EP1661157A2 - Verfahren und vorrichtung zum kontaktieren von halbleiterchips auf einem metallischen substrat - Google Patents

Verfahren und vorrichtung zum kontaktieren von halbleiterchips auf einem metallischen substrat

Info

Publication number
EP1661157A2
EP1661157A2 EP04762724A EP04762724A EP1661157A2 EP 1661157 A2 EP1661157 A2 EP 1661157A2 EP 04762724 A EP04762724 A EP 04762724A EP 04762724 A EP04762724 A EP 04762724A EP 1661157 A2 EP1661157 A2 EP 1661157A2
Authority
EP
European Patent Office
Prior art keywords
chip
contacting
substrate
resist
chips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04762724A
Other languages
English (en)
French (fr)
Inventor
Martin Michalk
Manfred Michalk
Sabine Nieland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Assa Abloy AB
Original Assignee
Assa Abloy Identification Technology Austria GmbH
Assa Abloy Identification Technology Group AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Assa Abloy Identification Technology Austria GmbH, Assa Abloy Identification Technology Group AB filed Critical Assa Abloy Identification Technology Austria GmbH
Publication of EP1661157A2 publication Critical patent/EP1661157A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49855Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers for flat-cards, e.g. credit cards
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68318Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68354Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27011Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature
    • H01L2224/27013Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature for holding or confining the layer connector, e.g. solder flow barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/83051Forming additional members, e.g. dam structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83102Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus using surface energy, e.g. capillary forces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/83951Forming additional members, e.g. for reinforcing, fillet sealant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01061Promethium [Pm]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15151Shape the die mounting substrate comprising an aperture, e.g. for underfilling, outgassing, window type wire connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18161Exposing the passive side of the semiconductor or solid-state body of a flip chip
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/17Surface bonding means and/or assemblymeans with work feeding or handling means
    • Y10T156/1702For plural parts or plural areas of single part

