EP1555421B1 - Dispositif de recirculation de gaz d'échappement d'un moteur à combustion interne - Google Patents

Dispositif de recirculation de gaz d'échappement d'un moteur à combustion interne Download PDF

Info

Publication number
EP1555421B1
EP1555421B1 EP05000942A EP05000942A EP1555421B1 EP 1555421 B1 EP1555421 B1 EP 1555421B1 EP 05000942 A EP05000942 A EP 05000942A EP 05000942 A EP05000942 A EP 05000942A EP 1555421 B1 EP1555421 B1 EP 1555421B1
Authority
EP
European Patent Office
Prior art keywords
gas
gas flow
elongate casing
recirculation device
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP05000942A
Other languages
German (de)
English (en)
Other versions
EP1555421A2 (fr
EP1555421A3 (fr
Inventor
Hiroyuki Komai
Masahiro Ariyama
Eriya Arita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Filter Systems Japan Corp
Original Assignee
Mahle Filter Systems Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Filter Systems Japan Corp filed Critical Mahle Filter Systems Japan Corp
Publication of EP1555421A2 publication Critical patent/EP1555421A2/fr
Publication of EP1555421A3 publication Critical patent/EP1555421A3/fr
Application granted granted Critical
Publication of EP1555421B1 publication Critical patent/EP1555421B1/fr
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • F02M26/26Layout, e.g. schematics with coolers having bypasses characterised by details of the bypass valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/04Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes comprising shape memory alloys or bimetallic elements

