid sequence of the encoded MP protein leads without the functionality of the MP protein being impaired.
  • nucleotide substitutions which lead to amino acid substitutions at "non-essential" amino acid residues can be produced in a sequence from Table.
  • a "non-essential" amino acid residue can be altered in a wild-type sequence from one of the MP proteins (Table 1) without changing the activity of the MP protein, whereas an "essential" amino acid residue is required for the MP protein activity.
  • other amino acid residues for example non-conserved or only semi-preserved amino acid residues in the domain with MP activity cannot be essential for the activity and can therefore probably be changed without changing the MP activity.
  • nucleic acid constructs such as vectors, preferably expression vectors, which contain a nucleic acid according to the invention which encodes an MP protein.
  • vector refers to a nucleic acid molecule that can transport another nucleic acid to which it is attached.
  • vector which stands for a circular double-stranded DNA loop into which additional DNA segments can be ligated.
  • viral vector Another type of vector, whereby additional DNA segments can be ligated into the viral genome.
  • Certain vectors can replicate autonomously in a host cell into which they have been introduced (e.g. bacterial vectors with bacterial origin of replication and episomal mammalian vectors). origin and episomal mammalian vectors).
  • vectors e.g., non-episomal mammalian vectors
  • Other vectors are integrated into the genome of a host cell when introduced into the host cell and thereby replicated together with the host genome.
  • vectors can control the expression of genes to which they are operably linked. These vectors are called "expression vectors".
  • expression vectors usually the expression vectors used in recombinant DNA techniques are in the form of plasmids.
  • plasmid and “vector” can be used interchangeably because the plasmid is the most commonly used vector form.
  • the invention is intended to encompass these other expression vector forms, such as viral vectors (e.g. replication-deficient retroviruses, adenoviruses and adeno-related viruses), which perform similar functions.
  • the recombinant expression vector according to the invention comprises a nucleic acid according to the invention in a form which is suitable for the expression of the nucleic acid in a host cell, which means that the recombinant expression vectors have one or more regulatory sequences selected on the basis of the host cells to be used for expression which are compatible with the is operably linked to the nucleic acid sequence to be expressed.
  • “operably linked” means that the nucleotide sequence of interest is bound to the regulatory sequence (s) in such a way that expression of the nucleotide sequence is possible (for example in an in vitro transcription / Translation system or in a host cell if the vector is introduced into the host cell).
  • regulatory sequence is intended to encompass promoters, enhancers and other expression control elements (for example polyadenylation signals). These regulatory sequences are described, for example, in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Regulatory sequences include those that control the constitutive expression of a nucleotide sequence in many host cell types and those that control the direct expression of the nucleotide sequence only in certain host cells. The person skilled in the art is aware that the design of an expression vector can depend on factors such as the choice of the host cell to be transformed, the extent of expression of the desired protein, etc.
  • the expression vectors according to the invention can be introduced into the host cells, so that proteins are thereby or peptides, including fusion proteins or peptides, encoded by the nucleic acids as described herein (e.g., MP proteins, mutated forms of MP proteins, fusion proteins, etc.).
  • the recombinant expression vectors according to the invention can be designed for the expression of MP proteins in prokaryotic or eukaryotic cells.
  • MP genes in bacterial cells such as C. glutamicum, insect cells (with baculovirus expression vectors), yeast and other fungal cells (see Romanos, MA et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8 : 423-488; van den Hondel, CAMJJ et al. (1991) "Heterologous gene expression in filamentous fungi” in: More Gene Manipulations in Fungi, JW Bennet & LL Lasure, ed., Pp.
  • Proteins are usually expressed in prokaryotes using vectors which contain constitutive or inducible promoters which control the expression of fusion or non-fusion proteins.
  • Fusion vectors contribute a number of amino acids to a protein encoded therein, usually at the amino terminus of the recombinant protein. These fusion vectors usually have three functions: 1) to increase the expression of recombinant protein; 2) increasing the solubility of the recombinant protein; and 3) supporting the purification of the recombinant protein by acting as a ligand in affinity purification.
  • a proteolytic cleavage site is often introduced at the junction of the fusion unit and the recombinant protein, so that the recombinant protein can be separated from the fusion unit after the fusion protein has been purified.
  • These enzymes and their corresponding recognition sequences include factor Xa, thrombin and enterokinase.
  • fusion expression vectors include pGEX (Pharmacia Biotech Ine; Smith, DB and Johnson, KS (1988) Gene 67: 31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT 5 (Pharmacia, Piscataway, NJ), in which Glutathione-S-transferase (GST), maltose E-binding protein or protein A is fused to the recombinant target protein.
  • GST Glutathione-S-transferase
  • the coding sequence is the MP protein Cloned into a pGEX expression vector to produce a vector encoding a fusion protein comprising from the N-terminus to the C-terminus, GST - thrombin cleavage site - X protein.
  • the fusion protein can be purified by affinity chromatography using glutathione-agarose resin.
  • the recombinant MP protein that is not fused with GST can be obtained by cleaving the fusion protein with
  • Suitable inducible non-fusion expression vectors from E. coli include pTrc (Amann et al., (1988) Gene 69: 301-315) and pET 11d (Studier et al. Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89).
  • Target gene expression from the pTrc vector is based on transcription by host RNA polymerase from a hybrid trp-lac fusion promoter.
  • the target gene expression from the pET11d vector is based on the transcription from a T7-gn10-lac fusion promoter, which is mediated by a coexpressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by the BL 21 (DE3) or HMS174 (DE3) host strains from a resident ⁇ prophage which harbors a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter.
  • nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those which are preferably used in a bacterium selected for expression, such as C. glutamicum (Wada et al. (1992 ) Nucleic Acids Res. 20: 2111-2118). This change in the nucleic acid sequences according to the invention is carried out using standard DNA synthesis techniques.
  • the MP protein expression vector is a yeast expression vector.
  • yeast expression vectors for expression in the yeast S. cerevisiae include pYepSed (Baldari et al., (1987) Embo J. 6: 229-234), pMFa (Kurjan and Herskowitz (1982) Cell 30: 933-943), pJRY88 ( Schultz et al. (1987) Gene 54: 113-123) and pYES2 (Invitrogen Corporation, San Diego, CA).
  • Vectors and methods of constructing vectors suitable for use in other fungi such as filamentous fungi include those described in detail in: van den Hondel, CAMJJ & Punt, PJ (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, JF Peberdy et al., Ed., Pp. 1-28, Cambridge University Press: Cambridge.
  • the MP proteins of the invention can be expressed in insect cells using baculovirus expression vectors.
  • Baculovirus vectors available for expression of proteins in cultured insect cells include the pAc series (Smith et al., (1983) Mol. Cell Bio 3: 2156-2165) and the pVL- Series (Lucklow and Summers (1989) Virology 170: 31-39).
  • the MP proteins according to the invention can be expressed in single-cell plant cells (such as algae) or in plant cells of higher plants (for example spermatophytes such as crops).
  • plant expression vectors include those that are described in detail in: Becker, D., Kemper, E., Schell, J. and Masterson, R. (1992) "New plant binary vectors with selective markers located proximal to the left border ", Plant Mol. Biol. 20: 1195-1197; and Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. A-cids Res. 12: 8711-8721.
  • a nucleic acid according to the invention is expressed in mammalian cells with a mammalian expression vector.
  • mammalian expression vectors include pCDM8 (Seed, B. (1987) Nature 329: 840) and pMT2PC (Kaufman et al. (1987) EMBO J. 6: 187-195).
  • the control functions of the expression vector are often provided by viral regulatory elements. Commonly used promoters originate, for example, from Polyoma, Adenovirus2, Cytomegalievirus and Simian Virus 40.
  • suitable expression systems for prokaryotic and eukaryotic cells see chapters 16 and 17 from Sambrook, J., Fritsch, E.F. and Maniatis, T., Molecular cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
  • the recombinant mammalian expression vector can preferably bring about the expression of the nucleic acid in a specific cell type (for example, tissue-specific regulatory elements are used to express the nucleic acid).
  • tissue-specific regulatory elements are known in the art.
  • suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al.
  • the invention also provides a recombinant expression vector comprising a DNA molecule according to the invention which is cloned in the expression vector in the antisense direction.
  • the DNA molecule is operatively linked to a regulatory sequence in such a way that expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to the MP mRNA is possible.
  • Regulatory sequences can be selected which are operably linked to a nucleic acid cloned in the antisense direction and which control the continuous expression of the antisense RNA molecule in a multiplicity of cell types, for example viral promoters and / or enhancers or regulatory sequences can be selected that control the constitutive, tissue-specific or cell-type-specific expression of antisense RNA.
  • the antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a highly effective regulatory region, the activity of which is determined by the cell type into which the vector is introduced.
  • a highly effective regulatory region the activity of which is determined by the cell type into which the vector is introduced.
  • Another aspect of the invention relates to the host cells into which a recombinant expression vector according to the invention has been introduced.
  • the terms "host cell” and “recombinant host cell” are used interchangeably here. It goes without saying that these terms refer not only to a specific target cell, but also to the descendants or potential descendants of this cell. Since certain modifications may occur in successive generations due to mutation or environmental influences, these offspring are not necessarily identical to the parental cell, but are still included in the scope of the term as used here.
  • a host cell can be a prokaryotic or eukaryotic cell.
  • an MP protein can be expressed in bacterial cells such as C. glutamicum, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells).
  • suitable host cells are known to the person skilled in the art.
  • Microorganisms that are related to Corynebacterium glutamicum and are suitable as Host cells for the nucleic acid and protein molecules according to the invention can be used are listed in Table 3.
  • vector DNA can be introduced into prokaryotic or eukaryotic cells.
  • transformation and “transfection” as used here are intended to encompass a large number of methods known in the prior art for introducing foreign nucleic acid (for example DNA) into a host cell, including calcium phosphate or calcium chloride coprecipitation, DEAE-dextran-mediated transfection, lipofection or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook et al. (Molecular Cloning: A Laboratory Manual. 2nd Ed. Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) and other laboratory manuals.
  • a gene encoding a selectable marker (e.g. resistance to antibiotics) is usually introduced into the host cells together with the gene of interest.
  • selectable markers include those that confer resistance to drugs such as G418, hygromycin and methotrexate.
  • a nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding an MP protein, or can be introduced on a separate vector. Cells that have been stably transfected with the introduced nucleic acid can be identified by drug selection (e.g. cells that have integrated the selectable marker survive, whereas the other cells die).
  • a vector which contains at least a section of an MP gene into which a deletion, addition or substitution has been introduced in order to change the MP gene, for example to functionally disrupt it.
  • This MP gene is preferably a Corynebacterium glutamicum MP gene, but a homologue from a related bacterium or even from a mammalian, yeast or insect source can be used.
  • the vector is designed such that the endogenous MP gene is functionally disrupted when homologous recombination occurs (ie no longer encodes a functional protein, also referred to as a "knockout" vector).
  • the vector can be designed in such a way that the endogenous MP gene is mutated or otherwise altered in the case of homologous recombination, but still encodes the functional protein (for example the upstream regulatory region can be changed in such a way that the expression of the endogenous MP protein is changed.).
  • the modified portion of the MP gene is flanked in the homologous recombination vector at its 5 'and 3' ends by additional nucleic acid of the MP gene, which is a homologous recombination between the exogenous MP gene carried by the vector and one endogenous MP gene in a microorganism.
  • the additional flanking MP nucleic acid is long enough for successful homologous recombination with the endogenous gene.
  • the vector usually contains several kilobases flanking DNA (both at the 5 'and at the 3' end) (see, for example, Thomas, KR and Capecchi, MR (1987) Cell 51: 503 for a description of homologous recombination vectors).
  • the vector is introduced into a microorganism (e.g., by electroporation), and cells in which the introduced MP gene is homologously recombined with the endogenous MP gene are selected using methods known in the art.
  • recombinant microorganisms can be produced which contain selected systems which enable regulated expression of the introduced gene.
  • the inclusion of an MP gene in a vector under the control of the Lac operon enables e.g. expression of the MP gene only in the presence of IPTG.
  • a host cell according to the invention such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) an MP protein.
  • the invention also provides methods of producing MP proteins using the host cells of the invention.
  • the method comprises culturing the host cell according to the invention (into which a recombinant expression vector which encodes an MP protein has been introduced, or into whose genome a gene has been introduced which is a wild-type or modified MP protein encoded) in a suitable medium until the MP protein has been produced.
  • the method comprises isolating the MP proteins from the medium or the host cell.
  • the nucleic acid molecules, proteins, fusion proteins, primers, vectors and host cells described here can be used in one or more of the following methods: identification of C. glutamicum and related organisms, mapping of genomes of organisms related to C. glutamicum, identification and localization of C. g / tvtam / cu / ⁇ sequences of interest, evolution studies, determination of MP protein regions which are necessary for the function, modulation of the activity of an MP protein; Modulating the activity of an MP path; and modular tion of cellular production of a desired compound, such as a fine chemical.
  • the MP nucleic acid molecules according to the invention have a multitude of uses. They can initially be used to identify an organism as Corynebacterium glutamicum or close relatives thereof.
  • the invention provides the nucleic acid sequences of a number of C. glutamicum genes. By probing the extracted genomic DNA of a culture of a uniform or mixed population of microorganisms under stringent conditions with a probe comprising a region of a C. glutamicum gene that is unique to this organism, one can determine whether this organism is present.
  • Corynebacterium glutamicum itself is not pathogenic, but it is related to pathogenic species such as Corynebacterium diptheriae. The detection of such an organism is of significant clinical importance.
  • the nucleic acid and protein molecules according to the invention can serve as markers for specific regions of the genome. This is useful not only when mapping the genome, but also for functional studies of C. g / utam / cum proteins.
  • the C. glutamicum genome can be cleaved, for example, and the fragments incubated with the DNA-binding protein.
  • Those that bind the protein can additionally be probed with the nucleic acid molecules according to the invention, preferably with easily detectable markings; the binding of such a nucleic acid molecule to the genome fragment enables the fragment to be located on the genomic map of C.
  • nucleic acid molecules according to the invention can also be sufficiently homologous to the sequences of related species so that these nucleic acid molecules can serve as markers for the construction of a genomic map in related bacteria, such as Brevibacterium lactofermentum.
  • the MP nucleic acid molecules according to the invention are also suitable for evolution and protein structure studies.
  • the metabolic processes in which the molecules according to the invention are involved are used by many prokaryotic and eukaryotic cells; by comparing the sequences of the nucleic acid molecules according to the invention with those which encode similar enzymes from other organisms, the degree of evolutionary kinship of the organisms can be determined. Accordingly, such a comparison makes it possible to determine which sequence areas are conserved and which are not, and what when determining such Areas of the protein that are essential for enzyme function can be helpful. This type of determination is valuable for protein technology studies and can provide an indication of which protein can tolerate mutagenesis without losing function.
  • the manipulation of the MP nucleic acid molecules according to the invention can bring about the production of MP proteins with functional differences from the wild-type MP proteins. These proteins may be improved in efficiency or activity, may be present in the cell in greater numbers than usual, or may be weakened in efficiency or activity.
  • These activity changes can be such that the yield, production and / or efficiency of production of one or more fine chemicals of C. glutamicum is improved.
  • the activity or rate of activity of this biosynthetic pathway can be increased due to the presence of increased amounts of, for example, a restricting enzyme.
  • By increasing the yield, production and / or efficiency of production by activating the expression of one or more lysine biosynthesis enzymes one can simultaneously increase the expression of other compounds, such as other amino acids, which the cell usually needs in larger amounts if lysine is required in larger quantities.
  • the regulation of metabolism can also be changed by in the whole cell in such a way that the cell grows and improves better under the environmental conditions of a fermentative culture (where the nutrient and oxygen supply can be poor and toxic waste products can be present in large quantities in the environment) or can replicate. For example.
  • an MP protein which synthesizes molecules necessary for cell membrane production in response to high waste product amounts repressed in the extracellular medium (to block cell growth and division in suboptimal growth conditions) so that it is no longer capable of repression of this synthesis, increasing the growth and proliferation of cells in cultures, even if the growth conditions are suboptimal.
  • Such increased growth or viability should also increase the yields and / or the rate of production of a desired fine chemical from a fermentative culture due to the relatively large number of cells that produce this compound in the culture.
  • the nucleic acid and protein molecules according to the invention can be used to generate C. glutamicum or related bacterial strains which express mutated MP nucleic acid and protein molecules, so that the yield, production and / or Production efficiency of a desired connection is improved.
  • the desired compound can be a natural product of C. glutamicum which comprises the end products of the biosynthetic pathways and intermediates of naturally occurring metabolic pathways as well as molecules which do not occur naturally in the metabolism of C. glutamicum, but which are derived from a C. g / utem / ci / m strain can be produced.
  • Example 1 Preparation of the entire genomic DNA from Corynebacterium glutamicum AT " CC13032
  • a culture of Corynebacterium glutamicum was grown overnight at 30 ° C with vigorous shaking in BHI medium (Difco). The cells were harvested by centrifugation, the supernatant was discarded, and the cells were resuspended in 5 ml of buffer I (5% of the original volume of the culture - all stated volumes are calculated for 100 ml of culture volume).
  • composition of buffer I 140.34 g / l sucrose, 2.46 g / l MgSO 4 • 7 H 2 0, 10 ml / l KH 2 PO 4 solution (1 OOg / l, adjusted to pH with KOH Value 6.7), 50 ml / l M12 concentrate (10 g / l (NH 4 ) 2 SO 4 , 1 g / l NaCl, 2 g / l MgSO 4 • 7 H 2 O, 0.2 g / l CaCl 2 , 0.5 g / l yeast extract (Difco),
  • Riboflavin 40 mg / l Ca-panthothenate, 140 mg / l nicotinic acid, 40 mg / l pyridoxol hydrochloride, 200 mg / l myoinositol). Lysozyme was added to the suspension at a final concentration of 2.5 mg / ml. After about 4 hours of incubation at 37 ° C, the cell wall was broken down and the protoplasts obtained were harvested by centrifugation. The pellet was washed once with 5 ml of buffer I and once with 5 ml of TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8).
  • the pellet was resuspended in 4 ml TE buffer and 0.5 ml SDS solution (10%) and 0.5 ml NaCl solution (5 M) were added. After adding proteinase K at a final concentration of 200 ocg / ml, the suspension was incubated at 37 ° C. for about 18 hours.
  • the DNA was purified by extraction with phenol, phenol-chloroform-isoamyl alcohol and chloroform-isoamyl alcohol using standard procedures. Then the DNA was precipitated by adding 1/50 volume of 3 M sodium acetate and 2 volumes of ethanol, followed by incubation for 30 min at ⁇ 20 ° C.
  • plasmids pBR322 Sudden & Cohen (1978) J. Bacteriol. 134: 1141-1156
  • Plasmids of pBS Series pBSSK +, pBSSK- and others; Stratagene, LaJolla, USA
  • Cosmide such as
  • Genomic banks as described in Example 2, were used for DNA sequencing according to standard methods, in particular the chain termination method with ABI377 sequencing machines (see, for example, Fleischman, RD et al. (1995) "Whole-genome Random Sequencing and Assembly of Haemophilus Influenzae Rd. , Science 269; 496-512)
  • the sequencing primers with the following nucleotide sequences were used: 5 * -GGAAACAGTATGACCATG-3 'or 5'-GTAAAACGACGGCCAGT-3'.
  • In vivo mutagenesis of Corynebacterium glutamicum can be performed by passing a plasmid (or other vector) DNA through E. coli or other microorganisms (e.g. Bacillus spp. Or yeasts such as Saccharomyces cerevisiae) that maintain the integrity of their genetic information cannot maintain.
  • E. coli or other microorganisms e.g. Bacillus spp. Or yeasts such as Saccharomyces cerevisiae
  • Common mutator strains have mutations in the genes for the DNA repair system (eg, mutHLS, mutD, mutT, etc., for comparison see Rupp, WD (1996) DNA repair mechanisms in Escherichia coli and Salmonella, pp. 2277-2294, ASM : Washington). These strains are known to the person skilled in the art. The use of these strains is, for example, in Greener, A. and Callahan, M. (1994) Strategies 7; 32-34 illustrates.
  • Example 5 DNA transfer between Escherichia coli and Corynebacterium glutamicum
  • Corynebacterium and Brevibacterium species contain endogenous plasmids (such as, for example, pHM1519 or pBL1) that replicate autonomously (for an overview, see, for example, Martin, JF et al. (1987) Biotechnology 5: 137-146).
  • Shuttle vectors for Escherichia coli and Corynebacterium glutamicum can easily be constructed using standard vectors for E. coli (Sambrook, J. et al., (1989), "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press or Ausubel , FM et al.
  • glutamicum and that can be used for a variety of purposes, including gene overexpression (see, e.g., Yoshihama, M. et al. (1985) J. Bacteriol. 162: 591-597, Martin, JF et al., (1987) Biotechnology, 5: 137-146 and Eikmanns, BJ et al. (1992) Gene 102: 93-98) ,
  • C. glutamicum can be carried out by protoplast transformation (Kastsumata, R. et al., (1984) J. Bacteriol. 159, 306-311), electroporation (Liebl, E. et al., (1989) FEMS Microbiol. Letters , 53: 399-303) and, in cases where special vectors are used, can also be achieved by conjugation (as described, for example, in Schwarzfer, A., et (1990) J. Bacteriol. 172: 1663-1666).
  • a suitable method for determining the amount of transcription of the mutant gene is to carry out a Northem blot (see, for example, Ausubel et al., (1988) Current Protocols) in Molecular Biology, Wiley: New York), wherein a primer which is designed in such a way that it binds to the gene of interest is provided with a detectable (usually radioactive or chemiluminescent) label so that - if the total RNA of a culture of the organism is extracted, separated on a gel, transferred to a stable matrix and incubated with this probe - the binding and the quantity of binding of the probe indicate the presence and also the amount of mRNA for this gene.
  • Total cell RNA can be isolated from Corynebacterium glutamicum by various methods known in the art, as described in Bormann, ER et al., (1992) Mol. Microbiol. 6: 317-326. To determine the presence or the relative amount of protein that is translated from this mRNA, standard techniques such as Western blot can be used (see, for example, Ausubel et al. (1988) "Current Protocols in Molecular Biology", Wiley, New York). In this method, total cell proteins are extracted, separated by gel electrophoresis, transferred to a matrix, such as nitrocellulose, and incubated with a probe, such as an antibody, which specifically binds to the desired protein. This probe is usually provided with a chemiluminescent or colorimetric label that is easy to detect. The presence and amount of label observed indicates the presence and amount of the mutant protein sought in the cell.
  • Example 7 Growth of genetically modified Corynebacterium glutamicum media and growing conditions
  • Corynebacteria are grown in synthetic or natural growth media.
  • a number of different growth media for Corynebakterian are known and readily available (Lieb et al. (1989) Appl. Microbiol. Biotechnol. 32: 205-210; von der Osten et al. (1998) Biotechnology Letters 11: 11-16; Patent DE 4 120 867; Liebl (1992) 'The Genus Corynebacterium ", in: The Procaryotes, Vol. II, Balows, A., et al., Ed. Springer-Verlag).
  • These media consist of one or more carbon sources, nitrogen sources, inorganic salts, vitamins and trace elements.
  • Preferred carbon sources are sugars, such as mono-, di- or polysaccharides.
  • Very good carbon sources are, for example, glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch - Ke or cellulose, sugar can also be added to the media via complex compounds such as molasses or other by-products from sugar refining, it can also be advantageous to add mixtures of different carbon sources
  • Open sources are alcohols and organic acids such as methanol, ethanol, acetic acid or lactic acid.
  • Nitrogen sources are usually organic or inorganic nitrogen compounds or materials containing these compounds.
  • Exemplary nitrogen sources include ammonia gas or ammonium salts such as NH CI or (NH 4 ) 2 SO, NH OH, nitrates, urea, amino acids or complex nitrogen sources such as corn steep liquor, soy flour, soy protein, yeast extracts, meat extracts and others.
  • ammonia gas or ammonium salts such as NH CI or (NH 4 ) 2 SO, NH OH, nitrates, urea
  • amino acids or complex nitrogen sources such as corn steep liquor, soy flour, soy protein, yeast extracts, meat extracts and others.
  • Inorganic salt compounds that may be included in the media include the chloride, phosphorus, or sulfate salts of calcium, magnesium, sodium, cobalt, molybdenum, potassium, manganese, zinc, copper and iron.
  • Chelating agents can be added to the medium to keep the metal ions in solution.
  • Particularly suitable chelating agents include dihydroxyphenols such as catechol or protocatechuate or organic acids such as citric acid.
  • the media usually also contain other growth factors, such as vitamins or growth promoters, which include, for example, biotin, riboflavin, thiamine, folic acid, nicotinic acid, panthothenate and pyridoxine.
  • Growth factors and salts often come from complex media components such as yeast extract, molasses, corn steep liquor and the like.
  • the exact composition of the media connections depends heavily on the respective experiment and is decided individually for each case. Information about media optimization is available from the textbook "Applied Microbiol. Physiology, A Practical Approach” (Ed. PM Rhodes, PF Stanbury, IRL Press (1997) pp. 53-73, ISBN 0 19 9635773).
  • Growth media can also be obtained from commercial suppliers, such as Standard 1 (Merck) or BHI (Brain heart infusion, DIFCO) and the like.
  • All media components are sterilized, either by heat (20 min at 1.5 bar and 121 ° C) or by sterile filtration.
  • the components can either be sterilized together or, if necessary, sterilized separately. All media components can be present at the beginning of the cultivation or optionally added continuously or in batches.
  • the growing conditions are defined separately for each experiment.
  • the temperature should be between 15 ° C and 45 ° C and can be kept constant or changed during the experiment.
  • the pH of the medium should be in the range of 5 to 8.5, preferably around 7.0, and can be maintained by adding buffers to the media.
  • An exemplary buffer for this purpose is a potassium phosphate buffer.
  • Synthetic buffers such as MOPS, HEPES; ACES etc. can be used alternatively or simultaneously.
  • the cultivation pH value can also be kept constant during the cultivation by adding NaOH or NH 4 OH. If complex media components such as yeast extract are used, the need for additional buffers is reduced since many complex compounds have a high buffer capacity.
  • the pH value can also be regulated with gaseous ammonia.
  • the incubation period is usually in the range of several hours to several days. This time is chosen so that the maximum amount of product accumulates in the broth.
  • the growth experiments disclosed can be carried out in a variety of containers, such as microtiter plates, glass tubes, glass flasks or glass or metal fermenters of different sizes.
  • the microorganisms should be grown in microtiter plates, glass tubes or shake flasks either with or without baffles.
  • 100 ml shake flasks are used which are filled with 10% (by volume) of the required growth medium.
  • the pistons should be shaken on a rotary shaker (amplitude 25 mm) at a speed in the range of 100-300 rpm. Evaporation losses can be reduced by maintaining a humid atmosphere; alternatively, a mathematical correction should be made for the evaporation losses.
  • the medium is oo to an OD of 0.5 6 - inoculated 1, 5, using cells grown on agar plates, such as CM plates (10 g / l glucose, 2.5 g / l NaCl, 2 g / l urea, 10 g / l polypeptone, 5 g / l yeast extract, 5 g / l meat extract, 22 g / l agar pH 6.8 with 2 M NaOH), which have been incubated at 30 ° C.
  • the inoculation of the media is carried out either by introducing a saline solution of C. g / üfam / cum cells from CM plates or by adding a liquid preculture of this bacterium.
  • Example 8 In vitro analysis of the function of mutated proteins
  • DNA band shift assays also known as gel retardation assays
  • reporter gene assays as described in Kolmar, H. et al., (1995) EMBO J. 14: 3895-3904 and the references cited therein. Reporter gene test systems are well known and for applications in pro- and eukary otic cells are established using enzymes such as beta-galactosidase, green fluorescent protein and several others.
  • membrane transport proteins The activity of membrane transport proteins can be determined according to the techniques described in Gennis, R.B. (1989) "Pores, Channels and Transporters", in Biomembranes, Molecular Structure and Function, Springer: Heidelberg, pp. 85-137; 199-234; and 270-322.
  • Example 9 Analysis of the influence of mutated protein on the production of the desired product
  • the effect of the genetic modification in C. glutamicum on the production of a desired compound can be determined by culturing the modified microorganisms under suitable conditions (such as those described above) and the medium and / or the cellular components are examined for the increased production of the desired product (ie an amino acid).
  • suitable conditions such as those described above
  • Such analysis techniques are well known to the person skilled in the art and include spectroscopy, thin-layer chromatography, staining methods of various types, enzymatic and microbiological methods and analytical chromatography, such as high-performance liquid chromatography (see, for example, Ullman, Encyclopedia of Industrial Chemistry, Vol. A2, p. 89- 90 and pp.
  • the analytical methods include measurements of the amount of nutrients in the medium (e.g. sugar, hydrocarbons, nitrogen sources, phosphate and other ions), measurements of the biomass composition and growth, analysis of the production of common metabolites from biosynthetic pathways and measurements of gases that are generated during fermentation. Default- Methods for these measurements are in Applied Microbial Physiology; A Practical Apachach, PM Rhodes and PF Stanbury, ed. IRL Press, pp. 103-129; 131-163 and 165-192 (ISBN: 0199635773) and the literature references specified therein.
  • nutrients in the medium e.g. sugar, hydrocarbons, nitrogen sources, phosphate and other ions
  • Example 10 Purification of the desired product from a C. glutamicum K r
  • the desired product can be obtained from C. glutamicum-ZeWen or from the supernatant of the culture described above by various methods known in the art. If the desired product is not secreted by the cells, the cells can be harvested from the culture by slow centrifugation, the cells can be lysed by standard techniques such as mechanical force or ultrasound. The cell debris is removed by centrifugation and the supernatant fraction containing the soluble proteins is obtained for further purification of the desired compound. If the product is secreted by the C. glutamicum cells, the cells are removed from the culture by slow centrifugation and the supernatant fraction is kept for further purification.
  • the supernatant fraction from both purification procedures is subjected to chromatography with an appropriate resin, either with the desired molecule retained on the chromatography resin but not with many contaminants in the sample, or with the contaminants remaining on the resin but not the sample. These chromatography steps can be repeated if necessary using the same or different chromatography resins.
  • the person skilled in the art is skilled in the selection of suitable chromatography resins and the most effective application for a particular molecule to be purified.
  • the purified product can be concentrated by filtration or ultrafiltration and kept at a temperature at which the stability of the product is maximum.
  • the identity and purity of the isolated compounds can be determined by standard techniques in the art. These include high performance liquid chromatography (HPLC), spectroscopic methods, staining methods, thin layer chromatography, NIRS, enzyme test or microbiological tests. These analysis methods are summarized in: Patek et al. (1994) Appl. Environ. Microbiol. 60: 133-140; Malakhova et al. (1996) Biotekhnologiya 11: 27-32; and Schmidt et al. (1998) Bioprocess Engineer. 19: 67-70. Ulmann's Encyclopedia of Industrial Chemistry (1996) Vol. A27, VCH: Weinheim, pp. 89-90, pp. 521-540, pp. 540-547, pp.
  • HPLC high performance liquid chromatography
  • NIRS enzyme test or microbiological tests.
  • columns 4, 5 and 6 describe at least one mutation, and in some sequences also several mutations. These multiple mutations always refer to the closest, starting amino acid sequence above (column 2).
  • the term “at least one of the amino acid positions” of a particular amino acid sequence is preferably understood to mean at least one of the mutations described for this amino acid sequence in columns 4, 5 and 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Die vorliegende Erfindung betrifft mutierte Nukleinsäuren und Proteine aus dem Stoffwechselweg von Feinchemikalien, Verfahren zur Herstellung von genetisch veränderten Produktionsorganismen, Verfahren zur Herstellung von Feinchemikalien durch Kultivierung der genetisch veränderten Organismen, sowie die genetisch veränderten Organismen selbst.