Definitions

  • the invention relates to a method and a device for contacting semiconductor chips on a metallic substrate, on which there is a resist at least on one side and on the contacting side of which semiconductor chips are contacted by means of a flip-chip bond method, and a carrier strip.
  • the chip bond method or the so-called flip chip bond method is usually used for contacting semiconductor chips on a substrate.
  • the methods described below are common.
  • the chip carrier is placed in the predetermined area of a bonding device, and a semiconductor chip is positioned in an exactly predetermined position in the bonding device.
  • the adhesive is then applied in a predetermined amount to the chip carrier.
  • the semiconductor chip is removed from the predetermined position in the bonding device; depending on the feed of the semiconductor chips used, the chip can be removed from a gel pack, from a blister belt, from a waffle pack or from the cut and slightly expanded wafer dressing or from a subsequent centering station. Then the semiconductor chip is set down and lightly pressed onto or into the adhesive bed of the chip carrier.
  • the adhesive is not on the Chip carrier applied, but the chip back of the chip held on the active side with a special suction tool is coated with adhesive by means of a dipping process (brief immersion in a supply of adhesive) and then placed on the chip carrier. Regardless of which adhesive application method was selected, the adhesive is then always hardened using a predetermined temperature-time process in a subsequent station.
  • Withdrawal upwards shows, rotated 180 ° downwards.
  • the position and the orientation of the chip are usually repeated.
  • the intended adhesive is applied to the precisely positioned circuit as adhesive paste or adhesive film, or the flipped chip is dipped with its active side into a provided adhesive. Then the chip is placed with the active side on the circuit carrier, so that the contact bumps of the chip lie on the intended contact surfaces of the chip-receiving circuit.
  • a predetermined pressure must always be exerted on the chip during the entire subsequent adhesive hardening process, so that the contact bumps of the chip are constantly in press contact, sometimes.
  • About elastic, electrically conductive fillers of the adhesive remain with the contact surfaces of the circuit and the press contact is converted into a permanent electrical contact (frozen) by the hardened adhesive. Soldering processes are also common.
  • JP 03-94 430 A a method is known of contacting semiconductor chips on an unstructured carrier plate, bonding with micro wire, encapsulation with plastic, and then a resist film on the back of the Bring carrier plate and generate the final, electrically isolated support structures of the module by free etching.
  • JP 04-53 237 A the method is expanded in such a way that a structured metal resist film is already present on both sides of the carrier plate before contacting and only the free etching takes place after the encapsulation of the chip and the micro wires.
  • a disadvantage of these methods is that encapsulation of the chip is required. individual chip failures due to simultaneous or collective chip bonding cannot be taken into account and lead to contact rejects. Likewise, the crosslinking of the encapsulation material on the relatively smooth carrier material is not sufficient in the case of thermomechanical loads on the finished module.
  • Frame area the chip contacting, the micro wire contacting and the plastic encapsulation.
  • the missing recesses are then made in the unstructured frame part, so that the intended parts of the lead frame which are insulated from one another are produced.
  • the method roughly corresponds to the methods already mentioned with the further disadvantage that, in the proposed structure separation by means of a laser beam, the module area heats up to an unacceptable extent and the semiconductor chip can be damaged.
  • a method is known in which bumps are generated on a carrier frame by deep etching, which serve for direct chip capitalization in the chip-and-wire method.
  • the space under the chip and along the chip periphery is filled with casting resin, which shrinks (in the case of flip-chip contacting) the chip or the
  • Chippads pulls against the humps and contacts.
  • Disadvantages are the complex manufacture of the carrier frame, the necessity of temporarily fixing the frame to adhesive film and the complex adjustment processes when contacting the chip on the bumps.
  • the method specified in US 63 39 261 B1 is suitable for the production of flat module arrangements by the method of chip-and-wire bonding, the outer wire contacts being contacted to special, implementation-like contact elements.
  • the method is not suitable for producing very flat flip-chip modules.
  • This process requires an extremely exact chip positioning on the carrier frame and is therefore for a positional error and / or collective
  • Chip contacting according to the flip chip method is not suitable.
  • Structuring only takes place after contacting the back of the metal strip by laser trimming or mechanical removal.
  • the strong thermo-mechanical stress on the semiconductor chip during the structuring process is very disadvantageous.
  • Adhesive reducing adhesive the respective chip is heated by the heated chip pick-up tool.
  • the residual adhesive force and the vacuum located between the chip and the adhesive exert forces on the chip that can be greater than the force acting on the chip due to the vacuum of the chip pick-up tool. This can impair or prevent removal of the chips from the wafer assembly.
  • the invention has for its object to provide a method and an apparatus that enable the productivity of the chip bond and the increase the upstream and downstream work steps associated with chip bonding.
  • the object is achieved with a method which has the features specified in claim 1 and with a carrier strip which has the in
  • Claim 13 contains specified features, solved.
  • a chip placement device suitable for the method is specified in claim 22.
  • the solution according to the invention uses a thin, metallic substrate, preferably a metal foil consisting of copper-containing material and having a thickness of ⁇ 100 ⁇ m, which is coated on both sides with a metal resist which is optimal
  • Tin, gold, silver and alloys consisting of these metals are suitable as metal resist.
  • Metal foils can consist of different metals. Its thickness is preferably 1 ... 2 ⁇ m.
  • the resist-coated metal foil is preferably filled out as a tape on which the structures of the future connections or contacting zones of the module are to be produced in parallel and in the tape direction.
  • the resist layers are preferably patterned on the contacting side, patterning being understood to mean the removal of the resist in the region of the future etching zones or etching lines.
  • the size of the chip contacting zone is equal to or larger than the chip area plus all expected misalignments of the chip, provided that the chip contacting is carried out without optoelectronic and / or mechanical position corrections.
  • the etch resist is further along the intended outer limits of the
  • textured lines that run perpendicular to the band edge can also be introduced into the etch resist, which end lines in the vicinity of the contacting zones on the front side of the substrate in end points. The location of the endpoints on the
  • the back of the substrate and the position of the grid pattern on the front of the substrate are in a predetermined position relative to one another, determined by the intended structure, and in a position tolerance that corresponds to approximately half the width of the etching line.
  • the metal strip is preferably etched on the contacting side, the etching depth in the case of etching on one side only being preferably half and at most 70% of the metal thickness.
  • the semiconductor chip is bonded to the metal foil in the region of the contacting zone using the flip-chip method.
  • the contact can be made by soldering, welding or gluing.
  • the underfiller is applied and hardened between the active chip side and the lattice-structured clip contact zone.
  • the structure lines are introduced below the grid pattern on the back of the metal foil, which enable the intended separation of the one-piece metal foil into electrically insulated connection areas.
  • the exact actual positions of the chips, before or preferably after contacting, and at the same time the actual positions of the structure line end points on the back of the metal foil in the vicinity of the contact zone are optoelectronically recorded.
  • This position data is used to calculate how the further, missing structure lines on the back of the metal foil should run below the contacting zone, the course having to be congruent with a matching line section of the grid on the contacting side. These structure lines are then introduced into the etch resist.
  • the exact actual positions of the chips and the actual positions of the grid patterns are recorded. Based on this location data, the course of the missing structure lines on the back of the
  • the metal foil is etched, the metal foils which are still in one piece being separated into the intended, electrically insulated partial structures.
  • the proposed method has a number of advantages.
  • the metal foil provided on both sides with metal resists suitable for chip contacting and module contacting can be in a first Process step for the contacting are prepared in which structure lines are introduced into the resists on one or both sides and the metal foil is optionally etched on one side.
  • the metal foil remains in one piece and can be easily transported and wound up.
  • the grid pattern in the contacting area allows the chip to be ignored without paying attention to the exact
  • each chip contact point regardless of the position of the chip, is separated from the other contact points by one or more structure lines, or, if etched foils are used, by one or more structure trenches. Exact chip positioning and exact chip protection is not necessary. If the structural trenches are introduced, these structural trenches support the outflow of excess underfillers, which may have been applied before contacting, or the capillary inflow of the underfillers after contacting, and improve the adhesive strength of the semiconductor chip on the grid-patterned metal foil, in particular by increasing the total adhesive area. The application or flow of the underfiller can also be carried out after contacting and inserting the missing structure lines on the underside of the metal foil, but must be done before the final etching.
  • the missing structure lines on the back of the substrate below the contact area can be introduced after the bonding in a further step, it only being necessary to ensure that the structure lines run congruently with a lattice grid section on the front of the substrate, so that during subsequent etching the etching front penetrating from the back hits the respective already etched contact-side trench that is to separate the chip contacts.
  • the introduction of the structure lines and the etching can advantageously take place on specialized devices.
  • the chip-specific structure lines are advantageously generated using laser writing.
  • the lattice grid lines on the front side of the substrate and the module separating lines and the structural line pieces branching off from these structure lines and ending in end points on the back side of the substrate are expediently carried out by laser irradiation through masks applied on both sides of the substrate and positioned exactly to one another.
  • the etching is preferably carried out as a wet etching process.
  • the underfilling is expediently carried out after the optoelectronic detection of the exact chip position.
  • Underfilling can be coated by applying hardenable polymer lacquer or thermosetting plastic so that even after the final etching, the position of the separated metal foil sections is secured to one another and / or the chip is covered by a protective layer.
  • the proposed method creates the possibility to collectively bond chips, namely to place and contact them in parallel or in a subsequent step without the risk of incorrect positioning, and to implement the metal structuring in separate steps with fully automatic and simple etching processes.
  • Very thin, optimally contactable modules can be manufactured very inexpensively. The metal belt transport is until the one-piece separation
  • Metal foil can be carried out easily. Very inexpensive metal foils coated on both sides can be used. The grid pattern and the pre-etching result in a metal foil which clings very softly to the thin semiconductor chip in the contact area. Even semiconductor chips with a thickness of ⁇ 100 ⁇ m can be connected to the metal foil without mechanical stress. The heat dissipation from the active chip side is optimal.
  • the structure line can be introduced below the contacting area before contacting. In this case, no grid pattern is required in the contact area on the front side of the substrate, but only a structure line or a structure trench separating the contacts.
  • the arrangement of a grid of structural trenches in the contacting area is still useful.
  • the structural trench should be chosen so wide that contact bumps that are not to be contacted, e.g. Test contacts are in the structural trench after the flipchip contact.
  • Another possibility is to form broad structural trench pieces at the points of the contacting area above which, after the fiipchip contact, there are test contacts that are no longer required for the transponder function and are therefore not to be contacted.
  • Reflow soldering and thermocompression processes can be used for chip contacting.
  • etching resist It is advantageous to choose a material which is relatively easy to remove by means of a laser beam of wavelength ⁇ 10 ⁇ 'as the etching resist. Furthermore, it is advantageous to use a material as an etch resist which facilitates the contacting of the semiconductor chips and further electronic components or improves contacting. Such etch resists can be tin, tin solder, gold and other noble contact metals. Furthermore, it is advantageous to use a metallic etching resist which consists of at least two metallic layers of small thickness, the layer facing the etching medium being resistant to the etching medium.
