EP1624982B1 - Verfahren zur regelung der temperatur eines metallbandes, insbesondere in einer fertigstrasse zum walzen von metallwarmband - Google Patents

Verfahren zur regelung der temperatur eines metallbandes, insbesondere in einer fertigstrasse zum walzen von metallwarmband Download PDF

Info

Publication number
EP1624982B1
EP1624982B1 EP04710836A EP04710836A EP1624982B1 EP 1624982 B1 EP1624982 B1 EP 1624982B1 EP 04710836 A EP04710836 A EP 04710836A EP 04710836 A EP04710836 A EP 04710836A EP 1624982 B1 EP1624982 B1 EP 1624982B1
Authority
EP
European Patent Office
Prior art keywords
temperature
strip
finishing train
metal strip
online
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04710836A
Other languages
English (en)
French (fr)
Other versions
EP1624982A2 (de
EP1624982B2 (de
Inventor
Matthias Kurz
Michael Metzger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32928838&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1624982(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE2003121791 external-priority patent/DE10321791A1/de
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1624982A2 publication Critical patent/EP1624982A2/de
Publication of EP1624982B1 publication Critical patent/EP1624982B1/de
Application granted granted Critical
Publication of EP1624982B2 publication Critical patent/EP1624982B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling

Definitions

  • US 6,220,067 B1 describes a method which determines the temperature of a metal strip on the exit side of a mill train, i. the final rolling temperature, regulates. With such a method, phase transformations of the steel in the rolling train, which are particularly important in the case of two-phase rolling for the material properties of the rolled metal strip, can not be sufficiently influenced in a targeted manner.
  • a comparable method, which is used to calculate a pass schedule, is described in EP 1 014 239 A1.
  • the material properties and the structure of a rolled metal strip are determined by chemical composition and process parameters, in particular during the rolling process, such as e.g. determines the load distribution and the temperature control.
  • Actuators for the rolling temperature, in particular the final rolling temperature are, depending on the type of plant and operating mode usually belt speed and interstand cooling.
  • the object according to the invention is achieved by a method for controlling and / or regulating the temperature of a metal strip in a finishing train, a setpoint temperature profile being compared with an actual temperature profile for determining setting signals, wherein a temperature profile for individual strip points of the metal strip is determined , and wherein, taking into account side conditions, at least one target function for actuators of the plant is formed in the finishing train.
  • the path and preferably additionally properties such as the temperature of individual band points are advantageously tracked. In this way, the accuracy of the control or regulation is significantly improved.
  • the objective function is solved by solving an optimization problem.
  • technical boundary conditions such as in particular control limits of the actuators are taken into account in extremely favorable manner, whereby in particular the largest possible space for changing the actuators is ensured that the computing time required for the control or regulation is kept very low.
  • a target temperature is specified at the end of the finishing train.
  • at least one desired temperature is predetermined in the finishing train. The control or regulation is thus substantially improved with regard to the material properties of the metal strip and with regard to its structural composition.
  • the actual temperature profile of the metal strip is determined with the aid of at least one model.
  • an improved control or regulation of the temperature of the metal strip is made possible, even if the actual strip temperature at locations relevant for the control, especially in the finishing mill, can not be measured.
  • the model is adapted online.
  • an existing system drift can be taken into account and realistic results, in particular for the metal strips to be rolled next, can be determined.
  • control signals for the coolant flow are determined.
  • control signals for the mass flow are determined.
  • an optimization problem with linear constraints online i. especially in real time, solved.
  • Adjustment limits are set up in particular in the form of equation or inequality constraints.
  • the optimization solution advantageously delivers the values of the manipulated variables for a next controller cycle.
  • a quadratic optimization problem is solved.
  • the optimization problem can be solved very quickly.
  • the optimization problem is solved by means of an active-set strategy.
  • the optimization problem can be solved very effectively in real time.
  • an online capable stitching algorithm is precalculated by non-linear optimizations with constraints.
  • the duration of the stitch plan calculation is thus kept extremely low.
  • the stitch plan calculation optimally provides for the controller working online Set-up values.
  • the controller has sufficient degrees of freedom for belt temperature control.
  • the inventive method for controlling or regulating the temperature of a metal strip is particularly suitable for rolling strips with a thickness wedge, as used for example in semi-endless rolling at finished strip thicknesses below 1 mm.
  • a thickness wedge as used for example in semi-endless rolling at finished strip thicknesses below 1 mm.
  • FIG. 1 shows a system for producing metal strip 6, which comprises a roughing line 2, a finishing line 3 and a cooling section 4. Such systems are typical for the steel and metal industry. Behind the cooling section 4, a reel device 5 is arranged. From her is rolled down in the streets 2 and 3 preferably hot rolled and cooled in the cooling section 4 metal strip 6. The streets 2 and 3, a band source 1 is arranged upstream, for example, as an oven in the Metal slabs are heated, or, for example, as a continuous casting, is produced in the metal strip 6 is formed.
  • the metal strip 6 is made of aluminum or steel, for example.
  • the system and in particular the roads 2, 3 and the cooling section 4 and the at least one reel device 5 are controlled by means of a control method which is carried out by a computing device 13.
  • the computing device 13 is coupled with the individual components 1 to 5 of the plant for steel or aluminum production control technology.
  • the computing device 13 is programmed with a computer program designed as a control program, based on which it carries out the inventive method for controlling or regulating the temperature of the metal strip 6.
  • the metal strip or slab 6 leaves the strip source 1 and is then first rolled in the roughing train 2 to an input thickness for the finishing train 3. Within the finishing train, the belt 6 is then rolled by means of the rolling stands 3 'to its final thickness. The subsequent cooling section 4 cools the belt 6 to a predetermined reel temperature.
  • FIG. 2 shows the finishing train 3 with its rolling stands 3 'closer and illustrates the inventive model-predictive control of the finishing train 3.
  • the finishing train 3 is limited by its beginning x A and its end x E.
  • the system dynamics in the finishing train 3 is characterized in terms of Temperatur. trim relatively large dead times 105.
  • the influence of a change in the coolant flow 8 to the temperature at the end x A of the finishing train 3 can only be observed when the first belt point P 0 , P 1, which was influenced by this change, leaves the last rolling stand 3 '.
  • the strip temperature control 17 is designed as a model-predictive control.
  • the computing device 13 for controlling the plant of the steel industry and in particular for controlling the finishing train 3 has a belt temperature model 12 and a belt temperature control 17.
  • the belt temperature model 12 and the belt temperature control 17 preferably operate cyclically in control steps.
  • the strip temperature control 17 has a control device 14 which controls or regulates the coolant flow 8 of the intermediate-frame cooling devices 7 and the mass flow 16 of the metal strip 6, that is, in particular its speed v.
  • the control device 14 is preceded by a linearized model 15, which is processed by means of a quadratic programming.
  • the online monitor 9 uses a model for determining the current strip temperature and preferably the phase state of the metal strip 6 within the finishing train 3.
  • the module 12 for online determination of the strip temperature therefore has a not shown in detail in the drawing belt temperature model.
  • the band temperature model makes it possible, for example, to predict the final temperature of band points P 0 , P 1 , ie in particular the temperature of the band points PO, P1, at location x E. Based on this, a linearized model 15 is created, which determines the strip temperature for an operating point of the finishing train 3 for a given change in the coolant flow 8 and / or given change in the mass flow 16.
  • new correction values for coolant 8 and mass flow 16 are determined, taking into account setpoint values for strip intermediate temperatures, preferably within the finishing train, or given setpoint values for the final temperature of the strip 6 in the finishing train 3 become.
  • the linearization of the belt temperature model results in a quadratic programming problem that can be solved sufficiently fast for on-line control of the belt temperature.
  • the task of the online monitor 9 is to determine the current state, ie in particular all intermediate temperatures required for the control or regulation, of the metal strip 6 of the finishing train 3.
  • the data 102 present at the output of the online monitor 9 preferably also include real-time model corrections.
  • Tape data 101 actually measured in the finishing line and in particular temperatures may not always be present and as a rule only at a few specific locations, sometimes only at the locations x A and x E.
  • the online adaptation 10 uses data 102 calculated by the online monitor 9, in particular temperatures determined by the online monitor 9, and preferably measured temperatures 101.
  • correction factors are determined, which are used in particular for the correction of model errors in the online monitor 9.
  • actually measured temperatures 101 are compared with calculated temperatures 102.
  • the online adaptation 10 is coupled both to the online monitor 9 and to the module 11 for the prediction of the temperature of selected band points.
  • data originating from the output side of the online adaptation 10 is present at the input side of the module 11 for prediction of the strip temperature.
  • the module 11 can further process data determined by the online monitor 9.
  • the belt temperature calculated by the module 11 is forwarded to the belt temperature control 17.
  • the belt temperature prediction module 11 also uses the belt temperature model of the belt temperature online module 12.
  • Input variables of the strip temperature control 17 or of the linearized model 15 are the actual temperature profile determined by the strip temperature model and a predetermined target temperature profile.
  • the desired temperature profile is specified depending on the type of installation, the operating mode, the respective job and the desired properties of the metal strip 6.
  • the belt temperature control 17 uses input data 103 calculated by the belt temperature model 12. In this case, control specifications can be used particularly flexibly since the online monitor 9 can determine any intermediate temperature of the belt 6 within the finishing mill 3, even if no corresponding measured values are available.
  • Figure 3 illustrates schematically problems relevant to model-predictive control, such as arise when metal is to be rolled in the ferrite phase state region.
  • T d 2 at the end X E of the finishing train 3 is preferably used further temperature setpoints T d 0 , T d 1 within the finishing mill 3. If, for example, the rolling operations of the two first rolling stands 3 'of the finishing train 3 in austenite region, the remaining rolling operations, that is, the rolling operations of the downstream roll stands 3 ', however, be carried out in the ferrite region needed to at least three as shown in Figure 3 target temperatures T d 0, T d 1, T d. 2
  • the first setpoint temperature T d 0 after the second rolling stand is to ensure that the temperature of the rolling operations in the first two rolling stands is above the transition temperature between the phase state areas.
  • the second temperature setpoint T d 1 is to ensure the phase transition before the third rolling stand of the finishing train 3. If possible, a final temperature T d 2 at the end X E of the finishing train 3 should be maintained.
  • the belt temperature control 17 can also respond to short-term temperature fluctuations, which are caused for example by the oven automation. However, this is preferably done by changing the coolant flow 8, and not by changing the belt speed v or the mass flow 16. Short-term temperature fluctuations, for example, local unevenness or folds of the metal strip 6 condition.
  • a coolant flow Q 0 , Q 1 or Q 2 collectively referred to as 8 causes, as far as possible from the technical limits of the inter-frame cooling devices 7, which are preferably designed as coolant or water valves 7 , lies away.
  • the greatest possible freedom is achieved at the inter-frame cooling devices 7 to later, ie in subsequent control steps, to be able to respond to short-term temperature fluctuations.
  • the coolant flow Q 0 , Q 1 , Q 2 of a valve 7 can only be changed at a speed which corresponds to the dynamics of the respective valve 7 and must not outside technically conditioned minimum Q. max i or maximum values Q max i are.
  • the mass flow 16 must also be within technical limits, which are determined in particular by a maximum or minimum speed of the metal strip when leaving the finishing train 3. With regard to the mass flow, a lower and an upper limit of the acceleration a of the metal strip 6 must also be taken into account.
  • a prediction temperature T j k for given coolant flow 8 and mass flow 16 and for an adaptation coefficient given for the corresponding control step are calculated with the aid of the belt temperature model.
  • the adaptation coefficient is preferably frozen.
  • the current coolant flow 8 and the current mass flow 16 are set as the operating point.
  • the new forecast temperature T ⁇ k j can then be expressed as T k j + ⁇ ⁇ T k j .
  • ⁇ ⁇ T k j ⁇ ⁇ T k j ⁇ ⁇ ⁇ u i j . ⁇ ⁇ u i j + 1 j . ... ⁇ ⁇ u j kj j . ⁇ ⁇ a . ⁇ ⁇ s ,
  • the strip temperature is predicted so far into the future until a strip point P 0 reaches the last temperature setpoint T d 2 .
  • this is at the end x E of the finishing train 3, where preferably a not shown in detail in the drawing pyrometer measures the actual temperature of the metal strip 6.
  • the model-predictive prediction always takes place for individual control steps .DELTA.t.
  • Figures 4 and 5 illustrate the different setting horizon for the coolant flow (see Figure 4) and the Mass flow (see Figure 5).
  • the abscissa represents a time axis.
  • the mass flow 16 is preferably influenced by the belt speed v, wherein the control horizon is preferably limited to a single control step. Subsequently, offset ⁇ s and acceleration change ⁇ a are preferably assumed to be constant (see FIG. 5). On the other hand, short-term temperature fluctuations are preferably influenced by the coolant flow Q j .
  • temperature prediction values are preferably used for band points P j , which lie in front of the corresponding intermediate-frame cooling device 7 in the mass flow direction, so that the band points P j reach the corresponding intermediate-frame cooling device only after the dead time 105 of the corresponding valve 7 plus the computing time has expired ,
  • Minimizing the equation (II) taking into account the corresponding control limits, especially those mentioned above, means solving a problem of non-linear programming, which is usually extremely computationally intensive and needs to be accelerated in order to be on-line.
  • Control steps .DELTA.t can take place according to the invention, for example, every 200 milliseconds.
  • Q i j act ⁇ S ⁇ k j T k 0 ⁇
  • a act ⁇ S ⁇ k j T k 0 ⁇
  • f is a scalar
  • H a symmetric, positive semidefinite NxN matrix, which is positive definite, if the positive parameters ⁇ , ⁇ , and ⁇ are chosen to be sufficiently large.
  • the remaining variables are n-dimensional column vectors.
  • the inequality (IX) is to be understood component by component.
  • an active set strategy is preferably used.
  • travel diagrams for the rolling speed v and / or for the water ramps or coolant ramps of the interstand cooling (7) are particularly advantageously calculated and maintained with particularly high accuracy.
  • a flexible control method which is also applicable to other parts of the plant, such as e.g. in particular the roughing 2 or the cooling section 4, can be used.
  • a more than one part of the system 1 to 5 cross-application of the invention is possible.
  • Particularly advantageous is the use of the invention in two-phase rolling and driving a thickness wedge during the rolling of a semi-endless slab.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)
  • Control Of Heat Treatment Processes (AREA)