Description

Genvarianten die für Proteine aus dem Stoffwechselweg von Feinchemikalien codieren
Beschreibung
Die vorliegende Erfindung betrifft mutierte Nukleinsäuren und Proteine aus dem Stoffwechselweg von Feinchemikalien, Verfahren zur Herstellung von genetisch veränderten Produktionsorganismen, Verfahren zur Herstellung von Feinchemikalien durch Kultivierung der genetisch veränderten Organismen, sowie die genetisch veränderten Organismen selbst.
Viele Produkte und Nebenprodukte von natürlich-vorkommenden Stoffwechselprozessen in Zellen werden in vielen Industriezweigen verwendet, einschließlich der Nahrungsmittel-, Futtermittel-, Kosmetik- und pharmazeutischen Industrie. Diese Verbindungen, die gemeinsam als "Feinchemikalien" bezeichnet werden, umfassen bei- spielsweise organische Säuren, sowohl proteinogene als auch nicht-proteinogene A- minosäuren, Nukleotide und Nukleoside, Lipide und Fettsäuren, Diole, Kohlehydrate, aromatische Verbindungen, Vitamine und Cofaktoren sowie Enzyme.
Ihre Produktion kann beispielsweise durch Fermentation von Mikroorganiusmen im Großmaßstab erfolgen, die entwickelt wurden, um große Mengen von einem oder mehreren gewünschten Feinchemikalien zu produzieren und sezernieren. Ein für diesen Zweck besonders geeigneter Organismus ist Corynebacterium glutamicum, ein gram-positives, nicht-pathogenes Bakterium. Über Stammselektion ist eine Reihe von Mutantenstämmen entwickelt worden, die ein Sortiment wünschenswerter Verbindungen produzieren. Die Auswahl von Stämmen, die hinsichtlich der Produktion einer bestimmten Verbdinung verbessert sind, ist jedoch ein zeitaufwendiges und schwieriges Verfahren.
Es ist möglich, die Produktivität von Produktionsorganismen durch genetische Verän- derungen zu erhöhen. Beispielsweise kann die gezielte Mutation von bestimmten Genen in einem Produktionsorganismus zu einer Erhöhung der Produktivität einer gewünschten Feinchemikalie führen.
EP 1 108790 A2 beschreibt, ausgehend von der Wildtypsequenz kodierend eine Ho- moserindehydrogenase aus Corynebakterium glutamicum, eine mutierte Nukleinsäure- sequenz, die eine Homoserindehydrogenase kodiert.die gegenüber der Wildtypsequenz die Mutation Val59Ala aufweist. Ferner wird eine mutierte Nukleinsäuresequenz kodierend eine Pyruvatcarboxylase beschrieben, die im Vergleich zur Wildtypaminosäuresequenz aus Corynebakterium glutamicum die Mutation Pro458Ser aufweist. Die Einführung der Mutationen in Corynebakterium glutamicum führt zu einer Erhöhung der Lysin Ausbeute.
Aus WO 0063388 ist ferner ein mutiertes ask Gen bekannt, dass eine Aspartokinase mit der Mutation T3111 kodiert.
Weitere Mutationen in Genen und Proteinen des Biosynthesweges von Feinchemialien aus Corynebakterium glutamicum sind in WO 0340681, WO 0340357, WO 0340181 , WO 0340293, WO 0340292, WO 0340291 , WO 0340180, WO 0340290, WO 0346123, WO 0340289 und WO 0342389 beschrieben.
Obwohl die im Stand der Technik bekannten Mutationen bereits zu Produktionsorganismen mit optimierter Produktivität, d.h. optimierter Ausbeute an gewünschter Fein- chemikaiie und optimierter C-Ausbeute, führen, besteht ein ständiges Bedürfnis, die Produktivität der Organismen weiter zu steigern.
Aufgabe der vorliegenden Erfindung ist es, weitere mutierte Gene und Proteine zur Verfügung zu stellen, die in Produktionsorganismen von Feinchemikalien zu einer Erhöhung der Produktivität und damit zu einer Verbesserung von biotschnologischen Verfahren zur Herstellung von Feinchemiekalien führen.
Demgemäß wurden Proteine gefunden, mit der jeweils in Tabellel /Spalte 7 angegebenen Funktion mit einer Aminosäuresequenz, die an mindestens einer der Aminosäurepositionen, die, ausgehend von der jeweils in Tabellel /Spalte2 in Bezug genommenen Aminosäuresequenz, der in Tabellel /Spalte4 für diese Aminosäuresequenz angegebenen Aminosäurepositionen entsprechen, eine andere proteinogene Aminosäure aufweist als die jeweilige in Tabellel /Spalteδ in der gleichen Zeile angegebene Aminosäure, mit der Maßgabe, dass die mutierten Proteine gemäß Tabelle 2 ausgenommen sind.
Diese Erfindung stellt neuartige Nukleinsäuremoleküle und Proteine bereit, die sich einerseits zur Identifizierung oder Klassifizierung von Corynebacterium glutamicum oder verwandten Bakterienarten verwenden lassen und andereseits in Produktionsorganismen von Feinchemikalien zu einer Erhöhung der Produktivität und damit zu einer Verbesserung von biotschnologischen Verfahren zur Herstellung von Feinchemiekalien führen.
C. glutamicum ist ein gram-positives, aerobes Bakterium, das in der Industrie für die
Produktion im Großmaßstab einer Reihe von Feinchemikalien, und auch zum Abbau von Kohlenwasserstoffen (bspw. beim Überlaufen von Rohöl) und zur Oxidation von Terpenoiden gemeinhin verwendet wird. Die Nukleinsäuremoleküle können daher weiterhin zum Identifizieren von Mikroorganismen eingesetzt werden, die sich zur Produktion von Feinchemikalien, bspw. durch Fermentationsverfahren, verwenden lassen. C. glutamicum selbst ist zwar nicht-pathogen, jedoch ist es mit anderen Corynebacterium- Arten, wie Corynebacterium diphtheriae (dem Erreger der Diphtherie) verwandt, die bedeutende Pathogene beim Menschen sind. Die Fähigkeit, das Vorhandensein von Corynebacterium-Arten zu identifizieren, kann daher auch eine signifikante klinische Bedeutung haben, z.B. bei diagnostischen Anwendungen. Diese Nukleinsäuremoleküle können zudem als Bezugspunkte zur Kartierung des C. glutamicum-Genoms oder von Genomen verwandter Organismen dienen.
Die erfindugsgemäßen Proteine, im folgenden auch Stoffwechselweg-Proteine, Meta- bolic-Pathway-Prote'me oder MP-Proteine genannt, weisen die jeweils in Tabel- Ie1/Spalte 7 angegebenen Funktion auf. Ferner weisen sie jewiels eine Aminosäurese- quenz auf, die an mindestens einer der Aminosäurepositionen, die, ausgehend von der jeweils in Tabellel /Spalte2 in Bezug genommenen Aminosäuresequenz, der in Tabellel /Spalte4 für diese Aminosäuresequenz angegebenen Aminosäurepositionen entsprechen, eine andere proteinogene Aminosäure aufweist als die jeweilige in Tabellel /Spalteδ in der gleichen Zeile angegebene Aminosäure.
Unter der „entsprechenden" Aminosäureposition wird vorzugsweise die Amiήosäurepo- sition der Aminosäuresequenz der erfindungsgemäßen MP-Proteine verstanden, die der Fachmann a) durch Homologie-Vergleich der Aminosäuresequenz oder b) durch strukturellen Vergleich der Sekundär-, Tertiär- und/oder Quartärstruktur dieser Aminosäuresequenz
mit der jeweils in Tabelle1/Spalte2 in Bezug genommenen Aminosäuresequenz mit der jeweils in Tabellel /Spalte4 für diese Aminosäuresequenz angegebenen Aminosäure- position, leicht auffinden kann.
Eine bevorzugte Methoder zum Homologie-Vergleich der Aminosäuresequenzen verwendet beispielsweise die Lasergene Software der Firma DNASTAR, ine. Madison, Wisconsin (USA) unter Anwendung der Clustal Methode (Higgins DG, Sharp PM. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl. Biosci. 1989 Apr;5(2): 151-1) unter Einstellung folgender Parameter:
Multiple alignment parameter: Gap penalty 10 Gap length penalty 10 Pairwise alignment parameter:
K-tuple 1
Gap penalty 3
Window 5 Diagonals saved 5
In einer bevorzugten Ausführungsform weisen die Proteine die jeweils in Tabel- Ie1/Spalte 7 angegebenen Funktion und eine Aminosäuresequenz auf, die an einer Aminosäureposition, die, ausgehend von der jeweils in Tabelle1/Spalte2 in Bezug ge- nommenen Aminosäuresequenz, der in Tabelle 1/Spalte4 für diese Aminosäuresequenz angegebenen Aminosäureposition entspricht, eine andere proteinogene Aminosäure aufweist als die jeweilige in Tabelle 1/Spalte5 in der gleichen Zeile angegebene Aminosäure, mit der Maßgabe, dass die mutierten Proteine gemäß Tabelle 2 ausgenommen sind.
In einer weiter bevorzugten Ausführungsform weisen die erfindungsgemäßen Proteine die jeweils in Tabellel /Spalte2 in Bezug genommene Aminosäuresequenz auf, wobei das Protein an mindestens einer der in Tabellel /Spalte4 für diese Aminosäuresequenz angegebenen Aminosäurepositionen eine andere proteinogene Aminosäure aufweist als die jeweilige in Tabellel /Spalteδ in der gleichen Zeile angegebene Aminosäure.
In einer weiter bevorzugten Ausführungsform weisen die erfindungsgemäßen Proteine die jeweils in Tabellel /Spalte2 in Bezug genommene Aminosäuresequenz auf, wobei das Protein an einer der in Tabelle 1/Spalte4 für diese Aminosäuresequenz angegebe- nen Aminosäureposition eine andere proteinogene Aminosäure aufweist als die jeweilige in Tabellel /Spalteδ in der gleichen Zeile angegebene Aminosäure.
Bei den in Tabelle 1/Spalte2 angegebenen Aminosäuresequenzen handelt es sich um Wildtypsequenzen aus Corynebakterium glutamicum. Tabellel/Spalte 4 gibt für die jeweilige Wildtypaminosäuresequenz mindestens eine Aminosäurepositionen an, an denen die Aminosäureseqenz der erfindungsgemäßen Proteine eine andere proteinogene Aminosäure aufweisen als die jeweilige in Tabellel /Spalteδ in der gleichen Zeile angegebene Aminosäure.
In einer weiter bevorzugten Ausführungsform, weisen die Proteine an mindestens einer der in Tabelle 1/Spalte 4 für die Aminosäuresequenz angegebenenen Aminosäureposition die in Tabellel /Spalteδ in der gleichen Zeile angegebene Aminosäure auf.
Ein weiterer Aspekt der Erfindung betrifft ein isoliertes MP-Protein oder einen Ab- schnitt, bspw. einen biologisch aktiven Abschnitt davon. Das isolierte MP-Protein oder sein Abschnitt reguliert in einer bevorzugten Ausführungsform einen oder mehrere Stoffwechselwege in Organismen, insbesondere in Corynebakterien und Brevibakte- rien transkriptional, translational oder posttranslational.
Das MP-Polypeptid oder ein biologisch aktiver Abschnitt davon kann mit einem Nicht- MP-Polypeptid funktionsfähig verbunden werden, damit ein Fusionsprotein entsteht. Dieses Fusionsprotein hat bei bevorzugten Ausführungsformen eine andere Aktivität als das MP-Protein allein und reguliert bei anderen bevorzugten Ausführungsformen einen oder mehrere Stoffwechselwege in Organismen, insbesondere in Corynebakte- rien und Brevibakterien, bevorzugt in Corynebacterium glutamicum transkriptional, translational oder posttranslational. Die Integration dieses Fusionsproteins in eine Wirtszelle moduliert bei besonders bevorzugten Ausführungsformen die Produktion einer gewünschten Verbindung von der Zelle.
Die Erfindung betrifft weiterhin isolierte Nukleinsäuren, kodierend ein vorstehend beschriebenes erfindungsgemäßes Protein. Diese Nukleinsäuren werden nachstehend auch Mete6o//c-Pat/7way-Nukleinsäuren oder MP-Nukleinsäuren oder MP-Gene genannt. Diese neuen MP-Nukleinsäuremoleküle kodieren die erfindungsgemäßen MP Proteine. Diese MP-Proteine können bspw. eine Funktion ausüben, die an der Transkriptions-, Translations- oder posttranslationalen Regulation von Proteinen beteiligt ist, die für das normale metabolische Funktionieren von Zellen wichtig sind. Aufgrund der Verfügbarkeit von Klonierungsvektoren zur Verwendung in Corynebacterium glutamicum, wie bspw. offenbart in Sinskey et al., US-Patent Nr. 4 649 119, und Techniken zur genetischen Manipulation von C. glutamicum und den verwandten Brevibac- terium-AΛen (z.B. lactofermentum) Yoshihama et al., J. Bacteriol. 162 (1985) 591-597; Katsumata et al., J. Bacteriol. 159 (1984) 306-311 ; und Santamaria et al. J. Gen. Microbiol. 130 (1984) 2237-2246), lassen sich die erfindungsgemäßen Nukleinsäuremoleküle zur genetischen Manipulation dieses Organismus verwenden, um es als Produzenten von einer oder mehreren Feinchemikalien besser und effizienter zu machen.
Als Ausgangspunkt zur Herstellung der erfindungsgemäßen Nukleinsäuresequenzen eignet sich beispielsweise das Genom eines Corynebacterium glutamicum-Stammes, der von der American Type Culture Collection unter der Bezeichnung ATCC 13032 erhältlich ist.
Von diesen Nukleinsäuresequenzen lassen sich durch die in Tabelle 1 bezeichneten Veränderungen die erfindungsgemäßen Nukleinsäuresequenzen mit üblichen Verfahren herstellen. Für die Rückübersetzung der Aminosäuresequenz der erfindungsgemäßen MP-Proteine in die erfindungsgemäße Nukleinsäuresequenzen der MP-Gene ist es vorteilhaft, die codon usage desjenigen Organismus zu verwenden, in den die erfindungsgemäße MP-Nukleinsäuresequenz eingebracht werden soll oder in der die erfindungsgemäße Nukleinsäuresequenz vorliegt. Beispielsweise ist es vorteihaft für Corynebakterium glutamicum die codon usage von Corynebakterium glutamicum zu verwenden. Die codon usage des jeweiligen Organismus lässt sich in an sich bekann- ter Weise aus Datenbanken oder Patentanmeldungen ermitteln, die zumindest ein Protein und ein Gen, das dieses Protein kodiert, aus dem gewünschten Organismus beschreiben.
Ein isoliertes Nukleinsäuremolekül, das ein MP-Protein codiert kann durch Einbringen von einer oder mehreren Nukleotidsubstitutionen, -additionen oder -deletionen in eine Nukleotidsequenz aus Tabelle 1 /Spalte 1 erzeugt werden, so daß eine oder mehrere Aminosäuresubstitutionen, -additionen oder -deletionen in das codierte Protein eingebracht werden. Die Mutationen können in eine der Sequenzen aus Tabelle 1 /Spalte 1 durch Standard-Techniken eingebracht werden, wie stellengerichtete Mutagenese und PCR-vermittelte Mutagenese. Vorzugsweise werden konservative Aminosäuresubstitutionen an einer oder mehreren der vorhergesagten nicht-essentiellen Aminosäureresten eingeführt. Bei einer "konservativen Aminosäuresubstitution" wird der A- minosäurerest durch einen Aminosäurerest mit einer ähnlichen Seitenkette ausgetauscht. Im Fachgebiet sind Familien von Aminosäureresten mit ähnlichen Seitenketten definiert worden. Diese Familien umfassen Aminosäuren mit basischen Seitenketten (z.B. Lysin, Arginin, Histidin), sauren Seitenketten (z.B. Asparaginsäure, Glutaminsäure), ungeladenen polaren Seitenketten (z.B. Glycin, Asparagin, Glutamin, Serin, Threonin, Tyrosin, Cystein), nicht-polaren Seitenketten, (bspw. Alanin, Valin, Leucin, Isoleucin, Prolin, Phenylalanin, Methionin, Tryptophan), beta-verzweigten Seitenketten (z.B. Threonin, Valin, Isoleucin) und aromatischen Seitenketten (z.B. Tyrosin, Phenylalanin, Tryptophan, Histidin). Ein vorhergesagter nicht-essentieller Aminosäurerest in einem MP-Protein wird somit vorzugsweise durch einen anderen Aminosäurerest dergleichen Seitenkettenfamilie ausgetauscht. In einerweiteren Ausführungsform können die Mutationen alternativ zufallsgemäß über die gesamte oder einen Teil der MP-codierenden Sequenz eingebracht werden, bspw. durch Sättigungsmutagenese, und die resultierenden Mutanten können auf die hier beschriebene MP-Aktivität untersucht werden, um Mutanten zu identifizieren, die eine MP-Aktivität beibehalten. Nach der Mutagenese von einer der Sequenzen aus Anhang A kann das codierte Protein rekombinant expri- miert werden, und die Aktivität des Proteins kann bspw. mit den hier beschriebenen Tests (siehe Beispiel 8 des Beispielteils) bestimmt werden.
Die vorliegende Erfindung beruht auf der Zuverfügungstellung neuer Moleküle, die hier als MP-Nukleinsäure- und -Protein-Moleküle bezeichnet werden und durch transkripti- onale, translationale oder posttranslationale Maßnahmen einen oder mehrere Stoff- wechselwege in Organismen, insbesondere in Corynebakterien oder Brevibakterien, besonders bevorzugt in C. glutamicum regulieren. Bei einer Ausführungsform regulieren die MP-Moleküle einen Stoffwechselweg in Organismen, insbesondere in Corynebakterien oder Brevibakterien, besonders bevorzugt in C. glutamicum transkriptional, translational oder posttranslational. Bei einer bevorzugten Ausführungsform hat die Aktivität der erfindungsgemäßen MP-Moleküle zur Regulation eines oder mehrerer Stoffwechselwege in Organismen, insbesondere in Corynebakterien oder Brevibakterien, besonders bevorzugt in C. glutamicum eine Auswirkung auf die Produktion einer gewünschten Feinchemikalie durch diesen Organismus. Bei einer besonders bevorzugten Ausführungsform haben die erfindungsgemäßen MP-Moleküle modulierte Akti- vität, so daß die Stoffwechselwege von Organismen, insbesondere in Corynebakterien oder Brevibakterien, besonders bevorzugt in C. glutamicum, die die erfindungsgemäßen MP-Proteine regulieren, hinsichtlich ihrer Effizienz oder ihres Durchsatzes moduliert werden, was entweder direkt oder indirekt die Ausbeute, Produktion und/oder Effizienz der Produktion einer gewünschten Feinchemikalie durch Organismen, insbeson- dere in Corynebakterien oder Brevibakterien, besonders bevorzugt in C. glutamicum moduliert.
Der Begriff "MP-Protein" oder "MP-Polypeptid" umfaßt Proteine, die einen Stoffwechselweg in Organismen, insbesondere in Corynebakterien oder Brevibakterien, beson- ders bevorzugt in C. glutamicum transkriptional, translational oder posttranslational regulieren. Beispiele für MP-Proteine umfassen solche, die in Tabelle 1 aufgelistet sind. Die Ausdrücke "MP-Gen" oder "MP-Nukleinsäuresequenz" umfassen Nukleinsäuresequenzen, die ein MP-Protein codieren, das aus einem codierenden Bereich und entsprechenden untranslatierten 5'- und 3'-Sequenzbereichen besteht. Beispiele für MP-Gene sind in Tabelle 1 aufgelistet.
Die Begriffe "Produktion" oder "Produktivität" sind im Fachgebiet bekannt und beinhalten die Konzentration des Fermentationsproduktes (bspw. der gewünschten Feinchemikalie, die innerhalb einer festgelegten Zeitspanne und eines festgelegten Fermenta- tionsvolumens gebildet werden (bspw. kg Produkt pro Std. pro I).
Der Begriff "Effizienz der Produktion" umfaßt die Zeit, die zur Erzielung einer bestimmten Produktionsmenge nötig ist (bspw. wie lange die Zelle zur Aufrichtung einer bestimmten Durchsatzrate einer Feinchemikalie benötigt). Der Begriff "Ausbeute" oder "Produkt/Kohlenstoff-Ausbeute" ist im Fachgebiet bekannt und umfaßt die Effizienz der Umwandlung der Kohlenstoffquelle in das Produkt (d.h. die Feinchemikalie). Dies wird bspw. gewöhnlich ausgedrückt als kg Produkt pro kg Kohlenstoffquelle. Durch Vergrößern der Ausbeute oder Produktion der Verbindung wird die Menge der gewonnenen Moleküle oder der geeigneten gewonnenen Moleküle dieser Verbindung in einer be- stimmten Kulturmenge über einen festgelegten Zeitraum erhöht.
Die Begriffe "Biosynthese" oder "Biosyntheseweg" sind im Fachgebiet bekannt und umfassen die Synthese einer Verbindung, vorzugsweise einer organischen Verbin- düng, durch eine Zelle aus Zwischenverbindungen, bspw. in einem Mehrschritt- oder stark regulierten Prozeß. Die Begriffe "Abbau" oder "Abbauweg" sind im Fachgebiet bekannt und umfassen die Spaltung einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle in Abbauprodukte (allgemeiner gesagt, kleinere oder weniger komplexe Moleküle), bspw. in einem Mehrschritt- oder stark regulierten Prozeß.
Der Begriff "Metabolismus" ist im Fachgebiet bekannt und umfaßt die Gesamtheit der biochemischen Reaktionen, die in einem Organismus stattfinden. Der Metabolismus einer bestimmten Verbindung (z.B. der Metabolismus einer Aminosäure, wie Glycin) umfaßt dann sämtliche Biosynthese-, Modifikations- und Abbauwege dieser Verbindung in der Zelle.
Der Begriff "Regulation" ist im Fachgebiet bekannt und umfaßt die Aktivität eines Proteins zur Steuerung der Aktivität eines anderen Proteins. Der Begriff "Transkriptions- Regulation" ist im Fachgebiet bekannt und umfaßt die Aktivität eines Proteins zur
Hemmung oder Aktivierung der Umwandlung einer DNA, die ein Zielprotein codiert, in mRNA. Der Begriff "Translations-Regulation" ist im Fachgebiet bekannt und umfaßt die Aktivität eines Proteins zur Hemmung oder Aktivierung der Umwandlung einer mRNA, die ein Zielprotein codiert, zu einem Proteinmolekül. Der Begriff "posttranslationale Regulation" ist im Fachgebiet bekannt" und umfaßt die Aktivität eines Proteins zur
Hemmung oder Verbesserung der Aktivität eines Zielproteins durch kovalentes Modifizieren des Zielproteins (z.B. durch Methylierung, Glycosylierung oder Phosphorylie- rung).
Die verbesserte Ausbeute, Produktion und/oder Effizienz der Produktion einer Feinchemikalie kann auf einer direkten oder indirekten Wirkung der Manipulation eines erfindungsgemäßen Gens beruhen. Speziell können Veränderungen in MP-Proteinen, die die Ausbeute, Produktion und/oder Effizienz der Produktion einer Feinchemikalie eines metabolischen Feinchemikalienwegs gewöhnlich regulieren, eine direkte Auswir- kung auf die Gesamtproduktion oder Produktionsgeschwindigkeit von einer oder mehreren dieser gewünschten Verbindungen aus diesem Organismus haben.
Veränderungen in den Proteinen, die an diesen Stoffwechselwegen beteiligt sind, können auch eine indirekte Auswirkung auf die Ausbeute, Produktion und/oder Effizienz der Produktion einer gewünschten Feinchemikalie haben. Die Metabolismus- Regulation ist notwendigerweise komplex, und die regulatorischen Mechanismen, die die unterschiedlichen Wege bewerkstelligen, können sich an vielen Stellen überschneiden, so daß sich mehr als ein Stoffwechselweg rasch gemäß einem bestimmten Zellereignis einstellen läßt. Dies ermöglicht, daß die Modifikation eines regulatorischen Proteins für einen Stoffwechselweg auch eine Auswirkung auf viele andere Stoffwechselwege ausübt, von denen einige an der Biosynthese oder am Abbau einer gewünschten Feinchemikalie beteiligt sein können. In dieser indirekten Weise kann die Modulation der Wirkung eines MP-Proteins eine Auswirkung auf die Produktion einer Feinchemikalie haben, die über einen Stoffwechselweg produziert wird, der sich von dem unterscheidet, der von diesem MP-Protein direkt reguliert wird.