  • the metal layers combine when exposed to heat, for example when irradiated with laser light, by alloying, diffusing and / or melting in such a way that they are reflected by laser radiation heated zones result in alloys, diffusion zones or remelted zones which can be etched by the intended etching medium.
  • a metallic etch resist which is bonded to the metal of the metallic carrier (the core band) under the action of heat, e.g. Irradiation with laser, by alloying, diffusing or fusing forms a connection that can be etched by the etching medium.
  • heat e.g. Irradiation with laser
  • alloying, diffusing or fusing forms a connection that can be etched by the etching medium.
  • polymeric etching lacquer or solid resist that is common in the printed circuit board industry and to use photochemical and / or thermal processes (e.g.
  • etching resist in a structured manner by screen printing or other methods on the contacting side of the substrate. It is a particular advantage if the etching resist is to be used in the subsequent contacting step as a thermoplastic or curable adhesive for chips and / or other electronic components.
  • the adhesive can advantageously be used for the temporary fixing of the regions of the metallic substrate film which are separated after the etching and are structured in terms of etching technology.
  • FIG. 1 shows a section of the contacting side of a band-shaped metal foil with structure lines and structure trenches in a top view
  • FIG. 2 shows a cross section of a chip picker receptacle with chip pickers
  • FIG. 3 shows a section of the contacting side of a chip-equipped panel in plan view
  • FIG. 4 shows a section of the rear side of a chip-connected panel after the structure lines specific to the chip layer have been introduced
  • FIG. 5 shows a cross section through, part of the arrangement shown in FIG. 3,
  • FIG. 5 a shows a detail from FIG. 5,
  • FIG. 6 top-view of etched, band-shaped modules
  • FIG. 7 shows a module arranged on an insulating frame after the free etching in a top view
  • FIG. 8 shows a section of a wafer carrier and a chip in a top view
  • FIG. 9 shows a section of a wafer carrier and a chip placer when picking up the CM in cross section.
  • FIG. 1 a shows a detail of a band-shaped metal foil in top view and FIG. 1 b shows it in section.
  • the metal foil consists of an 18 ⁇ m thick copper foil, the core band 26, which is coated on both sides with a 2 ⁇ m thick resist 27.1 and 27.2 made of tin. Resist material and Depending on the type of contacting of the chip 3, the resist layer thickness can be selected on the inner module connections 28 and / or on the further circuit with the outer module connections 29. For example, a 1 ⁇ m thick silver layer can be applied to the contacting side 30 of the metal strip, which serves as the substrate 16 of the module 32, while there is a resist 27.2 made of photoresist on the rear side 31.
  • the resist layer 27.1 on the contacting side 30, to which 10 chips 3 will be contacted in future in a chip grid multiplicity, is provided in the area of the chip contacting zone 7 with a parallel, linear grid grid 34.
  • the size of the grid grid 34 is equal to the chip size plus all due to the chip removal from the chip memory 12 and the
  • the size of the chip is 3 (0.5x0.5) mm 2 and the size of the chip contacting zone 7 is (1.4x1.4) mm 2 .
  • the structure lines 35 of the grid 34 were generated by a YAG laser using a write beam.
  • the width of the structure lines 35 introduced into the resist layer 27 is 30 ⁇ m and the center distance is 200 ⁇ m.
  • the distance between the 10 ⁇ m high gold contact bumps 6 located on the active chip side 4 is 250 ⁇ in.
  • the contact bumps 6 have a diameter of 90 ⁇ m.
  • the rear side 31 of the substrate 16 also has 30 ⁇ m wide structure lines 35.
  • the structure lines 35 mark the contour of the future, strip-shaped module 32 and the separation points 36 of the modules 32 from one another.
  • Short structure lines 35, which end in end points 37, run in the direction of contact zone 7.
  • the copper of the core strip 26 was etched by wet chemical means from the contacting side 30, so that structural trenches 13 of approximately 5 to 8 ⁇ m deep resulted on the contacting side 30.
  • the semiconductor chips 3 are contacted on the band-shaped substrate 16.
  • each chip placement device 21 can be controlled in its vertical position and a vacuum can be applied to suck in the chips 3.
  • a component of the chip placement device 21 is a vacuum channel 11 connected to the vacuum control, not shown here, which runs centrally to the chip receiving surface 22.
  • the dimensions of the chip receiving areas 22 are smaller than or equal to the dimensions of the area of the chip 3 to be picked up.
  • Each chip receiving surface 22 of the chip placement device 21 located in the working position 18 has sucked in a chip 3.
  • the chip back 5 lies on the chip receiving surface 22, the active chip side 4 carries two contact bumps 6 and points downward.
  • the base area of the chip 3 is (0.5 x 0.5) mm and its thickness is 0.15 mm.
  • the chip placement receptacle 20 is part of a chip bonder, which can control the chip placement receptacle 20 in multiple coordinates both in the chip holding position and in the bond position.
  • the chip bonder has an image recording system for detecting the position of the chip contacting zones 7 and can control the chip placement devices 21 in the working position 18 or waiting position 23 and the vacuum function, and can manage the position and location of the chips 3 still to be picked up from the wafer 1.
  • Figure 3 shows a section of a ribbon-shaped substrate 16, the with
  • Grid 34 an individual position.
  • the size and spacing of the structural trenches 13 are dimensioned in such a way that the contact bumps 6 are separated by at least one structure trench 13.
  • Each contact bump 6 lies with most of its surface on the resist 27.1 consisting of a tin layer.
  • the chip contacting took place by means of reflow soldering, whereby the underfiller 9, which was deposited as a thin layer on the entire contacting zone 7 before contacting, temporarily has flux properties during the soldering process and hardens during further temperature treatment.
  • the missing structure lines 35.2 are introduced into the resist 27.2 located on the rear side 31 of the substrate 16 and run chip-specifically between the contact bumps 6 of the differently positioned chips 3 on the contacting side 30.
  • the structure line 35.2 which is specific to the chip layer, runs in the same position as a structure trench 13 of the grid pattern 34, so in the subsequent etching step, which is called wet etching is carried out with an alkaline etcher, the copper core layer 26 is etched through from the rear side 31 of the substrate 16 in such a way that there is no etching resist 27 on the contacting side 30 at the breakthrough point 14 of the etching structure trench 13 penetrating from the rear side 31 of the substrate 16, but rather a structural trench piece 13 of the lattice casters 34. This prevents the metallic etching resist 27 from short-circuiting the module connections 28 to be isolated by the etching.
  • Structure lines 35.2 connect the end points 37 of the structure lines 35 each
  • Structure lines 35 are recorded on the rear 31 and the course of the chip-specific structure line 35.2 is determined, which is always congruent with one
  • Structure line 35 or a structure trench 13 of the grid 34 runs. It is also possible to arrange defined marking points on the contacting side 30 and from this and from the chip position the position of the chip-specific ones
  • the defined marking points on the contacting side 30 can be part of the
  • FIG. 5 shows how, after the chip-specific structure line 35.2 has been produced, further protective lacquer 33 is applied along the chip contour to the entire contact zone 7. After the protective lacquer 33 has hardened, it stiffens the metallic substrate 16 around the chip 3 and connects the inner module connections 28, which are separate per se, in an electrically insulated manner.
  • Figure 5a shows a section of Figure 5 after wet etching. The breakthrough point 24 connects the structural trenches 13 of the lattice grid 34 and the chip-specific structure line 35.2. The result of the subsequent wet etching results in the modules 32 shown in FIG. 6, the inner and outer connections 28 and 29 of which are arranged opposite one another as a strip, and the modules 32, which in turn are endless at their outer connections 29
  • FIG. 7 shows a module 32 with four module connections 28 and 29.
  • electrically insulating base material 19 was provided with an opening 14 which slightly exceeds the future module size and onto which
  • Base material 19 a one-piece metal foil 16 made of copper glued with a thickness of 30 microns, the contacting side 30 and rear 31 each a 1 micron thick
  • Chip 3 and contact zone 7 are coated with an approximately 100 ⁇ m thick, rigid protective lacquer 33.
  • FIG. 8 shows a top view of a section of a chip memory 12, which in this example is formed by the wafer carrier 2 and the chips 3 still attached to it in the order of the wafer assembly.
  • the wafer carrier 2 consists of an extremely flat, rigid surface piece, which is the size of the
  • Wafer assembly protrudes on all sides by at least 10 mm and has frame parts for transport and clamping in the chip bonder.
  • the chips 3 lie, separated by separating trenches, which separate the wafer 1 into individual chips 3, with the active side 4 to the wafer carrier 2 in the exact arrangement of the formerly one-piece wafer 1 on the area piece coated with adhesive 8.
  • the Adhesive 8 is applied point by point in a grid of (0.3 x 0.3) mm 2 and a point size of 60 ... 80 ⁇ m diameter and a thickness of approx. 35 ⁇ m.
  • Each chip 3 of the separated wafer assembly is attached to the area of the wafer carrier 2 with approximately six to nine points of the adhesive 8.
  • the adhesive centers 8 have a flat cylindrical shape at room temperature.
  • the adhesive strength of the adhesive 8 on the wafer carrier 2 is significantly higher than on the chip 3.
  • the adhesive 8 is heated to approximately 80 ° C., the adhesive 8 changes its contour into a convex contour 15 directed towards the chip side, as shown in FIG , The adhesive surfaces of the adhesive center points 8 to the chip 3 are thereby considerably reduced, so that the
  • the chips 3 can be easily removed from the wafer carrier 2 by the chip receiving surfaces 22 of the chip placement device 21 heated to greater than or equal to 80 ° C. With the formation of the convex contour 15, an extension of the center of adhesion 8 in the vertical direction or in the direction of chip 3 is connected, so that chip 3 is raised somewhat, in the example by 5 ⁇ m.
  • the position and assignment of the good chips 3 on the wafer carrier 2 of the data processing system of the chip bonder is known by means not shown here 5 for the purpose of picking up the chips 3 from the wafer carrier 2 or chip memory 12, the chips 3 are heated and the adhesion to the surface piece with the adhesive 8 is greatly reduced by the formation of the convex contour 15.
  • the chip heating with which the Convex contour 15 can also be generated in other ways, for example with an energy-intensive light beam, which is immediately before the actual pick-up
  • Chips 3 is applied by the chip placement 21.
  • the chips 3 By simultaneously sucking the chips 3 onto the chip receiving surfaces 22, the chips 3 are taken over by the chip assembler 21 and lifted off the wafer carrier 2 by lifting off the entire chip assembler receptacle 20. Eight empty positions 25 remain in the separated wafer assembly of the wafer carrier 2 back.
  • the chip placement devices 21 are arranged in a multiple of the chip grid.
  • the specific arrangement of the chip assembly 21 in the clip assembly receptacle 20 corresponds or is congruent to the arrangement of the chip contacting zones 7 on the substrate 16.
  • the chip raster multiple 10 has a factor of 4 in the x direction and 4 in the y direction
  • Chip placement receptacle 20 offset by a chip grid can again accommodate eight chips 3. If defect chips are not to be removed or edge areas of the wafer assembly or wafer carrier 2 are approached with the chip placement device 21, which do not allow it, into all chip placement devices 21
  • chip placement holder 20 moves to a new position above the chip memory 12 or wafer carrier 2, the empty chip placement devices 21 are brought into the working position 18, while the filled chip placement devices 21 are controlled in the waiting position 23.
  • chip-picking two or more chip-pickers 21 in each case all chip-pickers 21 of the chip-pick-up holder 20 are filled.
  • the chip placement receptacle 20 and the chip placement device 21 are controlled and the chip memory 12 is managed via the chip bonder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung anzugeben, die es ermöglichen, die Produktivität des Chipbondens und der mit dem Chipbonden verbundenen vor- und nachgelagerten Arbeitsschritte zu erhöhen. Erfindungsgemäss gelingt die Lösung der Aufgabe durch ein Verfahren zum Kontaktieren von Halbleiterchips (3) auf einem metallischen Substrat (16), wobei sich mindestens auf einer Substratseite ein Ätzresist (27) befindet und auf der Kontaktierseite (30) Halbleiterchips (3) mittels Flip-Chip-Bond-Verfahren kontaktiert werden, wobei auf der Kontaktierseite (30) des Substrates (16) ein Kontaktierbereich (7) erzeugt wird, auf dem ein Halbleiterchip (3) mit zwei Kontakthügeln (6) so kontaktiert wird, dass beidseitig einer den Kontaktierbereich teilenden Strukturlinie (35) oder eines Strukturgrabens (13) je ein Kontakthügel (6) kontaktiert ist, dass nach dem Kontaktieren ein Underfilling des Chips (3) erfolgt und danach ein elektrisch isolierender Durchbruch im Kontaktierbereich (7) erzeugt wird und ein Trennen eines den Halbleiterchip (3) tragenden Moduls aus dem Substrat (16) erfolgt.

