EP1678095A1 - Substrat, notamment substrat verrier, portant au moins un empilement couche a propriete photocatalytique / sous-couche de croissance heteroepitaxiale de ladite couche - Google Patents

Substrat, notamment substrat verrier, portant au moins un empilement couche a propriete photocatalytique / sous-couche de croissance heteroepitaxiale de ladite couche

Info

Publication number
EP1678095A1
EP1678095A1 EP04805775A EP04805775A EP1678095A1 EP 1678095 A1 EP1678095 A1 EP 1678095A1 EP 04805775 A EP04805775 A EP 04805775A EP 04805775 A EP04805775 A EP 04805775A EP 1678095 A1 EP1678095 A1 EP 1678095A1
Authority
EP
European Patent Office
Prior art keywords
layer
glass
ati0
sublayer
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04805775A
Other languages
German (de)
English (en)
French (fr)
Inventor
Laurent Labrousse
Nicolas Nadaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP1678095A1 publication Critical patent/EP1678095A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/48Coating with two or more coatings having different compositions
    • C03C25/52Coatings containing inorganic materials only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings

Definitions

  • the present invention relates to substrates such as substrates made of glass, glass-ceramic material or plastic which have been provided with a coating with photocatalytic property to give them a so-called anti-soiling or self-cleaning function.
  • An important application of these substrates relates to glazing, which can be of very diverse applications, from utility glazing to glazing used in household appliances, glazing for vehicles to glazing for buildings. It also applies to reflective glazing of the mirror type (home mirror or vehicle rear view mirror) and opaque glazing of the light type.
  • the invention also applies, similarly, to non-transparent substrates, such as ceramic substrates or any other substrate which can in particular be used as an architectural material (metal, tiles, etc.). It preferably applies, whatever the nature of the substrate, to substantially planar or slightly curved substrates.
  • Photocatalytic coatings have already been studied, in particular those based on titanium oxide crystallized in anatase form. Their ability to degrade dirt of organic origin or microorganisms under the effect of UV radiation is very interesting. They also often have a hydrophilic nature, which allows the evacuation of mineral soiling by spraying water or, for exterior glazing, by rain. This type of coating with anti-fouling, bactericidal and algicidal properties has already been described, in particular in patent WO 97/10186, which describes several methods of obtaining it. To exercise its anti-fouling function
  • Ti0 2 must be at least partially crystallized in the atanase structure. Otherwise Ti0 2 is not functional and requires heat treatment after deposition in order to acquire the crystallographic structure which makes it effective. Thus, since Ti0 2 is deposited by a gas phase pyrolysis technique (CVD type) involving a high temperature, it spontaneously has the right structure. If it is deposited cold (room temperature), in particular by a vacuum deposition technique, it becomes functional only after a suitable heat treatment.
  • CVD type gas phase pyrolysis technique
  • the present invention aims to provide a solution for obtaining the good state of Ti0 2 without necessarily calling for a heating step.
  • the present invention therefore firstly relates to a structure comprising a substrate carrying, on at least part of its surface, a layer with photocatalytic property, anti-fouling, based on titanium dioxide (Ti0 2 ) at least in part crystallized in its anatase form, characterized in that it comprises, immediately below at least one layer of Ti0 2 , an under-layer (SC) having a crystallographic structure having enabled assistance to crystallization by heteroepitaxial growth in the anatase form of the upper layer based on Ti0 2 , the photocatalytic property having been acquired without any heating step.
  • Ti0 2 titanium dioxide
  • SC under-layer
  • sublayer (SC) is in particular based on a compound crystallized in a cubic or tetragonal system and having a mesh whose dimension is that of Ti0 2 crystallized in anatase form to within 8%, in particular to within 6% .
  • the sublayer (SC) consists of ATi0 3 , A denoting barium or strontium.
  • the thickness of the underlay (SC) is not critical. Mention may in particular be made of values between 10 and 100 nm for this thickness.
  • the substrate consists, for example, of a plate, flat or with curved or curved faces, of monolithic or laminated glass, of glass-ceramic material or of a hard thermoplastic material, such as polycarbonate, or also of glass fibers or glass-ceramic, said plates or said fibers having, where appropriate, received at least one other layer functional before the application of the sublayer (SC) (in the case of more than one layer, we can also speak of stacking of layers).