Die erfindungsgemäßen MP-Nukleinsäure- und ;MP-Proteinmoleküle können verwendet werden, um die Ausbeute, Produktion und/oder Effizienz der Produktion von einer oder mehreren gewünschten Feinchemikalien aus nichthumanen Organismen direkt zu verbessern.
Mittels im Fachgebiet bekannter Genrekombinationstechniken können ein oder mehrere erfindungsgemäße regulatorische Proteine derart manipuliert werden, daß ihre Funktion moduliert ist. Die Mutation eines MP-Proteins, das an der Repression der Transkription eines Gens beteiligt ist, das ein Enzym codiert, das für die Biosynthese einer Aminosäure erforderlich ist, so daß sie nicht länger zur Repression der Transkription fähig ist, kann bspw. einen Anstieg der Produktion dieser Aminosäure bewirken.
Entsprechend kann die Veränderung der Aktivität eines MP-Proteins, die eine gestei- gerte Translation bewirkt oder die posttranslationale Modifikation eines MP-Proteins, das an der Biosynthese einer gewünschten Feinchemikalie beteiligt ist, aktiviert, die Produktion dieser Chemikalie wiederum erhöhen. Die entgegengesetzte Situation kann ebenfalls von Nutzen sein: durch Vergrößern der Repression der Transkription oder Translation oder durch posttranslationale Negativmodifikation eines ΛfP-Proteins, das an der Regulation des Abbauweges für eine Verbindung beteiligt ist, kann man die Produktion dieser Chemikalie steigern. In jedem Fall kann die Gesamtausbeute oder die Geschwindigkeit der Produktion der gewünschten Feinchemikalie vergrößert sein.
Es ist ebenfalls möglich, daß diese Veränderungen in den erfindungsgemäßen Protein- und Nukleotidmolekülen die Aubeute, Produktion und/oder Effizient der Produktion von Feinchemikalien durch indirekte Mechanismen verbessern können. Der Metabolismus einer bestimmten Verbindung ist notwendigerweise mit anderen Biosynthese- und Abbauwegen innerhalb der Zelle verstrickt, und notwendige Cofaktoren, Zwischenprodukte oder Substrate in einem Stoffwechselweg werden wahrscheinlich von einem ande- ren Stoffwechselweg bereitgestellt oder eingeschränkt. Durch Modulieren von einem oder mehreren erfindungsgemäßen regulatorischen Proteinen kann daher die Effizienz der Anktivität anderer Feinchemikalien-Biosynthese oder -Abbauwege beeinflußt werden. Die Manipulation von einem oder mehreren regulatorischen Proteinen kann überdies die Gesamtfähigkeit der Zelle, zu wachsen und sich in Kultur, besonders in fer- mentativen Großkulturen, wo die Wachstumsbedingungen unteroptimal sein können, zu vermehren, steigern. Bspw. durch weiteres Mutieren eines erfindungsgemäßen MP- Proteins, das gewöhnlich eine Repression der Biosynthese von Nukleosiden in Reaktion auf ein unteroptimales extrazelluläres Nährstoffangebot (wodurch die Zellteilung verhinder wird), so daß es eine geringere Repressorakivität aufweist, kann man die Biosynthese von Nukleosiden und vielleicht die Zellteilung steigern. Veränderungen in den MP-Proteinen, die ein verstärktes Zellwachstum und eine verstärkte Teilung in Kultur bewirken, können zumindest aufgrund der erhöhten Zahl an Zellen, die die Chemikalie in Kultur produzieren, eine Steigerung der Ausbeute, Produktion und/oder Effizienz der Produktion von einer oder mehreren gewünschten Feinchemikalien aus der Kultur hervorrufen.
Die Erfindung stellt neue Nukleinsäuremoleküle bereit, die Proteine codieren, welche einen enzymatischen Schritt durchführen können, der an der Transkriptions-, Translations- oder posttranslationalen Regulation von Stoffwechselwegen in nicht-humanen Organismen beteiligt sind. Nukleinsäuremoleküle, die ein MP-Protein codieren, werden hier als MP-Nukleinsäuremoleküle bezeichnet. Bei einer bevorzugten Ausführungsform ist das MP-Protein an der Transkriptions-, Translations- oder posttranslationalen Regulation von einem oder mehreren Stoffwechselwegen beteiligt. Beispiele für solche Proteine sind diejenigen, die von den in Tabelle 1 angegebenen Genen codiert werden.
Ein Aspekt der Erfindung betrifft folglich isolierte Nukleinsäuremoleküle (bspw. cDNAs), umfassend eine Nukleotidsequenz, die ein MP-Protein oder biologisch aktive Abschnitte davon codiert, sowie Nukleinsäurefragmente, die sich als Primer oder Hybridisie- rungssonden zum Nachweisen oder zur Amplifikation von MP-codierender Nukleinsäu- re (bspw. DNA oder mRNA) eignen. In anderen bevorzugten Ausführungsformen codiert das isolierte Nukleinsäuremolekül eine der in Tabellel aufgeführten Aminosäuresequenzen. Die bevorzugten erfindungsgemäßen MP-Proteine besitzen ebenfalls vorzugsweise mindestens eine der hier beschriebenen MP-Aktivitäten.
Bei einer weiteren Ausführungsform ist das isolierte Nukleinsäuremolekül mindestens 15 Nukleotide lang und hybridisiert unter stringenten Bedingungen an ein erfindungsgemäßes Nukleinsäuremolekül. Das isolierte Nukleinsäuremolekül entspricht vorzugsweise einem natürlich vorkommenden Nukleinsäuremolekül. Die isolierte Nukleinsäure codiert stärker bevorzugt ein natürlich vorkommendes C. glutamicum-MP-Prote n oder einen biologisch aktiven Abschnitt davon.
Alle lebenden Zellen haben komplexe katabolische und anabolische Fähigkeiten mit vielen untereinander vernetzten Stoffwechselwegen. Zur Aufrechterhaltung eines Gleichgewichtes zwischen den verschiedenen Teilen dieses extrem komplexen meta- bolischen Netzwerks, setzt die Zelle ein fein abgestimmtes regulatorisches Netzwerk ein. Durch Regulation der Enzymsynthese und Enzymaktivität, entweder unabhängig oder simultan, kann die Zelle die Aktivität völlig verschiedener Stoffwechselwege regulieren, so daß der wechselnde Bedarf der Zelle befriedigt wird.
Die Induktion oder Repression der Enzymsynthese kann entweder auf Transkriptionsoder Translations-Niveau oder auf beiden erfolgen (für einen Überblick, siehe Lewin, B. (1990) Genes IV, Teil 3: "Controlling prokaryotic genes by transcription", Oxford Uni- versity Press, Oxford, S. 213-301 , und darin angegebenen Literaturstellen, und Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley & Sons). All diese bekannten regulatorischen Prozesse werden durch zusätzliche Gene vermittelt, die selbst auf verschiedene externe Einflüsse reagieren (bspw. Temperatur, Nährstoffangebot, oder Licht). Beispielhafte Proteinfaktoren, die an diesem Regulationstyp beteiligt sind, umfassen die Transkriptionsfaktoren. Dies sind Proteine, die an die DNA binden, wodurch entweder die Expression eines Gens steigt (positive Regulation, wie im Fall des ara-Operons aus E coli) oder sinkt (negative Regulation, wie im Fall des /ac-Operons aus E. coli). Diese expressionsmodulierenden Transkriptionsfaktoren können selbst einer Regulation unterliegen. Ihre Aktivität kann bspw. durch Bindung niedermolekularer Verbindungen an das DNA-bindende Protein reguliert werden, wodurch die Bindung dieser Proteine an die geeignete Bindungsstelle auf der DNA stimuliert, (wie im Fall der Arabinose für das ara-Operon) oder inhibiert wird (wie im Fall der Lactose für das lac-Operon) (s. bspw. Helmann, J.D. und Cham- berlin, M.J. (1988) "Structure and function of bacterial sigma factors" Ann. Rev. Bio- chem. 57: 839-872; Adhya, S. (1995) "The lac and gal operons today" und Boos, W. et al., "The maitose System", beide in Regulation of Gene Expression in Escherichia coli (Lin, E.C.C. und Lynch, A.S. Hrsg.) Chapman & Hall: New York, S. 181-200 und 201- 229; und Moran, C.P. (1993) "RNA polymerase and transcription factors" in: Bacillus subtilis and other gram-positiv bacteria, Sonenshein, A.L. Hrs. ASM: Washington, D.C. S. 653-667).
Die Proteinsynthese wird nicht nur auf dem Transkriptionsniveau, sondern oft auch auf dem Translationniveau reguliert. Diese Regulation kann über viele Mechanismen erfolgen, einschließlich Veränderung der Fähigkeit des Ribosoms, an eine oder mehrere mRNAs zu binden, Binden des Ribosoms an mRNA, die Aufrechterhaltung oder Ent- fernung der mRNA-Sekundärstruktur, die Verwendung gebräuchlicher oder weniger gebräuchlicher Codons für ein bestimmtes Gen, der Abundanzgrad von einer oder mehreren tRNAs und spezielle Regulationsmechanismen, wie Attenuierung (s. Vella- noweth, R.l. (1993) Translation and its regulation in Bacillus subtilis and other grampositive bacteria, Sonenshein, A.L et al. Hrsg. ASM: Washington, D.C., S. 699-711 und darin zitierte Literaturstellen.
Die Transkriptions- und Translationsregulation kann auf ein einziges Protein (nachein- anderfolgende Regulation) oder gleichzeitig auf mehrere Proteine in verschiedenen Stoffwechselwegen (koordinierte Regulation) gerichtet sein. Gene, deren Expression koordiniert reguliert wird, liegen im Genom oft nahe beieinander in einem Operon oder Regulon. Diese Up- oder Down-Regulation der Gentranskription und -translation wird durch die zellulären oder extrazellulären Mengen verschiedener Faktoren gesteuert, wie Substrate (Vorstufen und Zwischenmoleküle, die in einem oder mehreren Stoff- wechselweg verwendet werden), Katabolite (Moleküle, die durch biochemischen Stoff- wechselwege produziert werden, die mit der Produktion von Energie aus dem Abbau von komplexen organischen Molekülen, wie Zucker, zusammenhängen) und Endprodukte (die Moleküle, die am Ende eines Stoffwechselweges erhalten werden). Die Expression von Genen, die Enzyme codieren, die für die Aktivität eines bestimmten Stoffwechselweges notwendig sind, wird durch hohe Mengen an Substratmolekülen für diesen Stoffwechselweg induziert. Entsprechend wird diese Genexpression reprimiert, wenn hohe intrazelluläre Mengen des Endproduktes des Wegs vorliegen (Snyder, L. und Champness, W. (1977) The Molecular Biology of Bacteria ASM: Washington). Die Genexpression kann ebenfalls durch andere externe und interne Faktoren reguliert werden, wie Umweltbedingungen (z.B. Hitze, oxidativer Streß, oder Hunger). Diese globalen Umweltänderungen verursachen Veränderungen bei der Expression spezialisierter modulierender Gene, die die Genexpression direkt oder indirekt (über zusätzliche Gene oder Proteine) durch Bindung an DNA triggern und dadurch die Transkription induzieren oder reprimieren (s. bspw. Lin, E.C.C. und Lynch, A.S. Hrsg (1995) Regulation of Gene Expression in Escherichia coli, Chapman & Hall: New York).
Ein weiterer Mechanismus, durch den der zelluläre Metabolismus reguliert werden kann, erfolgt auf dem Niveau des Proteins. Diese Regulation erfolgt entweder über die Aktivitäten von anderen Enzymen oder durch Bindung miedermolekularer Komponenten, die die normale Funktion des Proteins verhindern oder ermöglichen. Beispiele der Proteinregulation durch Bindung niedermolekularer Verbindungen umfassen die Bindung von GTP oder NAD. Die Bindung niedermolekularer Chemikalien ist gewöhnlich reversibel wie bei den GTP-bindenden Proteinen. Diese Proteine kommen in zwei Zuständen vor (mit gebundenen GTP oder GDP), wobei ein Zustand die aktive Form des Proteins und die andere die inaktive Form ist. Die Regulation der Proteinaktivität durch die Wirkung anderer Enzyme erfolgt gewöhnlich durch kovalente Modifikation des Proteins (d. h. Phosphorylierung der Aminosäurereste, wie Histidin oder Aspartat, oder Methylierung). Diese kovalente Modifikation ist gewöhnlich reversibel, was durch ein Enzym mit der entgegengesetzten Aktivität be- werkstelligt wird. Ein Beispiel dafür ist die entgegengesetzte Aktivität von Kinasen und Phosphorylasen bei der Proteinphosphorylierung: Proteinkinasen phosphorylieren spezifische Reste auf einem Zielprotein (z.B. Serin oder Threonin), wohingegen Prote- inphosphorylasen die Phosphatgruppen aus diesen Proteinen entfernen. Enzyme, die die Aktivität anderen Proteine modulieren werden gewöhnlich selbst durch externe Sti- muli moduliert. Diese Stimuli werden durch Proteine vermittelt, die als Sensoren wirken. Ein wohlbekannter Mechanismus, durch den diese Sensorproteine diese externen Signale vermittel ist durch Dimerisierung, jedoch sind auch andere bekannt (s. bspw. Msadek, T. et al. (1993) "Two-component Regulatory-Systems" in: Bacillus subtilis and Other Gram-Positive Bacteria, Sonenshein, A.L. et al., Hrsg., ASM: Washington, S. 729-745 und darin zitierte Literaturstellen).
Ein eingehendes Verständnis der regulatorischen Netzwerke, die den Zellmetabolismus in Mikroorganismen steuern, ist für die Produktion von Chemikalien in hoher Ausbeute durch Fermentation entscheidend. Kontrollsysteme für die Abwärtsregulation der Stoffwechselwege können entfernt oder verringert werden, um die Synthese gewünschter Chemikalien zu verbessern, und entsprechend können diejenigen für die Aufwärts-Regulation des Stoffwechselweges für ein gewünschtes Produkt konstitutiv aktiviert oder hinsichtlich der Aktivität optimiert werden (wie gezeigt in Hirose, Y. und Okada, H. (1979) "Microbial Production of Amino Acids", in: Peppler, H . und Perlman, D. (Hrsg.) Microbial Technology 2. Aufl., Bd. 1 , Kap. 7, Academic Press, New York).
Ein weiterer Aspekt der Erfindung betrifft Nukleinsäurekonstrukte, wie beispielsweise Vektoren, wie beispielsweise rekombinante Expressionsvektoren, die mindestens eine erfindungsgemäße Nukleinsäure enthalten.
Vorzugsweise enthält dieses Nukleinsäurekonstrukt funktionell verknüpft einen Promotor und gegebenenfalls einen Terminator. Besonders bevorzugt sind Promotoren die in Bezug auf die Nukleinsäure heterolog sind und in den nichthumanen Organismen zu einer Expression der Nukleinsäure befähigt sind. Ein besonders bevorzugter Promotor in den bevorzugten Organismen der Gattung Corynebakterien oder Brevibacterium ist beispielsweise der tac-Promotor.
Die Erfindung betrifft ferner ein Verfahren zur Herstellung eines nichthumanen, genetisch veränderten Organismus durch Transformation eines nichthumanen Ausgang- sorganimus indem man in den Ausgangsorganismus a) mindestens eine vorstehend beschriebene, erfindungsgemäße MP-Nukleinsäure oder b) mindestens ein vorstehend beschriebenes, erfindungsgemäßes Nukleinsäurekon- strukt oder c) einen Promotor, der in Bezug auf die vorstehend beschriebene, erfindungsgemäße endogene MP-Nukleinsäure heterolog ist und der die Expression der erfindungsgemäßen endogenen MP-Nukleinsäure im Organismus ermöglicht, einbringt.
Vorzugsweise bringt man den Promotor gemäß Ausführungsform c) so in den Organismus ein, dass der Promotor im Organismus funktioneil mit der erfindungsgemäßen, endogenen MP-Nukleinsäure verknüpft wird, unter einer „funktioneilen Verknüpfung" wird eine Verknüpfung verstanden, die funktionell ist, d.h. eine Verknüfung die die Expression der erfindungsgemäßen, endogenen MP-Nukleinsäure durch den eingebrach- ten Promotor ermöglicht.
Unter dem Begriff "Ausgangsorganismus" wird der entsprechende nichthumane Organismus verstanden, der zum genetisch veränderten Organismus transformiert wird. Dabei kann es sich bei einem Ausgangsorganismus um einen Wildtyporganismus han- dein oder einen bereits genetisch veränderten Organismus. Weiterhin können die Ausgangsorganismen bereits in der Lage sein, die gewünschte Feinchemikalie herzustellen oder durch die erfindungsgemäße Transformation in die Lage versetzt werden die gewünschte Feinchemikalie herzustellen.
Unter dem Begriff "genetisch veränderter Organismus" wird vorzugsweise eine im Vergleich zum Ausgangsorganismus genetisch veränderter Organismus verstanden.
Je nach Zusammenhang kann unter dem Begriff "Organismus" der nichthumane Ausgangsorganismus oder ein erfindungsgemäßer nichthumaner, genetisch veränderter Organiusmus oder beides verstanden werden.
Das Einbringen der erfindungsgemäßen MP-Nukleinsäure oder des erfindungsgemäßen Nukleinsäurekonstruktes kann dabei chromosomal oder plasmidär als selbst replizierendes Plasmid erfolgen. Vorzugsweise werden die erfindungsgemäßen MP- Nukleinsäuren oder des erfindungsgemäßen Nukleinsäurekonstrukte chromosomal integriert.
In einer bevorzugten Ausführungsform werden als Ausgangsorganismen Organismen verwendet die bereits in der Lage sind, die gewünschte Feinchemikalie herzustellen. Besonders bevorzugt sind dabei unter den besonders bevorzugten Organismen der Bakterien der Gattung Corynne und den besonders bevorzugten Feinchemikalien Ly- sin, Methionin und Threonin, diejenigen Ausgangsorganismen die bereits in der Lage sind, Lysin herzustellen. Dies sind besonderes bevorzugt Coryne-Bakterien bei denen beispielsweise das Gen kodierend für eine Aspartokinase (ask-Gen) dereguliert ist o- der die feed-back-lnhibierung aufgehoben oder reduziert ist. Beispielsweise weisen solche Bakterien im ask-Gen eine Mutation auf, die zu einer Reduzierung oder Aufhebung der feed-back-lnhibierung führen, wie beispielsweise die Mutation T311 I.
Die Erfindung betrifft daher insbesondere einen genetisch veränderten Organismus, erhältlich nach dem vorstehend beschriebenen Verfahren.
Die Erfindung betrifft weiterhin einen nichthumanen, genetisch verändertem Organismus, der mit a) mindestens einer vorstehend beschriebenen, erfindungsgemäßen MP-Nukleinsäure oder b) mindestens einem vorstehend beschriebenen, erfindungsgemäßen Nukleinsäure- konstrukte oder c) einem Promotor, der in Bezug auf die vorstehend beschriebene, erfindungsgemäße endogene MP-Nukleinsäure heterolog ist und der die Expression der erfindungsgemä- ßen endogenen MP-Nukleinsäure im Organismus ermöglicht, transformiert ist.
Bei einer anderen Ausführungsform ist ein endogenes MP-Gen im Genom des Ausgangsorganismus durch homologe Rekombination mit einem veränderten MP-Gen verändert, z.B. funktionell disruptiert, worden.
Vorzugsweise führt die Expression der erfindungsgemäßen Nukleinsäure zur Modulation der Produktion einer Feinchemikalie aus besagtem Organismus im Vergleich zum Ausgangsorganismus.
Bevorzugte nichthumane Organismen sind Pflanzen, Algen und Mikroorganismen. Bevorzugte Mikroorganismen sind Bakterien, Hefen oder Plilze. Besonders bevorzugte Mikroorganismen sind Bakterien, insbeondere Bakterien der Gattung Corynebacterium oder Brevibacterium, wobei Corynebacterium glutamicum besonders bevorzugt ist.
Besonders bevorzugte Bakterien der Gattung Corynebacterium oder Brevibacterium als Ausgangsorganismen oder Organismen oder genetisch veränderte Organismen sind die nachstehend in Tabelle 3 aufgelisteten Bakterien.
Tabelle 3
Die Abkürzungen haben folgende Bedeutung:
ATCC: American Type Culture Collection, Rockville, MD, USA
FERM: Fermentation Research Institute, Chiba, Japan
NRRL: ARS Culture Collection, Northern Regional Research Laboratory, Peoria, IL,
USA
CECT: Coleccion Espanola de Cultivos Tipo, Valencia, Spain
NCIMB: National Collection of Industrial and Marine Bacteria Ltd., Aberdeen, UK
CBS: Centraalbureau voor Schimmeicultures, Baarn, NL NCTC: National Collection of Type Cultures, London, UK
DSMZ: Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig,
Germany
Eine weitere bevorzugte Ausführungsform sind die erfindungsgemäßen, genetisch veränderte Organismen, im folgenden auch „Wirtszellen" bezeichnet, die mehr als eine erfindungsgemäße MP-Nukleinsäuremoleküle besitzen. Solche Wirtszellen lassen sich auf verschiedene dem Fachmann bekannte Wege herstellen. Beispielsweise können sie durch Vektoren, die mehrere der erfindungsgemäßen Nukleinsäuremoleküle tragen, transfiziert werden. Es ist aber auch möglich mit einem Vektor jeweils ein erfindungsgemäßes Nukleinsäuremolekül in die Wirtszelle einzubringen und deshalb mehrere Vektoren entweder gleichzeitig oder zeitlich abgestuft einzusetzen. Es können somit Wirtszellen konstruiert werden, die zahlreiche, bis zu mehreren Hundert der erfindungsgemäßen Nukleinsäuresequenzen tragen. Durch eine solche Akkumulation las- sen sich häufig überadditive Effekte auf die Wirtszelle hinsichtlich der Feinchemikalien- Produktivität erzielen.
In einer bevorzugten Ausführungsform enthalten die genetisch veränderten Organismen chromosomal integriert mindestens zwei erfindungsgemäße MP-Nukleinsäuren oder einen heterologen Promotor funktioneil verknüpft mit einer erfindungsgemäßen, endogenen MP-Nukleinsäure.
Die erfindungsgemäßen MP-Proteine und/oder MP-Gene sind in einer anderen Ausführungsform befähigt, die Produktion einer gewünschten Feinchemikalie in einem Orga- nismen, insbesondere in Corynebakterien oder Brevibakterien, besonders bevorzugt in C. glutamicum zu modulieren. Mit Hilfe von Genrekombinationstechniken lassen sich ein oder mehrere erfindungsgemäße regulatorische Proteine für Stoffwechselwege derart manipulieren, daß ihre Funktion moduliert ist. Bspw. kann ein Biosynthese- Enzym hinsichtlich der Effizienz verbessert werden oder seine allosterische Kontrollre- gion kann zerstört werden, so daß die Rückkopplungshemmung der Produktion der Verbindung verhindert wird. Entsprechend kann ein Abbauenzym deletiert oder durch Substitution, Deletion oder Addition derart modifiziert werden, daß seine Abbauaktivität für die gewünschte Verbindung verringert wird, ohne daß die Lebensfähigkeit der Zelle beeinträchtigt wird. In jedem Fall kann die Gesamtausbeute oder die Produktionsrate einer dieser gewünschten Feinchemikalien erhöht werden.