Definitions

  • the present invention relates in general to exhaust gas recirculation (viz., EGR) devices of an internal combustion engine, which feed part of the exhaust gas of the engine back to an intake side of the engine to reduce nitrogen oxides (NOx) in the exhaust gas, and more particularly to the EGR devices of a type that has a gas cooling means for cooling EGR gas.
  • EGR exhaust gas recirculation
  • the measures of the published applications have the following new drawbacks due to their inherent constructions. That is, in the former measure, the EGR device has a bulky construction causing a difficulty with which the EGR device is mounted to the engine, and in the latter measure, the EGR device fails to exhibit a satisfied ability for cooling EGR gas fed back to the engine.
  • an exhaust gas recirculation device of an internal combustion engine which can suitably control the temperature of EGR gas without enlarging the size of the device and sacrificing the gas cooling ability.
  • an exhaust gas recirculation device of an internal combustion engine which can control the temperature of EGR gas in accordance with an operation condition of the engine.
  • an exhaust gas recirculation device of an internal combustion engine which comprises a first elongate casing having gas inlet and outlet ports at axially opposed ends; a second elongate casing received in the first elongate casing to define therebetween an axially extending space, the second elongate casing including a first gas flow passage and a water flow passage that surrounds the first gas flow passage, the first gas flow passage having an inlet part exposed to the gas inlet port and an outlet part exposed to the gas outlet port; a third elongate casing received in the axially extending space to define between the first elongate casing and the third elongate casing a bypass passage and between the third elongate casing and the second elongate casing a second gas flow passage, the bypass passage and the second gas flow passage having each an inlet part exposed to the gas inlet port and an outlet part exposed to the gas outlet port; and a gas flow rate controller installed in either
  • an exhaust gas recirculation device of an internal combustion engine comprising a first elongate casing having gas inlet and outlet ports at axially opposed ends; a second elongate casing received in the first elongate casing to define therebetween an axially extending space, the second elongate casing including a first gas flow passage and a water flow passage that surrounds the first gas flow passage, the first gas flow passage having an inlet part exposed to the gas inlet port and an outlet part exposed to the gas outlet port; a third elongate casing received in the axially extending space to define between the first elongate casing and the third elongate casing a bypass passage and between the third elongate casing and the second elongate casing a second gas flow passage, the bypass passage and the second gas flow passage having each an inlet part exposed to the gas inlet port and an outlet part exposed to the gas outlet port; and a gas flow rate controller installed in the
  • an exhaust gas recirculation (EGR) device 100 which is a first embodiment of the present invention.
  • the EGR device 100 is arranged in an EGR piping that has an EGR gas inlet exposed to an interior of an exhaust passage of an associated internal combustion engine and an EGR gas outlet exposed to an interior of an air intake passage of the engine.
  • the EGR device 100 comprises a cylindrical housing (or first elongate casing) 1 that has inlet and outlet ports 2 and 3 at axially opposed ends thereof.
  • a cylindrical housing (or first elongate casing) 1 that has inlet and outlet ports 2 and 3 at axially opposed ends thereof.
  • respective flanges 4A and 4B To the inlet and outlet ports 2 and 3 of the housing 1, there are connected respective flanges 4A and 4B.
  • the flanges 4A and 4B are connected through bolts (not shown) to their counterparts (viz., flanges) of the piping.
  • soldering, welding, blazing and the like may be used for connecting the device 100 to the piping.
  • cylindrical casing 5 serves as a means for cooling EGR gas directed to the air intake passage of the engine.
  • the cylindrical casing 5 is of a double tube type including coaxially arranged inner and outer tubes 5a and 5b which have respective axial ends hermetically soldered to form therebetween a cylindrical water passage 6.
  • the inner and outer tubes 5a and 5b are constructed of a thin metal plate such as a stainless steel or the like.
  • the outer tube 5b has at axially opposed portions thereof respective openings (no numerals) to which water inlet and outlet pipes 7 and 8 are connected through soldering or the like. These water inlet and outlet pipes 7 and 8 are connected through respective tubes (not shown) to outlet and inlet portions of a source of a cooling water, such as a source of engine cooling water.
  • the cylindrical housing 1 has depressed apertures (no numerals) through which the water inlet and outlet pipes 7 and 8 extend radially outward. Under operation of the associated engine, the cooling water is led into the cylindrical water passage 6 through the water inlet pipe 7 and returned back to the source of the cooling water through the water outlet pipe 8. As will be described in detail hereinafter, during flowing of the cooling water in the cylindrical water passage 6, a heat exchanging is carried out between the cooling water and EGR gas flowing in and outside of the cylindrical casing 5.
  • a cylindrical partition tube (or third elongate casing) 9.
  • the partition tube 9 has portions (no numerals) secured to the water inlet and outlet pipes 7 and 8, so that the tube 9 is stably held in the housing 1. Due to provision of the cylindrical partition tube 9, there is defined a cylindrical bypass passage 10 between an inner surface of the cylindrical housing 1 and an outer surface of the cylindrical partition tube 9.
  • first gas cooling passage 11 that is cylindrical in shape
  • second gas cooling passage 12 that is cylindrical in shape
  • the bypass passage 10, the first gas cooling passage 11 and the second gas cooling passage 12 have respective inlet portions exposed to the inlet port 2 of the cylindrical housing 1 and respective outlet portions exposed to the outlet port 3 of the cylindrical housing 1.
  • each of the passages 10, 11 and 12 permits EGR gas to flow therein from the inlet port 2 toward the outlet port 3.