  • SC sublayer
  • the applications of the plates have been mentioned above.
  • fibers mention may be made of their application to the filtration of air or water, as well as bactericidal applications.
  • At least one functional layer underlying the sublayer (SC) can be a layer which forms a barrier to the migration of alkalis from the glass or ceramic glass material. Such migration may result from the application of temperatures in excess of 600 C C.
  • layers forming alkali-barrier are known, and there may be mentioned layers of Si0 2, SiOC, SiO x Ny, thickness of e.g. 'at least 50 will, as described in international PCT application WO 02/24971.
  • At least one functional layer underlying the sublayer (SC) can be an optically functional layer (advantageously for adjusting the optics in reflection), a thermal control layer or a conductive layer.
  • the layers with optical functionality are in particular anti-reflection layers, light radiation filtration, coloring, diffusing, etc. Mention may be made of the layers of Si0 2 , Si 3 N, Ti0 2 amorphous or crystallized and photocatalytic, Sn0 2 , ZnO.
  • the thermal control layers are in particular the solar control layers, or the so-called low-emissivity layers.
  • the conductive layers are in particular the heating, antenna or anti-static layers, among these layers, one can count the networks of conductive wires.
  • substrates made of glass or glass-ceramic material in particular of plate type, having received a layer forming a barrier to the migration of alkalis from glass or glass-ceramic material, then a mono-, bi- or three-layer with optical functionality.
  • the Ti0 2- based layer consists of
  • the Ti0 2 layer was deposited at room temperature by sputtering under vacuum, if necessary assisted by magnetic field (magnetron) and / or ion beam; - the sublayer (SC) was deposited at room temperature by cathodic sputtering under vacuum, if necessary assisted by magnetic field and / or ion beam; ATi0 3 was deposited at room temperature by cathode sputtering under vacuum, if necessary assisted by magnetic field and / or ion beam, " with the use of ceramic targets chosen from ATi0 3 , ATi0 3 _ x with 0 ⁇ x ⁇ 3 , and ATi; the power supply being a radiofrequency power supply and the atmosphere of the sputtering enclosure containing only argon when ATi0 3 is used as target; the power supply being a power supply direct or alternating current and the reactive atmosphere of the sputtering enclosure containing oxygen and argon in the case of the use of ATi or ATi0 3 - x as target; the layer
  • the layer of Ti0 2 can be coated with at least one over-layer of a material which does not disturb the anti-fouling function of the layer of Ti0 2 , such as Si0 2 .
  • the layers intended to be in contact with the atmosphere in the finished structure are, depending on the case, hydrophilic or hydrophobic layers.
  • the present invention also relates to the application of ATi0 3 to the constitution of an assisting layer for crystallization in the anatase form by heteroepitaxial growth of an upper layer based on optionally doped Ti0 2 , A denoting barium or strontium.
  • the present invention also relates to a method of manufacturing a structure as defined above, characterized in that one deposits on a substrate of glass or glass-ceramic material or hard plastic material of polycarbonate type, plate type, or on glass or glass-ceramic fibers, an ATi0 3 sublayer, A representing barium or strontium, then a layer of Ti0 2 possibly doped, at least one overlay of a material which does not disturb not the anti-fouling function of the Ti0 2 layer which can then be deposited if necessary on the latter.
  • the deposition of the ATi0 sublayer (SC) and that of the Ti0 2 layer can be carried out successively at room temperature by sputtering, under vacuum, if necessary assisted by magnetic field and / or ion beam, in the same enclosure, the targets used for the deposition of said sublayer being chosen from ATi0 3 , ATi0 3 - x with 0 ⁇ x ⁇ 3, and ATi, the supply being a radiofrequency supply and the atmosphere of the sputtering enclosure containing only argon when using ATi0 3 as a target; the power supply being a DC or AC power supply and the reactive atmosphere of the sputtering enclosure containing oxygen and argon, in the case of the use of ATi or ATi0 3 - x as target; and the target used for the deposition of Ti0 2 being Ti or TiO x , 0 ⁇ x ⁇ 2.
  • the pressure can be between 10 "1 and 2.5 Pa.
  • the supply is generally a direct current or alternating current supply, and the pressure is advantageously of the order of 1-3 Pa.
  • the coating of a substrate is made of glass or glass-ceramic material
  • SC undercoat