Description

Verfahren und Vorrichtung; zum Kontaktieren von Halbleiterchips
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Kontaktieren von Halbleiterchips auf einem metallischen Substrat, auf dem sich mindestens auf einer Seite ein Resist befindet und auf dessen Kontaktierseite Halbleiterchips mittels Flip-Chip-Bond-Verfahren kontaktiert werden, sowie einen Träger- streifen.
Im Stand der Technik werden zum Kontaktieren von Halbleiterchips auf einem Substrat üblicherweise das Chip-Bond- Verfahren oder das so genannte Flip- Chip-Bond-Verfahren angewendet.
Beim Kontaktieren von Halbleiterchips nach dem Chip-Bond- Verfahren (Die Bonding), insbesondere beim flächigen Verbinden der Chiprückseite (die der aktiven Fläche gegenüberliegende Fläche) mit einem Chipträger sind die im Folgenden beschriebenen Verfahren üblich. Der Chipträger wird im vorgegebenen Bereich eines Bondgerätes platziert, und ein Halbleiterchip wird in einer exakt vorgegebenen Lage im Bondgerät positioniert. Danach erfolgt der Auftrag von Kleber in vorgegebener Menge auf den Chipträger. Der Halbleiterchip wird aus der vorgegebenen Lage im Bondgerät entnommen; dabei kann je nach verwendeter Zuführung der Halbleiterchips der Chip von einem Gelpack, aus einem Blistergurt, aus einem Waffelpack oder aus dem trenngeschliffenen und geringfügig aufgespreizten Waferverband bzw. aus einer sich anschließenden Zentrierstation entnommen werden. Danach erfolgt das Absetzen und ein leichtes Andrücken des Halbleiterchips auf dem bzw. in das Kleberbett des Chipträgers. Bei einer Abwandlung des Verfahrens und der zugehörigen apparatetechnischen Anordnung wird der Kleber nicht auf dem Chipträger aufgetragen, sondern die Chiprückseite des auf der aktiven Seite mit einem speziellen Ansaugwerkzeug festgehaltenen Chips wird mittels eines Dipping-Vorganges (kurzes Tauchen in einen Klebervorrat) mit Kleber beschichtet und danach auf den Chipträger abgesetzt. Unabhängig davon, welches Kleberauftragimgsverfahren gewählt wurde, erfolgt anschließend stets ein Härten des Klebers mit einem vorgegebenen Temperatur-Zeit-Prozess in einer nachfolgenden Station.
Beim Flip-Chip-Bonden mittels Kleber wird nach dem Entnehmen der Chips aus der vorgegebenen Lage im Bonder die aktive Chipfiächenseite, die bei der
Entnahme nach oben (zum Entnahmewerkzeug) zeigt, um 180° nach unten gedreht. Vor, während oder nach diesem so genannten Flip-Vorgang erfolgt meist eine nochmalige Positionsbestimmung und Lageausrichtung des Chips. Auf die exakt positionierte Schaltung wird der vorgesehene Kleber als Klebepaste oder Klebefilm aufgetragen bzw. der geflipte Chip wird mit seiner aktiven Seite in einen bereitgestellten Kleber gedipt. Anschließend erfolgt das Absetzen des Chips mit der aktiven Seite auf den Schaltungsträger, so dass die Kontakthügel (Bumps) des Chips auf den vorgesehenen Kontaktflächen der chipaufnehmenden Schaltung liegen. Im Gegensatz zum Chipbonden muss während des gesamten anschließenden Kleberhärteprozesses ständig ein vorgegebener Druck auf den Chip ausgeübt werden, damit die Kontakthügel des Chips ständig im Presskontakt, z.T. über elastische, elektrisch leitende Füllstoffe des Klebers, mit den Kontaktflächen der Schaltung bleiben und der Presskontakt durch den gehärteten Kleber in einen elektrischen Dauerkontakt umgewandelt (eingefroren) wird. Auch Lötverfahren sind üblich.
Bekannt ist nach JP 03-94 430 A ein Verfahren, Halbleiterchips auf eine unstrukturierte Trägerplatte zu kontaktieren, mit Mikrodraht zu bonden, mit Kunststoff einzukapseln, anschließend einen Resistfilm auf die Rückseite der Trägerplatte zu bringen und durch Freiätzen die endgültigen, elektrisch voneinander isolierten Trägerstrukturen des Moduls zu erzeugen. •
In JP 04-53 237 A wird das Verfahren dahingehend erweitert, dass beidseitig auf der Trägerplatte bereits ein strukturierter Metallresistfilm vor dem Koήtaktieren vorhanden ist und nach dem Verkapseln des Chips und der Mikrodrähte nur das Freiätzen erfolgen uss.
Ein nahezu gleiches Verfahren ist in DE 100 08 203 AI beschrieben.
Nachteilig bei diesen Verfahren ist, dass ein Verkapseln des Chips erforderlich ist und. individuelle Chipfehllagen infolge simultanen bzw. kollektiven Chipbondens nicht berücksichtigt werden können und zu Kontaktierausschuss führen. Ebenfalls ist die Vernetzung des Kapselungsmaterials auf dem relativ glatten Trägermaterial nicht ausreichend bei thermomechanischen Belastungen des fertigen Moduls.
In DE 198 42 683 AI ist ein Verfahren angegeben, nach dem mit Ausnahme der künftigen vom Kunststoff bedeckten Fläche die gesamte Anschlussrahmenstruktur hergestellt und auf der mittigen, unstrukturierten
Rahmenfläche die Chipkontaktierung, die Mikrodrahtkontaktierung und die Kunststoffverkapselung erfolgt. Danach werden die fehlenden Ausnehmungen in den unst kturierten Rahmenteil eingebracht, so dass die beabsichtigten, voneinander isolierten Teile des Anschlussrahmens entstehen.
Das Verfahren entspricht in etwa den bereits genannten Verfahren mit dem weiteren Nachteil, dass beim vorgeschlagenen Strulcturtrennen mittels Laserstrahl sich der Modulbereich unzulässig stark erhitzt und der Halbleiterchip geschädigt werden kann. Nach DE 195 32 755 Cl ist ein Verfahren bekannt, bei welchem auf einem TrägerraJhnien durch Tiefenätzung Höcker erzeugt werden, die der direkten Chipkorital tierung beim Chip-and-Wire- Verfahren dienen. Der Raum unter dem Chip und entlang der Chipperipherie wird mit Gießharz gefüllt, welches über Schrumpfprozesse (im Falle der Flip-Chip-Kontaktierung) den Chip bzw. die
Chippads gegen die Höcker zieht und kontaktiert.
Nachteilig ist die aufwändige Trägerrahmenherstellung, die Notwendigkeit des temporären Fixierens des Rahmens auf Klebefolie und die aufwändigen Justierabläufe beim Kontaktieren des Chips auf die Höcker.
Das in US 2001 / 00 40 286 AI beschriebene Verfaliren geht ebenfalls von einem Trägerrahmen aus, der auf der Bondseite Bondhöcker aufweist, wobei nach dem Chipbonden und Drahtbonden das Modul mit Harz verkapselt wird. Anschließend erfolgt die Separation des während des Kontaktierens und
Verkapseins einteiligen Trägerrahmens in separate Strukturen durch Abschleifen der Rückseite des Trägerrahmens. Dieses Verfahren ist fehleranfällig und aufwändig und für Module geringer Dicke nicht geeignet.
Das in US 63 39 261 Bl angegebene Verfahren ist geeignet zur Herstellung von flachen Modulanordnungen nach dem Verfahren des Chip-and-Wire-Bondens, wobei die äußeren Drahtkontakte an spezielle, durchführungsähnliche Kontaktelemente kontaktiert sind. Das Verfahren ist nicht geeignet zur Herstellung sehr flacher Flip-Chip-Module.
In US 2002/ 00 27 298 AI ist eine weitere Variante zur Herstellung von Modulen beschrieben, nach der in einem einteiligen Trägerrahmen von der Bondseite Strukturen in die halbe Materialdicke eingeätzt werden, danach die Kontaktierung und die Verkapselung des Halbleiterchips erfolgt und anschließend von der Rückseite des Trägerrahmens her dieser soweit abgedünnt wird, bis alle Strukturen separiert sind.
Dieses Verfaliren erfordert eine äußerst exakte Chippositionierung auf dem Trägerrahmen und ist deshalb für eine lagefehlerbehaftete und/oder kollektive
Chipkontaktierung nach dem Flip Chip- Verfahren nicht geeignet.
Ein ähnliches Verfahren ist in DE 197 58 095 Cl beschrieben, nach welchem eine Metallfolie auf einem gelochten Kunststoffband befestigt ist. Von der Lochseite her ist der Chip an das unstrukturierte Kupferband geklebt, dessen
Strukturierung erst nach dem Kontaktieren von der Rückseite des Metallbands durch Lasertrimmung oder mechanisches Abtragen erfolgt. Sehr nachteilig ist die starke thermorxtechanische Belastung des Halbleiterchips beim Strukturierungsprozess .
Verfahrensschritte zum einfachen Entnehmen von separierten, sehr dünnen Chips aus dem Waferverband sind in DE 199 62 763 C2 und DE 199 21 230 AI beschrieben, wobei die Chips bzw. alle Chips des Wafers sich auf einem starren Waferträger aufgeklebt befinden. Die Chipabholung und das Chipablösen aus dem Kleberbett wird vereinfacht durch einen bei Wärmeeintrag signifikant die
Klebekraft verringernden Kleber; der jeweilige Chip wird durch das geheizte Chipabhol Werkzeug erhitzt. Es besteht jedoch der Mangel, dass die Restklebekraft und das zwischen Chip und Kleber befindliche Vakuum insgesamt Kräfte auf den Chip ausüben, die größer sein können als die durch das Vakuum des Chipabholewerkzeugs auf den Chip wirkende Kraft. Die Abnahme der Chips aus dem Waferverband kann dadurch beeinträchtigt oder verhindert werden.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung anzugeben, die es ermöglichen, die Produktivität des Chipbondens und der mit dem Chipbonden verbimdenen vor- und nachgelagerten Arbeitsschritte zu erhöhen.
Erfmdungsgemäß wird die Aufgabe mit einem Verfahren, welches die in Anspruch 1 angegebenen Merkmale und mit einem Trägerstreifen, welcher die in
Anspruch 13 angegebenen Merkmale enthält, gelöst.
Eine für das Verfahren geeignete Chipbestückervorrichtung ist in Anspruch 22 angegeben.
Vorteilhafte Ausgestaltungen sind in den jeweiligen Unteransprüchen angegeben.
Die erfindungsgemäße Lösung verwendet ein dünnes, metallisches Substrat, vorzugsweise eine aus kupferhaltigem Material bestehende Metallfolie der Dicke < 100 μm, das beidseitig mit einem Metallresist beschichtet ist, welcher optimale
Kontaktiereigenschaften bei dem nachfolgenden Flip-Chip- Kontaktieren als auch beim Kontaktieren der äußeren Anschlüsse des künftigen Moduls aufweist. Als Metallresist kommen beispielsweise Zinn, Gold, Silber und aus diesen Metallen bestehende Legierungen in Frage. Die Resistschichten auf der künftigen Kontal tierseϊte der Metallfolie und der künftigen Rückseite der
Metallfolie können aus unterschiedlichen Metallen bestehen. Ihre Dicke beträgt vorzugsweise 1 ... 2 μm.
Die resistbeschichtete Metallfolie ist vorzugsweise als Band ausgefülirt, auf welchem parallel und in Bandrichtung die Strukturen der künftigen Anschlüsse bzw. Kontaktierzonen des Moduls zu erzeugen sind. In einem ersten Schritt wird vorzugsweise die Resistschichten auf der Kontaktierseite strukturiert, wobei unter Strukturierung die Entfernung des Resists im Bereich der künftigen Ätzzonen bzw. Ätzlinien zu verstehen ist. Im Bereich der Chipkontaktierzone werden auf der Kontaktierseite in einem Gitterraster Linien einer Breite von vorzugsweise (10...50) μm und einem Linienabstand eingebracht, der kleiner gleich des kleinsten lichten Abstandes zwischen zwei Flip-Chip-Bumps des Halbleiterchips minus mindestens der halben Linienbreite ist. Sind Chips mit nur zwei Chipkontakten bzw. Bumps zu kontaktieren, kann das Gitterraster als Parallellinienraster ausgefülirt werden.
Die Größe der Chipkontaktierzone ist gleich oder größer als die Chipfläche zuzüglich aller zu erwartenden Fehllagen des Chips, sofern die Chipkontaktierung ohne optoelektronische und/oder mechanische Lagekorrekturen durchgeführt wird. Vorteilhafterweise wird im ersten Schritt weiterhin der Atzresist entlang der beabsichtigten äußeren Begrenzungen der
Modulanschlüsse entfernt. Vorzugsweise erfolgt dies ausschließlich auf der Rückseite des Substrates. Substratrückseitig können in einer Verfahrensvariante weiterhin senkrecht zur Bandkante verlaufende Strukrurlinien in das Atzresist eingebracht werden, die in der Nähe der auf der Substratvorderseite befindlichen Kontaktierzonen in Endpunkten enden. Die Lage der Endpunkte auf der
Substratrückseite und die Lage des Gitterrasters auf der Substratvorderseite befinden sich zueinander in einer vorgegebenen, von der beabsichtigten Struktur bestimmten Lage und in einer Lagetoleranz, die etwa der halben Ätzlinienbreite entspricht.
Durch ein wahlweise anschließendes Anätzen wird vorzugsweise auf der Kontaktierseite das Metallband angeätzt, wobei die Ätztiefe bei ausschließlich einseitigem Ätzen vorzugsweise die halbe und maximal 70% der Metalldicke beträgt.
In einem zweiten Scliritt wird der Halbleiterchip mittels Flip-Chip- Verfahren auf die Metallfolie im Bereich der Kontaktierzone gebondet. Die Kontaktierung kann mittels Löten, Schweißen oder Kleben erfolgen. Parallel dazu oder in einem oder mehreren folgenden Teilschritten erfolgt das Aufbringen und Härten von Underfiller zwischen aktiver Chipseite und gitterstrukturierter Cl ipkontaktierzone.
