EP2173440B1 - Dispositif et procédé pour la prévention d'incendie et l'extinction d'un incendie déclenché dans une pièce fermée - Google Patents

Dispositif et procédé pour la prévention d'incendie et l'extinction d'un incendie déclenché dans une pièce fermée Download PDF

Info

Publication number
EP2173440B1
EP2173440B1 EP08786552.3A EP08786552A EP2173440B1 EP 2173440 B1 EP2173440 B1 EP 2173440B1 EP 08786552 A EP08786552 A EP 08786552A EP 2173440 B1 EP2173440 B1 EP 2173440B1
Authority
EP
European Patent Office
Prior art keywords
room
atmosphere
pressure
air
fire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08786552.3A
Other languages
German (de)
English (en)
Other versions
EP2173440A1 (fr
Inventor
Ernst-Werner Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amrona AG
Original Assignee
Amrona AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amrona AG filed Critical Amrona AG
Priority to EP08786552.3A priority Critical patent/EP2173440B1/fr
Publication of EP2173440A1 publication Critical patent/EP2173440A1/fr
Application granted granted Critical
Publication of EP2173440B1 publication Critical patent/EP2173440B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C99/00Subject matter not provided for in other groups of this subclass
    • A62C99/0009Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames
    • A62C99/0018Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames using gases or vapours that do not support combustion, e.g. steam, carbon dioxide

Definitions

  • the present invention relates to an inerting process for fire prevention and fire extinguishing in an enclosed space, in particular laboratory space, the room atmosphere supplied in a regulated manner fresh air as supply air and discharged from the room atmosphere in a controlled manner exhaust air, and wherein in case of fire or to avoid fire the room atmosphere under normal conditions gaseous extinguishing agent is supplied as supply air.
  • the invention further relates to a device for extinguishing a fire that has broken out in an enclosed space, the device having at least one device for providing a gaseous extinguishing agent under normal conditions and for suddenly introducing the gaseous extinguishing agent into the room atmosphere of the enclosed space when in the enclosed space Fire broke out.
  • the publication DE 10 2005 023 101 A1 relates to a method for introducing an inert gas into an enclosed space, wherein the compressed inert gas is passed into the extinguishing or protective area at approximately constant throughput.
  • the publication DE 102 49 126 A1 relates to a method for generating an oxygen-free atmosphere in a room from which the oxygen-containing air is pumped out and replaced by an oxygen-poor gas, wherein in the evacuated from the room or the ambient air, the oxygen content is filtered out and released into the atmosphere and the filtered, largely oxygen-free air is pumped into the room to be intertêten.
  • the publication DE 44 13 074 A1 relates to a method for inerting reactors.
  • the publication US 2001/0029750 A1 relates to a particular breathable inert gas composition as well as a system for fire prevention and fire extinguishment with such an extinguishing composition.
  • the publication EP 1 683 548 A1 relates to an inerting method for preventing a fire or an explosion in a first enclosed protection area, in which the oxygen content in the protected area is lowered relative to the ambient air to a basic inerting level.
  • the extinguishing effect resulting from the flooding of an enclosed space with inert gas is based on the principle of oxygen displacement.
  • "Normal" ambient air is known to be 21% by volume of oxygen, 78% by volume of nitrogen and 1% by volume of other gases.
  • the re-ignition prevention level is an inerting level which corresponds to a reduced oxygen concentration at which the goods or materials stored in the respective room can no longer ignite or burn.
  • the level of backfire prevention which is usually determined by experiment, depends on the fire load of the protected area.
  • the oxygen content corresponding to the backfire prevention level is in a range between 12% by volume to 15% by volume.
  • the oxygen content corresponding to the rate of re-ignition prevention may be less than 12% by volume.
  • the oxygen concentration in the protection area should reach the reburn prevention level within the first 60 seconds from the start of flooding. In this way, an effective fire fighting is possible with the inert gas extinguishing, so that within the fire-fighting phase, a fire in the protection area can be completely extinguished.
  • the oxygen-displacing gases used in the inert gas extinguishing technology are stored compressed, for example in steel cylinders.
  • a device for generating an oxygen-displacing gas such as a so-called "nitrogen generator”
  • the amount of inert gas which can be supplied by the device per unit of time must be adapted correspondingly to the volume of the protected area. This is especially true if in addition to the nitrogen generator no further inert gas source is provided. If necessary, then the provided amount of inert gas, for example via piping systems and corresponding outlet nozzles, as quickly as possible in the room in question.
  • the disadvantage of such a mechanical pressure relief is the fact that the pressure relief surface to be considered must already be estimated in the planning phase before the structural completion of the enclosed space. Furthermore, the dimensioning of the pressure relief flaps to be installed is also to be defined in the planning phase. In particular, it is to be estimated in advance which effective air or gas passage area to be provided with the pressure relief flap.
  • an enclosed space which is already equipped with a conventional inert gas fire extinguishing system, is often only conditionally convertible or expandable. For example, if restructuring is required to increase the volume of space by means of structural measures, additional pressure relief dampers may be required to meet the required safety requirements.