  • deposit on the substrate at least one layer forming a barrier to the migration of alkalis present in the glass or glass-ceramic material an annealing or quenching which can then be made after the filing of the co uche of Ti0 2 and, where appropriate, of the overcoat (s) at a temperature between 250 ° C. and 550 ° C., preferably between 350 ° C. and 500 ° C. for annealing, and at a temperature of at least 600 ° C for quenching.
  • the quenching or annealing operations can be carried out in cases where it is desired to improve the activity of the Ti0 2 layer.
  • Such layers can be deposited by sputtering, optionally assisted by magnetic field, from known targets (for example Si: Al in the case of a layer of Si0 2 doped aluminum), advantageously in pulsed mode, AC (alternating current) or DC (direct current), under a pressure of 10 "1 to 1 Pa, and under argon and oxygen gas.
  • targets for example Si: Al in the case of a layer of Si0 2 doped aluminum
  • AC alternating current
  • DC direct current
  • the present invention also relates to a single or multiple glazing unit comprising respectively one or more of a structure as defined above, the anti-fouling layer based on Ti0 2 and its associated undercoat (SC) being present on at least one of its external faces, the faces not having the anti-fouling layer based on Ti0 2 and its associated undercoat which may comprise at least ins another functional layer.
  • These functional layers can be chosen from those described above.
  • Such glazing finds its application as "self-cleaning" glazing, in particular anti-fogging, anti-condensation and anti-fouling, in particular glazing for the building of the double-glazing type, glazing for vehicle of the windshield type, rear window, side windows automotive, rear view mirror, glazing for train, plane, boat, utility glazing like aquarium glass, display case, greenhouse, interior furniture, street furniture (bus shelters, advertising panel %), mirror, display system computer, television, telephone, electrically controllable glazing such as electrochromic, liquid crystal, electroluminescent, photovoltaic glazing.
  • the following examples illustrate the present invention without, however, limiting its scope.
  • Example 1 (of the invention): Stacking - glass / Si0 2 / BaTi0 3 / Ti0 2
  • the following successive layers were deposited on a glass plate 4 mm thick: - a layer of Si0 2 150 nm thick; - a layer of BaTi0 3 10 nm thick; and - a layer of Ti0 2 100 nm thick.
  • the three above layers of Si0 2 , BaTi0 3 and Ti0 2 were deposited by sputtering assisted by magnetic field (magnetron) under the following respective conditions: layer of Si0 2 from a target Si: Al, with a supply in pulsed mode (frequency of polarity change of 30 kHz) under a pressure of 2 x 10 "3 mbar (0.2 Pa), a power of 2000 W, and 15 sccm of Ar and 15 sccm of 0 2 ; layer of BaTi0 3 from a target of BaTi0 3 , with a radio frequency supply, under a pressure of 4.4 x 10 "3 mbar (0.44 Pa), a power of 350 W, and 50 sccm d 'argon; Ti0 2 layer deposited from a TiO x target, with a DC power supply, under a pressure of 24 x 10 ⁇ 3 mbar (2.4 Pa), a power of 2000 W, 200 sccm of Ar and 2 sccm
  • Example 3 (comparative): Glass stack / SiQ 2 / TiQ 2
  • the above stack was made under the same conditions as in Example 1, except that the layer of BaTi0 3 was not deposited.
  • the photocatalytic activity of the layer of Ti0 2 of each of the stacks of Examples 1 to 3 was evaluated, as well as of the layer of Ti0 2 of a stack sold by the Company Saint-Gobain Glass France under the brand “Bioclean TM ”, The evaluation having been made without annealing, and after annealing carried out under the following conditions: rise in the ambient temperature to 500 ° C. at a speed of 5 ° C / min, 2 hours at 500 ° C., natural cooling.
  • the evaluation test is the photodegradation test of stearic acid followed by infrared transmission, described in international PCT application WO 00/75087. The results are collated in Table I.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Surface Treatment Of Glass (AREA)
  • Catalysts (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Finishing Walls (AREA)
EP04805775A 2003-10-23 2004-10-22 Substrat, notamment substrat verrier, portant au moins un empilement couche a propriete photocatalytique / sous-couche de croissance heteroepitaxiale de ladite couche Withdrawn EP1678095A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0350729A FR2861385B1 (fr) 2003-10-23 2003-10-23 Substrat, notamment substrat verrier, portant au moins un empilement couche a propriete photocatalytique sous couche de croissance heteroepitaxiale de ladite couche
PCT/FR2004/050532 WO2005040058A1 (fr) 2003-10-23 2004-10-22 Substrat, notamment substrat verrier, portant au moins un empilement couche a propriete photocatalytique / sous-couche de croissance heteroepitaxiale de ladite couche

