EP1550482B1 - Procédé d'inertisation pour l'extinction des incendies - Google Patents

Procédé d'inertisation pour l'extinction des incendies Download PDF

Info

Publication number
EP1550482B1
EP1550482B1 EP03029928A EP03029928A EP1550482B1 EP 1550482 B1 EP1550482 B1 EP 1550482B1 EP 03029928 A EP03029928 A EP 03029928A EP 03029928 A EP03029928 A EP 03029928A EP 1550482 B1 EP1550482 B1 EP 1550482B1
Authority
EP
European Patent Office
Prior art keywords
oxygen
inerting
gas
level
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03029928A
Other languages
German (de)
English (en)
Other versions
EP1550482A1 (fr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amrona AG
Original Assignee
Amrona AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34560177&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1550482(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Amrona AG filed Critical Amrona AG
Priority to AT03029928T priority Critical patent/ATE464104T1/de
Priority to DE50312624T priority patent/DE50312624D1/de
Priority to SI200331794T priority patent/SI1550482T1/sl
Priority to EP03029928A priority patent/EP1550482B1/fr
Priority to ES03029928T priority patent/ES2340576T3/es
Priority to DK03029928.3T priority patent/DK1550482T3/da
Priority to TW093139927A priority patent/TWI340656B/zh
Priority to RU2006123041/12A priority patent/RU2317835C1/ru
Priority to CA2551232A priority patent/CA2551232C/fr
Priority to AU2004308691A priority patent/AU2004308691B2/en
Priority to US10/584,117 priority patent/US9220937B2/en
Priority to JP2006546133A priority patent/JP2007516759A/ja
Priority to UAA200606994A priority patent/UA86044C2/ru
Priority to CN2004800366455A priority patent/CN1890000B/zh
Priority to PCT/EP2004/014903 priority patent/WO2005063338A1/fr
Publication of EP1550482A1 publication Critical patent/EP1550482A1/fr
Priority to HK05108474.3A priority patent/HK1076416A1/xx
Priority to NO20063301A priority patent/NO20063301L/no
Publication of EP1550482B1 publication Critical patent/EP1550482B1/fr
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C99/00Subject matter not provided for in other groups of this subclass
    • A62C99/0009Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames
    • A62C99/0018Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames using gases or vapours that do not support combustion, e.g. steam, carbon dioxide
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C99/00Subject matter not provided for in other groups of this subclass
    • A62C99/0009Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames

Definitions

  • the present invention relates to an inerting method for extinguishing a fire in an enclosed space (hereinafter also referred to as "target space") in which the oxygen content in the enclosed space is lowered within a predeterminable time to a certain inerting level.
  • EP-A-1 103 286 discloses an inerting plant and an inerting process according to the preamble of claim 1 for fire fighting in a tunnel, wherein the oxygen content in the tunnel is lowered to a certain inerting level which corresponds to an extinguishable concentration of the oxygen content.
  • the document US 6,082,464 A discloses an inertization method in which a first inert gas is introduced into a target space at a first flow rate for a certain time, so that a fire that has broken out in the target space can be extinguished. Furthermore, it is provided in this prior art that subsequently a second Inert gas is supplied at a second flow rate to the target space to keep within the target space, the inert gas concentration at an inerting at which a re-ignition of the fire can be prevented.
  • the document US 2002/070035 A1 discloses a method for extinguishing a fire that has broken out within a closed space.
  • this method it is provided that after the detection of a fire, an inert gas concentration within the closed space is built up abruptly, so as to reduce the oxygen content within the target space to a maximum extinguishing oxygen concentration. Furthermore, it is provided in this known method that, in order to maintain the maximum extinguishing oxygen concentration, the inert gas is fed in a predetermined amount into the closed space.
  • oxygen-displacing gases such as carbon dioxide, nitrogen, noble gases and mixtures thereof
  • the oxygen-displacing gases or inert gases are either stored in steel cylinders compressed or if necessary generated by means of a generator. In case of fire, the gas is then over Piping systems and corresponding outlet nozzles directed to the relevant target area.
  • the time course of a firefighting effected by means of an inertization process is subdivided essentially into two phases, the firefighting phase and the reignition phase.
  • the fire-fighting phase is the phase during which the target space is flooded with an oxygen-displacing gas to achieve a volatile concentration of the introduced inert gas in the target space.
  • the volatile concentration is defined in accordance with VdS as the concentration at which a fire can be excluded with certainty.
  • the extinguishable concentration is below the so-called re-ignition prevention level and, for example, corresponds to an oxygen concentration of about 11.2% by volume in computing areas, electrical switch and distributor rooms, enclosed facilities and warehoused storage areas.
  • the oxygen concentration must reach a so-called backfire prevention level.
  • the re-ignition prevention level is an oxygen concentration at which (re) ignition of materials present in the target space is just precluded.
  • the oxygen concentration of the remindzündverhi matterssulates is dependent on the fire load of the target area and is for example in computing areas, electrical switch and distribution rooms, enclosed facilities and storage areas with assets at an oxygen concentration of about 13.8 vol .-%.
  • the inert gas fire extinguishing system and the inerting process should be designed accordingly.
  • the fire-fighting phase during which the fire in the finish area is completely extinguished, is followed by the so-called reignition phase.
  • the reignition phase is a time period in which the oxygen content does not exceed the re-ignition prevention level, i. for example, above the said 13.8 vol .-%, may increase.
  • the reignition phase has to last more than ten minutes. In other words, this means that the inert gas fire extinguishing system and the inertization process must be designed so that after fire detection the target space is flooded with inert gas so as to achieve an oxygen concentration in the target space within 60 seconds in the target space, and this concentration during the fire fighting phase and the reignition phase is not exceeded.
  • Fig. 1 shows the course of flooding a operated with a conventional inerting inert gas fire extinguishing system on the example of a equipped with a computer equipment target area.
  • VdS guidelines here is the determined from tests anti-ignition level at an oxygen concentration of 13.8 vol .-%; this concentration value is sometimes called "limit concentration”.
  • the extinguishable concentration which is composed of the source material, a space-specific parameter and a safety, is according to the Fig. 1 at 11.2% by volume, and thus by 1.2% by volume, above a dangerous oxygen concentration of 10% by volume for persons and animals.
  • the volatile concentration corresponds to the inertization level of the inert gas fire extinguishing system.
  • the inert gas fire extinguishing system or the inerting method used is designed so that the re-ignition prevention level (13.8% by volume) is achieved by injecting or flooding the target space with inert gas within 60 seconds after the fire detection or initiation of the inertization process. It is envisaged that after reaching the scrubzündverhi regardss stipulates the oxygen concentration is further reduced until the extinguishable concentration or the inerting of the inert gas fire extinguishing system of 11.2 vol .-% is achieved.
  • a further disadvantage is the fact that in the inertization process known from the prior art, there is no possibility, after the end of the firefighting phase, of preventing an early overshoot of the re-ignition level of the oxygen concentration in the target area.
  • this is necessary, for example, if, for example, the tightness of the target area does not correspond to the design value.
  • Such a case is not unlikely since fresh air entries, i. Flow events beyond the boundaries of the shelter, due to, for example, unforeseen leaks in the enclosure components of the target area or due to a malfunction of integrated in the target space ventilation and air conditioning can occur.
  • Such unforeseen leaks can not be taken into account in the consideration of the tightness of the space for the design of the corresponding inertization process and lead in case of fire to an insufficient extinguishing effect of the method used.
  • the present invention is therefore based on the technical problem of specifying an inerting method for extinguishing a fire of the type discussed above, by means of which the most accurate interpretation of inert gas fire extinguishing system used during the inerting process, and in particular as accurate as possible dimensioning of the inert gas to be provided, while maintaining the Fire extinguishing required phase and reignition phase is possible.
  • the advantages of the invention are in particular that an easy to implement and thereby very effective method for optimizing the flooding course of an inert gas fire extinguishing system can be achieved.
  • the reignition phase provided for fire extinguishment is set according to the invention via regulation of the inertization level, it can be achieved that an inerting level set during the fire fighting phase no longer covers the time period of the reignition phase pretends.