Description

  • Verfahren zur Regelung der Temperatur eines Metallbandes, in einer Fertigstraße, gemäß dem Oberbegriff des Anspuchs 1.
  • Ein solches Verfahren ist aus DE 197 17615 A bekannt.
  • Die US 6,220,067 B1 beschreibt ein Verfahren, das die Temperatur eines Metallbandes an der Ausgangsseite einer Walzstra-ße, d.h. die Endwalztemperatur, regelt. Mit einem derartigen Verfahren können Phasenumwandlungen des Stahls in der Walzstraße, die insbesondere beim Zwei-Phasen-Walzen für die Materialeigenschaften des gewalzten Metallbandes von Bedeutung sind, nicht ausreichend gezielt beeinflusst werden. Ein vergleichbares Verfahren, das zur Berechnung eines Stichplanes dient, wird in der EP 1 014 239 A1 beschrieben.
  • Die Materialeigenschaften und das Gefüge eines gewalzten Metallbandes werden durch chemische Zusammensetzung und Prozessparameter insbesondere während des Walzvorgangs wie z.B. die Lastverteilung und die Temperaturführung bestimmt. Stellglieder für die Walztemperatur, insbesondere die Endwalztemperatur, sind je nach Anlagentyp und Betriebsmodus in der Regel Bandgeschwindigkeit und Zwischengerüstkühlungen.
  • Es ist Aufgabe der Erfindung, die Steuerung bzw. Regelung der Temperatur eines Metallbandes, insbesondere in einer Fertigstraße, derart zu verbessern, dass aus dem Stand der Technik bekannte Nachteile vermieden werden und insbesondere die Steuerung bzw. Regelung der vorbenannten Stellglieder verbessert wird.
  • Die erfindungsgemäße Aufgabe wird gelöst durch ein Verfahren zur Steuerung und/oder Regelung der Temperatur eines Metallbandes, in einer Fertigstraße, wobei zur Ermittlung von Stellsignalen ein Soll-Temperaturverlauf mit einem Ist-Temperaturverlauf verglichen wird, wobei ein Temperaturverlauf für einzelne Bandpunkte des Metallbandes ermittelt wird, und wobei unter Berücksichtigung von Nebenbedingungen mindestens eine Zielfunktion für Stellglieder der Anlage in der Fertigstraße gebildet wird.
  • Bei der Ermittlung des Temperaturverlaufs für einzelne Bandpunkte wird mit Vorteil der Weg und vorzugsweise zusätzlich Eigenschaften wie die Temperatur einzelner Bandpunkte verfolgt. Derart wird die Genauigkeit der Steuerung bzw. Regelung deutlich verbessert.
  • Mit Vorteil wird die Zielfunktion durch Lösen eines Optimierungsproblems gelöst. Dabei werden technische Randbedingungen wie insbesondere Stellbegrenzungen der Stellglieder in äu-ßerst günstiger Weise berücksichtigt, wobei insbesondere ein möglichst großer Freiraum zur Veränderung der Stellglieder gewährleistet wird die für die Steuerung bzw. Regelung benötigte Rechenzeit sehr gering gehalten wird.
  • Mit Vorteil wird eine Soll-Temperatur am Ende der Fertigstraße vorgegeben. Alternativ oder zusätzlich wird mindestens eine Soll-Temperatur in der Fertigstraße vorgegeben. Die Steuerung bzw. Regelung wird so hinsichtlich der Materialeigenschaften des Metallbandes und hinsichtlich seiner Gefügezusammensetzung wesentlich verbessert.
  • Mit Vorteil wird der Ist-Temperaturverlauf des Metallbandes unter Zuhilfenahme mindestens eines Modells ermittelt. Derart wird eine verbesserte Steuerung bzw. Regelung der Temperatur des Metallbands ermöglicht, auch wenn die tatsächliche Bandtemperatur an für die Steuerung bzw. Regelung relevanten Orten, insbesondere in der Fertigstraße, nicht gemessen werden kann.
  • Mit Vorteil wird das Modell online adaptiert. Auf diese Weise kann eine vorhandene Anlagendrift berücksichtigt werden und es können realistische Ergebnisse, insbesondere für die als nächste zu walzenden Metallbänder, ermittelt werden.
  • Mit Vorteil werden Stellsignale für den Kühlmittelfluss ermittelt.
  • Mit Vorteil werden Stellsignale für den Massenfluss ermittelt.
  • Mit Vorteil wird zum Lösen der Zielfunktion ein Optimierungsproblem mit linearen Nebenbedingungen online, d.h. insbesondere in Echtzeit, gelöst. Stellbegrenzungen werden dabei insbesondere in Form von Gleichungs- oder Ungleichungs-Nebenbedingungen aufgestellt. Die Lösung der Optimierung liefert dabei mit Vorteil die Werte der Stellgrößen für einen nächsten Reglerzyklus. So wird eine klar, einheitlich und anlagenkonfigurations-unabhängig aufgebaute Regelung bereitgestellt, die zuverlässig und schnell arbeitet.
  • Vorteilhafterweise wird ein quadratisches Optimierungsproblem gelöst. Das Optimierungsproblem kann so besonders schnell gelöst werden.
  • Mit Vorteil wird das Optimierungsproblem mit Hilfe einer Active-Set Strategie gelöst. Das Optimierungsproblem kann so besonders effektiv in Echtzeit gelöst werden.
  • Mit Vorteil wird ein online fähiger Stichplanalgorithmus durch nicht-lineare Optimierungen mit Nebenbedingungen vorausberechnet. Die Dauer der Stichplanberechnung wird so äußerst gering gehalten. Die Stichplanberechnung liefert insbesondere optimal auf den online arbeitenden Regler abgestimmte Set-Up-Werte. So verfügt der Regler über hinreichende Freiheitsgrade zur Bandtemperaturbeeinflussung.
  • Das erfindungsgemäße Verfahren zur Steuerung bzw. zur Regelung der Temperatur eines Metallbandes ist insbesondere auch geeignet zum Walzen von Bändern mit einem Dickenkeil, wie er beispielsweise beim Semi-Endloswalzen bei Fertigbanddicken unter 1 mm zum Einsatz kommt. Beim Walzen von Bändern mit Dickenkeil werden zusätzliche Nebenbedingungen hinsichtlich der Stellglieder aktiv.
  • Weitere Lösungen der zuvor beschriebenen Aufgabe sind in den Ansprüchen 13 bis 15 angegeben. Die für das erfindungsgemäße Verfahren beschriebenen Vorteile gelten entsprechend.
  • Weitere Vorteile und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung mehrerer Ausführungsbeispiele der Erfindung in Verbindung mit den Zeichnungen. Dabei zeigen beispielhaft:
  • FIG 1
    den prinzipiellen Aufbau eines Walzwerks,
    FIG 2
    den schematischen Aufbau einer modell-prädiktiven Regelung für die Fertigstraße,
    FIG 3
    eine schematische Darstellung zur modellprädiktiven Regelung,
    FIG 4
    den Stell- bzw. Prädiktionshorizont für den Kühlmittelfluss, und
    FIG 5
    den Stell- bzw. Prädiktionshorizont für den Massenfluss.