Publications (1)

Publication Number Publication Date
EP1678095A1 true EP1678095A1 (fr) 2006-07-12

Family

ID=34400921

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04805775A Withdrawn EP1678095A1 (fr) 2003-10-23 2004-10-22 Substrat, notamment substrat verrier, portant au moins un empilement couche a propriete photocatalytique / sous-couche de croissance heteroepitaxiale de ladite couche

Country Status (8)

Country Link
US (1) US7737080B2 (zh)
EP (1) EP1678095A1 (zh)
JP (1) JP5290519B2 (zh)
KR (1) KR101131532B1 (zh)
CN (1) CN1898173B (zh)
CA (1) CA2543075C (zh)
FR (1) FR2861385B1 (zh)
WO (1) WO2005040058A1 (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2861386B1 (fr) * 2003-10-23 2006-02-17 Saint Gobain Substrat, notamment substrat verrier, portant une couche a propriete photocatalytique revetue d'une couche mince protectrice.
FR2868770B1 (fr) * 2004-04-09 2006-06-02 Saint Gobain Substrat, notamment substrat verrier, portant une couche a propriete photocatalytique modifiee pour pouvoir absorber des photons du visible
EP1773729B1 (en) 2004-07-12 2007-11-07 Cardinal CG Company Low-maintenance coatings
US7923114B2 (en) 2004-12-03 2011-04-12 Cardinal Cg Company Hydrophilic coatings, methods for depositing hydrophilic coatings, and improved deposition technology for thin films
US8092660B2 (en) 2004-12-03 2012-01-10 Cardinal Cg Company Methods and equipment for depositing hydrophilic coatings, and deposition technologies for thin films
FR2892409B1 (fr) * 2005-10-25 2007-12-14 Saint Gobain Procede de traitement d'un substrat
CN101466649B (zh) * 2006-04-11 2013-12-11 卡迪奈尔镀膜玻璃公司 具有低维护性能的光催化涂层
US7989094B2 (en) 2006-04-19 2011-08-02 Cardinal Cg Company Opposed functional coatings having comparable single surface reflectances
US20080011599A1 (en) 2006-07-12 2008-01-17 Brabender Dennis M Sputtering apparatus including novel target mounting and/or control
US8003562B2 (en) 2006-09-27 2011-08-23 Ube Industries, Ltd. Silica base composite photocatalyst and process for producing the same