In einem dritten Schritt werden auf der Rückseite der Metallfolie die Strul turlinien unterhalb des Gitterrasters eingebracht, die die beabsichtigte Trennung der noch einteiligen Metallfolie in elektrisch isolierte Anschlussbereiche ermöglichen.
Dazu werden in einem Teilschritt die exakten Istlagen der Chips, vor oder vorzugsweise nach dem Kontaktieren und gleichzeitig die Istlagen der Strukturlinienendpunkte auf der Rückseite der Metallfolie in der Nähe der Kontaktierzone optoelektronisch erfasst. Anhand dieser Lagedaten wird errechnet, wie die weiteren, fehlenden Strukturlinien auf der Rückseite der Metallfolie unterhalb der Kontaktierzone verlaufen sollen, wobei der Verlauf deckungsgleich zu einem passenden Linienabschnitt des Gitterrasters auf der Kontaktierseite erfolgen muss. Anschließend werden diese Strukturlinien in den Atzresist eingebracht. In einer Verfahrensabwandlung werden die exakten Istlagen der Chips und die Istlagen der Gitterraster erfasst. Anhand dieser Lagedaten wird der Verlauf der fehlenden Strukturlinien auf der Rückseite der
Metallfolie errechnet.
In einem vierten Schritt erfolgt ein Ätzen der Metallfolie, wobei die noch einteiligen Metallfolien in die beabsichtigten, elektrisch isolierten Teil- Strukturen getrennt werden.
Das vorgeschlagene Verfahren zeichnet sich durch eine Reihe von Vorteilen aus.
Die beidseitig mit für die Chipkontaktierung und die Modulkontaktierung geeigneten Metallresists versehene Metallfolie kann in einem ersten Verfahrensschritt für die Kontaktierung vorbereitet werden, in dem in die Resists ein- oder beidseitig Strulcturlinien eingebracht werden und die Metallfolie optional einseitig angeätzt wird. Die Metallfolie bleibt einteilig und kann einfach transportiert und aufgewickelt werden. Das Gitterraster im Kontaktierungsbereich erlaubt es, den Chip ohne Beachtung der exakten
Flächenlage beim Absetzen und späteren Kontaktieren, z.B. Reflow-Lötvorgang oder anderen Kontaktierverfahren im gesamten Kontaktierbereich zu deponieren. Durch das spezielle Gitterraster ist jede Chipkontaktstelle, gleich welche Lage das Chip einnimmt, von den anderen Kontaktstellen durch eine oder mehrere Strakturlinien, oder, im Falle der Verwendung angeätzter Folien durch einen oder mehrere Strukturgräben getrennt. Eine exakte Chippositionierung und eine exakte Chiplagesicherung ist nicht erforderlich. Im Falle der Einbringung der Strukturgräben unterstützen diese Strukturgräben das Ausfließen überschüssigen, eventuell vor dem Kontaktieren aufgebrachten Underfillers oder das kapillarische Einfließen des Underfillers nach dem Kontaktieren und verbessern insbesondere durch Vergrößerung der Gesamtklebefiäche die Klebefestigkeit des Halbleiterchips auf der gittergerasterten Metallfolie. Das Aufbringen bzw. Einfließen des Underfillers kann auch nach dem Kontaktieren und Einbringen der noch fehlenden Strukturlinien auf der Unterseite der Metallfolie vorgenommen werden, muss aber vor dem Schlussätzen erfolgen.
Das Einbringen der fehlenden Strukturlinien auf der Substratrückseite unterhalb des Kontaktierbereiches kann nach dem Bonden in einem weiteren Schritt erfolgen, wobei nur darauf zu achten ist, dass die Strukturlinien kongruent zu einem Gitterrasterteilstück auf der Substratvorderseite verlaufen, damit beim nachfolgenden Ätzen die von der Rückseite vordringende Ätzfront den jeweiligen bereits geätzten kontaktierseitigen Stmkturgraben trifft, der die Chipkontakte trennen soll. Vorteilhafterweise kann das Einbringen der Strukturlinien und das Ätzen auf spezialisierten Geräten erfolgen. Vorteilhaft werden die chiplagespezifischen Strukturlinien mittels Laserschreibstralil erzeugt. Das Einbringen der Gitterrasterlinien auf der Substratvorderseite und der Modultrennlinien und der von diesen Strukturlinien abzweigenden, in Endpunkten auslaufenden Strukturlinienstücke auf der Substratrückseite erfolgt zweckmäßig durch Laserbestrahlung durch beidseitig des Substrates aufgebrachte, exakt zueinander positionierte Masken. Das Ätzen erfolgt vorzugsweise als Nassätzverfahren. Das Underfilling wird zweckmäßig nach dem optoelektronischen Erfassen der exakten Chiplageposition durchgeführt. Zusätzlich können bestimmte Bereiche der Metallfolie auf der Kontaktierseite nach dem Kontaktieren und parallel zum oder nach dem
Underfilling durch Aufbringen von härtbarem Polymerlack oder Duroplast so beschichtet werden, dass auch nach dem Schlussätzen die Lage der separierten Metallfolienabscl nitte untereinander gesichert ist und/oder der Chip durch eine Schutzschicht abgedeckt ist. Insgesamt wird durch das vorgeschlagene Verfahren die Möglichkeit geschaffen, kollektiv Chips zu bonden, nämlich zu platzieren und parallel oder in einem Folgeschritt zu kontaktieren ohne die Gefahr der Fehlpositionierung, und in getrennten Schritten mit vollautomatischen und einfachen Ätzprozessen die Metallstrukturierung zu realisieren. Es können sehr dünne, optimal kontaktierbare Module sehr kostengünstig hergestellt werden. Der Metallbandtransport ist bis zum endgültigen Separieren der einteiligen
Metallfolie problemlos durchführbar. Es können sehr kostengünstige, zweiseitig beschichtete Metallfolien eingesetzt werden. Durch das Gitterraster und das Vorätzen ergibt sich eine im Kontak ierbereich sehr weich an das dünne Halbleiterchip anschmiegende Metallfolie. Selbst Halbleiterchips einer Dicke von < 100 μm können mechanisch stressfrei mit der Metallfolie verbunden werden. Die Wärmeableitung von der aktiven Chipseite ist optimal.
Besteht nicht die Absicht Chips kollektiv zu kontaktieren oder ist selbst beim kollektiven Kontaktieren die Ablagegeπtauigkeit der Chips so gut, dass eine chipindividuelle Erfassung der Chiplageposition nach dem Kontaktieren nicht erfoderlich ist, kann bereits vor dem Kontaktieren die Strukturlinie unterhalb des Kontaktierbereiches eingebracht werden. In diesem Fall ist im Kontaktierbereich auf der Substratvorderseite kein Gitterraster erforderlich, sondern nur eine die Kontakte trennende Strukturlinie bzw. ein Strukturgraben. Zur Optimierung des Underfilling und um die Haftfestigkeit des Underfill-, Vergieß- oder
Duroplastmaterials auf dem Kontaktierbereich zu erhöhen, ist die Anordnung eines Gitterrasters aus Strukturgräben im Kontaktierbereich aber weiterhin sinnvoll. Der Strukturgraben ist so breit zu wählen, dass eventuell nicht zu kontaktierende Kontakthügel, z.B. Testkontakte, sich nach dem flipchip- Kontaktieren im Strukturgraben befinden. Eine weitere Möglichkeit besteht darin breite Strukturgrabenstücke an den Stellen des Kontaktierbereiches auszubilden über denen sich nach dem fiipchip-Kontaktieren nicht mehr für die Transponderfunktion benötigte und deshalb nicht zu kontaktierende Testkontakte befinden.
Zum Chipkontaktieren sind Reflowlötverfahren und Thermokompressions- verfahren nutzbar.
Es ist vorteilhaft, als Atzresist ein durch Laserstrahl der Wellenlänge < 10 μ ' relativ einfach zu entfernendes Material zu wählen. Weiterhin ist es vorteilhaft, als Atzresist ein Material zu verwenden, welches die Kontaktierung der Halbleiterchips und weiterer elektronischer Bauteile erleichtert bzw. die Kontaktgabe verbessert. Solche Ätzresists können Zinn, Zinnlot, Gold und andere edle Kontaktmetalle sein. Weiterhin ist es vorteilhaft, einen metallischen Atzresist zu verwenden, welcher aus mindestens zwei metallischen Schichten geringer Dicke besteht, wobei die dem Ätzmedium zugewandte Schicht beständig gegenüber dem Ätzmedium ist. Die Metallschichten verbinden sich bei Wärmeeinwirkung, z.B. bei Bestrahlung mit Laserlicht, so durch Legieren, Diffundieren und/oder Schmelzen, dass sich in den durch Laserstrahlung erhitzten Zonen Legierungen, Diffusionszonen bzw. umgeschmolzene Zonen ergeben, die durch das beabsichtigte Ätzmedium geätzt werden können.
Ebenso ist es vorteilhaft, einen metallischen Atzresist zu verwenden, der mit dem Metall des metallischen Trägers (dem Kernband) unter Wärmeeinwirkung, z.B. Bestrahlung mit Laser, durch Legieren, Diffundieren oder Verschmelzen eine Verbindung bildet, die durch das Ätzmedium geätzt werden kann. Weiterhin ist es vorteilhaft, auf der Rückseite des Substrates als Atzresist einen in der Leiterplattenindustrie üblichen polyrneren Ätzlack oder Festresist zu verwenden und ihn durch fotochemische und/oder thermische Prozesse ( z.B.
Belichtung , Entwicklung und Lackätzung ) zu strukturieren. Auch ist es vorteilhaft, auf der Kontaktierseite des Substrates einen polyrneren Atzresist durch Siebdruck oder andere Verfahren strukturiert zu erzeugen oder aufzubringen. Ein besonderer Vorteil ist es, wenn der Atzresist im nachfolgenden Kontaktierschritt als thermoplastischer oder aushärtbarer Kleber für Chips und/oder weitere elektronische Bauteile zu verwenden ist. Der Kleber kann vorteilhaft zur temporären Fixierung der nach dem Ätzen an sich separierten Bereiche der ätztechnisch strukturierten, metallischen Substratfolie dienen.
Die Erfindung wird nachfolgend anhand eines Ausfühnmgsbeispiels näher erläutert:
In den zugehörigen Zeichnungen zeigen Figur 1 einen Ausschnitt der Kontaktierseite einer bandförmigen Metallfolie mit Strukturlinien und Strukturgräben in Draufsicht,
Figur 2 einen Ausschnitt einer Chipbestückeraufnahrne mit Chipbestückern im Querschnitt, Figur 3 einen Ausschnitt der Kontaktierseite eines chipbestückten Nutzens in der Draufsicht, Figur 4 einen Ausschnitt der Rückseite eines chipkontaktierten Nutzens nach dem Einbringen der chiplageindividuellen Strukturlinien,
Figur 5 einen Querschnitt durch, einen Teil der in Figur 3 dargestellten Anordnung,
Figur 5 a einen Ausschnitt aus Figur 5,
Figur 6 freigeätzte, bandförmig gereihte Module in der Draufsicht,
Figur 7 ein an einem Isolierrahnxen angeordnetes Modul nach dem Freiätzen in Draufsicht, Figur 8 einen Ausschnitt eines Waferträgers und eines Chips in der Draufsicht, und Figur 9 einen Ausschnitt eines Waferträgers und eines Chipbestückers beim CMpaufnehmen im Querschnitt.
In Figur 1 a ist ein Ausschnitt einer bandförmigen Metallfolie in Draufsicht und in Figur 1 b im Schnitt dargestellt. Die Metallfolie besteht aus einer 18 μm dicken Kupferfolie, dem Kernband 26, das beidseitig mit je einem 2 μm dickem Resist 27.1 und 27.2 aus Zinn beschichtet ist. Resistmaterial und Resistschichtdicke sind je nach Kontaktierart des Chips 3 auf die inneren Modulanschlüsse 28 und/oder der weiteren Schaltung mit den äußeren Modulanschlüssen 29 wählbar. Beispielsweise kann auf der Kontaktierseite 30 des Metallbands, welches als Substrat 16 des Moduls 32 dient, eine lμm dicke Silberschicht aufgetragen sein, während sich auf der Rückseite 31 ein Resist 27.2 aus Fotolack befindet. Die Resistschicht 27.1 auf der Kontaktierseite 30, auf die künftig in einem Chiprastervielfachen 10 Chips 3 kontaktiert werden, ist im Bereich der Chipkontaktierzone 7 mit einem parallelen, linienförmigen Gitterraster 34 versehen. Die Größe des Gitterrasters 34 ist gleich der Chipgröße zuzüglich aller infolge des Chipabnehrnens vom Chipspeicher 12 und der
Chiphandlingsprozesse auftretenden Toleranzen. Im Beispiel beträgt die Größe des Chips 3 (0,5x0,5) mm2 und die Größe der Chipkontaktierzone 7 beträgt (1,4x1,4) mm2. Die Strukturlinien 35 des Gitterrasters 34 wurden durch einen YAG-Laser mittels Schreibstrahl erzeugt. Die Breite der in die Resistschicht 27 eingebrachten Strukturlinien 35 beträgt 30|xm und der Mittenabstand 200 μm.