  • the invention has the object, further develop a based on the principle of inerting fire extinguishing system and a fire extinguishing method of the type mentioned that for an enclosed space, especially laboratory space in which a permanent negative pressure is set, one at a flooding be provided with inert gas to be provided pressure relief over the largest possible range of the size of the room and the volume, it allows the pressure relief at the same time that even with a rapid introduction of inert gas of the set in the room vacuum is maintained, thus effectively during the Flooding of the room with inert gas an escape of possibly in the space atmosphere existing harmful particles, substances, viruses, etc. to prevent.
  • the problem to be solved by the present invention is to provide a way in which the air can be removed from the enclosed space in order to maintain a negative pressure.
  • the device according to the invention in particular a pressure relief device with a vacuum generating means and a controller, wherein the controller is designed to control the negative pressure generating device in response to the prevailing in the room atmosphere of the enclosed space pressure (also called "room pressure") such that the in the room atmosphere prevailing pressure does not exceed a predetermined maximum pressure value.
  • room pressure also called "room pressure”
  • negative pressure generating device basically means any device or device which is designed, for example, to be able to lower the pressure prevailing in the interior of the space by active removal of air or gas from the room atmosphere of the enclosed space. It is essential that the solution proposed herein merely requires that air or gas is removed from the (gaseous) room atmosphere. This can be done, for example, by removing or removing the air or the gas from the volume of the enclosed space via an exhaust air line.
  • the air or gas quantity to be removed from the room atmosphere for the purpose of pressure relief is not removed from the volume of space, but compressed, for example with the aid of a compressor, and remains in compressed form in the interior of the room, for example by the compressed air - or gas is cached in an accumulator tank.
  • the accumulator tank can be located inside the room or outside the room.
  • the instantaneous pressure prevailing in the room atmosphere is measured at least in the method step of the sudden introduction of the extinguishing agent into the room atmosphere and the pressure measured value is compared with a predetermined maximum pressure value. Subsequently, depending on the result of the comparison in the enclosed space, a negative pressure is generated such that the instantaneous pressure measured value does not exceed the predetermined maximum pressure value.
  • Room interior rising pressure is compensated.
  • the room pressure set before the flooding in the room atmosphere of the enclosed space is maintained. This applies even if, within a very short time and in particular within the first 60 seconds after the start of the flooding in the room atmosphere, the level of backfire prevention must be set.
  • the fact that in the device according to the invention a pressure relief device with a controllable via a control negative pressure generating device is used it is possible in an advantageous manner to continuously compensate in the room atmosphere of the enclosed space at the time of extinguishing agent introduction building up pressure.
  • the vacuum generating device can be achieved in particular that in the enclosed space basically a negative pressure is generated, the size of which is adapted to the momentary overpressure generated by the introduction of the extinguishing agent.
  • the overpressure generated by the introduction of the extinguishing agent into the enclosed space can be sufficiently compensated at any time.
  • the negative pressure that can be provided by the negative pressure generating device is preferably selected such that at least partial compensation of the overpressure is possible, which builds up in the protected area as a result of the sudden introduction of the gaseous extinguishing agent.
  • the vacuum generating device can be controlled via the controller.
  • the activation of the vacuum generating device is preferably carried out such that the pressure prevailing in the room atmosphere pressure does not exceed a predetermined maximum pressure value.
  • the solution according to the invention it is possible with the solution according to the invention to use a based on the principle of inerting fire extinguishing system in an enclosed space having an atmosphere which compared to the air pressure of the normal outside atmosphere has a reduced pressure (negative pressure), as for example in laboratories the case may be.
  • this negative pressure which is deliberately set in the protected area, is maintained even if, for example, a gaseous extinguishing agent is introduced into the room atmosphere for the purpose of extinguishing a fire.
  • the maximum pressure value which is used as a threshold value for the pressure to be maintained in the room atmosphere, is freely definable.
  • pressure compensation or pressure relief is decoupled from the spatial design of the enclosed space, and in particular the size or the volume of the room, as independent of the volume of space with the pressure relief device itself at the initiation of a gaseous Extinguishing adjusting pressure change in the room can be compensated accordingly.
  • the solution according to the invention is not the normal atmospheric pressure, but set before the flooding with inert gas in the interior of the room (lower) pressure as a reference for the pressure relief to be provided.
  • the method according to the invention is a particularly easy-to-implement yet effective method for preventive fire protection and / or for the effective and, in particular, reliable extinguishing of a fire which has broken out in an enclosed space, pressure relief being provided in the form of pressure compensation.
  • pressure compensation it is possible to sufficiently compensate for a change in pressure entering the space atmosphere during the discharge of extinguishing agent, so that in this way damage to the space envelope can be effectively prevented.
  • the exhaust air can be removed or removed in a regulated manner from the room atmosphere.
  • room atmosphere means the gaseous volume of the enclosed space. Accordingly, the term “removal of exhaust air from the room atmosphere” to understand the removal of at least a portion of the exhaust air from the gaseous volume of space.
  • the removal i. Removing the exhaust air from the gaseous room atmosphere can be realized in different ways. On the one hand, it makes sense that at least part of the exhaust air is actively sucked out of the room volume via an exhaust air system. Here, the exhaust air is discharged not only from the room atmosphere, but also from the volume of space, i. away.
  • the exhaust air system is used to remove the exhaust air in a controlled manner, in order to compensate in this way, a rise in the room pressure occurring during the supply of inert gas must - as in the case of fire extinguishing within a very short time a relatively large amount of inert gas is supplied to the room volume -
  • the exhaust system be designed according to that they can suck off or dissipate a corresponding amount of exhaust air within a very short time.