FR2911130B1 (fr) 2007-01-05 2009-11-27 Saint Gobain Procede de depot de couche mince et produit obtenu
JP2008221088A (ja) * 2007-03-09 2008-09-25 Yokohama National Univ 酸化物触媒及びそれを用いた気体中の有機物成分の分解方法
KR101563197B1 (ko) 2007-09-14 2015-10-26 카디날 씨지 컴퍼니 관리 용이한 코팅 및 이의 제조방법
DE202008018513U1 (de) 2008-01-04 2014-10-31 Saint-Gobain Glass France Dispositif
FR2929938B1 (fr) 2008-04-11 2010-05-07 Saint Gobain Procede de depot de couche mince.
JP2010082601A (ja) * 2008-10-02 2010-04-15 Mitsubishi Plastics Inc 帯電防止機能を付与した光触媒基材及びその製造方法
FR2948037B1 (fr) 2009-07-17 2012-12-28 Saint Gobain Materiau photocatalytique
FR2949774B1 (fr) 2009-09-08 2011-08-26 Saint Gobain Materiau comprenant un substrat en verre revetu d'un empilement de couches minces
FR2950878B1 (fr) 2009-10-01 2011-10-21 Saint Gobain Procede de depot de couche mince
FR2963342B1 (fr) 2010-07-27 2012-08-03 Saint Gobain Procede d'obtention d'un materiau comprenant un substrat muni d'un revetement
FR2971519A1 (fr) 2011-02-16 2012-08-17 Saint Gobain Procede d’obtention d’un materiau photocatalytique
BE1020717A3 (fr) * 2012-06-19 2014-04-01 Agc Glass Europe Toit de vehicule.
FR3021967B1 (fr) 2014-06-06 2021-04-23 Saint Gobain Procede d'obtention d'un substrat revetu d'une couche fonctionnelle
KR101628036B1 (ko) 2014-09-03 2016-06-08 고려대학교 산학협력단 광촉매 특성 및 자외선 차단 효과를 가지는 결정화유리 및 이의 제조방법
CN105648414B (zh) * 2016-03-05 2018-10-30 无锡南理工科技发展有限公司 一种采用磁控溅射法制备含氮二氧化钛薄膜的方法
JP2018035005A (ja) * 2016-08-29 2018-03-08 日本電気硝子株式会社 誘電体多層膜付きガラス板の製造方法及び誘電体多層膜付きガラス板
US10604442B2 (en) 2016-11-17 2020-03-31 Cardinal Cg Company Static-dissipative coating technology
CN107986381B (zh) * 2017-12-02 2021-07-09 深圳天泽环保科技有限公司 一种共掺杂的TiO2光催化剂降解废水的工艺
CN109881155B (zh) * 2019-03-04 2021-04-20 南京工业大学 智能选择性太阳光透过与反射涂层及其制备方法
JP7176096B2 (ja) 2019-03-11 2022-11-21 日本碍子株式会社 触媒部材及び反応器
EP3828304A1 (en) 2019-11-29 2021-06-02 Saint-Gobain Glass France Thin layer deposition process
FR3105211B1 (fr) 2019-12-18 2021-12-31 Saint Gobain Vitrage photocatalytique comprenant une couche à base de nitrure de titane