Es ist auch möglich, daß diese Veränderungen bei den erfindungsgemäßen Protein- und Nukleotidmolekülen die Produktion von Feinchemikalien in indirekter Weise verbessern können. Die regulatorischen Mechanismen der Stoffwechselwege in der Zelle sind notwendigerweise verknüpft, und die Aktivierung eines Stoffwechselweges kann die Repression oder Aktivierung eines anderen in begleitender Weise bewirken. Durch Modulieren der Aktivität von einem oder mehreren erfindungsgemäßen Proteinen kann die Produktion oder Effizienz der Aktivität anderer Feinchemikalien- Biosynthese- oder -Abbauwege beeinflußt werden. Durch Senken der Fähigkeit eines MP-Proteins, die Transkription eines Gens zu reprimieren, das ein bestimmtes Aminosäure-Biosynthese-Proteins codiert, kann man gleichzeitig andere Aminosäure- Biosynthesewege dereprimieren, da diese Stoffwechselwege miteinander verknüpft sind. Durch Modifizieren der erfindungsgemäßen MP-Proteine kann man das Wachstum und die Teilung von Zellen aus ihren extrazellulären Umgebungen zu einem be- stimmten Grad entkoppeln; durch Beeinflussen eines MP-Proteins, das gewöhnlich die Biosynthese eines Nukleotids reprimiert, wenn die extrazellulären Bedingungen für das Wachstum und die Zellteilung suboptimal sind, so daß ihr nun diese Funktion fehlt, kann man ermöglichen, daß Wachstum erfolgt, selbst wenn die extrazellulären Bedingungen schlecht sind. Dies ist bei Feimenteranzucht im Großmaßstab von besonderer Bedeutung, wo die Bedingungen in der Kultur bezüglich Temperatur, Nährstoffangebot oder Belüftung oft suboptimal sind, die aber noch das Wachstum und die Zellteilung fördern, wenn die zellulären regulatorischen Syteme für diese Faktoren eliminiert sind.
Die Erfindung betrifft daher weiterhin ein Verfahren zur Herstellung einer Feinchemika- lie durch Kultivierung eines vorstehend beschriebenen, erfindungsgemäßen genetisch veränderten Organismus.
Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung einer Feinchemikalie durch A) Transformation eines nichthumanen Ausgangsorganimus mit a) mindestens einer vorstehend beschriebenen, erfindungsgemäßen MP-Nukleinsäure oder b) mindestens einem vorstehend beschriebenen, erfindungsgemäßen Nukleinsäure- konstrukt oder c) einem Promotor, der in Bezug auf die vorstehend beschriebene, erfindungsgemäße endogene MP-Nukleinsäure heterolog ist und der die Expression der erfindungsgemäßen endogenen MP-Nukleinsäure im Organismus ermöglicht, und B) Kultivierung des nach Merkmal A) hergestellten genetisch veränderten Organismus.
Die Kultivierung des genetisch veränderten Organismus erfolgt in an sich bekannter Weise dem Organismus entsprechend. Beispielsweise erfolgt die Kultivierung der Bakterien in Flüssigkultur in geeignten Fermentationsmedien. In einer bevorzugten Ausführungsform wird nach dem Kultivierungsschritt mindestens eine der Feinchemikalien aus den genetisch veränderten Organismen und/oder dem Kultivierungsmedium isoliert.
Der Begriff "Feinchemikalie" ist im Fachgebiet bekannt und beinhaltet Verbidnungen, die von einem Organismus produziert werden und in verschiedenen Industriezweigen Anwendungen finden, wie bspw., jedoch nicht beschränkt auf die pharmazeutische Industrie, die Landwirtschafts-, Kosmetik , Food und Feed-Industrie. Diese Verbindungen umfassen organische Säuren, wie beispielsweise Weinsäure, Itaconsäure und Diaminopimelinsäure, sowohl proteinogene als auch nicht-proteinogene Aminosäuren, Purin- und Pyrimidinbasen, Nukleoside und Nukleotide (wie bspw. beschrieben in Ku- ninaka, A. (1996) Nucleotides and related compounds, S. 561-612, in Biotechnology Bd. 6, Rehm et al., Hrsg. VCH: Weinheim und den darin enthaltenen Zitaten), Lipide, gesättigte und ungesättigte Fettsäuren (bspw. Arachidonsäure), Diole (bspw. Propan- diol und Butandiol), Kohlenhydrate (bspw. Hyaluronsäure und Trehalose), aromatische Verbindungen (bspw. aromatische Amine, Vanillin und Indigo), Vitamine und Cofakto- ren (wie beschrieben in Ullmann's Encyclopedia of Industrial Chemistry, Bd. A27, "Vitamins", S. 443-613 (1996) VCH: Weinheim und den darin enthaltenen Zitaten; und Ong, A.S., Niki, E. und Packer, L. (1995) "Nutrition, Lipids, Health and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia and the Society for Free Radical Research - Asien, abgehalten am 1.-3. Sept. 1994 in Penang, Malysia, AOCS Press (1995)), Enzyme und sämtliche anderen von Gutcho (1983) in Chemicals by Fermentation, Noyes Data Corporation, ISBN: 0818805086 und den darin angegebenen Literaturstellen, beschriebe- nen Chemikalien. Der Metabolismus und die Verwendungen bestimmter Feinchemikalien sind nachstehend weiter erläutert.
I. Aminosäure-Metabolismus und Verwendungen
Die Aminosäuren umfassen die grundlegenden Struktureinheiten sämtlicher Proteine und sind somit für die normalen Zellfunktionen essentiell. Der Begriff "Aminosäure" ist im Fachgebiet bekannt. Die proteinogenen Aminosäuren, von denen es 20 Arten gibt, dienen als Struktureinheiten für Proteine, in denen sie über Peptidbindungen miteinander verknüpft sind, wohingegen die nicht-proteinogenen Aminosäuren (von denen Hunderte bekannt sind) gewöhnlich nicht in Proteinen vorkommen (siehe Ullmann's Encyclopedia of Industrial Chemistry, Bd. A2, S. 57-97 VCH: Weinheim (1985)). Die Aminosäuren können in der D- oder L-Konfiguration vorliegen, obwohl L-Aminosäuren gewöhnlich der einzige Typ sind, den man in natürlich vorkommenden Proteinen vorfindet. Biosynthese- und Abbauwege von jeder der 20 proteinogenen Aminosäuren sind sowohl bei prokaryotischen als auch eukaryotischen Zellen gut charakterisiert (siehe bspw. Stryer, L. Biochemistry, 3. Auflage, S. 578-590 (1988)). Die "essentiellen" Aminosäuren (Histidin, Isoleucin, Leucin, Lysin, Methionin, Phenylalanin, Threonin, Tryptophan und Valin), so bezeichnet, da sie aufgrund der Komplexität ihrer Biosynthese mit der Ernährung aufgenommen werden müssen, werden durch einfache Bio- syntheseswege in die übrigen 11 "nichtessentiellen" Aminosäuren (Alanin, Arginin, Asparagin, Aspartat, Cystein, Glutamat, Glutamin, Glycin, Prolin, Serin und Tyrosin) umgewandelt. Höhere Tiere besitzen die Fähigkeit, einige dieser Aminosäuren zu synthetisieren, jedoch müssen die essentiellen Aminosäuren mit der Nahrung aufgenommen werden, damit eine normale Proteinsynthese stattfindet.
Abgesehen von ihrer Funktion bei der Proteinbiosynthese sind diese Aminosäuren interessante Chemikalien an sich, und man hat entdeckt, daß viele bei verschiedenen Anwendungen in der Nahrungsmittel-, Futter-, Chemie-, Kosmetik-, Landwirtschafts- und pharmazeutischen Industrie zum Einsatz kommen. Lysin ist nicht nur für die Ernährung des Menschen eine wichtige Aminosäure, sondern auch für monogastrische Tiere, wie Geflügel und Schweine. Glutamat wird am häufigsten als Geschmacksadditiv (Mono- natriumglutamat, MSG) sowie weithin in der Nahrungsmittelindustrie verwendet, wie auch Aspartat, Phenylalanin, Glycin und Cystein. Glycin, L-Methionin und Tryptophan werden sämtlich in der pharmazeutischen Industrie verwendet. Glutamin, Valin, Leucin, Isoleucin, Histidin, Arginin, Prolin, Serin und Alanin werden in der pharmazeutischen ' Industrie und der Kosmetikindustrie verwendet. Threonin, Tryptophan und D-/L- Methionin sind weitverbreitete Futtermittelzusätze (Leuchtenberger, W. (1996) Amino acids - technical production and use, S. 466-502 in Rehm et al., (Hrsg.) Biotechnology Bd. 6, Kapitel 14a, VCH: Weinheim). Man hat entdeckt, daß sich diese Aminosäuren außerdem als Vorstufen für die Synthese von synthetischen Aminosäuren und Proteinen, wie N-Acetylcystein, S-Carboxymethyl-L-cystein, (S)-5-Hydroxytryptophan und anderen, in Ullmann's Encyclopedia of Industrial Chemistry, Bd. A2, S. 57-97, VCH, Weinheim, 1985 beschriebenen Substanzen eignen. Die Biosynthese dieser natürlichen Aminosäuren in Organismen, die sie produzieren können, bspw. Bakterien, ist gut charakterisiert worden (für einen Überblick der bakteriellen Aminosäure-Biosynthese und ihrer Regulation, s. Umbarger, H.E. (1978) Ann. Rev. Biochem. 47: 533 - 606). Glutamat wird durch reduktive Aminierung von α- Ketoglutarat, einem Zwischenprodukt im Citronensäure-Zyklus, synthetisiert. Glutamin, Prolin und Arginin werden jeweils nacheinander aus Glutamat erzeugt. Die Biosynthese von Serin erfolgt in einem Dreischritt-Verfahren und beginnt mit 3-Phosphoglycerat (einem Zwischenprodukt bei der Glykolyse), und ergibt nach Oxidations-, Transaminie- rungs- und Hydrolyseschritten diese Aminosäure. Cystein und Glycin werden jeweils aus Serin produziert, und zwar die erstere durch Kondensation von Homocystein mit Serin, und die letztere durch Übertragung des Seitenketten-ß-Kohlenstoffatoms auf Tetrahydrofolat, in einer durch Serintranshydroxymethylase katalysierten Reaktion. Phenylalanin und Tyrosin werden aus den Vorstufen des Glycolyse- und Pento- sephosphatweges, Erythrose-4-phosphat und Phosphoenolpyruvat in einem 9-Schritt- Biosyntheseweg synthetisiert, der sich nur in den letzten beiden Schritten nach der Synthese von Prephenat unterscheidet. Tryptophan wird ebenfalls aus diesen beiden Ausgangsmolekülen produziert, jedoch erfolgt dessen Synthese in einem 11 -Schritt- Weg. Tyrosin läßt sich in einer durch Phenylalaninhydroxylase katalysierten Reaktion auch aus Phenylalanin herstellen. Alanin, Valin und Leucin sind jeweils Biosyntheseprodukte aus Pyruvat, dem Endprodukt der Glykolyse. Aspartat wird aus Oxalacetat, einem Zwischenprodukt des Citratzyklus, gebildet. Asparagin, Methionin, Threonin und Lysin werden jeweils durch Umwandlung von Aspartat produziert. Isoleucin wird aus Threonin gebildet. In einem komplexen 9-Schritt-Weg erfolgt die Bildung von Histidin aus 5-Phosphoribosyl-1-pyrophosphat, einem aktivierten Zucker.
Aminosäuren, deren Menge den Proteinbiosynthesebedarf der Zelle übersteigt, können nicht gespeichert werden, und werden stattdessen abgebaut, so daß Zwischenprodukte für die Haupt-Stoffwechselwege der Zelle bereitgestellt werden (für einen Überblick siehe Stryer, L., Biochemistry, 3. Aufl. Kap. 21 "Amino Acid Degradation and the Urea Cycle"; S 495-516 (1988)). Die Zelle ist zwar in der Lage, ungewünschte Aminosäuren in nützliche Stoffwechsel-Zwischenprodukte umzuwandeln, jedoch ist die Aminosäureproduktion hinsichtlich der Energie, der Vorstufenmoleküle und der für ihre Synthese nötigen Enzyme aufwendig. Es überrascht daher nicht, daß die Aminosäure- Biosynthese durch Feedback-Hemmung reguliert wird, wobei das Vorliegen einer bestimmten Aminosäure ihre eigene Produktion verlangsamt oder ganz beendet (für ei- nen Überblick über den Rückkopplungs-Mechanismus bei Aminosäure- Biosynthesewegen, siehe Stryer, L, Biochemistry, 3. Aufl., Kap. 24, "Biosynthesis of Amino Acids and Heme", S. 575-600 (1988)). Der Ausstoß einer bestimmten Aminosäure wird daher durch die Menge dieser Aminosäure in der Zelle eingeschränkt.
II. Vitamine, Cofaktoren und Nutrazeutika-Metabolismus sowie Verwendungen
Vitamine, Cofaktoren und Nutrazeutika umfassen eine weitere Gruppe von Molekülen. Höhere Tiere haben die Fähigkeit verloren, diese zu synthetisieren und müssen sie somit aufnehmen, obwohl sie leicht durch andere Organismen, wie Bakterien, syntheti- siert werden. Diese Moleküle sind entweder biologisch aktive Moleküle an sich oder Vorstufen von biologisch aktiven Substanzen, die als Elektronenträger oder Zwischenprodukte bei einer Reihe von Stoffwechselwegen dienen. Diese Verbindungen haben neben ihrem Nährwert auch einen signifikanten industriellen Wert als Farbstoffe, Antio- xidantien und Katalysatoren oder andere Verarbeitungs-Hilfsstoffe. (Für einen Über- blick über die Struktur, Aktivität und die industriellen Anwendungen dieser Verbindun- gen siehe bspw. Ullmann's Encyclopedia of Industrial Chemistry, "Vitamins", Bd. A27, S. 443-613, VCH: Weinheim, 1996). Der Begriff "Vitamin" ist im Fachgebiet bekannt und umfaßt Nährstoffe, die von einem Organismus für eine normale Funktion benötigt werden, jedoch nicht von diesem Organismus selbst synthetisiert werden können. Die Gruppe der Vitamine kann Cofaktoren und nutrazeutische Verbindungen umfassen. Der Begriff "Cofaktor" umfaßt nicht-proteinartige Verbindungen, die für das Auftreten einer normalen Enzymaktivität nötig sind. Diese Verbindungen können organisch oder anorganisch sein; die erfindungsgemäßen Cofaktor-Moleküle sind vorzugsweise organisch. Der Begriff "Nutrazeutikum" umfaßt Nahrungsmittelzusätze, die bei Pflanzen und Tieren, insbesondere dem Menschen, gesundheitsfördernd sind. Beispiele solcher Moleküle sind Vitamine, Antioxidantien und ebenfalls bestimmte Lipide (z.B. mehrfach ungesättigte Fettsäuren).
Die Biosynthese dieser Moleküle in Organismen, die zu ihrer Produktion befähigt sind, wie Bakterien, ist umfassend charakterisiert worden (Ullmann's Encyclopedia of Industrial Chemistry, "Vitamins", Bd. A27, S. 443-613, VCH: Weinheim, 1996, Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley & Sons; Ong, A.S., Niki, E. und Packer, L (1995) "Nutrition, Lipids, Health and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia and the Society for free Radical Research - Asien, abgehalten am 1.-3. Sept. 1994 in Penang, Malaysia, AOCS Press, Champaign, IL X, 374 S).
Thiamin (Vitamin Bi) wird durch chemisches Kuppeln von Pyrimidin und Thiazol- Einheiten gebildet. Riboflavin (Vitamin B2) wird aus Guanosin-5'-triphosphat (GTP) und Ribose-5'-phosphat synthetisiert. Riboflavin wiederum wird zur Synthese von Flavin- mononukleotid (FMN) und Flavinadenindinukleotid (FAD) eingesetzt. Die Familie von Verbindungen, die gemeinsam als "Vitamin B6" bezeichnet werden (bspw. Pyridoxin, Pyridoxamin, Pyridoxal-5'-phosphat und das kommerziell verwendete Pyridoxin- hydrochlorid), sind alle Derivate der gemeinsamen Struktureinheit 5-Hydroxy-6- methylpyridin. Panthothenat (Pantothensäure, R-(+)-N-(2,4-Dihydroxy-3,3-dimethyl-1- oxobutyl)-ß-alanin) kann entweder durch chemische Synthese oder durch Fermentation hergestellt werden. Die letzten Schritte bei der Pantothenat-Biosynthese bestehen aus der ATP-getriebenen Kondensation von ß-Alanin und Pantoinsäure. Die für die Biosyntheseschritte für die Umwandlung in Pantoinsäure, in ß-Alanin und zur Kondensation in Pantothensäure erantwortlichen Enzyme sind bekannt. Die metabolisch aktive Form von Pantothenat ist Coenzym A, dessen Biosynthese über 5 enzymatische Schritte verläuft. Pantothenat, Pyridoxal-5'-phosphat, Cystein und ATP sind die Vorstufen von Coenzym A. Diese Enzyme katalysieren nicht nur die Bildung von Pantothenat, sondern auch die Produktion von (R)-Pantoinsäure, (R)-Pantolacton, (R)-Panthenol (Provi- tamin B5), Pantethein (und seinen Derivaten) und Coenzym A.
Die Biosynthese von Biotin aus dem Vorstufenmolekül Pimeloyl-CoA in Mikroorganismen ist ausführlich untersucht worden, und man hat mehrere der beteiligten Gene i- dentifiziert. Es hat sich herausgestellt, daß viele der entsprechenden Proteine an der Fe-Cluster-Synthese beteiligt sind und zu der Klasse der nifS-Proteine gehören. Die Liponsäure wird von der Octanonsäure abgeleitet und dient als Coenzym beim Energie-Metabolismus, wo sie Bestandteil des Pyruvatdehydrogenasekomplexes und des α-Ketoglutaratdehydrogenasekomplexes wird. Die Folate sind eine Gruppe von Sub- stanzen, die alle von der Folsäure abgeleitet werden, die wiederum von L-
Glutaminsäure, p-Aminobenzoesäure und 6-Methylpterin hergeleitet ist. Die Biosynthese der Folsäure und ihrer Derivate, ausgehend von den metabolischen Stoffwechselzwischenprodukten Guanosin-5'-triphosphat (GTP), L-Glutaminsäure und p- Aminobenzoesäure ist in bestimmten Mikroorganismen eingehend untersucht worden.
Corrinoide (wie die Cobalamine und insbesondere Vitamin B12) und die Porphyrine gehören zu einer Gruppe von Chemikalien, die sich durch ein Tetrapyrrol-Ringsystem auszeichnen. Die Biosynthese von Vitamin B12 ist hinreichend komplex, daß sie noch nicht vollständig charakterisiert worden ist, jedoch ist inzwischen ein Großteil der betei- ligten Enzyme und Substrate bekannt. Nikotinsäure (Nikotinat) und Nikotinamid sind Pyridin-Derivate, die auch als "Niacin" bezeichnet werden. Niacin ist die Vorstufe der wichtigen Coenzyme NAD (Nikotinamidadenindinukleotid) und NADP (Nikotinamidade- nindinukleotidphosphat) und ihrer reduzierten Formen.
Die Produktion dieser Verbindungen im Großmaßstab beruht größtenteils auf zellfreien chemischen Synthesen, obwohl einige dieser Chemikalien ebenfalls durch großangelegte Anzucht von Mikroorganismen produziert worden sind, wie Riboflavin, Vitamin B6, Pantothenat und Biotin. Nur Vitamin B12 wird aufgrund der Komplexität seiner Synthese lediglich durch Fermentation produziert. In-vitro-Verfahren erfordern einen erheblichen Aufwand an Materialien und Zeit und häufig an hohen Kosten.
III. Purin-, Pyrimidin-, Nukleosid- und Nukleotid-Metabolismus und Verwendungen
Gene für den Purin- und Pyrimidin-Stoffwechsel und ihre entsprechenden Proteine sind wichtige Ziele für die Therapie von Tumorerkrankungen und Virusinfektionen. Der Begriff "Purin" oder "Pyrimidin" umfaßt stickstoffhaltige Basen, die Bestandteil der Nukleinsäuren, Coenzyme und Nukleotide sind. Der Begriff "Nukleotid" beinhaltet die grundlegenden Struktureinheiten der Nukleinsäuremoleküle, die eine stickstoffhaltige Base, einen Pentose-Zucker (bei RNA ist der Zucker Ribose, bei DNA ist der Zucker D- Desoxyribose) und Phosphorsäure umfassen. Der Begriff "Nukleosid" umfaßt Moleküle, die als Vorstufen von Nukleotiden dienen, die aber im Gegensatz zu den Nukleotiden keine Phosphorsäureeinheit aufweisen. Durch Hemmen der Biosynthese dieser Moleküle oder ihrer Mobilisation zur Bildung von Nukleinsäuremolekülen ist es möglich, die RNA- und DNA-Synthese zu hemmen; wird diese Aktivität zielgerichtet bei kanzeroge- nen Zellen gehemmt, läßt sich die Teilungs- und Replikations-Fähigkeit von Tumorzellen hemmen.
Es gibt zudem Nukleotide, die keine Nukleinsäuremoleküle bilden, jedoch als Energiespeicher (d.h. AMP) oder als Coenzyme (d.h. FAD und NAD) dienen.
Mehrere Veröffentlichungen haben die Verwendung dieser Chemikalien für diese medizinischen Indikationen beschrieben, wobei der Purin- und/oder Pyrimidin- Metabolismus beeinflußt wird (bspw. Christopherson, R.l. und Lyons, S.D. (1990) "Potent inhibitors of de novo pyrimidine and purine biosynthesis as chemotherapeutic a- gents", Med. Res. Reviews 10: 505-548). Untersuchungen an Enzymen, die am Purin- und Pyrimidin-Metabolismus beteiligt sind, haben sich auf die Entwicklung neuer Medikamente konzentriert, die bspw. als Immunsuppressionsmittel oder Antiproliferantien verwendet werden können (Smith, J.L. "Enzymes in Nucleotide Synthesis" Curr. Opin. Struct. Biol. 5 (1995) 752-757; Biochem. Soc. Transact. 23 (1995) 877-902). Die Purin- und Pyrimidinbasen, Nukleoside und Nukleotide haben jedoch auch andere Einsatzmöglichkeiten: als Zwischenprodukte bei der Biosysnthese verschiedener Feinchemikalien (z.B. Thiamin, S-Adenosyl-methionin, Folate oder Riboflavin), als Energieträger für die Zelle (bspw. ATP oder GTP) und für Chemikalien selbst, werden gewöhnlich als Geschmacksverstärker verwendet (bspw. IMP oder GMP) oder für viele medizinische Anwendungen (siehe bspw. Kuninaka, A., (1996) "Nucleotides and Related Com- pounds in Biotechnology Bd. 6, Rehm et al., Hrsg. VCH: Weinheim, S. 561-612). Enzyme, die am Purin-, Pyrimidin-, Nukleosid- oder Nukleotid-Metabolismus beteiligt sind, dienen auch immer stärker als Ziele, gegen die Chemikalien für den Pflanzenschutz, einschließlich Fungiziden, Herbiziden und Insektiziden entwickelt werden.
Der Metabolismus dieser Verbindungen in Bakterien ist charakterisiert worden (für Ü- bersichten siehe bspw. Zalkin, H. und Dixon, J.E. (1992) "De novo purin nucleotide biosynthesis" in Progress in Nucleic Acids Research and Molecular biology, Bd. 42, Academic Press, S. 259-287; und Michal, G. (1999) "Nucleotides and Nucleosides"; Kap. 8 in : Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, Wiley, New York). Der Purin-Metabolismus, das Objekt intesiver Forschung, ist für das normale Funktionieren der Zelle essentiell. Ein gestörter Purin-Metabolismus in höheren Tieren kann schwere Erkrankungen verursachen, bspw. Gicht. Die Purinnukleotide werden über eine Reihe von Schritten über die Zwischenverbindung lnosin-5'-phosphat (IMP) aus Ribose-5-phosphat synthetisiert, was zur Produktion von Guanosin-5'- monophosphat (GMP) oder Adenosin-5'-monophosphat (AMP) führt, aus denen sich die als Nukleotide verwendeten Triphosphatformen leicht herstellen lassen. Diese Verbindungen werden auch als Energiespeicher verwendet, so daß ihr Abbau Energie für viele verschiedene biochemische Prozesse in der Zelle liefert. Die Pyrimidinbiosynthe- se erfolgt über die Bildung von Uridin-5'-monophosphat (UMP) aus Ribose-5-phosphat. UMP wiederum wird in Cytidin-5'-triphosphat (CTP) umgewandelt. Die Desoxyformen sämtlicher Nukleotide werden in einer Einschritt-Reduktionsreaktion aus der Diphosphat-Riboseform des Nukleotides zur Diphosphat-Desoxyriboseform des Nukle- otides hergestellt. Nach der Phosphorylierung können diese Moleküle an der DNA- Synthese teilnehmen.
IV. Trehalose-Metabolismus und Verwendungen