Der Abstand der auf der aktiven Chipseite 4 befindlichen 10 μm hohen, aus Gold bestehenden Kontakthügel 6 beträgt 250 μin. Die Kontakthügel 6 weisen einen Durchmesser von 90 μm auf. Die Rückseite 31 des Substrates 16 weist ebenfalls 30 μm breite Strukturlinien 35 auf. Die Stmkturlinien 35 markieren die Kontur des künftigen, streifenförmigen Moduls 32 sowie die Trennstellen 36 der Module 32 untereinander. In Richtung Kontaktierzone 7 verlaufen kurze Strukturlinien 35, die in Endpunkten 37 enden. Nach dem beidseitigen Einbringen der Strukturlinien 35 wurde von der Kontaktierseite 30 her das Kupfer des Kernbandes 26 nasschemisch geätzt, so dass sich auf der Kontaktierseite 30 ca. 5...8 μ.m tiefe Strukturgräben 13 ergaben. Auf das bandförmige Substrat 16 werden im nachfolgenden Schritt die Halbleiterchips 3 kontaktiert. Figur 2 erläutert eine Anordnung, die ein individuelles sowie ein kollektives Chipkontaktieren ermöglicht. In der Chipbestückeraufnahme 20 sind hintereinander liegend in zwei Reihen je vier Chipbestücker 21 angeordnet. Die Chipbestücker 21 sind in Abständen angeordnet, die einem Vielfachen des Rasterabstandes entspricht, in dem die Chips 3 auf dem Wafer 1 angeordnet sind. Jeder Chipbestücker 21 ist in seiner vertikalen Lage steuerbar und kann mit einem Vakuum zum Ansaugen der Chips 3 beaufschlagt werden. In der dargestellten Ausführung befinden sich drei Chipbestücker 21 in der unteren Lage, das ist die Arbeitsposition 18, und ein Chipbestücker 21 in der oberen Lage, der Warteposition 23. In Arbeitsposition 18 kann jeder Chipbestücker 21 durch Einschalten des Vakuums ein Chip 3 aus einem Chipspeicher 12 aufnehmen und durch Ausschalten des Vakuums auf die Chipkontaktierzone 7 des Substrates 16 absetzen. Die Chipbestücker 21 gleiten gesteuert und angetrieben durch hier nicht dargestellte Mechanismen vertikal in den in der Clύpbestückeraufnalime 20 angeordneten Chipbestückerführungen 17. Während der Aufnahme oder des Bondens der Chips 3 drückt die senkrecht zur Achse des Chipbestückers 21 angeordnete Chipaufnahmefläche 22 auf das Chip 3 mit einer Kraft, die der Chipbestückerantriebsmechanismus auf den Chipbestücker 21 überträgt. Die Kraftübertragung erfolgt im beschriebenen Beispiel über eine Feder.
Bestandteil des Chipbestückers 21 ist ein an die hier nicht dargestellte Vakuumsteuerung angeschlossener Vakuumkanal 11, der mittig zur Chipaufnahmefläche 22 verläuft. Die Abmessungen der Chipaufnahmeflächen 22 sind kleiner oder gleich den Abmessungen der Fläche des aufzunehmenden Chips 3.
Jede Chipaufnahmefläche 22 der in Arbeitsposition 18 befindlichen Chipbestücker 21 hat ein Chip 3 angesaugt. Die Chiprückseite 5 liegt an der Chipaufnahmefläche 22, die aktive Chipseite 4 trägt je zwei Kontakthügel (Bump) 6 und zeigt nach unten. Die Grundfläche des Chips 3 beträgt (0,5 x 0,5 ) mm und seine Dicke 0,15 mm. Die Chipbestückeraufnahme 20 ist Teil eines Chipbonders, der die Chipbestückeraufnahme 20 sowohl in Chipaufhalime- als auch in Bondposition in mehreren Koordinaten steuern kann. Der Chipbonder verfügt über ein Bildaufnahmesystem zur Erfassung der Lage der Chipkontaktierzonen 7 und kann die Chipbestücker 21 in Arbeitsposition 18 oder Warteposition 23 und die Vakuumfunktion steuern sowie Lage und Ort der noch vom Wafer 1 abzuholenden Chips 3 verwalten.
Figur 3 zeigt einen Ausschnitt aus einem bandförmigen Substrat 16, das mit
Strukturlinien 35 und mit von der Kontaktierseite 30 her eingebrachten Strukturgräben 13 versehen ist, nach dem Chipkontaktieren. Aufgrund individueller Fehllagen der Chips 3, die sich infolge der Lagetoleranzen beim Chipabholen, beim Chiphandling, beim Chipaufsetzen und beim Chipkontaktieren ergeben, nimmt jedes Chip 3 auf dem parallellinienförmigen
Gitterraster 34 eine individuelle Lage ein. Größe und Abstand der Strukturgräben 13 sind dabei so bemessen, dass die Kontakthügel 6 mindestens durch einen Stmkturgraben 13 getrennt sind. Jeder Kontakthügel 6 liegt mit dem größten Teil seiner Fläche auf dem aus einer Zinnschicht bestehenden Resist 27.1 auf. Die Chipkontaktierang erfolgte mittels Reflowlötverfahren, wobei der Underfiller 9, der vor dem Kontaktieren auf der gesamten Kontaktierzone 7 als dünne Schicht deponiert wurde, beim Lötprozess vorübergehend Flussmitteleigenschaften aufweist und bei weiterer Temperaturbehandlung aushärtet. Im nachfolgenden Schritt werden in den auf der Rückseite 31 des Substrates 16 befindlichen Resist 27.2 die fehlenden Strukturlinien 35.2 eingebracht, die chipindividuell zwischen den Kontakthügeln 6 der unterschiedlich positionierten Chips 3 auf der Kontaktierseite 30 verlaufen. Beim Einbringen der Strukturlinien 35.2, das ebenfalls durch einen YAG-Laser erfolgt, ist darauf zu achten, dass die chiplageindividuelle Strukturlinie 35.2 lagegleich zu einem Strukturgraben 13 des Gitterrasters 34 verläuft, damit im folgenden Ätzschritt, der als Nassätzen mit einem alkalischen Ätzer erfolgt, die Kupferkernschicht 26 von der Rückseite 31 des Substrates 16 her so durchgeätzt wird, dass sich auf der Kontaktierseite 30 an der Durchbruchstelle 14 des von der Rückseite 31 des Substrates 16 vordringen Atzstrakturgrabens 13 kein Atzresist 27 befindet, sondern ein Strukturgrabenstück 13 des Gittercasters 34. Somit wird verhindert, dass der metallische Atzresist 27 die durch das Ätzen zu isolierenden Modulanschlüsse 28 kurzschließt.
Die Situation nach dem Erzeugen der chipindividuellen Strukturlinie 35 auf der Rückseite 31 des Substrates 16 ist in Figur 4 dargestellt. Die chipindividuellen
Stmkturlinien 35.2 verbinden die Endpunkte 37 der Stmkturlinien 35 jeder
Substratrückseite 31. Dazu wurde mit optoelektronischen Mitteln die Lage des jeweiligen Chips 3 auf der Kontaktierseite 30 und die Lage der Endpunkte 37 der
Stmkturlinien 35 auf der Rückseite 31 erfasst und daraus der Verlauf der chipindividuellen Strukturlinie 35.2 ermittelt, die immer deckungsgleich zu einer
Strukturlinie 35 oder einem Stmkturgraben 13 des Gitterrasters 34 verläuft. Es ist ebenfalls möglich, definierte Markierungspunkte auf der Kontaktierseite 30 anzuordnen und daraus und aus der Chiplage die Lage der chipindividuellen
Strakturlinie 35.2 auf der Rückseite 31 des Substrates 16 zu errechnen. Die definierten Markierungspunkte auf der Kontaktierseite 30 können Teil des
Gitterrasters 34 sein.
Aus Figur 5 ist ersichtlich, wie nach dem Erzeugen der chipindividuellen Strukturlinie 35.2 entlang der Chipkontur auf der gesamten Kontaktierzone 7 weiterer Schutzlack 33 aufgebracht ist. Nach dem Aushärten des Schutzlacks 33 versteift dieser das metallische Substrat 16 um das Chip 3 herum und verbindet die an sich getrennten inneren Modulanschlüsse 28 elektrisch isoliert. Figur 5a zeigt einen Ausschnitt aus Figur 5 nach dem Naßätzen. Die Durchbrachstelle 24 verbindet die Strukturgräben 13 des Gitterrasters 34 und der chipindividuellen Strakturlinie 35.2. Als Ergebnis des anschließenden Nassätzens ergeben sich die in Figur 6 dargestellten Module 32, deren innere und äußere Anschlüsse 28 und 29 gegenüberliegend als ein Streifen angeordnet sind sowie die Module 32, die wiederum an ihren äußeren Anschlüssen 29 untereinander zu einem endlosen
Band verbunden sind. Durch die perforationsartigen Trennstellen 36 sind die künftigen Modultrennungen vorgegeben.
In Figur 7 ist ein Modul 32 mit vier Modulanschlüssen 28 und 29 dargestellt. In einem ersten Schritt wurde elektrisch isolierendes Basismaterial 19 mit einem die künftige Modulgröße etwas überragenden Durchbrach 14 versehen, auf das
Basismaterial 19 eine einteilige Metallfolie 16 aus Kupfer mit einer Dicke 30 μm geklebt, deren Kontaktierseite 30 und Rückseite 31 je eine 1 μm dicke
Silberschicht als Resist 27 aufweisen. Die weiteren Schritte der Substratbehandlung und des Kontaktierens verliefen wie bereits dargestellt, lediglich mit der Ausnahme, dass auf der Kontaktierseite 30 ein Kreuzgitterraster
34 aufgebracht wurde. Nach dem abschließenden. Ätzen ergibt sich ein Modul
32, welches über den Durchbrach 14 des Isolierbasismaterials 19 gespannt ist.
Chip 3 und Kontaktierzone 7 sind mit einem, ca. lOOμm dicken, steifen Schutzlack 33 überzogen.
Figur 8 zeigt die Draufsicht auf einen Ausschnitt eines Chipspeichers 12, der in diesem Beispiel durch den Waferträger 2 und die auf ihm noch in der Ordnung des Waferverbands befestigten Chips 3 gebildet wird. Der Waferträger 2 besteht aus einem extrem ebenen, starren Flächenstüαk, welches die Größe des
Waferverbandes allseitig mindestens um 10 mm überragt und Rahmenteile zum Transport und Einspannen im Chipbonder aufweist. Die Chips 3 liegen, getrennt durch Trenngräben, die den Wafer 1 in einzelne Chips 3 separieren, mit der aktiven Seite 4 zum Waferträger 2 in der exakten Anordnung des ehemals einteiligen Wafers 1 auf dem mit Haftmittel 8 beschichteten Flächenstück. Das Haftmittel 8 ist punktweise im Raster von (0,3 x 0,3) mm2 und einer Punktgröße von 60 ... 80 μm Durchmesser und der Dicke von ca. 35 μm aufgebracht. Jedes Chip 3 des separierten Waferverbandes ist mit etwa sechs bis neun Punkten des Haftmittels 8 am Flächenstück des Waferträgers 2 befestigt. Die Haftmittelpunkte 8 weisen bei Raumtemperatur eine flache zylindrische Gestalt auf. Die Haftfestigkeit des Haftmittels 8 ist auf dem Waferträger 2 wesentlich höher als auf dem Chip 3. Bei Erwärmung des Haftmittels 8 auf ca. 80° C verändert das Haftmittel 8 seine Kontur in eine nach der Chipseite hin gerichtete Konvexkontur 15, wie in Figur 9 dargestellt. Die Haftflächen der Haftmittelpunkte 8 zum Chip 3 werden dadurch erheblich reduziert, so dass die
Abnahme der Chips 3 von dem Waferträger 2 durch die auf größer/gleich 80° C erhitzten Chipaufnahmeflächen 22 des Chipbestückers 21 leicht erfolgen kann. Mit der Ausbildung der Konvexkontur 15 ist eine Streckung des Haftmittelpunktes 8 in vertikaler Richtung bzw. in Richtung Chip 3 verbunden, so dass der Chip 3 etwas angehoben wird, im Beispiel um 5 μm. Über hier " icht dargestellte Mittel ist die Lage und Zuordnung der Gut-Chips 3 auf dem Waferträger 2 der Datenverarbeitungsanlage des Chipbonders bekannt. Durch die auf mindestens 100°C aufgeheizten Chipaufinahmeflächen 22 der in der Chipbestückeraufnahme 20 befindlichen acht Chipbestücker 21, die auf die Chiprückseiten 5 zum Zwecke des Abholens der Chips 3 von dem Waferträger 2 bzw. Chipspeicher 12 aufgesetzt wurden, sind die Chips 3 aufgeheizt und die Haftung zum Flächenstück mit dem Haftmittel 8 ist durch die Bildung der Konvexkontur 15 sehr stark reduziert. Die Chipaufheizung, mit der die Konvexkontur 15 erzeugt wird, kann auch auf andere Weise, z.B. mit einem energieintensiven Lichtstrahl, der unmittelbar vor dem eigentlichen Abholen der
Chips 3 durch die Chipbestücker 21, aufgebracht wird, erfolgen. Durch gleichzeitiges Ansaugen der Chips 3 an die Chipaufnahmeflächen 22 werden die Chips 3 von den Chipbestückern 21 übernommen und durch Abheben der gesamten Chipbestückeraufnahme 20 von dem Waferträger 2 abgehoben. In dem separierten Waferverband des Waferträgers 2 bleiben acht Leerpositionen 25 zurück. Die Chipbestücker 21 sind in einem Vielfachen des Chiprasters angeordnet. Die konkrete Anordnung der Chipbestücker 21 in der Clήpbestückeraufnahme 20 entspricht bzw. ist kongruent der Anordnung der Chipkontaktierzonen 7 auf dem Substrat 16. Im dargestellten Beispiel weist das Chiprastervielfache 10 in x-Richtung den Faktor 4, und in y-Richtung, die dem
Zeilenabstand entspricht, den Faktor 5 auf. Nach dem Absetzen oder Bonden der Chips 3 kann die um ein Chipraster versetzte Chipbestückeraufnahme 20 erneut acht Chips 3 aufnehmen. Sollen Defektchips nicht entnommen werden bzw. werden Randbereiche des Waferverbandes oder Waferträgers 2 mit dem Chipbestücker 21 angefahren, die es nicht gestatten, in alle Chipbestücker 21
Chips 3 zu übernehmen, verbleiben diejenigen Chipbestücker 21 in Warteposition 23, die keinen Chip 3 aufnehmen sollen oder können, während die anderen Chipbestücker 21 Chips 3 aufnehmen. Anschließend fährt die Chipbestückeraufnahme 20 eine neue Position über dem Chipspeicher 12 bzw. Waferträger 2 an, die leeren Chipbestücker 21 werden in Arbeitsposition 18 gebracht, während die gefüllten Chipbestücker 21 in Warteposition 23 gesteuert werden. Durch zwei- oder mehrmaliges Chipaufnehmen jeweils anderer Chipbestücker 21 werden alle Chipbestücker 21 der Chipbestückeraufnahme 20 gefüllt. Die Steuerung der Chipbestückeraufnahme 20 und der Chipbestücker 21 sowie die Verwaltung des Chipspeichers 12 erfolgt über den Chipbonder.
B E ZU G S ZE I C H EN L I S TE 1 Wafer 2 Waferträger 3 Chip 4 aktive Chipseite 5 Chiprückseite 6 Kontakthügel 7 Chipkontaktierzone 10 8 Haftmittel 9 Underfiller 10 Chiprastervielfaches 11 Vakuumkanal 12 Chipspeicher
15 13 Strukturgraben 14 Durchbruch 15 Konvexkontur 16 Substrat 17 Bestückerführung
20 18 Arbeitsposition 19 Basismaterial 20 Chipbestückeraufnahrne 21 Chipbestücker 22 Chipaufnahmefläche
25 23 Warteposition 24 Durchätzung 25 Leerposition 26 Kernband 27 Resist
30 27.1 Resist auf Kontaktierseite 27.2 Resist auf Rückseite 28 innerer Modulanschfuss 29 äußerer Modulanschluss 30 Kontaktierseite des Substrates
35 31 Rückseite des Substrates 32 Modul 33 Schutzlack 34 Gitterraster 35 Strukturlinie
40 35.1 Strakturlinie auf Kontaktierseite 35.2 chipindividuelle Stxulcturlinie 36 Trennstelle 37 Endpunkt