  • the inner tube 5a of the cylindrical case 5 has at its inner surface a plurality of heat exchanging fins 13 soldered thereto, and for the same reason between EGR gas in the second gas cooling passage 12 and the cooling water in the water passage 6, the outer tube 5b of the cylindrical case 5 is formed with a bellows or corrugated portion 14.
  • the respective apertured portions of the cylindrical housing 1, the cylindrical partition tube 9 and the outer tube 5b to which the water inlet or outlet pipe 7 or 8 is secured are intimately pressed and coupled to one another, so that the cylindrical casing 5 and the cylindrical partition tube 9 are tightly and stably held in the cylindrical housing 1.
  • a gas flow rate controller 15 that adjusts a gas flow rate among the bypass passage 10, the first gas cooling passage 11 and the second gas cooling passage 12.
  • the gas flow rate controller 15 is installed in the flange 4A connected to the inlet port 2 of the cylindrical housing 1.
  • the gas flow rate controller 15 comprises a pair of butterfly valves which are arranged in a parallel manner.
  • Each butterfly valve includes a pivot shaft 16a that extends perpendicular to an axis of the cylindrical housing 1, and a valve plate 16 that is secured to the pivot shaft 16a to pivot therewith.
  • the two pivot shafts 16a and 16a are symmetrically arranged with respect to the axis of the first gas cooling passage 11.
  • each valve plate 16 has a semicircular shape whose rounded outer periphery becomes in coincidence with the cylindrical inner surface of an inlet of the second gas cooling passage 12 when the valve plate 16 takes an inclined position (viz., the position shown by the dot-dash line) that will be described in the following.
  • FIG. 2 and 3 there is shown an actuating mechanism for the gas flow rate controller 15. That is, the angular position of the valve plates 16 and 16 of the gas flow rate controller 15 is controlled by the actuating mechanism that is powered by a negative pressure produced in the intake passage of the engine.
  • the two pivot shafts 16a have extending portions that are exposed to the outside of the cylindrical housing 1.
  • each link mechanism 19 comprises a first link 19a having one end fixed to the pivot shaft 16a, and a second link 19b having one end pivotally connected to the other end of first link 19a through a pivot pin 19c.
  • the other ends of the second links 19b and 19b of the two link mechanisms 19 and 19 are pivotally connected through a pivot pin 19d to a plunger 18 of the actuator 17.
  • the actuator 17 is mounted to the outer surface of the cylindrical housing 1 and powered by a negative pressure produced in a throttle zone of the intake passage of the associated internal combustion engine.
  • the diaphragm type actuator 17 comprises generally a casing and a diaphragm installed in the casing to define therein a work chamber.
  • the diaphragm has the other end of the plunger 18 fixed thereto, and the work chamber is connected through a tube to the throttle zone of the intake passage of the engine.
  • a pressure controller is arranged in the tube so that the negative pressure applied to the actuator 17 is controlled in accordance with an operation condition of the engine.
  • an electric type actuator or a hydraulic type actuator may be used.
  • each valve plate 16 of the gas flow rate controller 15 is positioned and arranged to pivotally move the rounded outer periphery thereof in a limited zone that is defined in the inlet portion of the cylindrical housing 1 between the actual inlet of the bypass passage 10 and that of the cylindrical casing 5.
  • the pressure controller controls the negative pressure applied to the actuator 17 in such a manner that the valve plates 16 and 16 take their flat positions as shown by the solid line.
  • the EGR gas is led freely to all the bypass passage 10 and the first and second gas cooling passages 11 and 12.
  • heat exchanging is carried out between EGR gas and the cooling water in the water passage 6, and thus, the EGR gas directed to the air intake passage of the engine is suitably cooled.
  • this is advantageous for reducing nitrogen oxides (NOx) and particulates in the exhaust gas discharged from the engine.
  • the pressure controller arranged between the actuator 17 and the throttle zone of the intake passage of the engine is so constructed that the negative pressure applied to the actuator 17 is controlled in accordance with the operation condition of the engine.
  • the angular position of the two valve plates 16 and 16 that is, the rate between the amount of EGR gas flowing in both the first and second gas cooling passages 11 and 12 and the amount of EGR gas flowing in the bypass passage 10 is continuously controlled in accordance with the operation condition of the engine.
  • the temperature of EGR gas fed back to the intake passage of the engine can be suitably controlled in accordance with the engine operation condition.
  • the flow rate between the amount of EGR gas flowing in both the first and second gas cooling passages 11 and 12 and the amount of EGR gas flowing in the bypass passage 10 is optimally controlled.
  • the three gas flow passages 10, 11 and 12 and the cooling water passage 6 are defined by the three cylindrical members 1, 9 and 5 which are coaxially assembled.
  • the EGR device 100 can have a compact size, which is quite advantageous when mounting the device 100 to a limited space such as an engine room of current wheeled motor vehicles.
  • the valve plates 16 and 16 of the gas glow rate controller 15 are pivoted outward with respect to the axis of the cylindrical housing 1.
  • the valve plates 16 and 16 can serve as a guide means through which the EGR gas flow is smoothly guided toward the bypass passage 10.
  • the valve plates 16 and 16 are pivoted inward to take the flat positions that are in parallel with the axis of the cylindrical housing 1. In this case, the valve plates 16 and 16 have substantially no effect on the flowing of EGR gas in the first and second gas cooling passages 11 and 12.
  • the gas flow rate controller 15 is described to be arranged in the inlet port 2 of EGR device 100. However, if desired, such controller 15 may be arranged in the outlet port 3 of the device 100.
  • the gas flow rate controller 15 is described to be constructed to have the two valve plates 16 and 16. However, if desired, the gas flow rate controller 15 may have only one valve plate or more than two valve plates.
  • an exhaust gas recirculation (EGR) device 200 which is a second embodiment of the present invention.