  • an exhaust air system with such a large intake volume can often not be realized or only with greater financial expense.
  • a vacuum generating device is provided in the solution according to the invention, which may be carried out separately from the exhaust air system and serves to provide the pressure required for the supply of inert gas pressure compensation.
  • the negative pressure generating device is designed separately from the exhaust air system and serves to ensure that the pressure prevailing in the room atmosphere (also simply called "room pressure”) does not exceed a predefinable maximum pressure value, so that in this way an in the reduced pressure set to the enclosed space is effectively maintained even if a relatively large amount of oxygen-displacing gas is supplied to the room atmosphere in a short time at the beginning of inert gas flooding.
  • a compressor is used as the vacuum generating device, which is designed to compress the volume of at least part of the exhaust air to be removed from the gaseous room atmosphere, i. to condense.
  • the compressor is disposed inside the room so that the exhaust air, which is compressed by the compressor, can be stored in a high pressure storage tank in the room.
  • the compressor serves to reduce the volume of the exhaust air to be removed from the gaseous room atmosphere and in this way to compensate for an overpressure which builds up when inert gas is being flooded.
  • the compressor and the high-pressure storage container are arranged in the interior of the enclosed space.
  • This embodiment has the advantage that a pressure compensation can be provided without the need for major structural measures.
  • An installation of the compressor inside the room is particularly suitable for rooms that can not or only with great effort with an additional Abluftrohr Oberssystem or can be retrofitted.
  • the compressor should have a sufficiently high volume flow rate, so that it can be ensured that the intake volume of the compressor is greater than or equal to the volume flow of the room atmosphere as a whole supplied fresh air and / or as extinguishing supply air. It would therefore be conceivable, for example, to use a turbo-compressor as a compressor, the design of which guarantees a continuous mode of operation and which is distinguished by a high volume pressure set.
  • a vacuum generating device for example, it would be conceivable to use devices for reducing the amount of gas in the enclosed space, which are operated with a fan.
  • the vacuum generating device it can be provided, for example, that it has a suction device and an intake pipe system connected to the suction device.
  • the amount of gas or air extracted by means of the suction device via the intake pipe system from the enclosed space per unit time is adjustable.
  • the suction device is realized as a fan or identifies a fan whose speed and / or the direction of rotation by means of the control of the pressure relief device is adjustable / is.
  • a blow-out device is a device that is designed, for example, to allow active ventilation of the enclosed space. The provision of such a blow-out device can be particularly advantageous if, for example, after a fire extinguishment of the existing smoke in the room must be removed, or if (for whatever reason) fresh air must be introduced into the room.
  • the respective volume flows of the fresh air supplied as supply air, the discharged exhaust air and the extinguishing agent supplied as supply air in case of fire or fire prevention are measured, and then the respective ones Volumetric flows are controlled so that at any time, the difference between the volume flow of the room atmosphere as fresh air and / or as extinguishing agent supplied supply air and the volume flow of exhaust air discharged from the room atmosphere assumes a constant pre-definable value.
  • this pre-settable value should be zero to ensure that a room pressure set in the enclosed space, in spite of the supply of fresh air and / or inert gas (possibly with a certain amount of air) Control range) is maintained.
  • By being able to set the difference between the volume flow of the supply air and the volume flow of the exhaust air to a pre-definable value it is also possible to deliberately change (increase or decrease) the room pressure in a controlled manner.
  • the difference between the pressure prevailing in the room (room pressure) and the air pressure of the outside atmosphere is determined continuously and at predeterminable times and / or events and compared with a predeterminable value, and if the volume flow of the supply air supplied to the room atmosphere as fresh air and / or as extinguishing agent and the volume flow of the exhaust air discharged from the room atmosphere are regulated as a function of the comparison.
  • This is a particularly easy-to-implement, yet effective way to perform effective pressure compensation in the enclosed space, even if within the shortest possible time Time is supplied in particular at the beginning of a fire-fighting phase per unit time a large amount of inert gas of the room atmosphere as supply air.
  • the difference between the air pressure in the room and the air pressure of the outside atmosphere can be detected by measuring the pressure (room pressure) prevailing in the room and the air pressure of the outside atmosphere.
  • a pressure measuring device for example, manometers come into question, in which the outside air pressure, ie, the air pressure of the outside atmosphere is used as a reference pressure.
  • the pressure measuring device are basically so-called “direct pressure gauges” conceivable, which use the force of the pressure to be detected, for example by mechanical, capacitive, inductive, piezorezessiv or strain gauges, the force of the pressure passed and converted into corresponding signals.
  • direct pressure measuring devices are conceivable in which on the measurement of particle number density, heat conduction, etc., a conclusion on the pressure prevailing in the room atmosphere of the enclosed space a statement is made.
  • the method according to the invention serves to set an inerting level in the room in the event of a fire by supplying an oxygen-displacing gas (inert gas) within the shortest possible time after a fire detection of the room atmosphere.