Trehalose besteht aus zwei Glucosemolekülen, die über α,α-1,1-Bindung miteinander verknüpft sind. Sie wird gewöhnlich in der Nahrungsmittelindustrie als Süßstoff, als Additiv für getrocknete oder gefrorene Nahrungsmittel sowie in Getränken verwendet. Sie wird jedoch auch in der pharmazeutischen Industrie, der Kosmetik- und Biotechnologie-Industrie angewendet (s. bspw. Nishimoto et al., (1998) US-Patent Nr. 5759610; Singer, M.A. und Lindquist, S. Trends Biotech. 16 (1998) 460-467; Paiva, C.L.A. und Panek, A.D. Biotech Ann. Rev. 2 (1996) 293-314; und Shiosaka, M. J. Japan 172
(1997) 97-102). Trehalose wird durch Enzyme von vielen Mikroorganismen produziert und auf natürliche Weise in das umgebende Medium abgegeben, aus dem sie durch im Fachgebiet bekannte Verfahren gewonnen werden kann.
Besonders bevorzugte Feinchemikalien sind Aminosäuren, insbesondere Aminosäuren ausgewählt ist aus der Gruppe L-Lysin, L-Threonin und L-Methionin.
Ein weiterer Aspekt der Erfindung betrifft Verfahren zur Modulation der Produktion einer Feinchemikalie aus einem nichthumanen Organismus. Diese Verfahren umfassen das Zusammenbringen der Zelle mit einer Substanz, die die MP-Proteinaktivität oder die MP-Nukleinsäure-Expression moduliert, so daß eine zellassoziierte Aktivität verglichen mit der gleichen Aktivität bei Fehlen der Substanz verändert wird. Die Zelle wird bei einer bevorzugten Ausführungsform hinsichtlich eines oder mehrerer regulatorischer Systeme für Stoffwechselwege in Organismen, insbesondere in Bakterien der Gattung Corynebacterium und/oder Brevibacterium, insbesondere C. glutamicum moduliert, so daß die Ausbeuten oder die Geschwindigkeit der Produktion einer gewünschten Feinchemikalie durch diese Wirstzelle verbessert wird. Die Substanz, die die MP-Proteinaktivität moduliert, stimuliert bspw. die MP-Proteinaktivität oder die MP- Nukleinsäure-Expression. Beispiele von Substanzen, die die MP-Proteinaktivität oder die MP-Nukleinsäureexpression stimulieren, umfassen kleine Moleküle, aktive MP- Proteine und Nukleinsäuren, die MP-Proteine codieren und in die Zelle eingebracht worden sind. Beispiele von Substanzen, die die MP-Aktivität oder -Expression hemmen, umfassen kleine Moleküle und Antisense-MP-Nukleinsäuremoleküle.
Ein weiterer Aspekt der Erfindung betrifft Verfahren zur Modulation der Ausbeuten einer gewünschten Verbindung aus einer Zelle, umfassend das Einbringen eines MP- Gens in eine Zelle, das entweder auf einem gesonderten Plasmid bleibt oder in das Genom der Wirtszelle integriert wird. Die Integration in das Genom kann zufallsgemäß oder durch homologe Rekombination erfolgen, so daß das native Gen durch die integ- rierte Kopie ersetzt wird, was die Produktion der gewünschten Verbindung aus der zu modulierenden Zelle hervorruft. Diese Ausbeuten sind bei einer bevorzugten Ausführungsform erhöht.
Bei einer weiteren bevorzugten Ausführungsform ist die Feinchemikalie eine Amino- säure. Diese Aminosäure ist in einer besonders bevorzugten Ausführungsform L-Lysin, L-Methionin oder L-Threonin.
In den nachstehenden Unterabschnitten sind verschiedene Aspekte und bevorzugte Ausführungsformen der Erfindung ausführlicher beschrieben:
A. Isolierte Nukleinsäuremoleküle
Der Begriff "Nukleinsäuremolekül", wie er hier verwendet wird, soll DNA-Moleküle (z.B. cDNA oder genomische DNA) und RNA-Moleküle (z.B. mRNA) sowie DNA- oder RNA- Analoga, die mittels Nukleotidanaloga erzeugt werden, umfassen. Dieser Begriff umfaßt zudem die am 3'- und am 5'-Ende des codierenden Genbereichs gelegene untranslatierte Sequenz: mindestens etwa 100 Nukleotide der Sequenz stromaufwärts des 5'-Endes des codierenden Bereichs und mindestens etwa 20 Nukleotide der Sequenz stromabwärts des 3'-Endes des codierenden Genbereichs.
Das Nukleinsäuremolekül kann einzelsträngig oder doppelsträngig sein, ist aber vorzugsweise eine doppelsträngige DNA. Ein "isoliertes" Nukleinsäuremolekül wird von anderen Nukleinsäuremolekülen abgetrennt, die in der natürlichen Quelle der Nukleinsäure zugegen sind. Eine "isolierte" Nukleinsäure hat vorzugsweise keine Sequenzen, die die Nukleinsäure in der genomischen DNA des Organismus, aus dem die Nukleinsäure stammt, natürlicherweise flankieren (bspw. Sequenzen, die sich am 5'- bzw. 3'- Ende der Nukleinsäure befinden).
In verschiedenen Ausführungsformen kann bspw. das isolierte MP- Nukleinsäuremolekül weniger als etwa 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0,5 kb oder 0,1 kb der Nukleofidsequenzen, die natürlicherweise das Nukleinsäuremolekül in der genomischen DNA der Zelle, aus der die Nukleinsäure stammt (bspw. eine C. glutamicum- Zelle) flankieren. Ein "isoliertes" Nukleinsäuremolekül, wie ein cDNA-Molekül, kann überdies im wesentlichen frei von einem anderen zellulären Material oder Kulturmedi- um sein, wenn es durch rekombinante Techniken hergestellt wird, oder frei von chemischen Vorstufen oder anderen Chemikalien sein, wenn es chemisch synthetisiert wird.
Überdies läßt sich ein Nukleinsäuremolekül durch Polymerasekettenreaktion isolieren, wobei die Oligonukleotidprimer, die auf der Basis dieser Sequenz erstellt wurden, ver- wendet werden (z.B. kann ein Nukleinsäuremolekül, umfassend eine vollständige Sequenz aus Anhang A oder einen Abschnitt davon, durch Polymerasekettenreaktion isoliert werden, indem Oligonukleotidprimer verwendet werden, die auf der Basis dieser gleichen Sequenz aus Anhang A erstellt worden sind). Bspw. läßt sich mRNA aus normalen Endothelzellen isolieren (bspw. durch das Guanidiniumthiocyanat- Extraktionsverfahren von Chirgwin et al. (1979) Biochemistry 18: 5294-5299), und die cDNA kann mittels reverser Transkriptase (bspw. Moloney-MLV-Reverse- Transkriptase, erhältlich bei Gibco/BRL, Bethesda, MD, oder AMV-Reverse- Transkriptase, erhältlich von Seikagaku America, Inc., St. Petersburg, FL) hergestellt werden. Synthetische Oligonukleotidprimer für die Amplifizierung via Polymeraseket- tenreaktion lassen sich auf der Basis einer der in Anhang A gezeigten Nukleotidse- quenzen erstellen. Eine erfindungsgemäße Nukleinsäure kann mittels cDNA oder alternativ genomischer DNA als Matrize und geeigneten Oligonukleotidprimern gemäß PCR-Standard-Amplifikationstechniken amplifiziert werden. Die so amplifizierte Nukleinsäure kann in einen geeigneten Vektor kloniert werden und durch DNA- Sequenzanalyse charakterisiert werden. Oligonukleotide, die einer MP-
Nukleotidsequenz entsprechen, können durch Standard-Syntheseverfahren, bspw. mit einem automatischen DNA-Synthesegerät, hergestellt werden.
Bei einer bevorzugten Ausführungsform umfaßt ein erfindungsgemäßes isoliertes Nuk- leinsäuremolekül eine der in Tabelle 1/ Spalte 1 aufgeführten Nukleofidsequenzen mit einer, der Aminosäureposition gemäß Tabelle 1 /Spalte 4, entsprechender rückübersetzten Mutation.
Bei einer weiteren bevorzugten Ausführungsform umfaßt ein erfϊndungsgemäßes iso- liertes Nukleinsäuremolekül ein zu einer der vorstehend beschriebenen Nukleotidse- quenzen komplementäres Nukleinsäuremolekül oder einen Abschnitt davon, wobei es sich um ein Nukleinsäuremolekül handelt, das zu einer der vorstehend beschriebenen Nukleotidsequenzen hinreichend komplementär ist, daß es mit einer der vorstehend beschriebenen Sequenzen hybridisieren kann, wodurch ein stabiler Duplex entsteht. Abschnitte von Proteinen, die von den erfindungsgemäßen MP-Nukleinsäuremolekülen codiert werden, sind vorzugsweise biologisch aktive Abschnitte von einem der MP- Proteine. Der Begriff "biologisch aktiver Abschnitt eines MP-Proteins", wie er hier verwendet wird, soll einen Abschnitt, bspw. eine Domäne oder ein Motiv, eines MP- Proteins umfassen, die/das einen Stoffwechselweg in C. glutamicum transkriptional, translational oder posttranslational regulieren kann, oder eine in Tabelle 1 angegebene Aktivität aufweist. Zur Bestimmung, ob ein MP-Protein oder ein biologisch aktiver Abschnitt davon einen Stoffwechselweg in C. glutamicum transkriptional, translational oder posttranslational regulieren kann, kann ein Test der enzymatischen Aktivität durchgeführt werden. Diese Testverfahren, wie eingehend beschrieben in Beispiel 8 des Beispielteils, sind dem Fachmann geläufig.
Zusätzlich zu weiteren natürlich vorkommenden Varianten der MP-Sequenz, die in der Population existieren können, ist der Fachmann sich ebenfalls dessen bewußt, daß weitere Änderungen durch weitere Mutation in eine Nukleotidsequenz von Tabelle 1 eingebracht werden können, was zur im Vergleich zuim Wildtyp zu einerweiteren Änderung der Aminosäuresequenz des codierten MP-Proteins führt, ohne daß die Funktionsfähigkeit des MP-Proteins beeinträchtigt wird. Bspw. lassen sich Nukleotidsusbtitu- tionen, die an "nicht-essentiellen" Aminosäureresten zu Aminosäuresubstitutionen füh- ren, in einer Sequenz von Tabellel herstellen. Ein "nicht-essentieller" Aminosäurerest läßt sich in einer Wildtypsequehz von einem der MP-Proteine (Tabelle 1) verändern, ohne daß die Aktivität des MP-Proteins verändert wird, wohingegen ein "essentieller" Aminosäurerest für die MP-Proteinaktivität erforderlich ist. Andere Aminosäurereste jedoch (bspw. nicht-konservierte oder lediglich semikonservierte Aminosäurereste in der Domäne mit MP-Aktivität) können für die Aktivität nicht essentiell sein und lassen sich somit wahrscheinlich verändern, ohne daß die MP-Aktivität verändert wird.
B. Rekombinante Expressionsvektoren und Wirtszellen
Ein weiterer Aspekt der Erfindung betrifft Nukleinsäurekonstrukte, wie beispielsweise Vektoren, vorzugsweise Expressionsvektoren, die eine erfindungsgemäße Nukleinsäure enthalten, die ein MP-Protein codiert. Wie hier verwendet betrifft der Begriff "Vektor" ein Nukleinsäuremolekül, das eine andere Nukleinsäure transportieren kann, an welche es gebunden ist.
Ein Vektortyp ist ein "Plasmid", was für eine zirkuläre doppelsträngige DNA-Schleife steht, in die zusätzlichen DNA-Segmente ligiert werden können. Ein weiterer Vektortyp ist ein viraler Vektor, wobei zusätzliche DNA-Segmente in das virale Genom ligiert werden können. Bestimmte Vektoren können in einer Wirtszelle, in die sie eingebracht worden sind, autonom replizieren (bspw. Bakterienvektoren, mit bakteriellem Replikationsursprung und episomale Säugetiervektoren). onsursprung und episomale Säugetiervektoren).
Andere Vektoren (z.B. nicht-episomale Säugetiervektoren) werden in das Genom einer Wirtszelle beim Einbringen in die Wirtszelle integriert und dadurch zusammen mit dem Wirtsgenom repliziert.
Zudem können bestimmte Vektoren die Expression von Genen, mit denen sie funktionsfähig verbunden sind, steuern. Diese Vektoren werden als "Expressionsvektoren" bezeichnet. Gewöhnlich haben die Expressionsvektoren, die bei DNA- Rekombinationstechniken verwendet werden, die Form von Plasmiden. In der vorliegenden Beschreibung können "Plasmid" und "Vektor" austauschbar verwendet werden, da das Plasmid die am häufigsten verwendete Vektorform ist. Die Erfindung soll diese anderen Expressionsvektorformen, wie virale Vektoren (bspw. replikationsdefiziente Retroviren, Adenoviren und adenoverwandte Viren), die ähnliche Funktionen ausüben, umfassen.
Der erfindungsgemäße rekombinante Expressionsvektor umfaßt eine erfindungsgemäße Nukleinsäure in einer Form, die sich zur Expression der Nukleinsäure in einer Wirtszelle eignet, was bedeutet, daß die rekombinanten Expressionsvektoren eine oder mehrere regulatorische Sequenzen, ausgewählt auf der Basis der zur Expression zu verwendenden Wirtszellen, die mit der zu exprimierenden Nukleinsäuresequenz funktionsfähig verbunden ist, umfaßt. In einem rekombinanten Exprtessionsvektor bedeutet "funktionsfähig verbunden", daß die Nukleotidsequenz von Interesse derart an die re- gulatorische(n) Sequenz(en) gebunden ist, daß die Expression der Nukleotidsequenz möglich ist (bspw. in einem ln-vitro-Transkriptions-/Translationssystem oder in einer Wirtszelle, wenn der Vektor in die Wirtszelle eingebracht ist). Der Begriff "regulatorische Sequenz" soll Promotoren, Enhancer und andere Expressionskontrollelemente (bspw. Polyadenylierungssignale) umfassen. Diese regulatorischen Sequenzen sind bspw beschrieben in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Regulatorische Sequenzen umfassen solche, die die konstitutive Expression einer Nukleotidsequenz in vielen Wirtszelltypen steuern, und solche, die die direkte Expression der Nukleotidsequenz nur in bestimmten Wirtszellen steuern. Der Fachmann ist sich dessen bewußt, daß die Gestaltung eines Expressionsvektors von Faktoren abhängen kann, wie der Wahl der zu transfor- mierenden Wirtszelle, dem Ausmaß der Expression des gewünschten Proteins usw. Die erfindungsgemäßen Expressionsvektoren können in die Wirtszellen eingebracht werden, so daß dadurch Proteine oder Peptide, einschließlich Fusionsproteinen oder - peptiden, die von den Nukleinsäuren, wie hier beschrieben, codiert werden, hergestellt werden (bspw. MP-Proteine, mutierte Formen von MP-Proteinen, Fusionsproteine, usw.).
Die erfindungsgemäßen rekombinanten Expressionsvektoren können zur Expression von MP-Proteinen in prokaryotischen oder eukaryotischen Zellen ausgestaltet sein. Bspw. können MP-Gene in bakteriellen Zellen, wie C. glutamicum, Insektenzellen (mit Baculovirus-Expressionsvektoren), Hefe- und anderen Pilzzellen (siehe Romanos, M.A. et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8: 423-488; van den Hondel, C.A.M.J.J. et al. (1991) "Heterologous gene expression in filamentous fungi" in: More Gene Manipulations in Fungi, J.W. Bennet & L.L Lasure, Hrsg., S. 396- 428: Academic Press: San Diego; und van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer Systems and vector development for filamentous fungi. in: Applied Molecular Genetics of Fungi, Peberdy, J.F. et al., Hrsg, S. 1-28, Cambridge University Press: Cambridge), Algen- und vielzelligen Pflanzenzellen (siehe Schmidt, R. und Willmitzer, L. (1988) "High efficiency Agrobacterium tumefaciens-medialed transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep.: 583-586) oder Säugetierzellen exprimiert werden. Geeignete Wirtszellen werden weiter erörtert in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Der rekombinante Expressionsvektor kann alternativ, bspw. mit T7-Promotorregulatorischen Sequenzen und T7-Polymerase, in vitro transkribiert und translatiert werden.
Die Expression von Proteinen in Prokaryonten erfolgt meist mit Vektoren, die konstitu- tive oder induzierbare Promotoren enthalten, die die Expression von Fusions- oder Nicht-Fusionsproteinen steuern. Fusionsvektoren steuern eine Reihe von Aminosäuren zu einem darin codierten Protein, gewöhnlich am Aminoterminus des rekombinanten Proteins, bei. Diese Fusionsvektoren haben gewöhnlich drei Aufgaben: 1) die Verstärkung der Expression von rekombinantem Protein; 2) die Erhöhung der Löslichkeit des rekombinanten Proteins; und 3) die Unterstützung der Reinigung des rekombinanten Proteins durch Wirkung als Ligand bei der Affinitätsreinigung. Bei Fusions- Expressionsvektoren wird oft eine proteolytische Spaltstelle an der Verbindungsstelle der Fusionseinheit und des rekombinanten Proteins eingebracht, so daß die Trennung des rekombinanten Proteins von der Fusionseinheit nach der Reinigung des Fusionsproteins möglich ist. Diese Enzyme und ihre entsprechenden Erkennungssequenzen umfassen Faktor Xa, Thrombin und Enterokinase.
Übliche Fusionsexpressionsvektoren umfassen pGEX (Pharmacia Biotech Ine; Smith, D.B. und Johnson, K.S. (1988) Gene 67: 31-40), pMAL (New England Biolabs, Beverly, MA) und pRIT 5 (Pharmacia, Piscataway, NJ), bei denen Glutathion-S-Transferase (GST), Maltose E-bindendes Protein bzw. Protein A an das rekombinante Zielprotein fusioniert wird. Bei einer Ausführungsform ist die codierende Sequenz des MP-Proteins in einen pGEX-Expressionsvektor Moniert, so daß ein Vektor erzeugt wird, der ein Fusionsprotein codiert, umfassend vom N-Terminus zum C-Terminus, GST - Thrombin- Spaltstelle - X-Protein. Das Fusionsprotein kann durch Affinitätschromatographie mittels Glutathion-Agarose-Harz gereinigt werden. Das rekombinante MP-Protein, das nicht mit GST fusioniert ist, kann durch Spaltung des Fusionsproteins mit Thrombin gewonnen werden.
Beispiele geeigneter induzierbarer Nicht-Fusions-Expressionsvektoren aus E. coli umfassen pTrc (Amann et al., (1988) Gene 69: 301 - 315) und pET 11d (Studier et al. Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Kalifornien (1990) 60-89). Die Zielgenexpression aus dem pTrc-Vektor beruht auf der Transkription durch Wirts-RNA-Polymerase von einem Hybrid-trp-lac- Fusionspromotor. Die Zielgenexpression aus dem pET11d-Vektor beruht auf der Transkription von einem T7-gn10-lac-Fusions-Promotor, die von einer coexprimierten viralen RNA-Polymerase (T7 gn1) vermittelt wird. Diese virale Polymerase wird von den Wirtsstämmen BL 21 (DE3) oder HMS174 (DE3) von einem residenten λ- Prophagen geliefert, der ein T7 gn1-Gen unter der Transkriptionskontrolle des lacUV 5- Promotors birgt.
Eine Strategie zur Maximierung der Expression des rekombinanten Proteins ist die
Expression des Proteins in einem Wirtsbakterium, dessen Fähigkeit zur proteolytischen Spaltung des rekombinanten Proteins gestört ist (Gottesman, S. Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Kalifornien (1990) 119-128). Eine weitere Strategie ist die Veränderung der Nukleinsäuresequenz der in einen Expressionsvektor zu inserierenden Nukleinsäure, so daß die einzelnen Codons für jede Aminosäure diejenigen sind, die vorzugsweise in einem zur Expression ausgewählten Bakterium, wie C. glutamicum, verwendet werden (Wada et al. (1992) Nucleic Acids Res. 20: 2111 - 2118). Diese Veränderung der erfindungsgemäßen Nukleinsäuresequenzen erfolgt durch Standard-DNA-Synthesetechniken.
Bei einer weiteren Ausführungsform ist der MP-Proteinexpressionsvektor ein Hefe- Expressionsvektor. Beispiele für Vektoren zur Expression in der Hefe S. cerevisiae umfassen pYepSed (Baldari et al., (1987) Embo J. 6: 229-234), pMFa (Kurjan und Herskowitz (1982) Cell 30: 933-943), pJRY88 (Schultz et al. (1987) Gene 54: 113 - 123) sowie pYES2 (Invitrogen Corporation, San Diego, CA). Vektoren und Verfahren zur Konstruktion von Vektoren, die sich zur Verwendung in anderen Pilzen, wie fila- mentösen Pilzen, eignen, umfassen diejenigen, die eingehend beschrieben sind in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer Systems and vector develo- pment for filamentous fungi, in: Applied Molecular Genetics of fungi, J.F. Peberdy et al., Hrsg., S. 1-28, Cambridge University Press: Cambridge.
Alternativ können die erfindungsgemäßen MP-Proteine in Insektenzellen unter Verwendung von Baculovirus-Expressionsvektoren exprimiert werden. Baculovirus- Vektoren, die zur Expression von Proteinen in gezüchteten Insektenzellen (bspw. Sf9- Zellen) verfügbar sind, umfassen die pAc-Reihe (Smith et al., (1983) Mol. Cell Bio 3: 2156-2165) und die pVL-Reihe (Lucklow und Summers (1989) Virology 170: 31-39).
In einerweiteren Ausführungsform können die erfindungsgemäßen MP-Proteine in einzelligen Pflanzenzellen (wie Algen) oder in Pflanzenzellen höherer Pflanzen (bspw. Spermatophyten, wie Feldfrüchte) exprimiert werden. Beispiele für Pflanzen- Expressionsvektoren umfassen solche, die eingehend beschrieben sind in: Becker, D., Kemper, E., Schell, J. und Masterson, R. (1992) "New plant binary vectors with selec- table markers located proximal to the left border", Plant Mol. Biol. 20: 1195-1197; und Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. A- cids Res. 12: 8711-8721.
In einerweiteren Ausführungsform wird eine erfindungsgemäße Nukleinsäure in Säugetierzellen mit einem Säugetier-Expressionsvektor exprimiert.. Beispiele für Säuge- tier-Expressionsvektoren umfassen pCDM8 (Seed, B. (1987) Nature 329:840) und pMT2PC (Kaufman et al. (1987) EMBO J. 6: 187-195). Bei der Verwendung in Säugetierzellen werden die Kontrollfunktionen des Expressionsvektors oft von viralen regulatorischen Elementen bereitgestellt. Gemeinhin verwendete Promotoren stammen bspw. aus Polyoma, Adenovirus2, Cytomegalievirus und Simian Virus 40. Für weitere geeignete Expressionssysteme für prokaryotische und eukaryotische Zellen, siehe die Kapitel 16 und 17 aus Sambrook, J., Fritsch, E.F. und Maniatis, T., Molecular cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
Bei einer weiteren Ausführungsform kann der rekombinante Säugetier- Expressionsvektor die Expression der Nukleinsäure vorzugsweise in einem bestimmten Zelltyp bewirken (bspw. werden gewebespezifische regulatorische Elemente zur Expression der Nukleinsäure verwendet). Gewebespezifische regulatorische Elemente sind im Fachgebiet bekannt. Nicht-einschränkende Beispiele für geeignete gewebe- spezifische Promotoren umfassen den Albuminpromotor (leberspezifisch; Pinkert et al.
(1987) Genes Dev. 1: 268-277), lymphoid-spezifische Promotoren (Calame und Eaton
(1988) Adv. Immunol. 43: 235-275), insbesondere Promotoren von T-Zellrezeptoren (Winoto und Baltimore (1989) EMBO J. 8: 729-733) und Immunglobulinen (Banerji et al. (1983) Cell 33: 729-740; Queen und Baltimore (1983) Cell 33: 741-748), neuron- spezifische Promotoren (bspw. Neurofilament-Promotor; Byrne und Ruddle (1989) PNAS 86: 5473-5477), pankreasspezifische Promotoren (Edlund et al., (1985) Science 230: 912-916) und milchdrüsenspezifische Promotoren (bspw. Milchserum-Promotor; US-Patent Nr. 4 873 316 und europäische Patentanmeldungsveröffentlichung Nr. 264 166). Entwicklungsregulierte Promotoren sind ebenfalls umfaßt, bspw. die Maus-hox- Promotoren (Kessel und Gruss (1990) Science 249: 374-379) und der α-Fetoprotein- Promotor (Campes und Tilghman (1989) Genes Dev. 3: 537-546).