  • Figur 1 zeigt, eine Anlage zur Erzeugung von Metallband 6, die eine Vorstraße 2, eine Fertigstraße 3 und eine Kühlstrecke 4 umfasst. Derartige Anlage sind typisch für die Stahl- und Metallindustrie. Hinter der Kühlstrecke 4 ist eine Haspelvorrichtung 5 angeordnet. Von ihr wird das in den Straßen 2 und 3 vorzugsweise warm gewalzte und in der Kühlstrecke 4 gekühlte Metallband 6 aufgehaspelt. Den Straßen 2 bzw. 3 ist eine Bandquelle 1 vorgeordnet, die beispielsweise als Ofen in dem Metallbrammen erwärmt werden, oder beispielsweise als Stranggießanlage, in der Metallband 6 erzeugt wird, ausgebildet ist. Das Metallband 6 besteht beispielsweise aus Aluminium oder Stahl.
  • Die Anlage und insbesondere die Straßen 2, 3 sowie die Kühlstrecke 4 und die mindestens eine Haspelvorrichtung 5 werden mittels eines Steuerverfahrens gesteuert, das von einer Recheneinrichtung 13 ausgeführt wird. Hierzu ist die Recheneinrichtung 13 mit den einzelnen Komponenten 1 bis 5 der Anlage zur Stahl- bzw. Aluminiumerzeugung steuerungstechnisch gekoppelt. Die Recheneinrichtung 13 ist mit einem als Computerprogramm ausgebildeten Steuerprogramm programmiert, aufgrund dessen sie das erfindungsgemäße Verfahren zur Steuerung bzw. zur Regelung der Temperatur des Metallbandes 6 ausführt.
  • Gemäß Figur 1 verlässt das Metallband bzw. die Bramme 6 die Bandquelle 1 und wird dann zunächst in der Vorstraße 2 auf eine Eingangsdicke für die Fertigstraße 3 gewalzt. Innerhalb der Fertigstraße wird das Band 6 dann mittels der Walzgerüste 3' auf seine Enddicke gewalzt. Die anschließende Kühlstrecke 4 kühlt das Band 6 auf eine vorgegebene Haspel-Temperatur ab.
  • Um gewünschte mechanische Eigenschaften des Bandes 6 zu gewährleisten, muss ein geeigneter Temperaturverlauf für die Fertigstraße 3 und die Kühlstrecke 4 eingehalten werden. Da während des Walzvorgangs nahezu keine Breitung des gewalzten Bandes 6 erfolgt, erhöhen sich Bandlänge und - vorausgesetzt der Massenfluss bleibt konstant - auch die Bandgeschwindigkeit durch den Walzvorgang.
  • Figur 2 stellt die Fertigstraße 3 mit ihren Walzgerüsten 3' näher da und veranschaulicht die erfindungsgemäße Modell-prädiktive Regelung der Fertigstraße 3.
  • Innerhalb der Fertigstraße 3 sind die Berührzeiten des heißen Metallbandes 6 mit den verhältnismäßig kalten Arbeitswalzen der Walzgerüste 3' sowie die Zwischengerüst-Kühlvorrichtungen 7 die wichtigsten Einflussfaktoren auf die Temperatur des Metallbandes 6. Die Stellglieder der Steuerung bzw. Regelung der Bandtemperatur in der Fertigstraße sind dementsprechend der Massenfluss 16 sowie der Kühlmittelfluss 8. In Figur 2 sind zur einfacheren Erläuterung des Ausführungsbeispiels zwei Bandpunkte P0, P1 des Metallbandes 6 beispielhaft hervorgehoben.
  • Die Fertigstraße 3 ist begrenzt durch ihren Anfang xA und ihr Ende xE. Die Anlagendynamik in der Fertigstraße 3 ist hinsichtlich der Temperatur.durch verhältnismäßig große Totzeiten 105 gekennzeichnet. So kann beispielsweise der Einfluss einer Veränderung des Kühlmittelflusses 8 auf die Temperatur am Ende xA der Fertigstraße 3 erst dann beobachtet werden, wenn der erste Bandpunkt P0, P1 der von dieser Veränderung beeinflusst wurde, das letzte Walzgerüst 3' verlässt. Das ist ein Grund dafür, dass erfindungsgemäß die Bandtemperatur-Regelung 17 als modell-prädiktive Regelung ausgebildet ist.
  • Die Recheneinrichtung 13 zur Steuerung der Anlage der Stahlindustrie und insbesondere zur Steuerung der Fertigstraße 3 weist ein Bandtemperatur-Modell 12 und eine Bandtemperatur-Regelung 17 auf. Das Bandtemperatur-Modell 12 und die Bandtemperatur-Regelung 17 arbeiten dabei vorzugsweise zyklisch in Regelschritten.
  • Die Bandtemperatur-Regelung 17 weist eine Regeleinrichtung 14 auf, die den Kühlmittelfluss 8 der Zwischengerüst-Kühlvorrichtungen 7 sowie den Massenfluss 16 des Metallbandes 6, also insbesondere dessen Geschwindigkeit v, steuert bzw. regelt. Der Regeleinrichtung 14 ist ein linearisiertes Modell 15 vorgeordnet, das mit Hilfe einer quadratischen Programmierung bearbeitet wird.
  • Das Modul 12 zur online-Ermittlung der Bandtemperatur weist einen Online-Monitor 9 zur Bestimmung der aktuellen Bandtemperatur, ein Modul zur Online-Adaption 10 und vorzugsweise ein Modul zur Vorhersage 11 der Temperatur Tj k=0,1 ausgewählter Bandpunkte P0, P1 auf.
  • Der Online-Monitor 9 bedient sich eines Modells zur Ermittlung der aktuellen Bandtemperatur und vorzugsweise des Phasenzustands des Metallbands 6 innerhalb der Fertigstraße 3. Das Modul 12 zur Online-Ermittlung der Bandtemperatur weist daher ein in der Zeichnung nicht näher dargestelltes Bandtemperatur-Modell auf. Das Bandtemperatur-Modell ermöglicht beispielsweise die Vorhersage der Endtemperatur von Bandpunkten P0, P1, d.h. insbesondere der Temperatur der Bandpunkte P.O, P1, am Ort xE. Ausgehend davon wird ein linearisiertes Modell 15 erstellt, das die Bandtemperatur für einen Arbeitspunkt der Fertigstraße 3 bei gegebener Veränderung des Kühlmittelflusses 8 und/oder gegebener Veränderung des Massenflusses 16 ermittelt.
  • Durch Minimierung der quadratischen Abweichung des Ausgangs des linearisierten Modells 15 werden neue Korrekturwerte für Kühlmittel- 8 bzw. Massenfluss 16 ermittelt, wobei bei der Ermittlung gegebene Sollwerte für Bandzwischentemperaturen vorzugsweise innerhalb der Fertigstraße oder gegebene Sollwerte für die Endtemperatur des Bandes 6 in der Fertigstraße 3 berücksichtigt werden. Durch die Linearisierung des Bandtemperatur-Modells ergibt sich ein quadratisches Programmierungsproblem, das hinreichend schnell für eine Online-Steuerung der Bandtemperatur gelöst werden kann.
  • Aufgabe des Online-Monitors 9 ist es, den aktuellen Zustand, d.h. insbesondere alle für die Steuerung bzw. Regelung benötigten Zwischentemperaturen, des Metallbands 6 der Fertigstraße 3 zu ermitteln. Die am Ausgang des Online-Monitors 9 anliegenden Daten 102 beinhalten vorzugsweise auch Echtzeit-Modellkorrekturen.
  • Tatsächlich in der Fertigstraße gemessene Banddaten 101 und insbesondere Temperaturen liegen unter Umständen nicht immer und in der Regel nur an wenigen bestimmten Orten, teilweise nur an den Orten xA und xE vor. Die Online-Adaption 10 verwendet vom Online-Monitor 9 berechnete Daten 102, insbesondere vom Online-Monitors 9 ermittelte Temperaturen, sowie vorzugsweise gemessener Temperaturen 101.