  • the inertization level set during the firefighting phase may correspond to an oxygen concentration in the target space which no longer needs to be well below the recirculation-preventive level, as is the case with the conventional inertization processes known from the prior art.
  • any pressure relief flaps provided in the target area can also be dimensioned to be smaller.
  • a specific control range is also provided, in which the inerting level is maintained at the level of re-ignition prevention. This control range is dependent on, for example, the tightness of the target area and / or the design of the inert gas fire extinguishing system or the sensitivity of the sensors used in the target area for determining the oxygen concentration.
  • the inertization level corresponds to the re-ignition prevention level.
  • the dimensioning or design of the inert gas fire extinguishing system very precisely to the target area (density, volume, possible fire hearth materials) to adapt.
  • the regulation of the inerting level in the target area already takes place during the fire fighting phase at the re-ignition prevention level.
  • the storage container for storing the inert gas can be dimensioned significantly smaller or a corresponding system, such as a nitrogen plant for generating the inert gas, be designed correspondingly smaller.
  • the upper threshold oxygen content in the control range is less than or equal to the re-ignition prevention level.
  • threshold value in this context refers to the residual oxygen concentration at which the inert gas fire extinguishing system is switched on again or in which inert gas is again introduced into the target space in order to maintain or reach the inerting level as a setpoint.
  • the upper threshold oxygen content in the control range is spaced from the backfire prevention level, there is some certainty.
  • This safety corresponds to the difference between the re-ignition prevention level and the upper threshold.
  • the control range is limited downwards by a lower threshold.
  • This lower threshold value corresponds to the oxygen concentration at which the inert gas fire extinguishing system is switched off again or the renewed introduction of oxygen-displacing gas into the target space is stopped.
  • the amplitude of the oxygen content in the control range has a height of about 0.2% by volume and preferably a maximum height of 0.2% by volume.
  • the size of the range of the residual oxygen concentration between the on and off threshold of the inert gas fire extinguishing system is about 0.4% by volume, and preferably at most 0.4% by volume.
  • other amplitudes of the oxygen content in the control range are also conceivable here.
  • the regulation of the oxygen content takes place at the re-ignition prevention level, taking into account the air exchange rate of the target area, in particular taking into account the n 50 value of the target area, and / or the pressure difference between the target area and the surroundings.
  • the air exchange rate refers to the ratio of the leakage volume flow in relation to the existing volume of the room at a pressure difference to the environment of 50 Pa. In other words, this means that the air exchange rate is a measure of the tightness of the target area and thus a decisive factor for dimensioning the inert gas fire extinguishing system.
  • the leakage volume flow increases into or out of the measured target area. This increases the fresh air entries in the room and the inert gas losses from the room.
  • the tightness of the respective target space limiting enclosure components is carried out by means of a so-called BlowerDoor measurement. It is intended to generate a standardized overpressure / negative pressure of 10 to 60 Pa in the target area. The air escapes through the leakage surfaces of the enclosing components to the outside or penetrates there. A corresponding measuring device measures the required volume flow to maintain the pressure difference of, for example, 50 Pa required for the measurement. After entering the associated values, an evaluation program calculates the n 50 value of the room, which refers to the generated pressure difference of 50 Pa in a standardized way.
  • the calculation of the extinguishing agent quantity for lowering the oxygen content to the inertization level and for maintaining the oxygen content at the re-ignition prevention level taking into account the air exchange rate of the Target area, in particular taking into account the n 50 - value of the target area, and / or the pressure difference between the target area and the environment.
  • the lowering of the oxygen content is effected by supplying an oxygen-displacing gas into the target space
  • the shaping of the weft curve may be kept correspondingly flatter, so that, for example, not after 60 seconds but only a short time later, about 120 seconds or 180 seconds, the inerting level is reached.
  • the inerting method according to the invention can be used in particular also in target areas which have no solid walls or in which no pressure relief flaps or similar devices can be installed.
  • the inerting process according to the invention in which the lowering of the oxygen content takes place by supplying an oxygen-displacing gas into the target space, it is particularly preferable to regulate the supply of the oxygen-displacing gas as a function of the current oxygen content or the current extinguishing agent concentration provided in the target area.
  • the oxygen content in the room if nitrogen serves as the extinguishing agent.
  • the CO 2 concentration in the target area is preferably measured in order to regulate the supply of oxygen-displacing gas in the target area.
  • the oxygen content in the enclosed space it is particularly preferable for the oxygen content in the enclosed space to be lowered to the specific inertization level within 60 seconds or less. This ensures that the guidelines for CO 2 extinguishing systems prescribed by the VdS are met.
  • the time in which the oxygen content in the target space is lowered to the specific inerting level is greater than 60 seconds. This is particularly advantageous if the flooding of the target space is controlled with inert gas, and in particular depending on the existing pressure in the target area.
  • the oxygen content in the target area is lowered by introducing an oxygen-displacing gas from a prepared reservoir.
  • an oxygen-displacing gas from a prepared reservoir.
  • a rapid adjustment of the inertization level in the target space can be achieved.
  • carbon dioxide, nitrogen, noble gases and mixtures thereof which are compressed in steel bottles or stored in uncompressed form in a special inert gas reservoir (eg false ceilings), may be considered as oxygen-displacing gases.
  • the gas is passed through piping systems and corresponding outlet nozzles in the target area.
  • the advantage of lowering the oxygen content in the target space by introducing an inert gas from a reservoir provided, in which the inert gas is in compressed form, is in particular also to be seen in that by the expansion of the compressed gas in addition to the effect of oxygen displacement also a positive to the Extinguishing effect impacting cooling effect is achieved, since then the expansion of the compressed gas stored compressed oxygen displaced gas directly from the environment and in particular the target space is withdrawn.