Die Erfindung stellt zudem einen rekombinanten Expressionsvektor bereit, umfassend ein erfindungsgemäßes DNA Molekül, das in Antisense-Richtung in den Expressions- vektor Moniert ist. Dies bedeutet, daß das DNA-Molekül derart mit einer regulatorischen Sequenz funktionsfähig verbunden ist, daß die Expression (durch Transkription des DNA-. Moleküls) eines RNA-Moleküls, das zur MP-mRNA antisense ist, möglich ist. Es können regulatorische Sequenzen ausgewählt werden, die funktionsfähig an eine in Antisense-Richtung klonierte Nukleinsäure gebunden sind und die die kontinuierliche Expression des Antisense-RNA-Moleküls in einer Vielzahl von Zelltypen steuern, bspw. können virale Promotoren und/oder Enhancer oder regulatorische Sequenzen ausgewählt werden, die die konstitutive, gewebespezifische oder zelltypspezifϊsche Expression von Antisense-RNA steuern. Der Antisense-Expressionsvektor kann in Form eines rekombinanten Plasmids, Phagemids oder attenuierten Virus vorliegen, in dem Anti- sense-Nukleinsäuren unter der Kontrolle eines hochwirksamen regulatorischen Bereichs produziert werden, dessen Aktivität durch den Zelltyp bestimmt wird, in den der Vektor eingebracht wird. Für eine Diskussion der Regulation der Genexpression mittels Antisense-Genen, siehe Weintraub, H. et al., Antisense-RNA as a molecular tool for genetic analysis, Reviews - Trends in Genetics, Bd. 1(1) 1986.
Ein weiterer Aspekt der Erfindung betrifft die Wirtszellen, in die ein erfindungsgemäßer rekombinanter Expressionsvektor eingebracht worden ist. Die Begriffe "Wirtszelle" und "rekombinante Wirtszelle" werden hier untereinander austauschbar verwendet. Es ist selbstverständlich, daß diese Begriffe nicht nur eine bestimmte Zielzelle, sondern auch die Nachkommen oder potentiellen Nachkommen dieser Zelle betreffen. Da in aufeinanderfolgenden Generationen aufgrund von Mutation oder Umwelteinflüssen bestimmte Modifikationen auftreten können, sind diese Nachkommen nicht unbedingt mit der Parentalzelle identisch, sind jedoch im Umfang des Begriffs, wie er hier verwendet wird, noch umfaßt.
Eine Wirtszelle kann eine prokaryotische oder eukaryotische Zelle sein. Bspw. kann ein MP-Protein in Bakterienzellen, wie C. glutamicum, Insektenzellen, Hefe- oder Säugetierzellen (wie Ovarzellen des chinesischen Hamsters (CHO) oder COS-Zellen) exprimiert werden. Andere geeignete Wirtszellen sind dem Fachmann geläufig. Mikroorga- nismen, die mit Corynebacterium glutamicum verwandt sind und sich geeignet als Wirtszellen für die erfindungsgemäßen Nukleinsäure- und Proteinmoleküle verwenden lassen, sind in Tabelle 3 aufgeführt.
Durch herkömmliche Transformations- oder Transfektionsverfahren läßt sich Vektor- DNA in prokaryotische oder eukaryotische Zellen einbringen. Die Begriffe "Transformation" und "Transfektion", wie sie hier verwendet werden, sollen eine Vielzahl von im Stand der Technik bekannten Verfahren zum Einbringen fremder Nukleinsäure (bspw. DNA) in eine Wirtszelle umfassen, einschließlich Calciumphosphat- oder Calciumchlo- rid-Copräzipitation, DEAE-Dextran-vermittelte Transfektion, Lipofektion oder Elektropo- ration. Geeignete Verfahren zur Transformation oder Transfektion von Wirtszellen lassen sich nachlesen in Sambrook et al. (Molecular Cloning: A Laboratory Manual. 2. Aufl. Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) und anderen Labor-Handbüchern.
Für die stabile Transfektion von Säugetierzellen ist bekannt, daß je nach verwendetem Expressionsvektor und verwendeter Transfektionstechnik nur ein kleiner Teil der Zellen die fremde DNA in ihr Genom integriert. Zur Identifizierung und Selektion dieser In- tegranten wird gewöhnlich ein Gen, das einen selektierbaren Marker (z.B. Resistenz gegen Antibiotika) codiert, zusammen mit dem Gen von Interesse in die Wirtszellen eingebracht. Bevorzugte selektierbare Marker umfassen solche, die die Resistenz gegen Medikamente, wie G418, Hygromycin und Methotrexat, verleihen. Eine Nukleinsäure, die einen selektierbaren Marker codiert, kann in eine Wirtszelle auf dem gleichen Vektor eingebracht werden, wie derjenige, der ein MP-Protein codiert, oder kann auf einem gesonderten Vektor eingebracht werden. Zellen, die mit der eingebrachten Nukleinsäure stabil transfiziert worden sind, können durch Medikamentenselektion i- dentifiziert werden (z.B. Zellen, die den selektierbaren Marker integriert haben, überleben, wohingegen die anderen Zellen sterben).
Zur Erzeugung eines homolog rekombinierten Mikroorganismus wird ein Vektor herge- stellt, der zumindest einen Abschnitt eines MP-Gens enthält, in den eine Deletion, Addition oder Substitution eingebracht worden ist, um das MP-Gen zu verändern, bspw. funktionell zu disrumpieren. Dieses MP-Gen ist vorzugsweise ein Corynebacterium glutamicum-MP-Gen, jedoch kann ein Homologon von einem verwandten Bakterium oder sogar von einer Säugetier-, Hefe- oder Insektenquelle verwendet werden. Bei einer bevorzugten Ausführungsform ist der Vektor derart ausgestaltet, daß das endogene MP-Gen bei homologer Rekombination funktioneil disrumpiert ist (d.h. nicht länger ein funktionelles Protein codiert, ebenfalls bezeichnet als "Knockout"-Vektor). Der Vektor kann alternativ derart ausgestaltet sein, daß das endogene MP-Gen bei homologer Rekombination mutiert oder anderweitig verändert ist, jedoch noch das funktio- nelle Protein codiert (z.B. kann der stromaufwärts gelegene regulatorische Bereich derart verändert sein, daß dadurch die Expression des endogenen MP-Proteins verändert wird.). Der veränderte Abschnitt des MP-Gens ist im homologen Rekombinationsvektor an seinem 5'- und 3'-Ende von zusätzlicher Nukleinsäure des MP-Gens flankiert, die eine homologe Rekombination zwischen dem exogenen MP-Gen, das von dem Vektor getragen wird, und einem endogenen MP-Gen in einem Mikroorganismus, ermöglicht. Die zusätzliche flankierende MP-Nukleinsäure ist für eine erfolgreiche homologe Rekombination mit dem endogenen Gen hinreichend lang. Gewöhnlich enthält der Vektor mehrere Kilobasen flankierende DNA (sowohl am 5'- als auch am 3'-Ende) (siehe z.B. Thomas, K.R. und Capecchi, M.R. (1987) Cell 51: 503 für eine Beschrei- bung von homologen Rekombinationsvektoren). Der Vektor wird in einen Mikroorganismus (z.B. durch Elektroporation) eingebracht, und Zellen, in denen das eingebrachte MP-Gen mit dem endogenen MP-Gen homolog rekombiniert ist, werden unter Verwendung im Fachgebiet bekannter Verfahren selektiert.
Bei einer anderen Ausführungsform können rekombinante Mikroorganismen produziert werden, die ausgewählte Systeme enthalten, die eine regulierte Expression des eingebrachten Gens ermöglichen. Der Einschluß eines MP-Gens in einem Vektor unter der Kontrolle des Lac-Operons ermöglicht z.B. die Expression des MP-Gens nur in Gegenwart von IPTG. Diese regulatorischen Systeme sind im Fachgebiet bekannt.
Eine erfindungsgemäße Wirtszelle, wie eine prokaryotische oder eukaryotische Wirtszelle in Kultur, kann zur Produktion (d.h. Expression) eines MP-Proteins verwendet werden. Die Erfindung stellt zudem Verfahren zur Produktion von MP-Proteinen unter Verwendung der erfindungsgemäßen Wirtszellen bereit. Bei einer Ausführungsform umfaßt das Verfahren die Anzucht der erfindungsgemäßen Wirtszelle (in die ein re- kombinanter Expressionsvektor, der ein MP-Protein codiert, eingebracht worden ist, oder in deren Genom ein Gen eingebracht worden ist, das ein Wildtyp- oder verändertes MP-Protein codiert) in einem geeigneten Medium, bis das MP-Protein produziert worden ist. Das Verfahren umfaßt in einer weiteren Ausführungsform das Isolieren der MP-Proteine aus dem Medium oder der Wirtszelle.
C. Erfindungsgemäße Verwendungen und Verfahren
Die hier beschriebenen Nukleinsäuremoleküle, Proteine, Fusionsproteine, Primer, Vek- toren und Wirtszellen können in einem oder mehreren nachstehenden Verfahren verwendet werden: Identifikation von C. glutamicum und verwandten Organismen, Kartierung von Genomen von Organismen, die mit C. glutamicum verwandt sind, Identifikation und Lokalisation von C. g/tvtam/cu/π-Sequenzen von Interesse, Evolutionsstudien, Bestimmung von MP-Proteinbereichen, die für die Funktion notwendig sind, Modulation der Aktivität eines MP-Proteins; Modulation der Aktivität eines MP-Wegs; und Modula- tion der zellulären Produktion einer gewünschten Verbindung, wie einer Feinchemikalie. Die erfindungsgemäßen MP-Nukleinsäuremoleküle haben eine Vielzahl von Verwendungen. Sie können zunächst zur Identifikation eines Organismus als Corynebacterium glutamicum oder naher Verwandten davon verwendet werden. Sie können zu- dem zur Identifikation von C. glutamicum oder eines Verwandten davon in einer Mischpopulation von Mikroorganismen verwendet werden. Die Erfindung stellt die Nukleinsäuresequenzen einer Reihe von C. glutamicum-Genen bereit. Durch Sondieren der extrahierten genomischen DNA einer Kultur einer einheitlichen oder gemischten Population von Mikroorganismen unter stringenten Bedingungen mit einer Sonde, die einen Bereich eines C. glutamicum-Gens umfaßt, das für diesen Organismus einzigartig ist, kann man bestimmen, ob dieser Organismus zugegen ist. Corynebacterium glutamicum selbst ist zwar nicht pathogen, jedoch ist es mit pathogenen Arten, wie Corynebacterium diptheriae, verwandt. Der Nachweis eines solchen Organismus ist von signifikanter klinischer Bedeutung.
Die erfindungsgemäßen Nukleinsäure- und Proteinmoleküle können als Marker für spezifische Bereiche des Genoms dienen. Dies ist nicht nur beim Kartieren des Genoms, sondern auch für funktioneile Studien von C. g/utam/cum-Proteinen nützlich. Zur Identifikation des Genombereichs, an den ein bestimmtes C. glutamicum-DNA- bindendes Protein bindet, kann das C. glutamicum-Genom bspw. gespalten werden, und die Fragmente mit dem DNA-bindenden Protein inkubiert werden. Diejenigen, die das Protein binden, können zusätzlich mit den erfindungsgemäßen Nukleinsäuremole- külen, vorzugsweise mit leicht nachweisbaren Markierungen, sondiert werden; die Bindung eines solchen Nukleinsäuremoleküls an das Genomfragment ermöglicht die Lokalisation des Fragmentes auf der genomischen Karte von C. glutamicum, und wenn dies mehrmals mit unterschiedlichen Enzymen durchgeführt wird, erleichtert es eine rasche Bestimmung der Nukleinsäuresequenz, an die das Protein bindet. Die erfindungsgemäßen Nukleinsäuremoleküle können zudem hinreichend homolog zu den Sequenzen verwandter Arten sein, so daß diese Nukleinsäuremoleküle als Marker für die Konstruktion einer genomischen Karte in verwandten Bakterien, wie Brevibacterium lactofermentum, dienen können.
Die erfindungsgemäßen MP-Nukleinsäuremoleküle eignen sich ebenfalls für Evolutions- und Proteinstrukturuntersuchungen. Die metabolischen Prozesse, an denen die erfindungsgemäßen Moleküle beteiligt sind, werden von vielen prokaryotischen und eukaryotischen Zellen ausgenutzt; durch Vergleich der Sequenzen der erfindungsgemäßen Nukleinsäuremoleküle mit solchen, die ähnliche Enzyme aus anderen Organismen codieren, kann der Evolutions-Verwandschaftsgrad der Organismen bestimmt werden. Entsprechend ermöglicht ein solcher Vergleich die Bestimmung, welche Se- quenzbereiche konserviert sind und welche nicht, was bei der Bestimmung solcher Bereiche des Proteins hilfreich sein kann, die für die Enzymfunktion essentiell sind. Dieser Typ der Bestimmung ist für Proteintechnologie-Untersuchungen wertvoll und kann einen Hinweis darauf geben, welches Protein Mutagenese tolerieren kann, ohne die Funktion zu verlieren.
Die Manipulation der erfindungsgemäßen MP-Nukleinsäuremoleküle kann die Produktion von MP-Proteinen mit funktionellen Unterschieden zu den Wildtyp-MP-Proteinen bewirken. Diese Proteine können hinsichtlich ihrer Effizienz oder Aktivität verbessert werden, können in größerer Anzahl als gewöhnlich in der Zelle zugegen sein, oder können hinsichtlich ihrer Effizienz oder Aktivität geschwächt sein.
Diese Aktivitätsänderungen können derart sein, daß die Ausbeute, Produktion und/oder Effizienz der Produktion von einer oder mehreren Feinchemikalien von C. glutamicum verbessert ist. Durch Optimieren der Aktivität eines MP-Proteins, das die Transkription oder Translation eines Gens aktiviert, das ein Biosynthese-Protein für eine gewünschte Feinchemikalie codiert, oder durch Beeinflussen oder Aufheben der Aktivität eines MP-Proteins, das die Transkription oder Translation eines solchen Gens reprimiert, kann man die Aktivität oder Aktivitätsrate dieses Biosynthesewegs aufgrund des Vorliegens erhöhter Mengen eines bspw. einschränkenden Enzyms erhöhen. Ent- sprechend kann man durch Verändern der Aktivität eines MP-Proteins, so daß es kon- stitutiv posttranslational ein Protein inaktiviert, das am Abbauweg für eine gewünschte Feinchemikalie beteiligt ist, oder durch Verändern der Aktivität eines MP-Proteins, so daß es konstitutiv die Transkription oder Translation eines solchen Gens reprimiert, die Ausbeute und/oder Produktionsrate der Feinchemikalie von der Zelle aufgrund des herabgesetzten Abbaus der Verbindung steigern.
Durch Modulieren der Aktivität von einem oder mehreren MP-Proteinen kann man indirekt die Produktion stimulieren oder die Produktionsrate von einer oder mehreren Feinchemikalien von der Zelle aufgrund der Verknüpfung verschiedener Stoffwechselwege verbessern. Bspw. kann man durch Steigern der Aubeute, Produktion und/oder Effizienz der Produktion durch Aktivieren der Expression von einem oder mehreren Lysin- Biosynthese-Enzymen gleichzeitig die Expression anderer Verbindungen, wie anderer Aminosäuren, steigern, die die Zelle gewöhnlich in größeren Mengen braucht, wenn Lysin in größeren Mengen benötigt wird. Auch kann die Regulation des Metabolismus durch in der gesamten Zelle derart verändert werden, daß die Zelle unter den Umweltbedingungen einer fermentativen Kultur (wo das Nährstoff- und Sauerstoffangebot schlecht sein kann und möglicherweise toxische Abfallprodukte in der Umgebung in hohen Mengen vorliegen können) und besser wachsen oder repliezieren kann. Bspw. kann man durch Mutagenisieren eines MP-Proteins, das die Synthese von Molekülen, die für die Zellmembranproduktion notwenig sind, in Reaktion auf hohe Abfallprodukt- mengen im extrazellulären Medium reprimiert (um Zellwachstum und -teilung in suboptimalen Wachstumsbedingungen zu blockieren), so daß es nicht länger zur Repression dieser Synthese befähigt ist, das Wachstum und die Vermehrung der Zellen in Kulturen steigern, selbst wenn die Wachstumsbedingungen suboptimal sind. Ein solches ver- stärktes Wachstum oder eine solche verstärkte Lebensfähigkeit sollte ebenfalls die Ausbeuten und/oder die Produktionsrate einer gewünschten Feinchemikalie aus einer fermentativen Kultur aufgrund der relativ großen Zahl von Zellen, die diese Verbindung in der Kultur produzieren, steigern.
Die vorstehend genannten Mutagenesestrategien für MP-Proteine, die erhöhte Ausbeuten einer gewünschten Feinchemikalie in C. glutamicum bewirken sollen, sollen nicht einschränkend sein; Variationen dieser Strategien sind dem Fachmann leicht ersichtlich. Durch diese Strategien und die hier offenbarten Mechanismen können die erfindungsgemäßen Nukleinsäure- und Proteinmoleküle verwendet werden, um C. glu- tamicum oder verwandte Bakterienstämme, die mutierte MP-Nukleinsäure- und Proteinmoleküle exprimieren, zu erzeugen, so daß die Ausbeute, Produktion und/oder Effizienz der Produktion einer gewünschten Verbindung verbessert wird. Die gewünschte Verbindung kann ein natürliches Produkt von C. glutamicum sein, welches die Endprodukte der Biosynthesewege und Zwischenprodukte natürlich vorkommender metaboli- scher Wege sowie Moleküle umfaßt, die im Metabolismus von C. glutamicum nicht natürlich vorkommen, die jedoch von einem erfindungsgemäßen C. g/utem/ci/m-Stamm produziert werden.
Diese Erfindung wird durch die nachstehenden Beispiele weiter veranschaulicht, die nicht als einschränkend aufgefaßt werden sollen. Die Inhalte sämtlicher, in dieser Patentanmeldung zitierter Literaturstellen, Patentanmeldungen, Patente und veröffentlichter Patentanmeldungen sind hiermit durch Bezugnahme aufgenommen.
Beispiele
Beispiel 1 : Präparation der gesamten genomischen DNA aus Corynebacterium glutamicum AT "CC13032
Eine Kultur von Corynebacterium glutamicum (ATCC 13032) wurde über Nacht bei 30°C unter starkem Schütteln in BHI-Medium (Difco) gezüchtet. Die Zellen wurden durch Zentrifugation geerntet, der Überstand wurde verworfen, und die Zellen wurden in 5ml Puffer I (5% des Ursprungsvolumens der Kultur - sämtliche angegebenen Volumina sind für 100 ml Kulturvolumen berechnet) resuspendiert. Die Zusammensetzung von Puffer I: 140,34 g/l Saccharose, 2,46 g/l MgSO4 • 7 H20, 10 ml/l KH2PO4- Lösung (1 OOg/l, mit KOH eingestellt auf pH-Wert 6,7), 50 ml/l M12-Konzentrat (10 g/l (NH4)2SO4, 1 g/l NaCI, 2 g/l MgSO4 • 7 H2O, 0,2 g/l CaCI2, 0,5 g/l Hefe-Extrakt (Difco),
10 ml/l Spurenelemente-Mischung (200 mg/l FeSO4 • H2O, 10 mg/l ZnSO4 • 7 H2O, 3 mg/l MnCI2 • 4 H2O, 30 mg/l H3BO3, 20 mg/l CoCI2 • 6 H20, 1 mg/l NiCI2 • 6 H2O, 3 mg/l
Na2MoO4 • 2 H2O, 500 mg/l Komplexbildner (EDTA oder Citronensäure), 100 ml/l Vita- mingemisch (0,2 ml/l Biotin, 0,2 mg/l Folsäure, 20 mg/l p-Aminobenzoesäure, 20 mg/l
Riboflavin, 40 mg/l Ca-Panthothenat, 140 mg/l Nikotinsäure, 40 mg/l Pyridoxolhydroch- lorid, 200 mg/l Myoinositol). Lysozym wurde in einer Endkonzentration von 2,5 mg/ml zur Suspension gegeben. Nach etwa 4 Std. Inkubation bei 37°C wurde die Zellwand abgebaut, und die erhaltenen Protoplasten wurden durch Zentrifugation geerntet. Das Pellet wurde einmal mit 5 ml Puffer I und einmal mit 5 ml TE-Puffer (10 mM Tris-HCI, 1 mM EDTA, pH-Wert 8) gewaschen. Das Pellet wurde in 4 ml TE-Puffer resuspendiert, und 0,5 ml SDS-Lösung (10%) und 0,5 ml NaCI-Lösung (5 M) wurden zugegeben. Nach Zugabe von Proteinase K in einer Endkonzentration von 200 ocg/ml wurde die Suspension etwa 18 Std. bei 37°C inkubiert. Die DNA wurde durch Extraktion mit Phe- nol, Phenol-Chloroform-Isoamylalkohol und Chloroform-Isoamylalkohol mittels Standard-Verfahren gereinigt. Dann wurde die DNA durch Zugabe von 1/50 Volumen 3 M Natriumacetat und 2 Volumina Ethanol, anschließender Inkubation für 30 min bei - 20°C und 30 min Zentrifugation bei 12000 U/min in einer Hochgeschwindigkeitszentrifuge mit einem SS34-Rotor (Sorvall) gefällt. Die DNA wurde in 1 ml TE-Puffer gelöst, der 20 ocg/ml RNase A enthielt, und für mindestens 3 Std. bei 4°C gegen 1000 ml TE- Puffer dialysiert. Während dieser Zeit wurde der Puffer 3mal ausgetauscht. Zu Aliquots von 0,4 ml der dialysierten DNA-Lösung wurden 0,4 ml 2 M LiCI und 0,8 ml Ethanol zugegeben. Nach 30 min Inkubation bei -20°C wurde die DNA durch Zentrifugation gesammelt (13000 U/min, Biofuge Fresco, Heraeus, Hanau, Deutschland). Das DNA- Pellet wurde in TE-Puffer gelöst. Durch dieses Verfahren hergestellte DNA konnte für alle Zwecke verwendet werden, einschließlich Southern-Blotting oder zur Konstruktion genomischer Banken.
Beispiel 2: Konstruktion genomischer Corynebacterium glutamicum (ATCC13032)- Banken in Escherichia coli
Ausgehend von DNA, hergestellt wie in Beispiel 1 beschrieben, wurden gemäß bekannter und gut eingeführter Verfahren (siehe bspw. Sambrook, J. et al. (1989) "Molecular Cloning: A Laboratory Manual". Cold Spring Harbor Laboratory Press oder Ausubel, F.M. et al. (1994) "Current Protocols in Molecular Biology", John Wiley & Sons) Cosmid- und Plasmid-Banken hergestellt.
Es ließ sich jedes Plasmid oder Cosmid einsetzen. Besondere Verwendung fanden die Plasmide pBR322 (Sutcliffe, J.G. (1979) Proc. Natl Acad. Sei. USA, 75: 3737-3741); pACYC177 (Change & Cohen (1978) J. Bacteriol. 134: 1141-1156); Plasmide der pBS- Reihe (pBSSK+, pBSSK- und andere; Stratagene, LaJolla, USA) oder Cosmide, wie
SuperCosI (Stratagene, LaJolla, USA) oder Loristβ (Gibson, T.J. Rosenthal, A., und
Waterson, R.H. (1987) Gene 53: 283-286.
Beispiel 3: DNA-Sequenzierung und Computer-Funktionsanalyse
Genomische Banken, wie in Beispiel 2 beschrieben, wurden zur DNA-Sequenzierung gemäß Standard-Verfahren, insbesondere dem Kettenabbruchverfahren mit ABI377- Sequenziermaschinen (s. z.B. Fleischman, R.D. et al. (1995) "Whole-genome Random Sequencing and Assembly of Haemophilus Influenzae Rd., Science 269; 496-512) verwendet. Die Sequenzierprimer mit den folgenden Nukleofidsequenzen wurden verwendet: 5*-GGAAACAGTATGACCATG-3' oder 5'-GTAAAACGACGGCCAGT-3'.
Beispiel 4: In-vivo-Mutagenese
In vivo-Mutagenese von Corynebacterium glutamicum kann durchgeführt werden, indem eine Plasmid- (oder andere Vektor-) DNA durch E. coli oder andere Mikroorganismen (z.B. Bacillus spp. oder Hefen, wie Saccharomyces cerevisiae) geleitet wird, die die Integrität ihrer genetischen Information nicht aufrechterhalten können. Übliche Mutatorstämme weisen Mutationen in den Genen für das DNA-Reparatursystem auf (z.B., mutHLS, mutD, mutT, usw., zum Vergleich siehe Rupp, W.D. (1996) DNA repair mechanisms in Escherichia coli and Salmonella, S. 2277-2294, ASM: Washington). Diese Stämme sind dem Fachmann bekannt. Die Verwendung dieser Stämme ist bspw. in Greener, A. und Callahan, M. (1994) Strategies 7; 32-34 veranschaulicht.