  • EGR device 200 of this second embodiment is similar in construction to the EGR device 100 of the above-mentioned first embodiment, the following description on the second embodiment 200 will be directed to only parts or portions that are different from those of the first embodiment 100.
  • the water inlet and outlet pipes 7 and 8 are arranged to project radially outward from axially and diametrically opposite portions of the cylindrical housing 1.
  • the measures with which the water inlet or outlet pipe 7 or 8 is integrally connected to the depressed apertures of the cylindrical housing 1, the cylindrical partition tube 9 and the outer tube 5b of the cylindrical casing 5 are substantially the same as the measures mentioned in the first embodiment 100.
  • a slide-rotary type gas flow rate controller 115 is employed.
  • the flow rate controller 115 comprises a conical guide member 20 that is connected at its larger peripheral edge to an inlet edge of the cylindrical partition tube 9. Due to provision of a conical wall of the guide member 20, the EGR gas flow in the inlet port 2 toward the inlet of the bypass passage 10 is smoothly carried out.
  • the conical wall of the conical guide member 20 is formed with four identical sector openings 21 that are circumferentially arranged at evenly spaced intervals.
  • these openings 21 are kept open, the EGR gas in the inlet port 2 is permitted to flow toward the first and second gas cooling passages 11 and 12 through the openings 21.
  • a conical valve member 22 is coaxially and rotatably received in the conical guide member 20.
  • a conical wall of the conical valve member 22 is formed with four identical sector openings 23 that are circumferentially arranged at evenly spaced intervals and identical in shape and size to the four openings 21 of the above-mentioned conical guide member 20.
  • the conical valve member 22 has a center portion from which a control rod 24 extends axially outward (viz., leftward in the drawing) through a center opening (no numeral) of the conical guide member 20.
  • a leading end of the control rod 24 is connected to an actuator so that the control rod 24 is rotated about its axis in accordance with an operation condition of the associated internal combustion engine.
  • the gas flow rate controller 115 assumes a full-open position. While, when, due to turning of the conical valve member 22 to a second given angular position, the sector openings 23 of the conical valve member 22 are fully closed by a solid portion of the conical wall of the conical guide member 20, the gas flow rate controller 115 assumes a full-close position. Thus, when, due to turning of the control rod 24, the conical valve member 22 is turned between the first and second given angular positions, an open degree of the sector openings 21 of the conical guide member 20 is varied.
  • the EGR gas in the inlet port 2 can be smoothly led to the inlet of the bypass passage 10.
  • the flow rate controller 115 takes the full-close position, the sector openings 23 of the conical valve member 22 are fully and intimately closed by the solid part of the conical guide member 20.
  • almost all of EGR gas in the inlet port 2 can be led to the bypass passage 10. Due to the nature of the flow rate controller 115 of this slide - rotary type, undesired play, which would cause a noise in operation, is suppressed or at least minimized.
  • an exhaust gas circulation (EGR) device 300 which is a third embodiment of the present invention.
  • the EGR device 300 of this third embodiment is similar in construction to the EGR device 100 of the first embodiment, the following description on the third embodiment 300 will be directed to only parts or portions that are different from those of the first embodiment 100.
  • the water inlet and outlet pipes 7 and 8 are arranged to project radially outward from axially opposite and diametrically opposite portions of the cylindrical housing 1, like the above-mentioned second embodiment 200. Furthermore, the measures with which the water inlet or outlet pipe 7 or 8 is integrally connected to the depressed apertures of the cylindrical housing 1, the cylindrical partition tube 9 and the outer tube 5b of the cylindrical casing 5 are substantially the same as the measures mentioned in the first embodiment 100.
  • the inner tube 5a of the cylindrical case 5 is entirely formed with a bellows or corrugated portion 25 in place of the heat exchanging fins (13, see Fig. 1 ) of the first embodiment 100.
  • the outer tube 5b of the cylindrical case 5 is formed with the bellows or corrugated portion 14, like in the first and second embodiments 100 and 200.
  • a bimetal type gas flow rate controller 215 is used.
  • the flow rate controller 215 comprises a circular frame 31 that is fitted in the inlet port 2 of the cylindrical housing 1, and a pair of temperature sensitive valve plates 30 and 30 that are made of a bimetal material and have base ends held by the circular frame 31.
  • the valve plates 30 and 30 are made of a shape memory alloy.
  • Each valve plate 30 has a semicircular shape whose rounded outer periphery becomes in coincidence with the cylindrical inner surface of the inlet of the second gas cooling passage 12 when the valve plate 30 takes a largely bent position.
  • Denoted by numeral 32 is a conical gas inlet member that is fixed to the inlet port 2 of the cylindrical housing 1 for smoothing the flow of EGR gas toward the inlet port 2.
  • the temperature sensitive valve plates 30 and 30 take the generally flat positions as shown by the broken line.
  • the EGR gas is led to all the bypass passage 10 and the first and second gas cooling passages 11 and 12 as is described hereinabove.
  • heat exchanging is carried out between EGR gas and the cooling water in the water passage 6, and thus, the EGR gas directed to the air intake passage of the engine is suitable cooled.
  • the temperature sensitive valve plates 30 and 30 per se serve as an actuator.
  • this third embodiment 300 there is no need of using a separate actuator such as one that is actually used in the above-mentioned first and second embodiments 100 and 200.
  • a separate actuator such as one that is actually used in the above-mentioned first and second embodiments 100 and 200.
  • much compact, simple and light weight construction is expected in the EGR device 300 of this third embodiment.
  • the housing 1, the partition tube 9 and the casing 5 are described to have a cylindrical shape.
  • such members 1, 9 and 5 may be of a type that has a rectangular, pentagonal or other polygonal cross section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (20)