  • the oxygen-displacing gas is provided by means of a production plant.
  • a machine such as fuel cells, which extracts oxygen from the target area.
  • the advantage of this embodiment is to be seen in particular in that it can be dispensed with special storage rooms for example, a reservoir or gas cylinders, in which the oxygen-displacing gas is stored.
  • a production plant for oxygen-displacing gas for example, a nitrogen generator in question, in which the components contained in compressed air are split and diverted so that a nitrogen flow is obtained. This has a very low pressure dew point and a fixed residual oxygen content, which can be continuously monitored.
  • the nitrogen flow obtained via the nitrogen generator is fed via a pipeline to the target area, while the oxygen-enriched air is discharged separately into the open air.
  • the advantage of such a production plant can be seen in particular in its relatively maintenance-free operation.
  • other methods for producing the oxygen-displacing gas are also conceivable.
  • the oxygen displacing gas is provided from a reservoir to lower the oxygen content to the particular inertization level and the oxygen displacing gas is provided from a production facility to increase the inertization level at the re-ignition prevention level hold.
  • the oxygen-displacing gas needed to lower the oxygen content to the particular inertization level and the gas needed to maintain the inertization level at the recirculation-prevention level from a reservoir and / or a production plant.
  • Fig. 1 shows a flooding course in a target space in a prior art inerting process.
  • the fire extinction proceeds in three steps.
  • the first step the fire in the target area is detected and the intergas extinguishing system activated.
  • the energy in the target area such as the power supply, is turned off.
  • the actual firefighting takes place during the firefighting phase during which the target area is flooded with inert gas.
  • the ordinate axis represents the oxygen concentration in the target space and the axis of abscissa represents the time.
  • the introduction of the oxygen displacing gas into the target space occurs in the first 240 seconds until the inertization level of the inert gas fire extinguishing system reaches the extinguishable concentration of 11.2 vol% in this case. reached.
  • the course of the flooding is selected so that the oxygen concentration in the target area reaches the re-ignition prevention level of here 13.8% by volume already 60 seconds after the initiation of the inertization process; the re-ignition prevention level will also limit concentration Called GK.
  • the reignition phase After reaching the extinguishable concentration (11.2 vol .-%) begins the so-called reignition phase in which no further introduction of inert gas takes place in the target area.
  • the reignition phase in this case is a time period of 600 seconds in which the oxygen concentration in the target space never exceeds the re-ignition prevention level.
  • Fig. 2 shows a flooding course in the target space of Fig. 1 in a first preferred embodiment of the inertization process according to the invention.
  • the oxygen concentration in the target space is reduced to the inertization level by inert gas flushing within 60 seconds.
  • the inert gas introduction is throttled and completely stopped after the oxygen concentration has reached a lower threshold in a control range around the inerting level.
  • the oxygen concentration then increases continuously due to, for example, leaks in the target area, until an upper threshold value of the oxygen content in the control range is reached.
  • This upper threshold value corresponds to the recirculation prevention level GK of the target space. This ensures that at no time does the oxygen concentration of the target area exceed the critical limit concentration or the re-ignition prevention level.
  • inertization method it is then provided that upon reaching the upper threshold value, inert gas is again introduced into the target space in order to lower the oxygen concentration again to a lower threshold value of the control range. After reaching the lower threshold, the inert gas is stopped in the target area again. Thus, the inerting level is iterated with a certain control range at the re-ignition prevention level.
  • the upper limit of the control range from the inerting level is identical to the re-ignition prevention level of 13.8% by volume.
  • the amplitude of the oxygen content in the control range corresponds to a height of 0.2% by volume.
  • the inerting is achieved after the predetermined time of 60 seconds. Of course, another time span is possible here as well.
  • the inertization method of the present invention it is possible to perform the control of the oxygen content at the re-ignition prevention level in consideration of the air exchange rate n 50 of the target space. Again Fig. 2 to is found, the adjusted by means of inerting process according to the invention in the target area oxygen concentration is generally well above the hazardous for people concentration of 10 vol .-%. This is a further significant advantage of the inertization process according to the invention.
  • Fig. 3 shows a flooding course in a second preferred embodiment of the inertization process according to the invention.
  • the difference of the flooding course to that in the Fig. 2 Flooding curve shown is now that the inerting is lower than the respzündungsverhi tangibleslomi. This provides further safety or a further safety buffer between the upper limit or the upper threshold range of the control range and the re-ignition prevention level.
  • Fig. 4 shows a flooding course of another preferred embodiment of the inertization process according to the invention.
  • the difference of the flooding course according to Fig. 4 to that in the Fig. 2 shown flooding course of the first preferred embodiment of the inertization process according to the invention is to be seen in that the Einschussgases of the inert gas, ie the reduction of the oxygen content in the target space caused at the beginning of the inertization, a significantly lower slope, whereby the inerting is reached later.
  • the lowering takes place by regulating the supply of the oxygen-displacing gas, taking into account the air / gas pressure in the target space, so as to avoid inflating the target space. This is particularly suitable for target areas that have no solid walls or in which no pressure relief flaps can be installed.
  • the inventive method requires the permanent monitoring of the oxygen content in the target area.
  • the oxygen concentration or the inert gas concentration in the target area is permanently determined via appropriate sensors and fed to a controller of the inert gas fire extinguishing system, which in response controls the extinguishing agent supply to the target area.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Claims (10)