  • Mit Hilfe der Online-Adaption 10 werden Korrekturfaktoren ermittelt, die insbesondere zur Korrektur von Modellfehlern im Online-Monitor 9 verwendet werden. Dabei werden vorzugsweise tatsächlich gemessene Temperaturen 101 mit berechneten Temperaturen 102 verglichen. Die Online-Adaption 10 ist sowohl mit dem Online-Monitor 9 als auch mit dem Modul 11 zur Vorhersage der Temperatur ausgewählter Bandpunkte gekoppelt.
  • An der Eingangsseite des Moduls 11 zur Vorhersage der Bandtemperatur liegen vorzugsweise von der Ausgangsseite der Online-Adaption 10 stammende Daten an. Das Modul 11 kann vom Online-Monitor 9 ermittelte Daten weiterverarbeiten. Die vom Modul 11 berechnete Bandtemperatur wird an die Bandtemperatur-Regelung 17 weitergegeben. Das Modul 11 zur Vorhersage der Bandtemperatur verwendet auch das Bandtemperatur-Modell des Moduls 12 zur Online-Ermittlung der Bandtemperatur.
  • Eingangsgrößen der Bandtemperatur-Regelung 17 bzw. des linearisierten Modells 15 sind der vom Bandtemperatur-Modell ermittelte Ist-Temperaturverlauf sowie ein vorgegebener Soll-Temperaturverlauf. Der Soll-Temperaturverlauf wird abhängig von Anlagentyp, dem Betriebsmodus, dem jeweiligen Auftrag und den gewünschten Eigenschaften des Metallbandes 6 vorgegeben.
  • Die Bandtemperatur-Regelung 17 verwendet vom Bandtemperatur-Modell 12 berechnete Eingangsdaten 103. Hierbei können Steuerungsvorgaben besonders flexibel eingesetzt werden, da der Online-Monitor 9 jede beliebige Zwischentemperatur des Bandes 6 innerhalb der Fertigstraße 3 ermitteln kann, selbst wenn keine entsprechenden Messwerte vorliegen.
  • Figur 3 illustriert schematisch für die modell-prädiktive Regelung relevante Probleme, wie sie sich beispielsweise ergeben, wenn Metall in Ferrit-Phasenzustandsbereich gewalzt werden soll. Neben der Temperatur-Soll-Vorgabe Td 2 am Ende XE der Fertigstraße 3 verwendet man vorzugsweise weitere Temperatur-Sollwerte Td 0, Td 1 innerhalb der Fertigstraße 3. Sollen beispielsweise die Walzvorgänge der beiden ersten Walzgerüste 3' der Fertigstraße 3 im Austenit-Bereich, die übrigen Walzvorgänge, d.h. die Walzvorgänge der nachgeordneten Walzgerüste 3', jedoch im Ferrit-Bereich erfolgen, benötigt man mindestens drei wie in Figur 3 dargestellte Soll-Temperaturen Td 0, Td 1, Td 2.
  • Die erste Solltemperatur Td 0 nach dem zweiten Walzgerüst soll sicherstellen, dass die Temperatur der Walzvorgänge in den ersten beiden Walzgerüsten oberhalb der Übergangstemperatur zwischen den Phasenzustandsbereichen liegt. Der zweite Temperatur-Sollwert Td 1 soll den Phasenübergang vor dem dritten Walzgerüst der Fertigstraße 3 sicherstellen. Möglichst soll auch eine Endtemperatur T d 2 am Ende XE der Fertigstraße 3 eingehalten werden.
  • Die benötigten vorhergesagten Temperaturen Tj k=0,1,2 werden vom Modul 11 zur Vorhersage der Bandtemperatur mit Hilfe eines Modells vorzugsweise für mehrere Bandpunkte P0, P1, P2 bereitgestellt. Die Bandtemperatur-Regelung 17 kann dabei auch auf kurzfristige Temperaturschwankungen reagieren, die beispielsweise von der Ofenautomatisierung verursacht werden. Dies geschieht jedoch vorzugsweise durch Änderung des Kühlmittelflusses 8, und nicht durch Änderung der Bandgeschwindigkeit v bzw. des Massenflusses 16. Kurzfristige Temperaturschwankungen können beispielsweise lokale Unplanheiten bzw. Faltungen des Metallbandes 6 bedingen.
  • Langfristige Temperaturschwankungen, die beispielsweise durch einen der Fertigstraße 3 vorangehenden in der Zeichnung nicht näher dargestellten Rollengang verursacht werden können, werden vorzugsweise durch Beschleunigung a des Metallbands 6, also durch eine Änderung des Massenflusses 16, ausgeglichen. Der Vorhersage-Horizont 106 wird dementsprechend angepasst.
  • Um das in Figur 3 dargestellte Problem zu lösen, wird es vorzugsweise mit Hilfe des linearisierten Modells 15 als Minimierungsproblem gelöst. Vorzugsweise werden dazu die dem Massenfluss 16 und dem Kühlmittelfluss 8 entsprechenden Steuervariablen so verändert, dass sie den gewichteten quadratischen Fehler der vorhergesagten Temperaturen Tj k=0,1,2 für die Bandpunkte P0, P1, P2 in Bezug auf die Soll-Temperaturen Td k=0,1,2 minimieren (siehe Gleichung I). So wird an den einzelnen Ventilen 7 ein Kühlmittelfluss Q0, Q1 bzw. Q2, zusammenfassend als 8 bezeichnet, bewirkt, der möglichst weit von den technischen Grenzen der Zwischengerüst-Kühlvorrichtungen 7, die vorzugsweise als Kühlmittel- bzw. Wasserventile 7 ausgebildet sind, entfernt liegt. So wird an den der Zwischengerüst-Kühlvorrichtungen 7 ein größtmöglicher Spielraum erreicht, um später, d.h. in nachfolgenden Regelschritten, auf kurzfristige Temperaturschwankungen reagieren zu können.
  • Es müssen nachfolgende Stellbegrenzungen der Zwischengerüst-Kühlvorrichtungen 7 berücksichtigt werden: Der Kühlmittelfluss Q0, Q1, Q2 eines Ventils 7 kann nur mit einer Geschwindigkeit verändert werden, die der Dynamik des jeweiligen Ventils 7 entspricht und darf nicht außerhalb technisch bedingter Minimal- Qmax i bzw. Maximalwerte Qmax i liegen. Auch der Massenfluss 16 muss innerhalb technischer Grenzwerte liegen, die insbesondere durch eine maximale bzw. minimale Geschwindigkeit des Metallbandes beim Verlassen der Fertigstraße 3 bestimmt werden. Hinsichtlich des Massenflusses muss auch eine untere und eine obere Schranke der Beschleunigung a des Metallbands 6 beachtet werden.
  • Durch das Modul 12 werden unter Zuhilfenahme des Bandtemperatur-Modells eine Vorhersage-Temperatur Tj k für gegebenen Kühlmittelfluss 8 und Massenfluss 16 und für einen für den entsprechenden Regelschritt gegebenen Adaptions-Koeffizienten berechnet. Für weitere Vorhersagen wird der Adaptions-Koeffizient vorzugsweise eingefroren. Um die Stellgrößen für die Steuerung für den nächsten Steuerschritte zu berechnen, werden der gegenwärtige Kühlmittelfluss 8 und der gegenwärtige Massenfluss 16 als Arbeitspunkt gesetzt. Die neue Vorhersage-Temperatur T ˜ k j
    Figure imgb0001