Claims

P A T EN T AN S P R Ü C H E
1. Verfahren zum Kontaktieren von Halbleiterchips (3) auf einem metallischen Substrat (16), wobei sich mindestens auf einer Substratseite ein Atzresist (27) befindet und auf der Kontaktierseite (30) Halbleiterchips (3) mittels Flip-Chip- Bond- Verfahren kontaktiert werden, dadurch gekennzeichnet dass auf der Kontaktierseite (30) des Substrates (16) ein Kontaktierbereich (7) erzeugt wird, auf dem ein Halbleiterchip (3) mit zwei Kontakfhügeln (6) so kontaktiert wird, dass beidseitig einer den Kontaktierbereich (7) teilenden Strukturlinie (35) oder eines Strukturgrabens (13) je ein Klontakthügel (6) kontaktiert ist, dass nach dem Kontaktieren ein Underfilling des Chips (3) erfolgt und danach ein elektrisch isolierende Durchbrach (14) im Kontaktierbereich (7) erzeugt wird und ein
Trennen eines den Halbleiterchip (3) tragenden Moduls (32) aus dem Substrat (16) erfolgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass nach dem Underfilling ein Vergießen, Belacken oder ein Duroplastüberformen des
Halbleiterchips (3) erfolgt.
3. Verfahren nach Ansprach 1 oder 2, dadurch gekennzeichnet, dass
- als metallisches Substrat (16) Abschnitte eines dünnen Flächenstücks verwendet werden,
- die Kontaktierseite (30) und die Rückseite (31) des Substrats (16) mit einem Atzresist (27.1, 27.2) beschichtet werden,
- auf der Kontaktierseite (30) des Substrates (16) der Kontaktierbereich (7) so erzeugt wird, dass dessen Größe gleich der Größe des Chips (3) plus zu erwartender Fehlpositionierungen des Chips (3) ist, - auf dem Kontal tierbereich (7) im Atzresist (27.1) ein Gitterraster (34) mit Strakturlinien (35) angebracht wird, deren Abstand kleiner/gleich dem Abstand der Kontakthügel (6) minus der halben Strukturlinienbreite beträgt, - danach das Bonden der Chips (3) erfolgt, - die Lage des jeweiligen Chips (3) und der Lage der Strukturlinien (35) des chipzugehörigen Gitterrasters (31) exakt erfasst wird, - anschließend im Atzresist (27.2) der Substratrückseite (31) entsprechend der erfassten Chiplage im Kontaktierbereich (7) chipindividuelle Strukturlinien (35.2) eingebracht werden, die im Kontalctierbereich (7) deckungsgleich zu einem zwischen den Kontakthügeln (6) liegenden Strukturlinienabschnitt des
Gitterrasters (34) auf der Kontaktierseite (30) des Substrates (16) sind und
- elektrisch isolierende Durchbrüche (14) durch Ätzen erzeugt werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Resist (27) ein metallischer Atzresist verwendet wird, der durch Laser und/oder fotochemisch Prozesse strukturiert wird.
5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Atzresist ein polymerer Ätzlack oder Festresist verwendet wird, der durch fotochemische und/oder thermische Prozesse strukturiert wird.
6. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass die Gitterrasterstrukturlinien (35) vor dem Bonden zu Strukturgräben (13) einer Tiefe von (30...70) % der Substratdicke geätzt werden.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass auf der Substratrückseite (31) entlang der Modulränder zur künftigen vollständigen Separierung des Moduls (32) aus der metallischen Fläche Strukturlinien (35) angebracht werden.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass auf der Substratrückseite (31) ausgehend von modulkonturierenden Strulcturlinien (35) in Richtung Kontaktierbereich (7) Strukturlinien (35) verlaufen, die in Endpunkten (37) außerhalb der
Kontaktbereiche (7) enden.
9. Verfahren nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass auf dem Substrat (16) Strakturlinienendpunkte (37) in vorgegebener exakter Lagebeziehung zum Gitterraster (34) angeordnet sind.
10. Verfahren nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, dass die Bestimmung der Lage des Chips (3) und die Lage des Gitterrasters (34) mittels optoelektronischer Erfassung und Auswertung der Lage des Chips (3) und der Lage des Gitterrasters (34) oder der Lage der Endpunkte (37) auf der
Substratrückseite (31) erfolgt.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Underfilling des Chips (3) mittels Kleber parallel oder unmittelbar nach dem Flip-Chip-Bonden erfolgt.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Atzresist ein löt- und/oder schweißfähiges Metall, wie Zinn, Silber und dergleichen, verwendet wird.
13. Trägerstreifen für Chipmodule (32), bei dem sich auf einem metallischen Substrat (16) ein Atzresist (27) befindet und auf der Vorderseite (30) des Substrates (16) Kontaktierbereiche (7) angeordnet sind, auf denen Halbleiterchips (3) kontaktierbar sind, dadurch gekennzeichnet, dass das Substrat (16) als dünnes Flächenstück ausgebildet ist, bei dem sich auf der Kontaktierseite (30) und der Rückseite (31) Resistschichten (27.1, 27.2) befinden, die mit Strukturen versehen sind.
14. Trägerstreifen nach Anspruch 13, dadurch gekennzeichnet, dass der auf der Vorderseite (30) aufgebrachte Resist (27.1) eine Strukturlinie (35) aufweist, die den Kontaktierbereich (7) teilt und der auf der Rückseite (31) aufgebrachte Resist (27.2) eine deckungsgleiche Strakturlinie (35) aufweist.
15. Trägerstreifen nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass zusätzlich zur den Kontaktierbereich (7) teilenden Strukturlinie (35) weitere, den
Kontalcti erbereich (7) gitterartig überziehende Strukturlinien (35) eingebracht sind.
16. Trägerstreifen nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass die auf der Vorderseite (30) und der Rückseite (31) eingebrachten, den Kontaktierbereich (7) teilenden Strukturlinien (35) verbunden sind mit den Strukturlinien (35), die entlang der Modulräder zur künftigen vollständigen Separierung des Moduls (32) aus der metallischen Fläche (16) angebracht werden.
17. Trägerstreifen nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, dass auf der Vorderseite (30) des Substrates (16) die Strkturlinien (35) zu Strukturgräben (13) mit eine Tiefe von 30 % ... 70 % der Substratdicke eingeätzt sind.
18. Trägerstreifen nach einem der Ansprüche 13 bis 17, dadurch gekennzeichnet, dass der auf der Vorderseite (30) aufgebrachte Resist (27.1) an den Kontaktierbereichen (7) Gitterstrakturen aufweist, welche mit einem Raster versehen sind, dessen Abstände kleiner oder gleich des Abstandes der Kontakte (6) von auf dem Band zu kontaktierenden Halbleiterchips (3) sind, und der Resist (27.2) an der Rückseite Strulcturlinien (35) aufweist, die parallel zur Bandkante und dazu senkrecht zu Endpunkten (37) verlaufen.
19. Trägerstreifen nach Anspruch 18, dadurch gekennzeichnet, dass die Größe der Gitterstruktur gleich oder größer als die Chipfläche zuzüglich der zu erwartenden Fehllagen des zu montierenden Halbleiterchips (3) ist.
20. Trägerstreifen nach einem der Ansprüche 15 bis 19, dadurch gekennzeichnet, dass die Linien des Gitterrasters eine Breite von 20 bis 40 μm aufweisen.
21. Trägerstreifen nach einem der Ansprüche 13 bis 20, dadurch gekennzeichnet, dass das metallische Substtat auf einem Kunststoffträger angeordnet ist.
22. Vorrichtung zum Kontaktieren von Halbleiterchips auf einem Trägerstreifen, insbesondere auf einem Trägerstreifen nach einem der Ansprüche 13 bis 21, dadurch gekennzeichnet, dass
- in einer Chipbestückeraufnahme (20), mehrere Chipbestücker (21) angeordnet sind, wobei die Chipbestücker (21) Chipaufnahmeflächen (22) aufweisen, an denen Chips (3) temporär befestigt werden können,
- jeder Chipbestücker (21) einzeln senkrecht zur Chipaufnahmefläche (22) federnd und beweglich in der Bestückerführung (23) der Chipbestückeraufnahme (20) geführt ist, - die Chipbestücker (21) in der Chipbestückeraumahme (20) so angeordnet sind, dass ihre Lage zueinander zur Lage des Zentrums der Chipkontaktierzonen (7) der im Nutzen (26) angeordneten Substrate (16) kongruent oder nahezu kongruent ist.
23. Vorrichtung nach Ansprach 22, dadurch gekennzeichnet, dass in den Chipbestückern (21) Vakuumkanäle (11) angeordnet sind, die senkrecht an der Chipaufnahmefläche (22) austreten.
24. Vorrichtung nach Anspruch 22 oder 23, dadurch gekennzeichnet, dass die
Chipaufnahmefläche (22) der Chipbestücker (21) heizbar sind.
25. Vorrichtung nach einem der Ansprüche 22 bis 24, dadurch gekennzeichnet, dass - die Halbleiterchips (3) in der Anordnung des Waferverbandes (1) auf
Waferträgern (2) befestigt sind, die Waferträger (2) im zentralen Bereich ein extrem ebenes, starres Flächenstück bilden,
- die Halbleiterchips (3) mit mindestens drei Haftmittelpunkten (8) auf dem Flächenstück befestigt sind,
- die Haftmittelpunkte (8) flachzylindrisch ausgebildet sind,
- bei Erwärmung über 60 °C eine Konturänderung mit zur Chipseite gerichteter Konvexkontur (15) verbunden mit einer Anhebung des Chips (3) und extremer Verringerung der Haftfestigkeit zu den Haftmittelpunkten (8) erfolgt.
26. Vorrichtung nach einem der Ansprüche 22 bis 25, dadurch gekennzeichnet, dass der Durchmesser der Haftmittelpunkte (8) < 200 μm und die Dicke der Haftmittelpunkte (8) < 100 μim beträgt.
27. Vorrichtung nach einem der Ansprüche 22 bis.26, dadurch gekennzeichnet, dass die Haftmittelpunkte (8) durch auf die Halbleiterchip (3) aufgesetzte geheizte Chipaufnahmeflächen (22) erwärmt werden.
28. Vorrichtung nach einem der Ansprüche 22 bis 27, dadurch gekennzeichnet, dass die abzuholenden Chips (3) durch Strahlung erwärmt werden.
29. Vorrichtung nach einem der Ansprüche 22 bis 28, dadurch gekennzeichnet, dass die Chips (3) mit ihrer aktiver Seite (4) zum Waferträger (2) bzw. zum Chipspeicher (12) angeordnet sind.
30. Vorrichtung nach einem der Ansprüche 22 bis 29, dadurch gekennzeichnet, dass die Chips (3) kollektiv aufgenommen und kollektiv gebondet werden.
EP04762724A 2003-09-06 2004-08-28 Verfahren und vorrichtung zum kontaktieren von halbleiterchips auf einem metallischen substrat Withdrawn EP1661157A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10341186A DE10341186A1 (de) 2003-09-06 2003-09-06 Verfahren und Vorrichtung zum Kontaktieren von Halbleiterchips
PCT/DE2004/001900 WO2005027200A2 (de) 2003-09-06 2004-08-28 Verfahren und vorrichtung zum kontaktieren von halbleiterchips auf einem metallischen substrat