  1. Procédé d'inertisation pour l'extinction d'un incendie dans un local clos, dans lequel on abaisse la teneur en oxygène dans le local clos à l'intérieur d'un temps prédéterminé (x) jusqu'à un niveau d'inertisation déterminé,
    caractérisé en ce que
    par injection régulée dans le local clos d'un gaz refoulant l'oxygène, le niveau d'inactivation est maintenu dans une plage de régulation déterminée, telle que la valeur seuil supérieure de la plage de régulation est inférieure ou au maximum égale au niveau qui empêche un retour de flamme (R).
  2. Procédé d'inertisation selon la revendication 1,
    caractérisé en ce que
    par injection régulée du gaz refoulant l'oxygène, la régulation de la teneur en oxygène dans la plage de régulation a lieu en tenant compte du taux de renouvellement d'air dans le local clos, en particulier de la valeur n50 de le local clos, et/ou de la différence de pression entre le local clos et l'environnement.
  3. Procédé d'inertisation selon la revendication 1 ou 2,
    caractérisé en ce que
    le calcul de la quantité d'agent d'extinction pour abaisser la teneur en oxygène au niveau d'inertisation et pour maintenir la teneur en oxygène dans la plage de régulation a lieu en tenant compte du taux de renouvellement d'air dans le local clos, en particulier de la valeur n50 de le local clos, et/ou de la différence de pression entre le local clos et l'environnement.
  4. Procédé d'inertisation selon l'une des revendications précédentes, dans lequel l'abaissement de la teneur en oxygène a lieu par admission dans le local clos d'un gaz refoulant l'oxygène,
    caractérisé par une régulation de l'admission du gaz refoulant l'oxygène en tenant compte de la pression de l'air et de la pression du gaz dans le local clos.
  5. Procédé d'inertisation selon l'une des revendications précédentes, dans lequel l'abaissement de la teneur en oxygène a lieu par admission dans le local clos d'un gaz refoulant l'oxygène,
    caractérisé par une régulation de l'admission du gaz refoulant l'oxygène en fonction de la teneur actuelle en oxygène ou respectivement de la concentration actuelle en agent d'extinction dans le local clos.
  6. Procédé d'inertisation selon l'une des revendications précédentes,
    caractérisé en ce que le temps (x) s'élève à 60 secondes ou moins.
  7. Procédé d'inertisation selon l'une des revendications 1 à 5,
    caractérisé en ce que le temps (x) est supérieur à 60 secondes.
  8. Procédé d'inertisation selon l'une des revendications précédentes,
    caractérisé en ce que la teneur en oxygène dans le local clos est abaissée par injection d'un gaz refoulant l'oxygène depuis un réservoir mis à disposition.
  9. Procédé d'inertisation selon l'une des revendications 1 à 7, dans lequel le gaz refoulant l'oxygène est mis à disposition au moyen d'une installation de production.
  10. Procédé d'inertisation selon l'une des revendications précédentes,
    caractérisé en ce que, pour abaisser la teneur en oxygène au niveau d'inertisation déterminé, le gaz refoulant l'oxygène est mis à disposition depuis un réservoir et, pour maintenir le niveau d'inertisation dans la plage de régulation, le gaz refoulant l'oxygène est mis à disposition depuis une installation de production.
EP03029928A 2003-12-29 2003-12-29 Procédé d'inertisation pour l'extinction des incendies Expired - Lifetime EP1550482B1 (fr)