    kann dann ausgedrückt werden als T k j + Δ T k j ,
    Figure imgb0002
    wobei gilt: Δ T k j = Δ T k j Δ u i j j , Δ u i j + 1 j , Δ u j kj j , Δ a , Δ s .
    Figure imgb0003
  • Schließlich wird vorzugsweise die nachfolgend wiedergegebene Zielfunktion in den Variablen Δuj i, Δa und Δs, auf die im Zusammenhang mit den Figuren 5 und 6 noch näher eingegangen wird, unter Berücksichtigung der zuvor benannten Stellbegrenzungen gelöst: j = 0 J - 1 k = 0 K - 1 w k j 2 T k j + Δ T k j - T k d 2 + δ 2 j = 0 J - 1 i = i j K i - 1 , j Q i act + Δ u i j - Q i max + Q i min 2 2 α 2 j = 0 J - 1 i = i j K i - 1 , j Δ u i j Δ t 2 + β 2 Δ a Δ t 2 + γ 2 Δ s Δ t 2
    Figure imgb0004
  • Wie Figur 3 zeigt, wird die Bandtemperatur so weit in die Zukunft vorhergesagt, bis ein Bandpunkt P0 den letzten Temperatur-Sollwert Td 2 erreicht. In der Regel liegt dieser am Ende xE der Fertigstraße 3, wo vorzugsweise ein in der Zeichnung nicht näher dargestelltes Pyrometer die tatsächliche Temperatur des Metallbandes 6 misst. Die Modell-prädiktive Vorhersage erfolgt stets für einzelne Regelschritte Δt.
  • Die Figuren 4 und 5 verdeutlichen den unterschiedlichen Stellhorizont für den Kühlmittelfluss (siehe Figur 4) und den Massenfluss (siehe Figur 5). In beiden Figuren stellt die Abszisse eine Zeitachse da.
  • Der Massenfluss 16 wird vorzugsweise durch die Bandgeschwindigkeit v beeinflusst, wobei sich der Stellhorizont vorzugsweise auf einen einzigen Regelungsschritt beschränkt. Anschließend werden Offset Δs und Beschleunigungsänderung Δa vorzugsweise als konstant angenommen (siehe Figur 5). Kurzfristige Temperaturschwankungen werden hingegen vorzugsweise durch den Kühlmittelfluss Qj beeinflusst. Dazu werden Temperatur-Vorhersagewerte vorzugsweise für Bandpunkte Pj verwendet, die in Massenflussrichtung gesehen vor der entsprechenden Zwischengerüst-Kühlvorrichtung 7 liegen, so dass die Bandpunkte Pj die entsprechende Zwischengerüst-Kühlvorrichtung erst nach Ablauf der Totzeit 105 des entsprechenden Ventils 7 zuzüglich der Rechenzeit erreichen.
  • Obwohl die Minimierung (II) unter Berücksichtigung aller zukünftigen Kühlmittelfluss-Korrekturen Δ u i j
    Figure imgb0005
    (siehe Figur 4) bis zum Ende des Steuerungshorizonts vorgenommen wird, erfolgt die Aktualisierung des Kühlmittelflusses Qact i j nur unter Zuhilfenahme der ersten Korrektur Δ u i j j .
    Figure imgb0006
    Um mögliche Oszillationen zu mindern, werden die aktualisierten Werte für Δ u i j j
    Figure imgb0007
    Δa und Δs ggf. mit einem Relaxationsfaktor 0 < χ ≤ 1 multipliziert.
  • Minimieren der Gleichung (II) unter Berücksichtigung der entsprechenden Stellbegrenzungen, insbesondere der zuvor erwähnten, bedeutet das Lösen eines Problems der nicht-linearen Programmierung, das in der Regel äußerst berechnungsintensiv ist und um online fähig zu sein, beschleunigt werden muss. Regelschritte Δt können erfindungsgemäß beispielsweise alle 200 Millisekunden erfolgen.
  • Um eine Beschleunigung zu erreichen, verfährt man vorzugsweise analog der Gauß-Newton-Methode und linearisiert die vorhergesagte Temperaturveränderung um den Arbeitspunkt: Δ T k j i = i j i kj S ki j Δ u i j + S ˜ k j Δ a + S k j Δ s
    Figure imgb0008
  • Die Empfindlichkeiten S ki j ,
    Figure imgb0009
    S ˜ k j
    Figure imgb0010
    und S k j
    Figure imgb0011
    werden durch finite Differenzen wie folgt angenähert: S k , i j j = T k j | Q i j act + Δ - T k j | Q i j act Δ
    Figure imgb0012
    S ˜ k j = T k 0 | a act + Δ - T k 0 | a act Δ
    Figure imgb0013
    S k j = T k 0 | h exit v exit act + Δ - T k 0 | ν exit v exit act Δ
    Figure imgb0014
  • Um die Empfindlichkeiten S ki j ,
    Figure imgb0015
    S ˜ k j
    Figure imgb0016
    bzw. S k j
    Figure imgb0017
    zu ermitteln, muss das Bandtemperatur-Modell zusätzlich zur Vorhersage der Temperatur Tj k nochmals gelöst werden. Gemäß der Gauß-Newton-Methode wird die Linearisierung (III) in den quadratischen Fehler der Zielfunktion (II) eingesetzt. Es ergibt sich folgende Näherung: T k j + Δ T k j - T k d 2 T k j - T k d 2 + 2 T k j - T k d i = i j i kj S ki j Δ u i j + 2 T k j - T k d S ˜ k j Δ a + 2 T k j - T k d S k j Δ s + 2 S ˜ k j Δ a i = i j i kj S ki j Δ u i j + 2 S k j Δ s i = i j i kj S ki j Δ u i j
    Figure imgb0018
    + 2 S k j S ˜ k j Δ s Δ a + i = i j i kj l = i j i kj S ki j S kl j Δ u l j Δ u i j + S ˜ k j 2 Δ a 2 + S k j 2 Δ s 2 .
    Figure imgb0019
  • Setzt man nun die rechte Seite von (VII) in (II) ein, so stellt sich das quadratische Programmierproblem in der folgenden Form dar: min = f + g ̲ t χ ̲ + 1 2 χ t ̲ H ̲ ̲ χ ̲
    Figure imgb0020
    b ̲ lower χ ̲ b ̲ upper
    Figure imgb0021
  • Dabei ist f ein Skalar, H eine symmetrische, positiv semidefinite NxN-Matrix, die positiv definit ist, wenn die positiven Parameter α, β, und γ genügend groß gewählt werden. Die übrigen Variablen sind n-dimensionale Spaltenvektoren. Die Ungleichung (IX) ist komponentenweise zu verstehen.
  • Um das quadratische Optimierungsproblem zu lösen, wird vorzugsweise eine Active-Set-Strategie verwendet.
  • Erfindungsgemäß werden insbesondere Fahrdiagramme für die Walzgeschwindigkeit v und/oder für die Wasserrampen bzw. Kühlmittelrampen der Zwischengerüstkühlung (7) besonders vorteilhaft berechnet und mit besonders hoher Genauigkeit eingehalten.
  • Zusätzlich zu den voranstehend und insbesondere eingangs erörterten Vorteilen der Erfindung, wird erfindungsgemäß bei der Steuerung und/oder Regelung der Temperatur eines Metallbandes 6 erstmals auf einfache Weise auch eine unterschiedliche Gewichtung der für die Steuerung relevanten Vorgaben im Sinne einer Priorisierung ermöglicht.
  • Erfindungsgemäß wird ein flexibles Steuerungs- bzw. Regelungsverfahren bereitgestellt, das auch für andere Anlagenteile, wie z.B. insbesondere die Vorstraße 2 oder auch die Kühlstrecke 4, einsetzbar ist. Ein mehr als ein Anlagenteil 1 bis 5 übergreifender Einsatz der Erfindung ist möglich. Besonders vorteilhaft ist der Einsatz der Erfindung beim Zwei-phasen-Walzen und beim Fahren eines Dickenkeils während des Walzens einer Semi-endlos-Bramme.