  1. Dispositif de recirculation des gaz d'échappement EGR, soit Exhaust Gas Recirculation, d'un moteur à combustion interne, comprenant :
    un premier boîtier allongé comportant des orifices d'entrée et de sortie de gaz à des extrémités axialement opposées ;
    un deuxième boîtier allongé logé dans le premier boîtier allongé pour définir entre eux un espace qui s'étend axialement, le deuxième boîtier allongé comprenant un premier passage d'écoulement de gaz et un passage d'écoulement d'eau qui entoure le premier passage d'écoulement de gaz, le premier passage d'écoulement de gaz comportant une partie d'entrée exposée à l'orifice d'entrée de gaz et une partie de sortie exposée à l'orifice de sortie de gaz ;
    un troisième boîtier allongé logé dans l'espace qui s'étend axialement pour définir un passage de dérivation entre le premier boîtier allongé et le troisième boîtier allongé et pour définir un deuxième passage d'écoulement de gaz entre le troisième boîtier allongé et le deuxième boîtier allongé, le passage de dérivation et le deuxième passage d'écoulement de gaz comportant chacun une partie d'entrée exposée à l'orifice d'entrée de gaz et une partie de sortie exposée à l'orifice de sortie de gaz ; et
    un contrôleur de débit de gaz installé dans un orifice parmi les orifices d'entrée et de sortie de gaz du premier boîtier allongé pour contrôler un débit de gaz entre le passage de dérivation, le premier passage d'écoulement de gaz et le deuxième passage d'écoulement de gaz.
  2. Dispositif de recirculation des gaz d'échappement selon la revendication 1, dans lequel le contrôleur de débit de gaz est construit pour contrôler le rapport entre la quantité de gaz qui s'écoule dans les premier et deuxième passages d'écoulement de gaz et la quantité de gaz qui s'écoule dans le passage de dérivation.
  3. Dispositif de recirculation des gaz d'échappement selon la revendication 1, dans lequel le contrôleur du débit de gaz est installé dans l'orifice d'entrée de gaz du premier boîtier allongé et comprend :
    un élément de vanne qui peut être déplacé entre une première position dans laquelle l'écoulement de gaz depuis l'orifice d'entrée vers le passage de dérivation, le premier passage d'écoulement de gaz et le deuxième passage d'écoulement de gaz s'effectue librement sans être obstrué par la plaque de vanne, et une deuxième position dans laquelle l'écoulement de gaz depuis l'orifice d'entrée vers les premier et deuxième passages d'écoulement de gaz est réduit par rapport à l'écoulement de gaz depuis l'orifice d'entrée vers le passage de dérivation.
  4. Dispositif de recirculation des gaz d'échappement selon la revendication 3, comprenant en outre un mécanisme d'actionnement qui déplace continuellement l'élément de vanne entre les première et deuxième positions.
  5. Dispositif de recirculation des gaz d'échappement selon la revendication 4, dans lequel l'élément de vanne comprend :
    une paire d'axes de pivotement agencés parallèlement dans l'orifice d'entrée ; et
    une paire de plaques de vanne fixées respectivement aux axes de pivotement pour y pivoter,
    dans lequel les axes de pivotement sont actionnés par le mécanisme d'actionnement pour tourner autour d'axes respectifs correspondants.
  6. Dispositif de recirculation des gaz d'échappement selon la revendication 5, dans lequel le mécanisme d'actionnement comprend :
    un actionneur monté sur le premier boîtier allongé ; et
    une paire de mécanismes de liaison chacun interposé de manière opérationnelle entre l'actionneur et un des axes de pivotement correspondant.
  7. Dispositif de recirculation des gaz d'échappement selon la revendication 6, dans lequel l'actionneur est un actionneur de type diaphragme alimenté par une pression négative produite dans une zone d'étranglement d'un passage d'admission du moteur.
  8. Dispositif de recirculation des gaz d'échappement selon la revendication 6, dans lequel chacun des mécanismes de liaison comprend :
    une première liaison dont une extrémité est fixée à un des axes de pivotement correspondant ;
    une deuxième liaison dont une extrémité est connectée de façon pivotante à l'autre extrémité de la première liaison et l'autre extrémité est connectée de façon pivotante à un piston de l'actionneur.
  9. Dispositif de recirculation des gaz d'échappement selon la revendication 1, dans lequel le deuxième boîtier allongé est du type à double tube, comprenant des tubes interne et externe agencés coaxialement et ayant des extrémités axiales respectives, qui forment entre eux le passage d'écoulement d'eau, le tube interne définissant en son intérieur le premier passage d'écoulement de gaz.
  10. Dispositif de recirculation des gaz d'échappement selon la revendication 9, dans lequel le tube interne est formé avec un moyen d'échange de chaleur, et dans lequel le tube externe est formé avec un soufflet ou une partie ondulée.
  11. Dispositif de recirculation des gaz d'échappement selon la revendication 10, dans lequel le moyen d'échange de chaleur est un moyen parmi une pluralité d'ailettes soudées à une surface interne du tube interne et un soufflet ou une partie ondulée formée sur le tube interne.
  12. Dispositif de recirculation des gaz d'échappement selon la revendication 1, comprenant en outre des tubes d'entrée et de sortie d'eau ayant chacun une extrémité interne exposée au passage d'écoulement d'eau du deuxième boîtier allongé.