  • an oxygen-displacing gas in order to detect a fire as early as possible and initiate the fire-fighting phase, it is advantageous if it is measured continuously or at predeterminable times and / or events in the room atmosphere, if at least one fire characteristic is present, wherein in the case of detection a fire characteristic of the room atmosphere, the extinguishing agent is supplied as supply air. At the same time, the supply of fresh air should be stopped. In this way, it is possible to relatively quickly set the recirculation-preventing level characteristic of the enclosed space.
  • the fresh air supply is not completely adjusted but only throttled. Under certain circumstances, this can be useful if, for example, a swelling fire with heavy smoke has broken out and has to be combated.
  • the device according to the invention has a device for detecting at least one fire characteristic in the room atmosphere of the enclosed space.
  • the system according to the invention should have an extinguishant supply device that can be controlled by a controller. This control is preferably designed to control the extinguishing agent supply device in a fire such that the provided extinguishing agent is supplied directly, and thus in the shortest possible time, the room atmosphere of the enclosed space.
  • fire characteristic is understood to mean physical quantities which undergo measurable changes in the environment of a fire of origin, for example the ambient temperature, the solid or liquid or gas component in the room atmosphere (formation of smoke in the form of particles or aerosols or steam) or the ambient radiation.
  • the device for detecting at least one fire parameter can be designed, for example, as an aspiratively operating system in which a representative subset of the room atmosphere is actively taken in via a pipeline or channel system, preferably at a plurality of locations. This subset can then be forwarded to a measuring chamber with the detector for detecting a fire parameter.
  • fire characteristic sensors are conceivable, which are installed, for example, inside the enclosed space.
  • the extinguishant supply device that can be controlled by the controller has a supply line system that is connected on the one hand to an inert gas source, i. a device which provides the gaseous extinguishing agent.
  • the supply line system should be connected to the interior of the enclosed space via gas outlet nozzles.
  • the gas outlet nozzles are preferably distributed inside the enclosed space.
  • the control of the extinguishing agent supply device can be done by a suitable control of control valves or the like devices.
  • the extinguishing agent supply device it is not absolutely necessary in this case for the extinguishing agent supply device to have a supply piping system which connects the inner region of the enclosed space to an inert gas source arranged outside the enclosed space.
  • the inert gas source for example, has at least one arranged within the enclosed space high-pressure tube.
  • the at least one high-pressure pipe has an outlet valve that can be controlled by the control and that is assigned to the extinguishing-agent supply device.
  • Such a high-pressure pipe may for example also be arranged in a false ceiling of the enclosed space or under the ceiling of the room in order to store the extinguishing agent therein.
  • the high-pressure tube should be designed for a pressure range between 20 and 30 bar. Of course, other pressures are conceivable here as well.
  • a plurality of controllable outlet valves to be arranged on the at least one high-pressure pipe, in order, if necessary, to allow the gaseous extinguishing agent to flood as rapidly as possible in the enclosed space.
  • the inert gas source has at least one high-pressure bottle, and preferably a battery of high-pressure bottles. These high-pressure bottles can be arranged outside the enclosed space.
  • a feed pipe system belonging to the extinguishing agent supply device is to be provided, which connects the at least one high-pressure bottle or the battery of high-pressure bottles to the interior of the enclosed space.
  • Such high-pressure bottles can be, for example, commercial high-pressure bottles, which are designed for a pressure range between 200 to 300 bar.
  • other means for providing the extinguishing agent or for storage of the extinguishing agent come into question. It is essential that the extinguishing agent provided in the event of a fire quickly, so in the shortest possible time, can be introduced into the enclosed space to effectively prevent a fire or fire in the room can spread. In particular, the fastest possible fire extinguishing is thus effected.
  • Suitable gaseous extinguishing agents are on the one hand inert gases, such as argon, nitrogen, carbon dioxide or mixtures thereof, i. so-called inerge or argonite.
  • inert gases such as argon, nitrogen, carbon dioxide or mixtures thereof, i. so-called inerge or argonite.
  • the solution according to the invention can also be carried out with chemical extinguishing agents.
  • HFC-227ea gaseous extinguishing agents
  • PRINOVEC ® 1230 gaseous extinguishing agents
  • HFC-227ea extinguishing agent the fire or fire by physically for the most part the action Cooling
  • a low chemi Service Intervention in the combustion process the heat extracted, whereby a fire extinction is achieved.
  • this extinguishing agent a fast extinguishing effect is achieved.
  • there are few restrictions of use as long as the extinguishing area is relatively dense to achieve and maintain the necessary extinguishing agent concentration. At high temperatures, however, unwanted decomposition products can arise during the extinguishing process, which are critical to health.
  • the chemical extinguishing agent NOVEC ® 1230 is a particularly environmentally friendly chemical extinguishing agent and is degraded in the atmosphere within approx. 5 days. Furthermore, this chemical extinguishing agent has no negative impact on the ozone layer and on the greenhouse effect.
  • the solution according to the invention is not only suitable for cases in which a fire has already broken out in the enclosed space, whereby firefighting takes place by sudden introduction of the gaseous extinguishing agent.
  • the solution according to the invention is also suitable for effective pressure relief or pressure compensation if no fire has broken out in the enclosed space, whereby only the risk of the occurrence of a fire in the enclosed space should be effectively prevented.