Claims (15)

  1. Verfahren zur Steuerung und/oder Regelung der Temperatur eines Metallbandes (6) in einer Fertigstraße (3), wobei zur Ermittlung von Stellsignalen ein Soll-Temperaturverlauf mit einem Ist-Temperaturverlauf verglichen wird, und unter Berücksichtigung von Nebenbedingungen mindestens eine Zielfunktion für Stellglieder der Anlage in der Fertigstraße (3) gebildet wird, dadurch gekennzeichnet, dass ein Temperaturverlauf für einzelne Bandpunkte (P0, P1, P2 bzw. Pj) des Metallbandes (6) ermittelt wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass die Zielfunktion durch Lösen eines Optimierungsproblems gelöst wird.
  3. Verfahren nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass eine Soll-Temperatur (Td 2) am Ende der Fertigstraße (3) vorgegeben wird.
  4. Verfahren nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass mindestens eine Soll-Temperatur (Td 0, Td 1) in der Fertigstraße (3) vorgegeben wird.
  5. Verfahren nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass der Ist-Temperaturverlauf des Metallbandes (6) unter Zuhilfenahme mindestens eines Modells (9 bzw. 12) ermittelt wird.
  6. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet, dass das Modell (9) online adaptiert wird.
  7. Verfahren nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass Stellsignale für den Kühlmittelfluss (8) ermittelt werden.
  8. Verfahren nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass Stellsignale für den Massenfluss (16) ermittelt werden.
  9. Verfahren nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass zum Lösen der Zielfunktion ein Optimierungsproblem mit linearen Nebenbedingungen online gelöst wird.
  10. Verfahren nach Anspruch 9,
    dadurch gekennzeichnet, dass ein quadratisches Optimierungsproblem gelöst wird.
  11. Verfahren nach Anspruch 9 oder nach Anspruch 10,
    dadurch gekennzeichnet, dass das s Optimierungsproblem mit Hilfe einer Active-Set Strategie gelöst wird.
  12. Verfahren nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass ein online fähiger Stichplanalgorithmus durch nicht-lineare Optimierung mit Nebenbedingungen vorausberechnet wird.
  13. Computerprogrammprodukt umfassend Programmcode-Mittel geeignet zur Durchführung der Schritte eines Verfahrens nach einem der vorstehenden Ansprüche, wenn das Computerprogrammprodukt auf einer Recheneinrichtung ausgeführt wird.
  14. Recheneinrichtung (13) zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 12, wobei die Recheneinrichtung (13) direkt und/oder indirekt die Temperatur des Metallbandes (6) beeinflusst, dadurch gekennzeichnet, dass die Recheneinrichtung mit einem Computerprogrammprodukt nach Anspruch 13 programmiert ist.
  15. Recheneinrichtung (13) nach Anspruch 14,
    dadurch gekennzeichnet, dass sie ein Modul (12) zur online Ermittlung der Bandtemperatur mit Hilfe eines Modells und ein Modul (17) zur Bandtemperatur-Regelung aufweist.
EP04710836A 2003-02-25 2004-02-13 Verfahren zur regelung der temperatur eines metallbandes, insbesondere in einer fertigstrasse zum walzen von metallwarmband Expired - Lifetime EP1624982B2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10308222 2003-02-25
DE2003121791 DE10321791A1 (de) 2003-05-14 2003-05-14 Verfahren zur Regelung der Temperatur eines Metallbandes, insbesondere in einer Fertigstraße zum Walzen von Metall-Warmband
PCT/EP2004/001366 WO2004076086A2 (de) 2003-02-25 2004-02-13 Verfahren zur regelung der temperatur eines metallbandes, insbesondere in einer fertigstrasse zum walzen von metallwarmband