  13. Dispositif de recirculation des gaz d'échappement selon la revendication 12, dans lequel les tubes d'entrée et de sortie d'eau sont agencés à des positions axialement opposées et diamétralement identiques du premier boîtier allongé.
  14. Dispositif de recirculation des gaz d'échappement selon la revendication 12, dans lequel les tubes d'entrée et de sortie d'eau sont agencés à des positions axialement opposées et diamétralement opposées du premier boîtier allongé.
  15. Dispositif de recirculation des gaz d'échappement selon la revendication 4, dans lequel le contrôleur de débit de gaz comprend :
    un élément de guidage conique fixé au troisième boîtier allongé, l'élément de guidage conique étant formé sur une paroi conique correspondante avec une pluralité de premières ouvertures ;
    un élément de vanne conique logé coaxialement et de manière rotative dans l'élément de guidage conique, l'élément de vanne conique étant formé sur une paroi conique correspondante avec une pluralité de deuxièmes ouvertures, l'élément de vanne conique étant tourné entre une position ouverte dans laquelle les première et deuxième ouvertures sont accouplées et une position fermée dans laquelle les première et deuxième ouvertures ne sont pas accouplées ; et
    une tige de contrôle ayant une extrémité qui traverse une ouverture centrale de l'élément de guidage conique pour être fixée à une partie centrale de l'élément de vanne conique, la tige de contrôle ayant l'autre extrémité connectée à l'actionneur.
  16. Dispositif de recirculation des gaz d'échappement selon la revendication 15, dans lequel la paroi conique de l'élément de guidage conique est agencée pour lisser l'écoulement des gaz EGR depuis l'orifice d'entrée de gaz du premier boîtier allongé vers une entrée du passage de dérivation.
  17. Dispositif de recirculation des gaz d'échappement selon la revendication 4, dans lequel le contrôleur de débit de gaz comprend :
    un élément d'encadrement agencé dans l'orifice d'entrée de gaz du premier boîtier allongé ; et
    une paire de plaques de vanne thermosensibles qui ont chacune une extrémité de base maintenue par l'élément d'encadrement et une partie libre qui présente une déformation lorsque de la chaleur lui est appliquée, la partie libre étant fléchie par la chaleur entre une première position dans laquelle l'écoulement de gaz depuis l'orifice d'entrée de gaz vers le passage de dérivation, le premier passage d'écoulement de gaz et le deuxième passage d'écoulement de gaz s'effectue librement sans être obstrué par les plaques de vanne, et une deuxième position dans laquelle l'écoulement de gaz depuis l'orifice d'entrée de gaz vers les premier et deuxième passages d'écoulement de gaz est réduit par rapport à l'écoulement de gaz depuis l'orifice d'entrée de gaz vers le passage de dérivation,
    dans lequel les plaques de vanne thermosensibles sont agencées de telle sorte que la partie libre de chaque plaque de vanne prend la deuxième position lorsque le débit de gaz mené dans l'orifice d'entrée de gaz du premier boîtier allongé est relativement faible.
  18. Dispositif de recirculation des gaz d'échappement selon la revendication 17, dans lequel les plaques de vanne thermosensibles sont construites à partir d'un bimétal ou d'un alliage à mémoire de forme.
  19. Dispositif de recirculation des gaz d'échappement selon la revendication 18, comprenant en outre un élément d'entrée de gaz conique qui est fixé à l'orifice d'entrée de gaz du premier boîtier allongé pour lisser l'écoulement de gaz vers l'orifice d'entrée de gaz.
  20. Dispositif de recirculation des gaz d'échappement d'un moteur à combustion interne, comprenant :
    un premier boîtier allongé comportant des orifices d'entrée et de sortie de gaz à des extrémités axialement opposées ;
    un deuxième boîtier allongé logé dans le premier boîtier allongé pour définir entre eux un espace qui s'étend axialement, le deuxième boîtier allongé comprenant un premier passage d'écoulement de gaz et un passage d'écoulement d'eau qui entoure le premier passage d'écoulement de gaz, le premier passage d'écoulement de gaz comportant une partie d'entrée exposée à l'orifice d'entrée de gaz et une partie de sortie exposée à l'orifice de sortie de gaz ;
    un troisième boîtier allongé logé dans l'espace qui s'étend axialement pour définir un passage de dérivation entre le premier boîtier allongé et le troisième boîtier allongé et pour définir un deuxième passage d'écoulement de gaz entre le troisième boîtier allongé et le deuxième boîtier allongé, le passage de dérivation et le deuxième passage d'écoulement de gaz comportant chacun une partie d'entrée exposée à l'orifice d'entrée de gaz et une partie de sortie exposée à l'orifice de sortie de gaz ; et
    un contrôleur de débit de gaz installé dans l'orifice d'entrée de gaz du premier boîtier allongé pour contrôler un rapport entre la quantité de gaz qui s'écoule dans les premier et deuxième passages d'écoulement de gaz et la quantité de gaz qui s'écoule dans le passage de dérivation.
EP05000942A 2004-01-19 2005-01-18 Dispositif de recirculation de gaz d'échappement d'un moteur à combustion interne Ceased EP1555421B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004009960A JP4323333B2 (ja) 2004-01-19 2004-01-19 内燃機関の排気還流装置
JP2004009960 2004-01-19