  • this inert gas or inert gas mixture is supplied in such an amount to the room atmosphere of the enclosed space that the oxygen content in the room atmosphere is lowered to a value at which the flammability of the goods stored in the enclosed space is already reduced to such an extent that they cease to exist can ignite. For materials that show a normal fire behavior, this is the case at about 12 vol.% Oxygen concentration.
  • the device further comprises an oxygen measuring device for detecting the oxygen content in the room atmosphere of the enclosed space.
  • the controller outputs a corresponding control signal to the extinguishing agent supply device.
  • the control signal indicates whether inert gas has to be supplied to the room atmosphere of the enclosed space or whether the supply of the inert gas can be stopped because the critical value of the oxygen content in the room atmosphere has already been reached.
  • critical value of the oxygen content is understood here to be the value of the oxygen content at which the flammability of the goods stored in the enclosed space is reduced to such an extent that they can no longer or only with difficulty ignite.
  • the volume flow of inert gas or inert gas mixture supplied to the room atmosphere for preventive fire protection is regulated such that a basic inerting level is initially set and maintained in the room atmosphere, wherein in the event of a fire the volume flow the inert gas or inert gas mixture supplied to the room air atmosphere is controlled such that a Vollinertretesmat is set and maintained.
  • base inertization level means a reduced level of oxygen compared to the oxygen level of normal ambient air, although this reduced level of oxygen does not present any danger to persons or animals, so that they can easily enter the shelter.
  • the basic inerting level corresponds, for example, to an oxygen content in the shelter of 15 vol.%, 16 vol.% Or 17 vol.%.
  • full inertization level is to be understood as meaning a further reduced oxygen content in comparison to the oxygen content of the basic inertization level at which the flammability of most materials has already been reduced to such an extent that they can no longer be ignited.
  • the full inertization level is typically 11% vol or 12% vol oxygen concentration.
  • the Vollinertmaschinespar should thereby correspond to the re-ignition prevention level.
  • the full inertization level may also correspond to an oxygen concentration which is lower than the oxygen concentration characteristic of the re-ignition prevention level.
  • the quality of the room air is determined continuously or at predeterminable times and / or events in the method according to the invention, wherein the volume flow of the fresh air supplied to the room atmosphere as supply air is regulated as a function of the determined quality of the room air. It is conceivable, for example, to determine the quality of the room air indirectly by measuring the CO 2 content in the ambient air atmosphere.
  • the exhaust air discharged from the room atmosphere should first be treated, in particular filtered or, if necessary, sterilized before it starts the outside atmosphere is released.
  • the exhaust air discharged from the room atmosphere can also be returned to the room atmosphere as fresh air after air treatment.
  • Fig. 1 shows a first embodiment of the device according to the invention for extinguishing a fire in an enclosed space 10 broken fire.
  • the device has an inert gas source 11 for providing a gaseous extinguishing agent under normal conditions.
  • the inert gas source 11 comprises a gas cylinder battery 11a disposed outside the space 10, in which the extinguishing agent to be provided, such as nitrogen, is stored under high pressure.
  • the high-pressure bottles 11a are connected to the space 10 via an extinguishing agent supply device 17.
  • the extinguishing agent supply device 17 comprises on the one hand a supply pipe system 17a and on the other hand a gas outlet nozzle system 17b arranged in the interior of the space 10.
  • the extinguishing agent supply device 17 is designed such that in case of fire (or if necessary) the extinguishing agent stored in the high-pressure bottles 11a can be supplied to the enclosed space 10 as quickly as possible.
  • the extinguishing gas can thus escape into the room atmosphere of the room 10 via the extinguishing nozzles 17b in a very short time, so that, for example, a full inertisation required for extinguishing the fire can be achieved in the room 10.
  • the extinguishing agent supply device 17 is further assigned a controllable valve V1, which is completely or only partially opened in case of fire (or if necessary) to connect the high-pressure bottles 11a with the space 10 and to allow the flooding of the space 10 with the gaseous extinguishing agent.
  • the pressure relief device 12 consists of a vacuum generating device 13 and a controller 14.
  • the negative pressure generating device 13 is used in the in Fig. 1 schematically illustrated system on the one hand by a suction device 13a and on the other hand by a connected to the suction device 13a intake manifold 13b justified.
  • the intake pipe system 13b is connected to the inside of the enclosed space 10 via intake ports 13c. It can thus be achieved that with the aid of the suction device 13a air or gas can be sucked or removed from the interior of the room and discharged as exhaust air, for example to the outside.
  • the controller 14 of the vacuum generating device 13 is connected on the one hand to the suction device 13a and on the other hand to a controllable control valve V2 belonging to the vacuum generating device 13.
  • the controller 14 accordingly assumes not only the task of controlling the extinguishing agent supply device 17, but also the function of controlling the suction device 13a.
  • the controller 14 is configured to control a function of the pressure prevailing in the spatial atmosphere of enclosed space 10 pressure p x, the suction means 13a of the vacuum generating means 13 such that the pressure prevailing in the spatial atmosphere of pressure P x does not exceed a predetermined maximum pressure value p max.
  • a pressure measuring device 15 for detecting the physical pressure of the present in the room atmosphere of the enclosed space 10 gas.
  • the pressure measuring device 15 is designed to continuously or at predetermined times or events to measure the instantaneous pressure p x in the room atmosphere and to supply the measured values to the controller 14.