Priority Applications (17)

Application Number Priority Date Filing Date Title
AT03029928T ATE464104T1 (de) 2003-12-29 2003-12-29 Inertisierungsverfahren zum löschen eines brandes
DE50312624T DE50312624D1 (de) 2003-12-29 2003-12-29 Inertisierungsverfahren zum Löschen eines Brandes
SI200331794T SI1550482T1 (sl) 2003-12-29 2003-12-29 Inertizacijski postopek za gašenje požarov
EP03029928A EP1550482B1 (fr) 2003-12-29 2003-12-29 Procédé d'inertisation pour l'extinction des incendies
ES03029928T ES2340576T3 (es) 2003-12-29 2003-12-29 Procedimiento de inertizacion para extinguir un incendio.
DK03029928.3T DK1550482T3 (da) 2003-12-29 2003-12-29 Inertiseringsfremgangsmåde til slukning af en brand
TW093139927A TWI340656B (en) 2003-12-29 2004-12-22 Inerting method for extinguishing a fire
US10/584,117 US9220937B2 (en) 2003-12-29 2004-12-29 Inerting method and device for extinguishing a fire
PCT/EP2004/014903 WO2005063338A1 (fr) 2003-12-29 2004-12-29 Procede d'inertisation et dispositif pour eteindre un incendie
AU2004308691A AU2004308691B2 (en) 2003-12-29 2004-12-29 Inerting method and device for extinguishing a fire
RU2006123041/12A RU2317835C1 (ru) 2003-12-29 2004-12-29 Способ инертизации и устройство для тушения пожара
JP2006546133A JP2007516759A (ja) 2003-12-29 2004-12-29 消火のための不活性化方法及び装置
UAA200606994A UA86044C2 (ru) 2003-12-29 2004-12-29 Способ инертизации и устройство для тушения пожара
CN2004800366455A CN1890000B (zh) 2003-12-29 2004-12-29 用于灭火的惰化方法和装置
CA2551232A CA2551232C (fr) 2003-12-29 2004-12-29 Procede d'inertisation et dispositif pour eteindre un incendie
HK05108474.3A HK1076416A1 (en) 2003-12-29 2005-09-26 Inerting method for extinguishing fires
NO20063301A NO20063301L (no) 2003-12-29 2006-07-17 Inertiseringsfremgangsmate og anordning for slukking av en brann