Publications (3)

Publication Number Publication Date
EP1555421A2 EP1555421A2 (fr) 2005-07-20
EP1555421A3 EP1555421A3 (fr) 2011-08-17
EP1555421B1 true EP1555421B1 (fr) 2013-03-13

Family

ID=34616928

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05000942A Ceased EP1555421B1 (fr) 2004-01-19 2005-01-18 Dispositif de recirculation de gaz d'échappement d'un moteur à combustion interne

Country Status (3)

Country Link
EP (1) EP1555421B1 (fr)
JP (1) JP4323333B2 (fr)
CN (1) CN100439694C (fr)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4324926B2 (ja) 2004-09-28 2009-09-02 株式会社ティラド 熱交換器
JP4431579B2 (ja) * 2004-09-28 2010-03-17 株式会社ティラド Egrクーラ
US7198037B2 (en) 2004-12-14 2007-04-03 Honeywell International, Inc. Bypass for exhaust gas cooler
DE102005012842A1 (de) * 2005-03-19 2006-09-21 Daimlerchrysler Ag Luftansaugvorrichtung für eine Brennkraftmaschine mit einsetzbarer Bypassklappeneinrichtung
FR2891591A1 (fr) 2005-09-30 2007-04-06 Renault Sas Dispositif de repartition des gaz recircules, et refroidisseur de gaz recircules comportant un tel dispositif
ES2322728B1 (es) * 2005-11-22 2010-04-23 Dayco Ensa, S.L. Intercambiador de calor de tres pasos para un sistema "egr".
WO2007064949A1 (fr) * 2005-12-02 2007-06-07 Borgwarner Inc. Soupape de recirculation des gaz d'échappement et passage de contournement de refroidisseur combinés
US7654078B2 (en) 2006-05-08 2010-02-02 Honeywell International, Inc. Exhaust gas particle collector
DE102006023855A1 (de) * 2006-05-19 2007-11-22 Mahle International Gmbh Abgasrückführeinrichtung
FR2902151B1 (fr) * 2006-06-07 2008-08-08 Peugeot Citroen Automobiles Sa Moteur a combustion interne ayant un circuit de recirculation des gaz d'echappement
GB2451862A (en) * 2007-08-15 2009-02-18 Senior Uk Ltd High gas inlet temperature EGR system
DE102008005591A1 (de) * 2008-01-22 2009-07-23 Bayerische Motoren Werke Aktiengesellschaft Ventileinrichtung für eine Abgasrückführungseinrichtung
ITMI20080450A1 (it) * 2008-03-17 2009-09-18 Dellorto Spa Valvola egr per il ricircolo dei gas di scarico al collettore di aspirazione di motori a combustione interna.
US7581533B1 (en) * 2008-10-09 2009-09-01 Gm Global Technology Operations, Inc. Three mode cooler for exhaust gas recirculation
US20120067332A1 (en) * 2010-09-17 2012-03-22 Gm Global Technology Operations, Inc. Integrated exhaust gas recirculation and charge cooling system
DE102011100706A1 (de) * 2011-05-06 2012-11-08 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Regelbarer Wärmetauscher für eine Kraftfahrzeug-Klimaanlage
US9097214B2 (en) * 2011-09-01 2015-08-04 GM Global Technology Operations LLC Exhaust gas recirculation system having active material actuated by-pass
JP5861865B2 (ja) * 2011-10-17 2016-02-16 大豊工業株式会社 Egrクーラ
DE102012107908B4 (de) 2012-08-28 2018-11-15 Tenneco Gmbh Abgaswärmetauscher
CN103306787B (zh) * 2013-06-17 2016-04-13 无锡创晨科技有限公司 水暖尾气加热器的滑桶式烟门开关装置
KR20150050921A (ko) * 2013-11-01 2015-05-11 현대중공업 주식회사 폐열 회수용 연관식 보일러
GB2524985B (en) * 2014-04-08 2020-07-15 Gt Emissions Systems Ltd Dual valve actuator
GB2532177A (en) * 2014-06-04 2016-05-18 Norgren Ltd C A Exhaust gas control valve for an internal combustion engine
DE102014222158A1 (de) * 2014-10-30 2016-05-04 Mahle International Gmbh Abgaswärmeübertrager
CN113028858A (zh) * 2021-03-23 2021-06-25 中国航发沈阳发动机研究所 一种基于记忆合金的自适应换热器
CN113983852A (zh) * 2021-11-04 2022-01-28 浙江银轮机械股份有限公司 换热器壳体结构及换热器
CN113893953B (zh) * 2021-12-08 2022-02-25 苏州好博医疗器械股份有限公司 一种烟雾处理装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617726A (en) 1995-03-31 1997-04-08 Cummins Engine Company, Inc. Cooled exhaust gas recirculation system with load and ambient bypasses
US5740785A (en) * 1997-06-09 1998-04-21 Southwest Research Institute Two way-high pressure loop, exhaust gas recirculation valve
JP4009000B2 (ja) * 1998-02-24 2007-11-14 株式会社マーレ フィルターシステムズ 内燃機関のegrガスクーラ
JP2000282960A (ja) * 1999-03-31 2000-10-10 Nissan Diesel Motor Co Ltd Egr冷却装置
JP2001073883A (ja) * 1999-09-01 2001-03-21 Mitsubishi Motors Corp Egr装置
CN1167872C (zh) * 2000-06-20 2004-09-22 三菱电机株式会社 水冷式排气再循环装置
US6976480B2 (en) * 2002-01-16 2005-12-20 Mitsubishi Denki Kabushiki Kaisha Exhaust gas recirculating device
DE10203003B4 (de) * 2002-01-26 2007-03-15 Behr Gmbh & Co. Kg Abgaswärmeübertrager
JP2003328864A (ja) 2002-05-09 2003-11-19 Toyota Motor Corp 排気再循環装置及び排気再循環装置に用いられる熱交換器並びに内燃機関
CN100379971C (zh) * 2002-05-15 2008-04-09 贝洱两合公司 可控制的废气热交换器