  • the controller 14 controls based on the current pressure value p x, the negative pressure generating device 13 accordingly, ie at the in Fig.
  • the suction device 13a and / or belonging to the vacuum generating device 13 control valve V2.
  • the pressure p x currently prevailing in the room atmosphere of the enclosed space 10 is compared with a predefinable maximum pressure value p max .
  • the controller 14 outputs a corresponding drive signal, for example, to the suction device 13 a of the vacuum generating device 13.
  • the suction device 13a is designed as a fan. With the control signal output when the predetermined maximum pressure value p max from the controller 14 to the suction device 13a is exceeded, preferably both the rotational speed and the direction of rotation of the fan 13a are set. It can thus be achieved that, in principle, a sufficient amount of gas or air is removed from the atmosphere of the enclosed space 10 per unit time via the intake pipe system 13b connected to the suction device 13a. This ensures that even with a sudden introduction of gaseous extinguishing agent, the instantaneous pressure p x prevailing in the room atmosphere of the room 10 does not exceed the maximum pressure value p max .
  • the instantaneous pressure value p x is not measured, but is calculated or estimated on the basis of the amount of extinguishing agent introduced.
  • the controller 14 should be designed to control the extinguishing agent supply means 17 accordingly, so that the provided quenching gas is supplied in a regulated manner to the room atmosphere.
  • the regulation of the introduced into the space 10 quenching gas can be done by a corresponding, initiated by the controller control of the already mentioned control valve VI.
  • the fire extinguishing system is additionally equipped with a fire detection system 16 for detecting at least one fire characteristic in the room atmosphere of the enclosed space 10.
  • the fire detection system 16 is preferably designed as an aspirative working system, which takes the room atmosphere representative air or gas samples and a (in Fig. 1 not explicitly shown) for at least one fire characteristic feeds.
  • the signals, preferably continuously or at predetermined times or events, from the fire detection device 16 to the control 14 are transmitted by the controller 14, if appropriate after further processing or evaluation of these signals. used to control the extinguishing agent supply means 17 and / or the control valve V1 accordingly.
  • the controller 14 for this purpose emits a corresponding signal to the extinguishing agent supply device 17 when a fire is detected by the fire detection device 16.
  • the controller 14 designed in cooperation with the fan 13 a used as coming to use fan to dissipate in a controlled manner to be discharged from the room atmosphere amount of gas or air through the intake manifold 13 b to the outside. Since with the controller 14 optionally also the direction of rotation of the fan 13a is adjustable, with the vacuum generating means 13, if necessary, a certain amount of air or gas can be introduced into the atmosphere of the enclosed space 10. This can be particularly advantageous if the space 10 is to be moved with respect to the outside atmosphere with a certain overpressure. Accordingly, at the in Fig.
  • the controller 14 is further designed to control the negative pressure generating device 13 as a function of the (instantaneous) pressure p x prevailing in the room atmosphere of the enclosed space 10 in such a way that the pressure p x prevailing in the room atmosphere does not fall below a presettable minimum pressure value p min .
  • the measured or estimated or calculated, currently present in the enclosed space 10 currently prevailing pressure p x should be compared with the maximum pressure value p max on the one hand and with the minimum pressure value p min on the other hand in the controller 14.
  • the negative pressure generating device 13 is to be controlled accordingly if the instantaneous pressure p x is greater than the maximum pressure value p max or less than the minimum pressure value p min .
  • the vacuum generating device 13 should be controlled in such a way that the instantaneous pressure p x prevailing in the room atmosphere of the room 10 does not exceed the maximum pressure value p max and does not fall below the minimum pressure value p min .
  • the pressure relief device 12 further comprises at least one (mechanical) pressure relief valve 18.
  • the operation of such a pressure relief flap 18 is known in principle from the prior art.
  • the pressure relief flap 18 should be designed that it opens automatically when a predetermined first pressure value p 1 is exceeded, to allow a pressure relief in the enclosed space 10.
  • the optionally provided pressure relief flap 18 is also designed so that it automatically closes again after falling below the predefinable first pressure value p 1 .
  • the predeterminable first pressure value p 1 beyond which the pressure relief flap 18 opens automatically, is preferably greater than or equal to the predefinable maximum pressure value p max , which is used by the controller 14 as a threshold for controlling the vacuum generating device 13.
  • the system further comprises at least one preferably mechanically operating pressure relief valve 18, it is provided that the pressure relief valve 18 is further designed so that even when falling below a predetermined second pressure value p 2 to open automatically and close again after exceeding the predetermined second pressure value p 2 again.
  • This predefinable second pressure value p 2 should be less than or equal to the minimum pressure value p min , which represents the lower threshold value for the activation of the vacuum generating device 13.
  • Fig. 2 a further preferred embodiment of the device according to the invention is shown in a schematic representation.
  • the Fig. 2 illustrated embodiment substantially corresponds to the previously with reference to Fig. 1 described embodiment;
  • the system is according to Fig. 2 as negative pressure generating device 13 no suction device is used. Rather, a vacuum 19 provided in the interior of the space 10 is used as negative pressure generating device 13, which serves to compress the volume of at least part of the exhaust air to be discharged from the gaseous room atmosphere, if necessary.
  • a high-pressure storage tank 20 connected to the compressor 19 is provided, in which the exhaust air compressed by means of the compressor 19 can be temporarily stored.