Beispiel 5: DNA-Transfer zwischen Escherichia coli und Corynebacterium glutamicum
Mehrere Corynebacterium- und Brevibacterium-Arten enthalten endogene Plasmide (wie bspw. pHM1519 oder pBL1) die autonom replizieren (für einen Überblick siehe bspw. Martin, J.F. et al. (1987) Biotechnology 5: 137-146). Shuttle-Vektoren für Escherichia coli und Corynebacterium glutamicum lassen sich leicht mittels Standard- Vektoren für E. coli konstruieren (Sambrook, J. et al., (1989), "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press oder Ausubel, F.M. et al. (1994) "Current Protocols in Molecular Biology", John Wiley & Sons), denen ein Repli- kationsursprung für und ein geeigneter Marker aus Corynebacterium glutamicum beigegeben wird. Solche Replikationsursprünge werden vorzugsweise von endogenen Plasmiden entnommen, die aus Corynebacterium- und Brevibactertium-Aήen isoliert worden sind. Besondere Verwendung als Transformationsmarker für diese Arten sind Gene für Kanamycin-Resistenz (wie solche, die vom Tn5- oder Tn-903-Transposon stammen) oder für Chloramphenieol (Winnacker, E.L. (1987) "From Genes to Clones - Introduction to Gene Technology, VCH, Weinheim). Es gibt zahlreiche Beispiele in der Literatur zur Herstellung einer großen Vielzahl von Shuttle-Vektoren, die in E. coli und C. glutamicum repliziert werden, und die für verschiedene Zwecke verwendet werden können, einschließlich Gen-Überexpression (siehe bspw. Yoshihama, M. et al. (1985) J. Bacteriol. 162: 591-597, Martin, J.F. et al., (1987) Biotechnology, 5: 137-146 und Eikmanns, B.J. et al. (1992) Gene 102: 93-98).
Mittels Standard-Verfahren ist es möglich, ein Gen von Interesse in einen der vorstehend beschriebenen Shuttle-Vektoren zu klonieren und solche Hybrid-Vektoren in Co- rynebacterium glutamicum-Stämme einzubringen. Die Transformation von C. glutamicum läßt sich durch Protoplastentransformation (Kastsumata, R. et al., (1984) J. Bacteriol. 159, 306-311), Elektroporation (Liebl, E. et al., (1989) FEMS Microbiol. Letters, 53: 399-303) und in Fällen, bei denen spezielle Vektoren verwendet werden, auch durch Konjugation erzielen (wie z.B. beschrieben in Schäfer, A., et (1990) J. Bacteriol. 172: 1663-1666). Es ist ebenfalls möglich, die Shuttle-Vektoren für C. glutamicum auf E. coli zu übertragen, indem Plasmid-DNA aus C. glutamicum (mittels im Fachgebiet bekannter Standard-Verfahren) präpariert wird und in E. coli transformiert wird. Dieser Transformationsschritt kann mit Standard-Verfahren erfolgen, jedoch wird vorteilhafterweise ein Mcr-defizienter E. coli-Stamm verwendet, wie NM522 (Gough & Murray (1983) J. Mol. Biol. 166: 1-19).
Beispiel 6: Bestimmung der Expression des mutierten Proteins
Die Beobachtungen der Aktivität eines mutierten Proteins in einer transformierten Wirtszelle beruhen auf der Tatsache, daß das mutierte Protein auf ähnliche Weise und in ähnlicher Menge exprimiert wird wie das Wildtyp-Protein. Ein geeignetes Verfahren zur Bestimmung der Transkriptionsmenge des mutierten Gens (ein Anzeichen für die mRNA-Menge, die für die Translation des Genprodukts verfügbar ist) ist die Durchführung eines Northem-Blots (s. bspw. Ausubel et al., (1988) Current Protocols in Molecu- lar Biology, Wiley: New York), wobei ein Primer, der so ausgestaltet ist, daß er an das Gen von Interesse bindet, mit einer nachweisbaren (gewöhnlich radioaktiven oder chemilumineszierenden) Markierung versehen wird, so daß - wenn die Gesamt-RNA einer Kultur des Organismus extrahiert, auf einem Gel aufgetrennt, auf eine stabile Matrix übertragen und mit dieser Sonde inkubiert wird - die Bindung und die Quantität der Bindung der Sonde das Vorliegen und auch die Menge von mRNA für dieses Gen anzeigt. Diese Information ist ein Nachweis für das Ausmaß der Transkription des mutierten Gens. Gesamt-Zell-RNA läßt sich durch verschiedene Verfahren aus Corynebacterium glutamicum isolieren, die im Fachgebiet bekannt sind, wie beschrieben in Bormann, E.R. et al., (1992) Mol. Microbiol. 6: 317-326. Zur Bestimmung des Vorliegens oder der relativen Menge von Protein, das aus dieser mRNA translatiert wird, können Standard-Techniken, wie Westem-Blot, eingesetzt werden (s. bspw. Ausubel et al. (1988) "Current Protocols in Molecular Biology", Wiley, New York). Bei diesem Verfahren werden Gesamt-Zellproteine extrahiert, durch Gele- lektrophorese getrennt, auf eine Matrix, wie Nitrocellulose, übertragen und mit einer Sonde, wie einem Antikörper, inkubiert, die an das gewünschte Protein spezifisch bindet. Diese Sonde ist gewöhnlich mit einer chemilumineszierenden oder kolorimetri- schen Markierung versehen, die sich leicht nachweisen läßt. Das Vorliegen und die beobachtete Menge an Markierung zeigt das Vorliegen und die Menge des gesuchten Mutantenproteins in der Zelle an.
Beispiel 7: Wachstum von genetisch verändertem Corynebacterium glutamicum - Medien und Anzuchtbedingungen
Genetisch veränderte Corynebakterien werden in synthetischen oder natürlichen Wachstumsmedien gezüchtet. Eine Anzahl unterschiedlicher Wachstumsmedien für Corynebakterian sind bekannt und leicht erhältlich (Lieb et al. (1989) Appl. Microbiol. Biotechnol. 32: 205-210; von der Osten et al. (1998) Biotechnology Letters 11: 11-16; Patent DE 4 120 867; Liebl (1992) 'The Genus Corynebacterium", in: The Procaryotes, Bd. II, Balows, A., et al., Hrsg. Springer-Verlag). Diese Medien bestehen aus einer oder mehreren Kohlenstoffquellen, Stickstoffquellen, anorganischen Salzen, Vitaminen und Spurenelementen. Bevorzugte Kohlenstoffquellen sind Zucker, wie Mono-, Di- oder Polysaccharide. Sehr gute Kohlenstoffquellen sind bspw. Glucose, Fructose, Mannose, Galactose, Ribose, Sorbose, Ribulose, Lactose, Maltose, Saccharose, Raffinose, Stär- ke oder Cellulose. Man kann Zucker auch über komplexe Verbindungen, wie Melassen, oder andere Nebenprodukte aus der Zucker-Raffinierung zu den Medien geben. Es kann auch vorteilhaft sein, Gemische verschiedener Kohlenstoffquellen zuzugeben. Andere mögliche Kohlenstoffquellen sind Alkohole und organische Säuren, wie Methanol, Ethanol, Essigsäure oder Milchsäure. Stickstoffquellen sind gewöhnlich organische oder anorganische Stickstoffverbindungen oder Materialien, die diese Verbindungen enthalten. Beispielhafte Stickstoffquellen umfassen Ammoniak-Gas oder Ammoniumsalze, wie NH CI oder (NH4)2SO , NH OH, Nitrate, Harnstoff, Aminosäuren oder komplexe Stickstoffquellen, wie Maisquellwasser, Sojamehl, Sojaprotein, Hefeextrakte, Fleischextrakte und andere.
Anorganische Salzverbindungen, die in den Medien enthalten sein können, umfassen die Chlorid-, Phosphor-, oder Sulfatsalze von Calcium, Magnesium, Natrium, Kobalt, Molybdän, Kalium, Mangan, Zink, Kupfer und Eisen. Chelatbildner können zum Medium gegeben werden, um die Metallionen in Lösung zu halten. Besonders geeignete Chelatbildner umfassen Dihydroxyphenole, wie Catechol oder Protocatechuat oder organische Säuren, wie Citronensäure. Die Medien enthalten üblicherweise auch andere Wachstumsfaktoren, wie Vitamine oder Wachstumsförderer, zu denen bspw. Biotin, Riboflavin, Thiamin, Folsäure, Nikotinsäure, Panthothenat und Pyridoxin gehören. Wachstumsfaktoren und Salze stammen häufig von komplexen Medienkomponenten, wie Hefeextrakt, Melassen, Maisquellwasser und dergleichen. Die genaue Zusammensetzung der Medienverbindungen hängt stark vom jeweiligen Experiment ab und wird für jeden Fall individuell entschieden. Information über die Medienoptimierung ist erhältlich aus dem Lehrbuch "Applied Microbiol. Physiology, A Practical Approach" (Hrsg. P.M. Rhodes, P.F. Stanbury, IRL Press (1997) S. 53-73, ISBN 0 19 9635773). Wachs- tumsmedien lassen sich auch von kommerziellen Anbietern beziehen, wie Standard 1 (Merck) oder BHI (Brain heart infusion, DIFCO) und dergleichen.
Sämtliche Medienkomponenten sind sterilisiert, entweder durch Hitze (20 min bei 1 ,5 bar und 121°C) oder durch Sterilfiltration. Die Komponenten können entweder zusam- men oder nötigenfalls getrennt sterilisiert werden. Sämtliche Medienkomponenten können zu Beginn der Anzucht zugegen sein oder wahlfrei kontinuierlich oder chargenweise hinzugegeben werden.
Die Anzuchtbedingungen werden für jedes Experiment gesondert definiert. Die Tempe- ratur sollte zwischen 15°C und 45°C liegen und kann während des Experimentes konstant gehalten oder verändert werden. Der pH-Wert des Mediums sollte im Bereich von 5 bis 8,5, vorzugsweise um 7,0 liegen, und kann durch Zugabe von Puffern zu den Medien aufrechterhalten werden. Ein beispielhafter Puffer für diesen Zweck ist ein Kaliumphosphatpuffer. Synthetische Puffer, wie MOPS, HEPES; ACES usw., können al- temativ oder gleichzeitig verwendet werden. Der Anzucht-pH-Wert läßt sich während der Anzucht auch durch Zugabe von NaOH oder NH4OH konstant halten. Werden komplexe Medienkomponenten, wie Hefe-Extrakt verwendet, sinkt der Bedarf an zusätzlichen Puffern, da viele komplexe Verbindungen eine hohe Pufferkapazität aufweisen. Beim Einsatz eines Fermenters für die Anzucht von Mikroorganismen kann der pH-Wert auch mit gasförmigem Ammoniak reguliert werden.
Die Inkubationsdauer liegt gewöhnlich in einem Bereich von mehreren Stunden bis zu mehreren Tagen. Diese Zeit wird so ausgewählt, daß sich die maximale Menge Produkt in der Brühe ansammelt. Die offenbarten Wachstumsexperimente können in einer Vielzahl von Behältern, wie Mikrotiterplatten, Glasröhrchen, Glaskolben oder Glasoder Metallfermentern unterschiedlicher Größen durchgeführt werden. Zum Screening einer großen Anzahl von Klonen sollten die Mikroorganismen in Mikrotiterplatten, Glasröhrchen oder Schüttelkolben entweder mit oder ohne Schikanen gezüchtet werden. Vorzugsweise werden 100-ml-Schüttelkolben verwendet, die mit 10% (bezogen auf das Volumen) des erforderlichen Wachstumsmediums gefüllt sind. Die Kolben sollten auf einem Kreiselschüttler (Amplitude 25 mm) mit einer Geschwindigkeit im Bereich von 100-300 U/min geschüttelt werden. Verdampfungsverluste können durch Aufrechterhalten einer feuchten Atmosphäre verringert werden; alternativ sollte für die Verdampfungsverluste eine mathematische Korrektur durchgeführt werden.
Werden genetisch modifizierte Klone untersucht, sollten auch ein unmodifizierter Kon- trollklon oder ein Kontrollklon getestet werden, der das Basisplasmid ohne Insertion enthält. Das Medium wird auf eine OD6oo von 0,5 - 1 ,5 angeimpft, wobei Zellen verwendet werden, die auf Agarplatten gezüchtet wurden, wie CM-Platten (10 g/l Glucose, 2,5 g/l NaCI, 2 g/l Harnstoff, 10 g/l Polypepton, 5 g/l Hefeextrakt, 5 g/l Fleischextrakt, 22 g/l Agar pH-Wert 6,8 mit 2 M NaOH), die bei 30°C inkubiert worden sind. Das Animpfen der Medien erfolgt entweder durch Einbringen einer Kochsalzlösung von C. g/üfam/cum-Zellen von CM-Platten oder durch Zugabe einer flüssigen Vorkultur dieses Bakteriums.
Beispiel 8: In-vitro-Analyse der Funktion mutierter Proteine
Die Bestimmung der Aktivitäten und kinetischen Parameter von Enzymen ist im Fachgebiet gut bekannt. Experimente zur Bestimmung der Aktivität eines bestimmten ver- änderten Enzyms müssen an die spezifische Aktivität des Wildtypenzyms angepaßt werden, was innerhalb der Fähigkeiten des Fachmann liegt. Überblicke über Enzyme im Allgemeinen sowie spezifische Einzelheiten, die die Struktur, Kinetiken, Prinzipien, Verfahren, Anwendungen und Beispiele zur Bestimmung vieler Enzymaktivitäten betreffen, können bspw. in den nachstehenden Literaturstellen gefunden werden: Di- xon, M., und Webb, E.C: (1979) Enzymes, Longmans, London; Fersht (1985) Enzyme Structure and Mechanism, Freeman, New York; Walsh (1979) Enzymatic Reaction Mechanisms. Freeman, San Francisco; Price, N.C., Stevens, L. (1982) Fundamentals of Enzymology. Oxford Univ. Press: Oxford; Boyer, P.D: Hrsg. (1983) The Enzymes, 3. Aufl. Academic Press, New York; Bisswanger, H. (1994) Enzymkinetik, 2. Aufl. VCH, Weinheim (ISBN 3527300325); Bergmeyer, H.U., Bergmeyer, J., Graßl, M. Hrsg. (1983-1986) Methods of Enzymatic Analysis, 3. Aufl. Bd. I-Xll, Verlag Chemie: Weinheim; und Ullmann's Encyclopedia of Industrial Chemistry (1987) Bd. A9, "Enzymes", VCH, Weinheim, S. 352-363.
Die Aktivität von Proteinen, die an DNA binden, kann durch viele gut eingeführte Verfahren gemessen werden, wie DNA-Banden-Shift-Assays (die auch als Gelretardati- ons-Assays bezeichnet werden). Die Wirkung dieser Proteine auf die Expression anderer Moleküle kann mit Reportergenassays (wie beschrieben in Kolmar, H. et al., (1995) EMBO J. 14: 3895-3904 und den darin zitierten Literaturstellen) gemessen werden. Reportergen-Testsysteme sind wohlbekannt und für Anwendungen in pro- und eukary- otischen Zellen etabliert, wobei Enzyme, wie beta-Galactosidase, Grün-Fluoreszenz- Protein und mehrere andere verwendet werden.
Die Bestimmung der Aktivität von Membran-Transportproteinen kann gemäß den Techniken, wie beschrieben in Gennis, R.B. (1989) "Pores, Channels and Transporters", in Biomembranes, Molecular Structure and Function, Springer: Heidelberg, S. 85- 137; 199-234; und 270-322, erfolgen.
Beispiel 9: Analyse des Einflusses von mutiertem Protein auf die Produktion des ge- wünschten Produktes
Die Wirkung der genetischen Modifikation in C. glutamicum auf die Produktion einer gewünschten Verbindung (wie einer Aminosäure) kann bestimmt werden, indem die modifizierten Mikroorganismen unter geeigneten Bedingungen (wie solchen, die vor- stehend beschrieben sind) gezüchtet werden und das Medium und/oder die zellulären Komponenten auf die erhöhte Produktion des gewünschten Produktes (d.h. einer Aminosäure) untersucht wird. Solche Analysetechniken sind dem Fachmann wohlbekannt und umfassen Spektroskopie, Dünnschichtchromatographie, Färbeverfahren verschiedener Art, enzymatische und mikrobiologische Verfahren sowie analytische Chroma- tographie, wie Hochleistungs-Flüssigkeitschromatographie (s. bspw. Ullman, Encyclopedia of Industrial Chemistry, Bd. A2, S. 89-90 und S. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17; Rehm et al. (1993) Biotechnology, Bd. 3, Kapitel III: "Product recovery and purification", S. 469-714, VCH: Weinheim; Belter, P.A. et al. (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F. und Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J.A. und Henry, J.D. (1988) Biochemical Separations, in Ullmann's Encyclopedia of Industrial Chemistry, Bd. B3; Kapitel 11, S. 1-27, VCH: Weinheim; und Dechow, F.J. (1989) Se- paration and purification techniques in biotechnology, Noyes Publications).
Zusätzlich zur Messung des Fermentationsendproduktes ist es ebenfalls möglich, andere Komponenten der Stoffwechselwege zu analysieren, die zur Produktion der gewünschten Verbindung verwendet werden, wie Zwischen- und Nebenprodukte, um die Gesamt-Produktivität des Organismus, die Ausbeute und/oder die Effizienz der Produktion der Verbindung zu bestimmen. Die Analyseverfahren umfassen Messungen der Nährstoffmengen im Medium (bspw. Zucker, Kohlenwasserstoffe, Stickstoffquellen, Phosphat und andere Ionen), Messungen der Biomassezusammensetzung und des Wachstums, Analyse der Produktion gewöhnlicher Metabolite aus Biosynthesewegen und Messungen von Gasen, die während der Fermentation erzeugt werden. Standard- verfahren für diese Messungen sind in Applied Microbial Physiology; A Practical Ap- proach, P.M. Rhodes und P.F. Stanbury, Hrsg. IRL Press, S. 103-129; 131-163 und 165-192 (ISBN: 0199635773) und den darin angegebenen Literaturstellen beschrieben.
Beispiel 10: Reinigung des gewünschten Produktes aus einer C. glutamicum-K t r
Die Gewinnung des gewünschten Produktes aus C. glutamicum-ZeWen oder aus dem Überstand der vorstehend beschriebenen Kultur kann durch verschiedene, im Fachge- biet bekannte Verfahren erfolgen. Wird das gewünschte Produkt von den Zellen nicht sezerniert, können die Zellen aus der Kultur durch langsame Zentrifugation geerntet werden, die Zellen können durch Standard-Techniken, wie mechanische Kraft oder Ultrabeschallung, lysiert werden. Die Zelltrümmer werden durch Zentrifugation entfernt, und die Überstandsfraktion, die die löslichen Proteine enthält, wird zur weiteren Reini- gung der gewünschten Verbindung erhalten. Wird das Produkt von den C. glutamicum- Zellen sezerniert, werden die Zellen durch langsame Zentrifugation aus der Kultur entfernt, und die Überstandsfraktion wird zur weiteren Reinigung behalten.
Die Überstandsfraktion aus beiden Reinigungsverfahren wird einer Chromatographie mit einem geeigneten Harz unterworfen, wobei das gewünschte Molekül entweder auf dem Chromatographieharz zurückgehalten wird, viele Verunreinigungen in der Probe jedoch nicht, oder wobei die Verunreinigungen auf dem Harz zurückbleiben, die Probe hingegen nicht. Diese Chromatographieschritte können nötigenfalls wiederholt werden, wobei die gleichen oder andere Chromatographieharze verwendet werden. Der Fach- mann ist in der Auswahl der geeigneten Chromatographieharze und der wirksamsten Anwendung für ein bestimmtes, zu reinigendes Molekül bewandert. Das gereinigte Produkt kann durch Filtration oder Ultrafiltration konzentriert und bei einer Temperatur aufbewahrt werden, bei der die Stabilität des Produktes maximal ist.
Im Fachgebiet sind viele Reinigungsverfahren bekannt, die nicht auf das vorhergehende Reinigungsverfahren eingeschränkt sind. Diese sind bspw. beschrieben in Bailey, J.E. & Ollis, D.F. Biochemical Engineering Fundamentals, McGraw-Hill: New York (1986).
Die Identität und Reinheit der isolierten Verbindungen kann durch Standard-Techniken des Fachgebiets bestimmt werden. Diese umfassen Hochleistungs- Flüssigkeitschromatographie (HPLC), spektroskopische Verfahren, Färbeverfahren, Dünnschichtchromatographie, NIRS, Enzymtest oder mikrobiologische Tests. Diese Analyseverfahren sind zusammengefaßt in: Patek et al. (1994) Appl. Environ. Micro- biol. 60: 133-140; Malakhova et al. (1996) Biotekhnologiya 11: 27-32; und Schmidt et al. (1998) Bioprocess Engineer. 19: 67-70. Ulmann's Encyclopedia of Industrial Chemistry (1996) Bd. A27, VCH: Weinheim, S. 89-90, S. 521-540, S. 540-547, S. 559-566, 575-581 und S. 581-587; Michal, G (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. (1987) Applica- tions of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17.
Äquivalente
Der Fachmann erkennt oder kann - indem er lediglich Routineverfahren verwendet - viele Äquivalente der erfindungsgemäßen spezifischen Ausführungsformen feststellen. Diese Äquivalente sollen von den nachstehenden Patentansprüchen umfaßt sein.
Die Angaben in Tabelle 1 und Tabelle 2 sind folgendermassen zu verstehen:
In Spalte 1"DNA-ID" bezieht sich die jeweilige Zahl auf die SEQ ID NO des anhängenden Sequenzprotokolls. Eine "5" in der Spalte "DNA-ID" bedeutet demzufolge ein Verweis auf SEQ ID NO:5.
In Spalte 2"AS-ID" bezieht sich die jeweilige Zahl auf die SEQ ID NO des anhängenden Sequenzprotokolls. Eine "6" in der Spalte "AS-ID" bedeutet demzufolge ein Verweis auf SEQ ID NO:6.
In Spalte 3"ldentifikation" wird eine eindeutige interne Bezeichnung für jede Sequenz aufgeführt.
In Spalte 4 "AS-POS" bezieht sich die jeweilige Zahl auf die Aminosäureposition der Polypeptidsequenz "AS-ID" in der gleichen Zeile. Eine "26" in der Spalte "AS-POS" bedeutet demzufolge die Aminosäureposition 26 der entsprechend angegebenen Poly- peptidsequenz. Die Zählung der Position beginnt N-Terminal bei +1.
In Spalte 5 "AS-Wildtyp" bezeichnet der jeweilige Buchstabe die Aminosäure - dargestellt im Ein-Buchstaben-Code- an der in Spalte 4 angegebenen Position beim entsprechenden Wildtyp-Stamm.
In Spalte 6 "AS-Mutante" bezeichnet der jeweilige Buchstabe die Aminosäure - dargestellt im Ein-Buchstaben-Code- an der in Spalte 4 angegebenen Position beim entsprechenden Mutanten-Stamm. In Spalte 7 "Funktion" wird die physiologische Funktion der entsprechenden Polypep- tidsequenz aufgeführt.
Für ein MP-Protein mit einer bestimmten Funktion (Spalte 7) und einer bestimmten Ausgangsaminosäuresequenz (Spalte 2) werden in den Spalten 4, 5 und 6 mindestens eine Mutation, bei einigen Sequenzen auch mehrere Mutationen beschrieben. Diese mehreren Mutationen beziehen sich immer auf die jeweils obenstehende, nächstliegendste Ausgangsaminosäuresequenz (Spalte 2). Unter dem Begriff „mindestens eine der Aminsäurepositionen" einer bestimmten Aminosäuresequenz wird vorzugsweise mindestens eine der für diese Aminosäuresequenz in Spalte 4, 5 und 6 beschriebenen Mutationen verstanden.
Ein-Buchstaben-Code der proteinogenen Aminosäuren:
A Alanin
C Cystein
D Aspartat
E Glutamat
FPhenylalanin G Glycin
H His
I Isoleucin
K Lysin
L Leucin M Methionin
N Asparagin
P Prolin
Q Glutamin
R Arginin S Serin
TThreonin
V Valin
W Tryptophan
Y Tyrosin Tabelle 1 : Erfindungsgemäße MP-Proteine
Tabelle 1: Erfindungsgemäße MP-Proteine
Tabelle 1: Erfindungsgemäße MP-Proteine
Tabelle 1: Erfindungsgemäße MP-Proteine
Tabelle 1: Erfindungsgemäße MP-Proteine
Tabelle 1 : Erfindungsgemäße MP-Proteine
Tabelle 1: Erfindungsgemäße MP-Proteine
Tabelle 1: Erfindungsgemäße MP-Proteine
Tabelle 1 : Erfindungsgemäße MP-Proteine
Tabelle 1: Erfindungsgemäße MP-Proteine
Tabelle 1 : Erfindungsgemäße MP-Proteine
Tabelle 1: Erfindungsgemäße MP-Proteine
Tabelle 2: Ausgenommene MP-Proteine