Publications (1)

Publication Number Publication Date
EP1661157A2 true EP1661157A2 (de) 2006-05-31

Family

ID=34223423

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04762724A Withdrawn EP1661157A2 (de) 2003-09-06 2004-08-28 Verfahren und vorrichtung zum kontaktieren von halbleiterchips auf einem metallischen substrat

Country Status (6)

Country Link
US (1) US7727861B2 (de)
EP (1) EP1661157A2 (de)
AU (1) AU2004273128A1 (de)
CA (1) CA2539463A1 (de)
DE (1) DE10341186A1 (de)
WO (1) WO2005027200A2 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4446772B2 (ja) * 2004-03-24 2010-04-07 三洋電機株式会社 回路装置およびその製造方法
JP4353853B2 (ja) * 2004-05-20 2009-10-28 三洋電機株式会社 回路装置の製造方法および板状体
DE102005007643A1 (de) * 2005-02-19 2006-08-31 Assa Abloy Identification Technology Group Ab Verfahren und Anordnung zum Kontaktieren von Halbleiterchips auf einem metallischen Substrat
EP1968109A3 (de) * 2007-03-08 2012-08-01 Nissan Motor Co., Ltd. Halbleiterbauelement und Verfahren zu seiner Herstellung
DE102014201635B3 (de) 2014-01-30 2015-05-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Anordnung von elektronischen Bauelementen und elektronische Schaltanordnung
US9165832B1 (en) * 2014-06-30 2015-10-20 Applied Materials, Inc. Method of die singulation using laser ablation and induction of internal defects with a laser
US10706344B1 (en) * 2017-05-23 2020-07-07 Fiteq, Inc. Process for maintaining registration of an array through use of a carrier in process flow

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4369458A (en) * 1980-07-01 1983-01-18 Westinghouse Electric Corp. Self-aligned, flip-chip focal plane array configuration
DE3113855A1 (de) * 1981-04-06 1982-10-21 Fritz Wittig Herstellung gedruckter Schaltungen, 8000 München Verfahren zur herstellung von leiterplatten
GB2207395B (en) * 1987-07-29 1991-07-17 Gen Electric Plc A method for producing a pattern in a material
DE19532755C1 (de) * 1995-09-05 1997-02-20 Siemens Ag Chipmodul, insbesondere für den Einbau in Chipkarten, und Verfahren zur Herstellung eines derartigen Chipmoduls
JP3677108B2 (ja) * 1996-01-29 2005-07-27 三星テクウィン株式会社 部品搭載装置
DE19842683A1 (de) * 1998-09-17 1999-12-16 Siemens Ag Verfahren zur Herstellung eines Chipmoduls sowie in diesem Verfahren einsetzbare Komponenten
WO2000062012A1 (en) * 1999-04-13 2000-10-19 Icos Vision Systems N.V. Measuring positions or coplanarity of contact elements of an electronic component with a flat illumination and two cameras
DE19921230B4 (de) * 1999-05-07 2009-04-02 Giesecke & Devrient Gmbh Verfahren zum Handhaben von gedünnten Chips zum Einbringen in Chipkarten
DE19962763C2 (de) * 1999-07-01 2001-07-26 Fraunhofer Ges Forschung Verfahren zum Vereinzeln eines Wafers
JP3420153B2 (ja) * 2000-01-24 2003-06-23 Necエレクトロニクス株式会社 半導体装置及びその製造方法
DE10008203B4 (de) * 2000-02-23 2008-02-07 Vishay Semiconductor Gmbh Verfahren zum Herstellen elektronischer Halbleiterbauelemente
US6562660B1 (en) * 2000-03-08 2003-05-13 Sanyo Electric Co., Ltd. Method of manufacturing the circuit device and circuit device
JP2002083904A (ja) * 2000-09-06 2002-03-22 Sanyo Electric Co Ltd 半導体装置およびその製造方法
US6571468B1 (en) * 2001-02-26 2003-06-03 Saturn Electronics & Engineering, Inc. Traceless flip chip assembly and method
DE10210841B4 (de) * 2002-03-12 2007-02-08 Assa Abloy Identification Technology Group Ab Modul und Verfahren zur Herstellung von elektrischen Schaltungen und Modulen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005027200A3 *

Also Published As

Publication number Publication date
WO2005027200A2 (de) 2005-03-24
WO2005027200A8 (de) 2006-06-01
WO2005027200A3 (de) 2006-03-16
AU2004273128A1 (en) 2005-03-24
US20070163992A1 (en) 2007-07-19
US7727861B2 (en) 2010-06-01
CA2539463A1 (en) 2005-03-24
DE10341186A1 (de) 2005-03-31

Similar Documents

Publication Publication Date Title
DE102006005645B4 (de) Stapelbarer Baustein, Bausteinstapel und Verfahren zu deren Herstellung
DE69838935T2 (de) Herstellungsverfahren für halbleiterscheiben, halbleiterbauelemente und chipkarten
EP2259311B1 (de) Verfahren zum Einbetten zumindest eines Bauelements in einem Leiterplattenelement
EP0140126B1 (de) Verfahren zur Mikropackherstellung
DE10229182B4 (de) Verfahren zur Herstellung einer gestapelten Chip-Packung
DE4318727C2 (de) Verfahren zur Herstellung einer Halbleitervorrichtung mit LOC-Struktur sowie dazugehöriger Zuführungsdrahtrahmen
DE10148120A1 (de) Elektronische Bauteile mit Halbleiterchips und ein Systemträger mit Bauteilpositionen sowie Verfahren zur Herstellung derselben
DE10014300A1 (de) Halbleiterbauelement und Verfahren zu dessen Herstellung
DE19651566A1 (de) Chip-Modul sowie Verfahren zu dessen Herstellung
DE10146936B4 (de) Herstellverfahren für eine Chipkomponenten-Baugruppe
WO2015114026A1 (de) Verfahren zur anordnung von elektronischen schaltelementen, elektronische schaltanordnung und verwendung eines klebeschichtträgers
DE19522338B4 (de) Chipträgeranordnung mit einer Durchkontaktierung
EP3026702A1 (de) Verfahren zum herstellen eines halbleiterelements mit substratadapter, halbleiterelement mit substratadapter und verfahren zum kontaktieren eines halbleiterelements
DE1766879B1 (de) Elektronischer baustein
EP1661157A2 (de) Verfahren und vorrichtung zum kontaktieren von halbleiterchips auf einem metallischen substrat
EP1719156A1 (de) Vorrichtung zum singulieren und bonden von halbleiterchips und verfahren zum singulieren und bonden
DE102014109766B3 (de) Verfahren zum Herstellen eines Substratadapters, Substratadapter und Verfahren zum Kontaktieren eines Halbleiterelements
DE19715926A1 (de) Herstellungsverfahren für externen Anschluß für Kugelgitterarray-Bauteil
DE4410179C1 (de) Verfahren zum Aufnehmen eines elektrischen Bauelements
DE10120917C1 (de) Anordnung mit wenigstens zwei zentrierten gestapelten Halbleiterchips
DE10210841B4 (de) Modul und Verfahren zur Herstellung von elektrischen Schaltungen und Modulen
EP3675153A1 (de) Verfahren zum herstellen eines substratadapters und substratadapter zum verbinden mit einem elektronikbauteil
EP1114457B1 (de) Verfahren zur herstellung von integrierten schaltkreisen
EP1298723A2 (de) Elektronisches Bauteil mit einem Kunststoffgehäuse und Komponenten eines Systemträgers und Verfahren zu deren Herstellung
DE19932960C2 (de) Verfahren zur Herstellung eines Chipkartenmoduls, Positioniervorrichtung zur Durchführung eines derartigen Verfahrens und Positionierverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060315

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

R17D Deferred search report published (corrected)

Effective date: 20060601

R17D Deferred search report published (corrected)

Effective date: 20060316

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 21/68 20060101ALI20061101BHEP

Ipc: H01L 21/00 20060101AFI20050329BHEP

DAX Request for extension of the european patent (deleted)
R17D Deferred search report published (corrected)

Effective date: 20060601

17Q First examination report despatched

Effective date: 20070118

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NIELAND, SABINE

Inventor name: MICHALK, MANFRED

Inventor name: MICHALK, MARTIN

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASSA ABLOY AB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150303