  • the high-pressure storage tank 20 is connected via a three-way valves V2, V3 with outwardly leading pipe systems 13b, 21, via which, if necessary, compressed with the aid of the compressor 19 exhaust air and / or stored in the high-pressure accumulator tank 20, compressed exhaust air from the interior of the room 10th can be dissipated.
  • the in Fig. 2 apparatus shown a supply air system consisting of a Zu Kunststoffgebläse 22, via which the room atmosphere via the supply pipe system 17a and the outlet nozzle system 17b fresh air can be supplied.
  • an exhaust air system with an exhaust fan 23 is provided, which is connected via the pipe system 13b and the suction port 13c to the interior of the room 10 and can discharge exhaust air to the outside in a controlled manner. Both the supply air fan 22 and the exhaust fan 23 are controlled accordingly via the controller 14.
  • a ventilation system is a device which serves to supply fresh air to living or working spaces or to remove "used” or polluted exhaust air.
  • supply air system controlled supply air
  • exhaust air system controlled exhaust air
  • a gas cylinder battery 11a which is connected to the supply pipe system 17a via the three-way valve V1, is used as the inert gas source.
  • the exhaust pipe system 13b is also connected to the supply pipe system 17a.
  • the valves V2 and V4 can be controlled accordingly by the controller 14, so that the branch line 13d, the valves V2, V4, the exhaust fan 23 and the pipe system 13b establish a recirculation system.
  • a volumetric flow sensor may be provided to detect the volumetric flow supplied to the room atmosphere in total and the control 14 to detect the detected value to be able to communicate.
  • the total volume flow supplied to the room atmosphere per unit of time is composed of the fresh air volume flow and the inert gas or extinguishing medium volume flow.
  • a corresponding volume flow sensor may also be provided in the pipe system 13b or 21 in order to detect the exhaust air volume discharged from the interior of the room per unit of time and to communicate the detected value to the control 14.
  • the controller 14 compares the detected supply air volume flow with the detected exhaust air volume flow and activates the supply air and / or exhaust air system accordingly so that the supply air volume flow is less than or equal to the exhaust air flow at any time. Volume flow is. In this way, in the space 10 compared to the normal external atmospheric pressure reduced space pressure can be adjusted and / or maintained.
  • the controller 14 is designed to control the valve V1 as necessary to form a fluid connection between the inert gas source 11a and the supply pipe system 17a, so that the inert atmosphere (gaseous extinguishing agent) provided by the inert gas source 11a is supplied to the room atmosphere in a controlled manner can. Since it is necessary that in case of fire, the oxygen content in the room atmosphere is lowered to at least the pollzündungsverhi mecanicsimply as soon as possible, in the case of detection of a fire parameter, the supply of fresh air supplied supply air is set, and only extinguishing agent from the inert gas 11a supplied to the room atmosphere. Compared to the normal case, the supply air volume flow increases considerably, which - if no pressure compensation or no pressure compensation would be provided - would lead to an increase in pressure inside the room 10.
  • the negative pressure generating device 13 which compresses the volume of at least part of the exhaust air to be discharged from the room atmosphere and temporarily stores it in the already mentioned high-pressure storage tank 20. The remaining part of the exhaust air to be discharged from the room atmosphere is discharged from the exhaust air system.
  • the exhaust air volume flow is at least as large as the supply air volume flow even if the space 10 is suddenly supplied inert gas and the exhaust system as such is not designed to dissipate a sufficiently large volume of exhaust air flow from the room atmosphere.
  • step S1 The pressure relief or pressure compensation in the interior of the space 10 is initiated as soon as gaseous extinguishing agent is introduced from the inert gas source 11a into the protected area (step S1). Subsequently, with the aid of the pressure measuring device 15, the room pressure p x in the interior of the room 10 is detected and the detected pressure value is fed to the controller 14 (step S 2). Subsequently, the controller 14 determines whether the detected pressure value p x reaches a maximum limit value p max , which is freely definable and preferably stored in a memory of the controller (step S3). If this is not the case (NO), the flow chart returns to the second process step (step S2) in which the instantaneous pressure P x in the interior of the room is detected 10th
  • step S3 If, on the other hand, it is determined in method step S3 that the detected pressure value p x reaches the predefined limit value p max (YES), a suitable control signal is output by the controller 14 to the negative pressure generator 13 (step S 4).
  • the negative pressure generating device 13 carries as long as exhaust air from the room atmosphere of the enclosed space 10 until the room pressure p x again assumes a value below the predetermined limit value p max (steps S5 to S7).
  • the negative pressure generating device 13 may be embodied either in the form of an exhaust air system which has a suction device 13a with which exhaust air is discharged in a controlled manner from the (gaseous) room atmosphere and out of the room volume.
  • the vacuum generating device 13 it is also conceivable for the vacuum generating device 13 to have a compressor 19 in order to compress the exhaust air volume to be discharged from the room atmosphere for the pressure compensation and thus to provide a pressure relief.
  • a filter device is provided in the exhaust pipe system 13b to clean or treat the exhaust air discharged from the room atmosphere and from the volume accordingly, before they either fed again as supply air to the room atmosphere or as Exhaust air is discharged from the outside atmosphere.