Claims

Patentansprüche
1. Protein mit der jeweils in Tabellel /Spalte 7 angegebenen Funktion mit einer Aminosäuresequenz, die an mindestens einer der Aminosäurepositionen, die, ausge- hend von der jeweils in Tabelle 1/Spalte2 in Bezug genommenen Aminosäuresequenz, der in Tabelle1/Spalte4 für diese Aminosäuresequenz angegebenen Aminosäurepositionen entsprechen, eine andere proteinogene Aminosäure aufweist als die jeweilige in Tabelle1/Spalte5 in der gleichen Zeile angegebene Aminosäure, mit der Maßgabe, dass die Proteine gemäß Tabelle 2 ausgenommen sind.
2. Protein nach Anspruch 1 , dadurch gekennzeichnet, dass das Protein die jeweils in Tabellel /Spalte2 in Bezug genommenen Aminosäuresequenz aufweist, wobei das Protein an mindestens einer der in Tabelle 1/Spalte4 für diese Aminosäuresequenz angegebenen Aminosäurepositionen eine andere proteinogene Aminosäu- re aufweist als die jeweilige in Tabellel /Spalteδ in der gleichen Zeile angegebene Aminosäure.
3. Protein nach Anspruch 2, dadurch gekennzeichnet, dass das Protein in mindestens einer der in Tabelle 1/Spalte 4 für die Aminosäuresequenz angegebenenen Aminosäureposition die in Tabelle1/Spalte6 in der gleichen Zeile angegebene A- minosäure aufweist.
4. Isolierte Nukleinsäure, kodierend ein Protein gemäß einem der Ansprüche 1 bis 3.
5. Isoliertes Nukleinsäurekonstrukt, enthaltend mindestens eine Nukleinsäure gemäß Anspruch 4.
6. Nukleinsäurekonstrukt gemäß Anspruch 5, enthaltend funktioneil verknüpft einen Promotor und gegebenenfalls einen Terminator.
7. Verfahren zur Herstellung eines nichthumanen, genetisch veränderten Organismus durch Transformation eines nichthumanen Ausgangsorganimus indem man in den Ausgangsorganismus a) mindestens eine Nukleinsäure gemäß Anspruch 4 oder b) mindestens ein Nukleinsäurekonstrukt gemäß Anspruch 5 oder 6 oder c) einen Promotor, der in Bezug auf die endogene Nukleinsäure gemäß Anspruch 4 heterolog ist und der die Expression der endogenen Nukleinsäure gemäß Anspruch 4 im Organismus ermöglicht,
Seq einbringt.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass man dass man die Nukleinsäure gemäß Anspruch 7, Ausführungsform a) oder das Nukleinsäurekon- strukt gemäß Anspruch 7, Ausführungsform b) als replizierendes Plasmid einbringt oder chromosomal integriert.
9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass man den Promotor gemäß Anspruch 7, Ausführungsform c) im Organismus funktionell mit der endo- genen Nukleinsäure gemäß Anspruch 4 verknüpft.
10. Genetisch veränderter Organismus, erhältlich nach einem Verfahren gemäß einem der Ansprüche 7 bis 9.
11. Nichthumaner, genetisch veränderter Organismus, transformiert mit a) mindestens einer Nukleinsäure gemäß Anspruch 4 oder b) mindestens einem Nukleinsäurekonstrukt gemäß Anspruch 5 oder 6 oder c) einem Promotor, der in Bezug auf die endogene Nukleinsäure gemäß An- spruch 4 heterölog ist und der die Expression der endogenen Nukleinsäure gemäß Anspruch 4 im Organismus ermöglicht.
12. Genetisch veränderter Organismus nach Anspruch 10 oder 11 , dadurch gekennzeichnet, dass man als Ausgangsorganismus einen Organismus verwendet, der bereits in der Lage ist eine Feinchemikalie herzustellen.
13. Genetisch veränderter Organismus nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass die Expression der besagten Nukleinsäure zur Modulation der Produktion einer Feinchemikalie aus besagtem Organismus im Vergleich zum Ausgangsorganismus führt.
14. Verfahren zur Herstellung einer Feinchemikalie durch Kultivierung eines genetisch veränderten Organismus gemäß einem der Ansprüche 10 bis 13.
15. Verfahren zur Herstellung einer Feinchemikalie durch
A) Transformation eines nichthumanen Ausgangsorganimus mit a) mindestens einer Nukleinsäure gemäß Anspruch 4 oder b) mindestens einem Nukleinsäurekonstrukt gemäß Anspruch 5 oder 6 oder c) einem Promotor, der in Bezug auf die endogene Nukleinsäure gemäß Anspruch 4 heterolog ist und der die Expression der endogenen Nukleinsäure gemäß Anspruch 4 im Organismus ermöglicht, und
B) Kultivierung des nach Merkmal A) hergestellten genetisch veränderten Organismus.
16. Verfahren nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass man nach dem Kultivieren mindestens eine der Feinchemikalien aus den genetisch veränderten Organismen und/oder dem Kultivierungsmedium isoliert.
17. Verfahren nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, das die genetisch veränderten Organismen Mikroorganismen sind.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass die Mikroorganismen ausgewählt sind aus der Gruppe Bakterien der Gattung Corynebacterium oder Bakterien der Gattung Brevibacterium.
19. Verfahren nach einem der Ansprüche 14 bis 18, dadurch gekennzeichnet, dass die Feinchemikalie eine Aminosäure ist.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass die Aminosäure ausgewählt ist aus der Gruppe L-Lysin, L-Threonin und L-Methionin.
EP04803951A 2003-12-18 2004-12-16 Genvarianten die fur proteine aus dem stoffwechselweg von feinchemikalien kodieren Withdrawn EP1697402A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10359661A DE10359661A1 (de) 2003-12-18 2003-12-18 Genvarianten die für Proteine aus dem Stoffwechselweg von Feinchemikalien codieren
PCT/EP2004/014338 WO2005058945A2 (de) 2003-12-18 2004-12-16 Genvarianten die für proteine aus dem stoffwechselweg von feinchemikalien kodieren

Publications (1)

Publication Number Publication Date
EP1697402A2 true EP1697402A2 (de) 2006-09-06

Family

ID=34683564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04803951A Withdrawn EP1697402A2 (de) 2003-12-18 2004-12-16 Genvarianten die fur proteine aus dem stoffwechselweg von feinchemikalien kodieren

Country Status (16)

Country Link
US (1) US7566557B2 (de)
EP (1) EP1697402A2 (de)
JP (1) JP2008501306A (de)
KR (4) KR101176115B1 (de)
CN (1) CN1898259A (de)
AR (1) AR046953A1 (de)
AU (1) AU2004299259A1 (de)
BR (1) BRPI0417726A (de)
CA (1) CA2547792A1 (de)
DE (1) DE10359661A1 (de)
MX (1) MXPA06006136A (de)
NO (1) NO20062695L (de)
RU (1) RU2006125499A (de)
TW (1) TW200533748A (de)
WO (1) WO2005058945A2 (de)
ZA (1) ZA200605866B (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0708680A2 (pt) * 2006-03-09 2011-06-07 Basf Se processo para produção de beta-lisina, para a produção de beta-amino-epsilon-caprolactama, para a produção de epsilon-caprolactama, e para a produção de ácido epsilon-amino-capróico
DE102007005072A1 (de) 2007-02-01 2008-08-07 Evonik Degussa Gmbh Verfahren zur fermentativen Herstellung von Cadaverin
US20110003963A1 (en) * 2008-02-04 2011-01-06 Basf Se Method for the production of dipicolinate
DE112010004851T5 (de) 2009-12-17 2012-09-20 Basf Se Verfahren und rekombinante Mikroorganismen für die Herstellung von Cadaverin
WO2013093737A1 (en) * 2011-12-22 2013-06-27 Basf Se Processes and recombinant microorganisms for the production of fine chemicals
EP2762571A1 (de) * 2013-01-30 2014-08-06 Evonik Industries AG Mikroorganismus und Verfahren zur fermentativen Herstellung von Aminosäuren
WO2015031504A1 (en) * 2013-08-27 2015-03-05 The Regents Of The University Of California RECOMBINANT PATHWAY AND ORGANISMS FOR MALONYL-CoA SYNTHESIS
CN108314712A (zh) * 2017-01-16 2018-07-24 中国科学院微生物研究所 L-苏氨酸转运蛋白ThrF及其编码基因与应用
KR101915433B1 (ko) 2018-02-13 2018-11-05 씨제이제일제당 (주) 시트레이트 신타아제 (Citrate synthase)의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 L-아미노산 생산방법
KR101947959B1 (ko) 2018-05-28 2019-02-13 씨제이제일제당 (주) 변이형 호모세린 디하이드로게나제 및 이를 이용한 호모세린 또는 호모세린 유래 l-아미노산의 생산 방법
KR101996769B1 (ko) * 2018-12-21 2019-10-01 씨제이제일제당 (주) 변이형 호모세린 디하이드로게나제 및 이를 이용한 호모세린 또는 호모세린 유래 l-아미노산의 생산 방법
CN110218749B (zh) * 2019-05-16 2023-05-12 内蒙古伊品生物科技有限公司 用改变NCgl1859的细菌发酵生产赖氨酸的方法
AU2021384593A1 (en) * 2020-11-20 2023-06-08 Cj Cheiljedang Corporation Microorganism having enhanced l-glutamine producing ability, and l-glutamine producing method using same
KR102527895B1 (ko) * 2021-01-11 2023-04-28 씨제이제일제당 (주) GlxR 단백질 변이체 또는 이를 이용한 쓰레오닌 생산방법
KR102258159B1 (ko) * 2021-01-29 2021-05-27 씨제이제일제당 (주) 신규한 말레이트 디하이드로게나제 변이체 및 이를 이용한 l-라이신 생산 방법
CN112877271B (zh) * 2021-02-05 2023-03-14 江西师范大学 一种提高钝齿棒杆菌厌氧发酵产l-精氨酸的方法
CN116926102A (zh) * 2023-07-19 2023-10-24 天津大学 抑制谷氨酸棒杆菌中全局转录调控因子基因glxR的表达生产5-ALA的方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649119A (en) * 1983-04-28 1987-03-10 Massachusetts Institute Of Technology Cloning systems for corynebacterium
DE122007000007I2 (de) 1986-04-09 2010-12-30 Genzyme Corp Genetisch transformierte Tiere, die ein gewünschtes Protein in Milch absondern
US4873316A (en) * 1987-06-23 1989-10-10 Biogen, Inc. Isolation of exogenous recombinant proteins from the milk of transgenic mammals
DE4120867A1 (de) 1991-06-25 1993-01-07 Agfa Gevaert Ag Fotografisches verarbeitungsverfahren und vorrichtung dafuer
EP0693558B1 (de) * 1994-07-19 2002-12-04 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Trehalose, ihre Herstellung und ihre Verwendung
KR100671785B1 (ko) 1999-04-19 2007-01-19 교와 핫꼬 고교 가부시끼가이샤 신규한 탈감작형 아스파르토키나아제
KR100878334B1 (ko) 1999-06-25 2009-01-14 백광산업 주식회사 대사 경로 단백질을 코딩하는 코리네박테리움 글루타미쿰유전자
US20030049804A1 (en) * 1999-06-25 2003-03-13 Markus Pompejus Corynebacterium glutamicum genes encoding metabolic pathway proteins
US7270984B1 (en) * 1999-06-25 2007-09-18 Basf Aktiengesellschaft Polynucleotides encoding a 6-phosphogluconolactonase polypeptide from corynebacterium glutamicum
US6822084B1 (en) * 1999-06-25 2004-11-23 Basf Aktiengesellschaft Corynebacterium glutamicum genes encoding stress, resistance and tolerance proteins
US7892798B2 (en) * 1999-06-25 2011-02-22 Evonik Degussa Gmbh Nucleic acid molecules encoding metabolic regulatory proteins from Corynebacterium glutamicum, useful for increasing the production of methionone by a microorganism
US20050153402A1 (en) * 1999-06-25 2005-07-14 Basf Ag Corynebacterium glutamicum genes encoding regulatory proteins
JP4623825B2 (ja) 1999-12-16 2011-02-02 協和発酵バイオ株式会社 新規ポリヌクレオチド
DE20019546U1 (de) * 2000-11-17 2002-03-28 GKN Automotive GmbH, 53797 Lohmar Abdichtungsanordnung
DE10128510A1 (de) 2001-06-13 2002-12-19 Degussa Methode zur Fermentationskontrolle
DE10154292A1 (de) * 2001-11-05 2003-05-15 Basf Ag Gene die für Stoffwechselweg-Proteine codieren
DE10154180A1 (de) 2001-11-05 2003-05-15 Basf Ag gene die für genetische Stabilitäts-, genexpressions-und Faltungsproteine codieren
DE10154175A1 (de) 2001-11-05 2003-05-15 Basf Ag Gene die für Homeostase-und Adaptions-Proteine codieren
DE10154270A1 (de) 2001-11-05 2003-05-15 Basf Ag Gene die für Kohlenstoffmetabolismus- und Energieproduktion-Proteine codieren
DE10154177A1 (de) 2001-11-05 2003-05-08 Basf Ag Gene die für neue Proteine codieren
DE10154181A1 (de) 2001-11-05 2003-05-15 Basf Ag Gene die für Stressresistenz-und Toleranz-Proteine codieren
DE10154245A1 (de) 2001-11-05 2003-06-05 Basf Ag Gene die für regulatorische Proteine codieren
DE10154246A1 (de) * 2001-11-05 2003-05-08 Basf Ag Gene die für DNA-Replikations-und Pathogenese-Proteine codieren
DE10154276A1 (de) 2001-11-05 2003-05-15 Basf Ag Gene die für Phosphoenolpyruvat-Zucker-phosphotransferase Proteine codieren
DE10154179A1 (de) 2001-11-05 2003-05-08 Basf Ag Gene die für membeansynthese-und Membrantransport-Proteine codieren
DE10155505A1 (de) * 2001-11-13 2003-05-22 Basf Ag Gene die für Glucose-6-Phosphat-Dehydrogenase Proteine codieren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005058945A2 *

Also Published As

Publication number Publication date
KR20110063873A (ko) 2011-06-14
KR20110066981A (ko) 2011-06-17
WO2005058945A3 (de) 2005-10-20
ZA200605866B (en) 2008-06-25
KR20110066982A (ko) 2011-06-17
KR20070029646A (ko) 2007-03-14
KR101167853B1 (ko) 2012-07-25
AU2004299259A1 (en) 2005-06-30
RU2006125499A (ru) 2008-01-27
KR101176115B1 (ko) 2012-08-22
MXPA06006136A (es) 2006-08-11
JP2008501306A (ja) 2008-01-24
BRPI0417726A (pt) 2007-04-03
KR101176116B1 (ko) 2012-08-22
KR101176493B1 (ko) 2012-08-22
AR046953A1 (es) 2006-01-04
NO20062695L (no) 2006-09-12
CN1898259A (zh) 2007-01-17
US7566557B2 (en) 2009-07-28
WO2005058945A2 (de) 2005-06-30
DE10359661A1 (de) 2005-07-28
US20070122887A1 (en) 2007-05-31
TW200533748A (en) 2005-10-16
CA2547792A1 (en) 2005-06-30

Similar Documents

Publication Publication Date Title
EP1697525A2 (de) P ef-tu-expressionseinheiten
EP1697526A1 (de) Psod-expressionseinheiten
EP1697402A2 (de) Genvarianten die fur proteine aus dem stoffwechselweg von feinchemikalien kodieren
WO2003040681A2 (de) Gene die für stoffwechselweg-proteine codieren
EP1444257A2 (de) Gene die für regulatorische proteine codieren
DE10154177A1 (de) Gene die für neue Proteine codieren
EP1693380B1 (de) Nukleinsäuresequenz, die für das OPCA Gen kodiert
EP1911846B1 (de) Gene die für Glucose-6-Phosphat-Dehydrogenase Proteine codieren
EP1697524A1 (de) Pgro-expressionseinheiten
DE10154175A1 (de) Gene die für Homeostase-und Adaptions-Proteine codieren
EP1444351B1 (de) Gene, die fuer kohlenstoffmetabolismus- und energieproduktions-proteine codieren
DE10154181A1 (de) Gene die für Stressresistenz-und Toleranz-Proteine codieren
DE10154246A1 (de) Gene die für DNA-Replikations-und Pathogenese-Proteine codieren
EP1456232A2 (de) Gene die für membransynthese- und membrantransport-proteine codieren
EP1444334A2 (de) Gene, die für phosphoenolpyruvat-zucker-phosphotransferase proteine codieren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060718

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17Q First examination report despatched

Effective date: 20070511

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PAIK KWANG INDUSTRIAL CO., LTD.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091112