Publications (3)

Publication Number Publication Date
EP1624982A2 EP1624982A2 (de) 2006-02-15
EP1624982B1 true EP1624982B1 (de) 2007-04-25
EP1624982B2 EP1624982B2 (de) 2011-06-15

Family

ID=32928838

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04710836A Expired - Lifetime EP1624982B2 (de) 2003-02-25 2004-02-13 Verfahren zur regelung der temperatur eines metallbandes, insbesondere in einer fertigstrasse zum walzen von metallwarmband

Country Status (7)

Country Link
US (1) US7310981B2 (de)
EP (1) EP1624982B2 (de)
JP (1) JP2006518670A (de)
AT (1) ATE360483T1 (de)
DE (1) DE502004003617D1 (de)
NO (1) NO20054156L (de)
WO (1) WO2004076086A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011009819A1 (de) * 2009-07-23 2011-01-27 Siemens Aktiengesellschaft Verfahren zur steuerung und/oder regelung eines induktionsofens für eine walzanlage, steuer- und/oder regeleinrichtung für eine walzanlage und walzanlage zum herstellen von walzgut

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006047463A1 (de) * 2006-10-07 2008-04-17 ACHENBACH BUSCHHüTTEN GMBH Walzwerk und Verfahren zum flexiblen Kalt- oder Warm- Einweg- oder Reversierwalzen von Metallband
DE102007025447A1 (de) * 2006-10-09 2008-04-17 Siemens Ag Verfahren zur Steuerung und/oder Regelung eines industriellen Prozesses
JP5028310B2 (ja) * 2008-03-21 2012-09-19 株式会社日立製作所 熱間圧延機のスタンド間冷却制御装置および制御方法
PL2340133T3 (pl) * 2008-10-30 2013-10-31 Siemens Ag Sposób nastawiania obciążenia napędów dla pewnej liczby napędów walcowni do walcowania materiału walcowanego, zespół sterowania i/lub regulacji, nośnik pamięci, kod programowy i instalacja walcownicza
US8935945B2 (en) * 2008-11-19 2015-01-20 Toshiba Mitsubishi-Electic Industrial Systems Corporation Control system
EP2280323A1 (de) 2009-07-08 2011-02-02 Siemens Aktiengesellschaft Steuerverfahren für eine Beeinflussungseinrichtung für ein Walzgut
EP2301685A1 (de) 2009-09-23 2011-03-30 Siemens Aktiengesellschaft Steuerverfahren für eine Behandlungsanlage für ein langgestrecktes Walzgut
TWI379010B (en) * 2009-12-16 2012-12-11 Nippon Steel Corp A method of cooling hot-rolled steel sheet
AT509707B1 (de) * 2010-05-04 2011-11-15 Siemens Vai Metals Tech Gmbh Verfahren zum warmwalzen von stahlbändern und warmwalzstrasse
EP2386365A1 (de) * 2010-05-06 2011-11-16 Siemens Aktiengesellschaft Betriebsverfahren für eine Fertigstraße mit Prädiktion der Leitgeschwindigkeit
EP2527053A1 (de) * 2011-05-24 2012-11-28 Siemens Aktiengesellschaft Steuerverfahren für eine Walzstraße
EP2527054A1 (de) * 2011-05-24 2012-11-28 Siemens Aktiengesellschaft Steuerverfahren für eine Walzstraße
EP2557183A1 (de) * 2011-08-12 2013-02-13 Siemens Aktiengesellschaft Verfahren zum Betrieb einer Konti-Glühe für die Verarbeitung eines Walzguts
DE102013225579A1 (de) * 2013-05-22 2014-11-27 Sms Siemag Ag Vorrichtung und Verfahren zur Steuerung und/oder Regelung eines Glüh- oder Wärmebehandlungsofens einer Metallmaterial bearbeitenden Fertigungsstraße
DE102013221710A1 (de) 2013-10-25 2015-04-30 Sms Siemag Aktiengesellschaft Aluminium-Warmbandwalzstraße und Verfahren zum Warmwalzen eines Aluminium-Warmbandes
HUE039632T2 (hu) 2013-12-20 2019-01-28 Novelis Do Brasil Ltda A csökkentés mértékének dinamikus változtatása a hõmérséklet szabályozása céljából tandem hengermûvekben
DE102015213705A1 (de) 2015-07-21 2017-01-26 Siemens Aktiengesellschaft Verfahren und Assistenzsystem zum Steuern eines technischen Systems
CN105032958B (zh) * 2015-08-24 2018-04-20 东北大学 应用道次间冷却工艺控制轧制的即时冷却系统及冷却方法
AT519995B1 (de) 2017-05-29 2021-04-15 Andritz Ag Maschf Verfahren zur Regelung der Aufwickeltemperatur eines Metallbandes
EP3599037A1 (de) * 2018-07-25 2020-01-29 Primetals Technologies Germany GmbH Kühlstrecke mit einstellung der kühlmittelströme durch pumpen
DE102019217966A1 (de) 2019-11-21 2021-05-27 Sms Group Gmbh Einstellung einer Auslauftemperatur eines aus einer Walzstraße auslaufenden Metallbands
JP7368729B2 (ja) * 2020-02-14 2023-10-25 日本製鉄株式会社 圧延装置の制御装置、圧延装置の制御方法、及び圧延装置の制御プログラム
CN115591947B (zh) * 2022-12-15 2023-03-17 太原科技大学 一种连轧过程板带质量分布式调控方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4274273A (en) 1979-10-03 1981-06-23 General Electric Company Temperature control in hot strip mill
JPS58221606A (ja) * 1982-06-18 1983-12-23 Sumitomo Metal Ind Ltd 鋼帯の冷却制御方法
JPH02169119A (ja) 1988-12-22 1990-06-29 Toshiba Corp 板平坦度制御方法
US5691921A (en) * 1996-01-05 1997-11-25 Xerox Corporation Thermal sensors arrays useful for motion tracking by thermal gradient detection
JPH09285810A (ja) 1996-04-25 1997-11-04 Kawasaki Steel Corp 形状の良好なh形鋼の製造方法
AT408623B (de) * 1996-10-30 2002-01-25 Voest Alpine Ind Anlagen Verfahren zur überwachung und steuerung der qualität von walzprodukten aus warmwalzprozessen
DE19717615A1 (de) 1997-04-25 1998-10-29 Siemens Ag Verfahren und Einrichtung zur Kühlung von Metallen in einem Hüttenwerk
DE19850253A1 (de) * 1998-10-31 2000-05-04 Schloemann Siemag Ag Verfahren und System zur Regelung von Kühlstrecken
JP2000167615A (ja) * 1998-12-03 2000-06-20 Toshiba Corp 巻取温度制御方法及び制御装置
ATE242496T1 (de) * 1998-12-16 2003-06-15 Voest Alpine Ind Anlagen Verfahren zur berechnung eines stichplanes
JP2000210708A (ja) 1999-01-21 2000-08-02 Toshiba Corp 圧延機出側の圧延材温度制御方法及び圧延材温度制御装置
DE19963186B4 (de) * 1999-12-27 2005-04-14 Siemens Ag Verfahren zur Steuerung und/oder Regelung der Kühlstrecke einer Warmbandstrasse zum Walzen von Metallband und zugehörige Vorrichtung
DE10064267A1 (de) 2000-12-22 2002-07-04 Alstom Switzerland Ltd Verfahren zum schnellen Herstellen von hohlen Turbinenschaufeln für die Fertigungsentwicklung und Bauteiltests
US6508000B2 (en) 2001-02-08 2003-01-21 Siemens Westinghouse Power Corporation Transient liquid phase bonding repair for advanced turbine blades and vanes
DE10203787A1 (de) * 2002-01-31 2003-08-14 Siemens Ag Verfahren zur Regelung eines industriellen Prozesses