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225031A (en) * 1991-04-10 1993-07-06 Martin Marietta Energy Systems, Inc. Process for depositing an oxide epitaxially onto a silicon substrate and structures prepared with the process
FR2738813B1 (fr) 1995-09-15 1997-10-17 Saint Gobain Vitrage Substrat a revetement photo-catalytique
US20030039843A1 (en) * 1997-03-14 2003-02-27 Christopher Johnson Photoactive coating, coated article, and method of making same
KR100291482B1 (ko) * 1997-06-24 2001-06-01 시부키 유키오 이산화티탄 결정배향막을 갖는 재료 및 그 제조방법
WO2000018504A1 (fr) * 1998-09-30 2000-04-06 Nippon Sheet Glass Co., Ltd. Article photocatalyseur, article protege contre l'encrassement et le voilement, et procede de production d'un article protege contre l'encrassement et le voilement
JP3904355B2 (ja) * 1998-12-03 2007-04-11 日本板硝子株式会社 親水性光触媒部材
FR2793889B1 (fr) * 1999-05-20 2002-06-28 Saint Gobain Vitrage Substrat transparent a revetement anti-reflets
JP3548794B2 (ja) * 1999-12-02 2004-07-28 独立行政法人物質・材料研究機構 親水化した酸化物固体表面の高速疎水化方法
JP4565170B2 (ja) * 2000-05-31 2010-10-20 独立行政法人 日本原子力研究開発機構 アナターゼ型TiO2単結晶薄膜の作製方法
JP2001347162A (ja) * 2000-06-07 2001-12-18 Sharp Corp 酸化チタン薄膜を有する光触媒材
JP4761013B2 (ja) * 2000-08-17 2011-08-31 独立行政法人 日本原子力研究開発機構 シリコン単結晶基板上にアナターゼ型の二酸化チタン結晶配向膜を作製する方法
US6677063B2 (en) 2000-08-31 2004-01-13 Ppg Industries Ohio, Inc. Methods of obtaining photoactive coatings and/or anatase crystalline phase of titanium oxides and articles made thereby
FR2814094B1 (fr) * 2000-09-20 2003-08-15 Saint Gobain Substrat a revetement photocatalytique et son procede de fabrication
FR2818272B1 (fr) * 2000-12-15 2003-08-29 Saint Gobain Vitrage muni d'un empilement de couches minces pour la protection solaire et/ou l'isolation thermique
FR2827855B1 (fr) * 2001-07-25 2004-07-02 Saint Gobain Vitrage muni d'un empilement de couches minces reflechissant les infrarouges et/ou le rayonnement solaire
CN1139424C (zh) * 2002-11-13 2004-02-25 武汉理工大学 高吸附性光催化剂及载体材料
CN1228267C (zh) * 2002-11-26 2005-11-23 复旦大学 一种纳米二氧化钛自清洁玻璃的低温制备方法
JP2005007295A (ja) * 2003-06-19 2005-01-13 Nippon Sheet Glass Co Ltd 吸着固定用チップおよび該チップへ化合物を吸着固定する方法
FR2861386B1 (fr) * 2003-10-23 2006-02-17 Saint Gobain Substrat, notamment substrat verrier, portant une couche a propriete photocatalytique revetue d'une couche mince protectrice.

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HSIEH C C ET AL: "Monophasic TiO2 films deposited on SrTiO3(100) by pulsed laser ablation", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 92, no. 5, 1 September 2002 (2002-09-01), pages 2518 - 2523, XP012057150, ISSN: 0021-8979 *
See also references of WO2005040058A1 *

Also Published As

Publication number Publication date
CN1898173A (zh) 2007-01-17
US7737080B2 (en) 2010-06-15
JP5290519B2 (ja) 2013-09-18
FR2861385A1 (fr) 2005-04-29
JP2007508933A (ja) 2007-04-12
CA2543075C (fr) 2013-05-28
US20070129248A1 (en) 2007-06-07
KR101131532B1 (ko) 2012-04-04
WO2005040058A1 (fr) 2005-05-06
FR2861385B1 (fr) 2006-02-17
KR20060090830A (ko) 2006-08-16
CA2543075A1 (fr) 2005-05-06
CN1898173B (zh) 2012-11-14

Similar Documents

Publication Publication Date Title
CA2543075C (fr) Substrat, notamment substrat verrier, portant au moins un empilement couche a propriete photocatalytique / sous-couche de croissance heteroepitaxiale de ladite couche
EP1678093B1 (fr) Substrat, notamment substrat verrier, portant une couche a propriete photocatalytique revetue d une couche mince protectrice
US6677063B2 (en) Methods of obtaining photoactive coatings and/or anatase crystalline phase of titanium oxides and articles made thereby
JP4460537B2 (ja) 光触媒部材
EP1748965B1 (fr) Substrat, notamment substrat verrier, portant une couche a propriete photocatalytique modifiee pour pouvoir absorber des photons du visible
US20080124460A1 (en) Methods of obtaining photoactive coatings and/or anatase crystalline phase of titanium oxides and articles made thereby
MXPA06000868A (es) Metodo para preparar un recubrimiento fotocatalitico integrado en tratamiento termico de encristalado.
WO2021123618A1 (fr) Vitrage photocatalytique comprenant une couche a base de nitrure de titane

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060523

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: LABROUSSE, LAURENT

Inventor name: NADAUD, NICOLAS

17Q First examination report despatched

Effective date: 20070212

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160803