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03029928A EP1550482B1 (fr) 2003-12-29 2003-12-29 Procédé d'inertisation pour l'extinction des incendies

Publications (2)

Publication Number Publication Date
EP1550482A1 EP1550482A1 (fr) 2005-07-06
EP1550482B1 true EP1550482B1 (fr) 2010-04-14

Family

ID=34560177

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03029928A Expired - Lifetime EP1550482B1 (fr) 2003-12-29 2003-12-29 Procédé d'inertisation pour l'extinction des incendies

Country Status (17)

Country Link
US (1) US9220937B2 (fr)
EP (1) EP1550482B1 (fr)
JP (1) JP2007516759A (fr)
CN (1) CN1890000B (fr)
AT (1) ATE464104T1 (fr)
AU (1) AU2004308691B2 (fr)
CA (1) CA2551232C (fr)
DE (1) DE50312624D1 (fr)
DK (1) DK1550482T3 (fr)
ES (1) ES2340576T3 (fr)
HK (1) HK1076416A1 (fr)
NO (1) NO20063301L (fr)
RU (1) RU2317835C1 (fr)
SI (1) SI1550482T1 (fr)
TW (1) TWI340656B (fr)
UA (1) UA86044C2 (fr)
WO (1) WO2005063338A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080176503A1 (en) * 2005-05-03 2008-07-24 Daniel Stanimirovic Fully articulated and comprehensive air and fluid distribution, metering, and control method and apparatus for primary movers, heat exchangers, and terminal flow devices
DE102005053694B3 (de) * 2005-11-10 2007-01-04 Airbus Deutschland Gmbh Brennstoffzellensystem zum Löschen von Bränden
DE102005053692B3 (de) * 2005-11-10 2007-01-11 Airbus Deutschland Gmbh Brandschutz mit Brennstoffzellenabluft
RU2410143C2 (ru) 2005-11-10 2011-01-27 Эйрбас Дойчланд Гмбх Система и способ пожаротушения
ES2318686T3 (es) 2006-10-11 2009-05-01 Amrona Ag Procedimiento de inertizacion gradual para la prevencion y extincion de incendios en espacios cerrados.
DE502008001127D1 (de) 2008-06-18 2010-09-23 Amrona Ag Vorrichtung und Verfahren zum Einstellen der Leckrate einer Undichtigkeit an einer spaltartigen Öffnung eines Rotationswärmetauschers
PL2204219T3 (pl) * 2008-12-12 2011-07-29 Amrona Ag Sposób zobojętniania w celu zapobiegania pożarom i/lub zwalczania pożarów oraz urządzenie zobojętniające do zastosowania tego sposobu
RU2482278C2 (ru) * 2011-03-16 2013-05-20 Государственное общеобразовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ борьбы с пожарами в шахтах
DE102012002131B4 (de) * 2012-02-03 2021-07-29 Airbus Operations Gmbh Notfallversorgungssystem für ein Verkehrsmittel, Verfahren zum Bereitstellen von elektrischer Leistung und zum Unterdrücken von Feuer und Verkehrsmittel mit einem Notfallversorgungssystem
FR2987822B1 (fr) * 2012-03-12 2014-04-11 Air Liquide Dispositif d'inertage, reservoir et aeronef munis d'un tel dispositif et procede correspondant
ES2932415T3 (es) 2012-10-29 2023-01-18 Amrona Ag Método y dispositivo para determinar y/o monitorear la estanqueidad al aire de un espacio cerrado
RU2549055C1 (ru) * 2014-03-06 2015-04-20 Открытое акционерное общество "Ассоциация разработчиков и производителей систем мониторинга" Способ предупреждения пожаров внутри герметичных обитаемых объектов, преимущественно подводных лодок, и устройство для его осуществления
PT3111999T (pt) * 2015-07-02 2018-02-14 Amrona Ag Instalação de redução de oxigénio e método para conceção de uma instalação de redução de oxigénio
EP3558472B1 (fr) * 2016-12-20 2024-01-24 Carrier Corporation Système et procédé de protection contre l'incendie pour enceinte
DK3568214T3 (en) * 2017-01-12 2021-07-05 Fire Eater As Sensor-based fire inerting gas system
KR102239961B1 (ko) * 2020-08-19 2021-04-14 포이스주식회사 자연발화성 화학물질의 초기 화재 억제장치 및 화재 억제방법
CN114733105B (zh) * 2022-03-29 2022-12-02 中国安全生产科学研究院 一种有限空间防火用注氮量的计算方法
CN115518320B (zh) * 2022-09-01 2023-06-30 米凯利科技(北京)有限公司 一种二氧化碳惰化系统及灭火综合系统
CN115591155A (zh) * 2022-11-03 2023-01-13 上海穗杉实业股份有限公司(Cn) 一种减少注氮时间的注氮控氧环控防火系统及方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3012613A (en) * 1959-06-24 1961-12-12 Specialties Dev Corp Fire preventing system
US3844354A (en) * 1973-07-11 1974-10-29 Dow Chemical Co Halogenated fire extinguishing agent for total flooding system
US5128881A (en) * 1988-09-09 1992-07-07 Saum Enterprises, Inc. Means and methods for predicting hold time in enclosures equipped with a total flooding fire extinguishing system
DE4236544C2 (de) * 1992-10-29 1996-06-13 Preussag Ag Minimax Verfahren zur Ansteuerung eines Löschmittelvorrats
RU2066217C1 (ru) 1993-11-02 1996-09-10 Научно-производственное предприятие "Атомконверс" Система пожаротушения
JPH09276428A (ja) * 1996-04-08 1997-10-28 Sekiko Ryo 火災の予防と消火方法及びシステム
US6029751A (en) * 1997-02-07 2000-02-29 Ford; Wallace Wayne Automatic fire suppression apparatus and method
US6082464A (en) * 1997-07-22 2000-07-04 Primex Technologies, Inc. Dual stage fire extinguisher
US6095251A (en) * 1997-07-22 2000-08-01 Primex Technologies, Inc. Dual stage fire extinguisher
JP3947610B2 (ja) * 1998-02-17 2007-07-25 能美防災株式会社 消火装置
US20020040940A1 (en) * 1998-03-18 2002-04-11 Wagner Ernst Werner Inerting method and apparatus for preventing and extinguishing fires in enclosed spaces
DE19811851C2 (de) 1998-03-18 2001-01-04 Wagner Alarm Sicherung Inertisierungsverfahren zur Brandverhütung und -löschung in geschlossenen Räumen
US6257341B1 (en) * 1998-09-22 2001-07-10 Joseph Michael Bennett Compact affordable inert gas fire extinguishing system
CA2346824C (fr) * 1999-03-03 2003-05-06 Fmc Corporation Systeme anti-explosion destine a un systeme d'ancrage de tourelles internes
JP3929214B2 (ja) * 1999-10-04 2007-06-13 株式会社コーアツ ガス系消火設備
EP1103286A1 (fr) * 1999-11-24 2001-05-30 Siemens Building Technologies AG Dispositif de lutte contre l'incendie dans des tunnels
DE10051662B4 (de) * 2000-10-18 2004-04-01 Airbus Deutschland Gmbh Verfahren zur Löschung eines innerhalb eines geschlossenen Raumes ausgebrochenen Feuers
DE50110253D1 (de) 2001-01-11 2006-08-03 Wagner Alarm Sicherung Inertisierungsverfahren mit stickstoffpuffer
DE10121550B4 (de) 2001-01-11 2004-05-19 Wagner Alarm- Und Sicherungssysteme Gmbh Inertisierungsverfahren mit Stickstoffpuffer
DE10152964C1 (de) * 2001-10-26 2003-08-21 Airbus Gmbh Löschsystem zur Löschung eines innerhalb der Kabine oder eines Frachtraumes eines Passagierflugzeuges ausgebrochenen Feuers
RU2201775C1 (ru) 2002-07-10 2003-04-10 Научно-производственное предприятие "Атомконверс" Способ предупреждения пожаров и взрывов в помещениях
CN1533814A (zh) 2003-03-27 2004-10-06 廖赤虹 一种用于封闭空间的火灾预防及灭火设备

Also Published As

Publication number Publication date
ES2340576T3 (es) 2010-06-07
CN1890000A (zh) 2007-01-03
US9220937B2 (en) 2015-12-29
CA2551232A1 (fr) 2005-07-14
JP2007516759A (ja) 2007-06-28
TWI340656B (en) 2011-04-21
ATE464104T1 (de) 2010-04-15
RU2317835C1 (ru) 2008-02-27
SI1550482T1 (sl) 2010-06-30
TW200531718A (en) 2005-10-01
AU2004308691B2 (en) 2010-12-16
DE50312624D1 (de) 2010-05-27
CA2551232C (fr) 2011-09-27
AU2004308691A1 (en) 2005-07-14
DK1550482T3 (da) 2010-05-25
NO20063301L (no) 2006-09-28
UA86044C2 (ru) 2009-03-25
WO2005063338A1 (fr) 2005-07-14
CN1890000B (zh) 2011-01-12
HK1076416A1 (en) 2006-01-20
US20090126949A1 (en) 2009-05-21
EP1550482A1 (fr) 2005-07-06