Also Published As

Publication number Publication date
CN1654807A (zh) 2005-08-17
CN100439694C (zh) 2008-12-03
EP1555421A2 (fr) 2005-07-20
JP4323333B2 (ja) 2009-09-02
JP2005201578A (ja) 2005-07-28
EP1555421A3 (fr) 2011-08-17

Similar Documents

Publication Publication Date Title
EP1555421B1 (fr) Dispositif de recirculation de gaz d'échappement d'un moteur à combustion interne
US8695332B2 (en) Internal bypass exhaust gas cooler
JP6186276B2 (ja) バイパスを備える排熱回収装置
US7931013B2 (en) Three-pass heat exchanger for an EGR system
JP5380522B2 (ja) マルチポート弁
EP1859156B1 (fr) Dérivation et vanne integrée à recirculation des gaz d échappement
MXPA04007134A (es) Cambiador de calor para gas de escape.
KR20020031052A (ko) 차량의 냉각 시스템
EP1605145B1 (fr) Système d'échappement d'une moteur à combustion interne à plusieurs cylindres
US20090241527A1 (en) Arrangement for cooling the exhaust gas of a motor vehicle
EP1426604A2 (fr) Soupape de commutation à passage d'écoulement
JP4732157B2 (ja) 切替バルブ構造
JP2020041535A (ja) 制御バルブ
JP6247357B2 (ja) タービンハウジング
JP2019065795A (ja) 内燃機関
JP2007224784A (ja) 内燃機関用シリンダヘッド
CN210135111U (zh) 压缩机及涡轮增压器
EP3090161B1 (fr) Turbocompresseur comportant une étanchéité de soupape de dérivation améliorée
JP6459632B2 (ja) 内燃機関用吸排気装置
JP2020200828A (ja) 弁、内燃機関用の排気分岐体、及び内燃機関を備えた車両
JPWO2020195320A1 (ja) 制御バルブ
JP2563930Y2 (ja) エンジン用マフラーのバルブ構造
JP2011163181A (ja) 通路切換バルブおよび排気浄化装置
JP2024093570A (ja) 排気熱回収器
JPS6196117A (ja) 可変消音器

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE FILTER SYSTEMS JAPAN CORPORATION

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 25/07 20060101AFI20110714BHEP

17P Request for examination filed

Effective date: 20110908

AKX Designation fees paid

Designated state(s): DE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005038521

Country of ref document: DE

Effective date: 20130508

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20131216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005038521

Country of ref document: DE

Effective date: 20131216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140128

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005038521

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801