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011009819A1 (de) * 2009-07-23 2011-01-27 Siemens Aktiengesellschaft Verfahren zur steuerung und/oder regelung eines induktionsofens für eine walzanlage, steuer- und/oder regeleinrichtung für eine walzanlage und walzanlage zum herstellen von walzgut
EP2287345A1 (de) * 2009-07-23 2011-02-23 Siemens Aktiengesellschaft Verfahren zur Steuerung und/oder Regelung eines Induktionsofens für eine Walzanlage, Steuer- und/oder Regeleinrichtung für eine Walzanlage und Walzanlage zum Herstellen von Walzgut

Also Published As

Publication number Publication date
WO2004076086A3 (de) 2004-11-18
US7310981B2 (en) 2007-12-25
WO2004076086A2 (de) 2004-09-10
DE502004003617D1 (de) 2007-06-06
JP2006518670A (ja) 2006-08-17
EP1624982A2 (de) 2006-02-15
US20060156773A1 (en) 2006-07-20
EP1624982B2 (de) 2011-06-15
NO20054156L (no) 2005-09-07
ATE360483T1 (de) 2007-05-15

Similar Documents

Publication Publication Date Title
EP1624982B1 (de) Verfahren zur regelung der temperatur eines metallbandes, insbesondere in einer fertigstrasse zum walzen von metallwarmband
EP1444059B1 (de) Steuerverfahren für eine einer kühlstrecke vorgeordnete fertigstrasse zum walzen von metall-warmband
EP2456897B1 (de) Verfahren zur steuerung und/oder regelung eines induktionsofens für eine walzanlage, steuer- und/oder regeleinrichtung für eine walzanlage und walzanlage zum herstellen von walzgut
EP3430175B1 (de) Verfahren zum walzen und/oder zur wärmebehandlung eines metallischen bandes
DE112004002759T5 (de) Verfahren und Vorrichtung zum Steuern der Materialqualität in einem Walz-, Schmiede- oder Nivellierungsverfahren
EP1596999B2 (de) Verfahren zur regelung der temperatur eines metallbandes, insbesondere in einer kühlstrecke
EP2386365A1 (de) Betriebsverfahren für eine Fertigstraße mit Prädiktion der Leitgeschwindigkeit
EP2527053A1 (de) Steuerverfahren für eine Walzstraße
WO2012019917A1 (de) Verfahren zum herstellen von walzgut mittels einer giesswalzverbundanlage, steuer- und/oder regeleinrichtung für eine giesswalzverbundanlage und giesswalzverbundanlage
EP2431104A1 (de) Echtzeit-Ermittlungsverfahren für Temperatur und Geometrie eines Metall-Warmbandes in einer Fertigstraße
EP2527054A1 (de) Steuerverfahren für eine Walzstraße
WO2005099923A1 (de) Verfahren zum herstellen eines metalls
DE19618995C2 (de) Verfahren und Einrichtung zur Beeinflussung relevanter Güteparameter, insbesondere des Profils oder der Planheit eines Walzbandes
DE10324679A1 (de) Steuerrechner und rechnergestützes Ermittlungsverfahren für eine Profil- und Planheitssteuerung für eine Walzstraße
DE10321791A1 (de) Verfahren zur Regelung der Temperatur eines Metallbandes, insbesondere in einer Fertigstraße zum Walzen von Metall-Warmband
WO2023186585A1 (de) Verfahren zum herstellen eines metallproduktes
DE102004005011B4 (de) Regelverfahren und Regler für ein Walzgerüst
EP4061552B1 (de) Verfahren, steuervorrichtung sowie walzanlage zur einstellung einer auslauftemperatur eines aus einer walzstrasse auslaufenden metallbands
EP4103339B1 (de) Ermittlung einer sensitivität einer zielgrösse eines walzguts von einer betriebsgrösse einer warmwalzstrasse
EP3642372A1 (de) Verfahren zum betreiben eines glühofens
EP1481742B1 (de) Steuerrechner und rechnergestütztes Ermittlungsverfahren für eine Profil- und Planheitssteuerung für eine Walzstrasse
EP3494239B1 (de) Verfahren zum betreiben eines glühofens zum glühen eines metallbandes
EP1014239A1 (de) Verfahren zur Berechnung eines Stichplanes
DE10321792A1 (de) Verfahren zur Regelung der Temperatur eines Metallbandes, insbesondere in einer Kühlstrecke
EP3934822B1 (de) Verfahren zur herstellung eines metallischen bandes oder blechs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050801

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004003617

Country of ref document: DE

Date of ref document: 20070606

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070805

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070925

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20070425

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

26 Opposition filed

Opponent name: SMS DEMAG AG

Effective date: 20080125

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071026

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100213

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20110615

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502004003617

Country of ref document: DE

Effective date: 20110615

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20130213

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20130108

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20130312

Year of fee payment: 10

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20140228

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 360483

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004003617

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Effective date: 20151105

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160218

Year of fee payment: 13

Ref country code: SE

Payment date: 20160217

Year of fee payment: 13

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170214

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200219

Year of fee payment: 17

Ref country code: IT

Payment date: 20200225

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004003617

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: PRIMETALS TECHNOLOGIES GERMANY GMBH, 91052 ERLANGEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004003617

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228