Similar Documents

Publication Publication Date Title
EP1550482B1 (fr) Procédé d'inertisation pour l'extinction des incendies
EP1683548B1 (fr) Procédé d'inertisation pour éviter des incendies
EP2173440B1 (fr) Dispositif et procédé pour la prévention d'incendie et l'extinction d'un incendie déclenché dans une pièce fermée
EP1062005B2 (fr) Procede d'inertisation pour la prevention et l'extinction des incendies dans des locaux fermes
EP2186546B1 (fr) Installation de gaz inerte destinée à la réduction du risque et à l'extinction d'incendies dans un espace protégé
EP1913978B1 (fr) Dispositif pour inertiser avec un générateur d'azote
EP3141287B1 (fr) Procédé et dispositif de détermination et/ou de surveillance de l'étanchéité à l'air d'une pièce fermée
EP1261396B1 (fr) Procede d'inertisation au moyen d'un tampon d'azote
EP1941932B1 (fr) Procédé pour déterminer l'étanchéité à l'air des espaces enclavé
DE10205373B4 (de) Brandschutz
EP1913980B1 (fr) Dispositif pour l'inertisation avec dispositif de securite
EP2014336A1 (fr) Procédé et dispositif destinés à la prévention contre les incendies et/ou l'extinction d'incendies dans des espaces clos
EP2046459A1 (fr) Procédé d'inertisation pour réduire le risque d'un début d'incendie dans une pièce fermée ainsi qu'un dispositif pour exécuter le procédé
EP2602006B1 (fr) Procédé d'extinction d'un incendie dans un espace fermé et installation d'extinction d'incendie
WO2015082088A1 (fr) Installation de réduction d'oxygène et procédé pour faire fonctionner une installation de réduction d'oxygène
EP1913979B1 (fr) Dispositif pour inertiser avec un générateur d'azote
EP1550481B1 (fr) Procédé d'inertisation pour réduire le risque d'un feu
WO2017001222A1 (fr) Installation pour la réduction de l'oxygène et procédé pour la conception d'une installation pour la réduction de l'oxygène
WO2016045979A1 (fr) Installation d'extinction de gaz inerte
DE102014210032B4 (de) Brandschutzeinrichtung zum Absenken einer Luftsauerstoffkonzentration in einem Schutzbereich eines Gebäudes
EP2508813A2 (fr) Procédé et dispositif pour le réglage de la pression de l'air dans un espace

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DER ERFINDER HAT AUF SEINE NENNUNG VERZICHTET.

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1076416

Country of ref document: HK

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AMRONA AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FELBER & PARTNER AG PATENTANWAELTE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REF Corresponds to:

Ref document number: 50312624

Country of ref document: DE

Date of ref document: 20100527

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2340576

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1076416

Country of ref document: HK

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20100401624

Country of ref document: GR

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 7539

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100414

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100816

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100414

26N No opposition filed

Effective date: 20110117

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E009424

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100414

REG Reference to a national code

Ref country code: DE

Ref legal event code: R008

Ref document number: 50312624

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R039

Ref document number: 50312624

Country of ref document: DE

Effective date: 20130521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20131125

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20141219

Year of fee payment: 12

Ref country code: SK

Payment date: 20141223

Year of fee payment: 12

Ref country code: GR

Payment date: 20141215

Year of fee payment: 12

Ref country code: LU

Payment date: 20141230

Year of fee payment: 12

Ref country code: IE

Payment date: 20141222

Year of fee payment: 12

Ref country code: CZ

Payment date: 20141222

Year of fee payment: 12

Ref country code: SE

Payment date: 20141219

Year of fee payment: 12

Ref country code: FI

Payment date: 20141211

Year of fee payment: 12

Ref country code: ES

Payment date: 20141226

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20141127

Year of fee payment: 12

Ref country code: HU

Payment date: 20141219

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141218

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20141219

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151229

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151229

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151230

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 7539

Country of ref document: SK

Effective date: 20151229

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20160830

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20100401624

Country of ref document: GR

Effective date: 20160707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151229

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151229

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151230

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160707

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R040

Ref document number: 50312624

Country of ref document: DE

Ref country code: DE

Ref legal event code: R097

Ref document number: 50312624

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151229

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20170127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151230

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: DUFOURSTRASSE 116, 8008 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151229

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201223

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211221

Year of fee payment: 19

Ref country code: AT

Payment date: 20211222

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20211221

Year of fee payment: 19

Ref country code: CH

Payment date: 20211221

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220620

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230101

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 464104

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221229

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221229

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50312624

Country of ref document: DE