  • the solution according to the invention is not limited to fire extinguishing systems which provide a measure for fire suppression only in the case of a fire by sudden introduction of a quenching gas into the enclosed space 10. Rather, it is also conceivable to use the solution according to the invention, for example, in a so-called two-stage inerting system, as described for example in the German patent application DE 198 11 851 A1 is described.
  • the used extinguishing agent is an inert gas or an inert gas mixture whose fire suppression or fire extinction is based on the so-called sting effect.
  • the device further comprises an oxygen measuring device 19 for detecting the oxygen content in the room atmosphere of the enclosed space 10.
  • This oxygen measuring device 19 is - as well as the device 16 for detecting at least one fire parameter - preferably designed as aspirative operating system.
  • an oxygen sensor or detector for detecting the Oxygen content in the spatial atmosphere of the enclosed space 10 is arranged.
  • the inert gas source has an inert gas generation system 11b ', 11b "in addition to the glass bottle battery 11a (cf. Fig. 1 ).
  • the inert gas generation system 11b ', 11b “comprises an ambient air compressor 11b” and an inert gas generator 11b' connected thereto.
  • the controller 14 should be designed to control the air delivery rate of the ambient air compressor 11b "via appropriate control signals., In this way, the amount of inert gas provided by the inert gas system 11b ', 11b" per unit time can be determined by the controller 14.
  • the inert gas provided by the inert gas system 11b ', 11b " is supplied in a controlled manner via the supply pipe system 17a to the space 10 to be monitored, but it is of course also possible to connect a plurality of protective spaces to the supply pipe system 17a Inertgases via the outlet nozzles 17 b, which are arranged at a suitable location in the interior of the space 10.
  • the inert gas advantageously nitrogen
  • the inert gas generator or nitrogen generator 11b functions, for example, according to the known from the prior art membrane or PSA technology to produce a nitrogen-enriched air with, for example, 90 vol .-% to 95 vol .-% nitrogen content.
  • This nitrogen-enriched air serves as an inert gas, which is supplied to the space 10 via the supply pipe system 17a.
  • the enriched in the production of inert gas oxygen-enriched air is discharged via another pipe system to the outside.
  • the controller 14 depending on an input into the controller 14 inerting the inert gas 11b ', 11b "controls so that the provided and introduced into the space 10 inert gas assumes a value for setting and / or
  • the desired inertization level on the controller 14 can be selected, for example, by a key switch or password-protected on a control unit (not explicitly shown) according to a predetermined event sequence.
  • the inert gas source 11 it is conceivable not to use a gas cylinder battery outside the enclosed space 10 as the inert gas source 11, but to provide a high-pressure pipe in the enclosed space 10.
  • a gas cylinder battery outside the enclosed space 10 as the inert gas source 11
  • a high-pressure pipe in the enclosed space 10.
  • the high-pressure pipe should have at least one exhaust valve that can be controlled by the controller 14 and belongs to the extinguishing agent supply device 17.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
  • Fire-Extinguishing Compositions (AREA)

Claims (13)

  1. Procédé d'inertisation dans l'atmosphère du local fermé (10), pour la prévention et l'extinction d'incendies dans un local fermé (10), en particulier un local de laboratoire, dans lequel on apporte à l'atmosphère du local et de manière régulée de l'air frais à titre d'apport d'air et l'on évacue hors de l'atmosphère du local de manière régulée de l'air vicié et, dans le cas d'un incendie ou pour éviter un incendie, on apporte à l'atmosphère du local à titre d'apport d'air un agent d'extinction sous forme gazeuse sous les conditions normales, dans lequel on établit et/ou on maintient dans le local (10) une pression (px) réduite par comparaison à la pression atmosphérique normale du fait qu'à chaque instant le flux volumétrique de l'apport d'air amené au total dans l'atmosphère du local sous forme d'air frais et/ou sous forme d'agent d'extinction est inférieur ou égal au flux volumétrique de l'air vicié évacué hors de l'atmosphère du local,
    dans lequel la différence entre la pression qui règne dans le local et la pression d'air dans l'environnement est déterminée en continu ou à des instants prédéterminés et/ou encore à des événements prédéterminés, et on la compare à une valeur prédéterminée, et dans lequel le flux volumétrique de l'apport d'air amené au total dans l'atmosphère du local sous forme d'air frais et/ou sous forme d'agent d'extinction, et le flux volumétrique de l'air vicié évacué hors de l'atmosphère du local sont régulés en fonction de la comparaison, dans lequel le flux volumétrique de l'apport d'air amené au total dans l'atmosphère du local sous forme d'air frais et/ou sous forme d'agent d'extinction est égal au flux volumétrique de l'air vicié évacué hors de l'atmosphère du local quand la différence déterminée entre la pression du local (px) et la pression de l'air environnant correspond à la valeur prédéterminée,
    caractérisé en ce que les flux volumétriques respectifs de l'air frais amené à titre d'apport d'air, de l'air vicié évacué, et de l'agent d'extinction amené en cas d'incendie ou pour éviter un incendie à titre d'apport d'air sont mesurés, et en ce que les flux volumétriques respectifs sont ainsi régulés qu'à chaque instant la différence entre le flux volumétrique de l'apport d'air amené au total dans l'atmosphère du local sous forme d'air frais et/ou sous forme d'agent d'extinction et le flux volumétrique de l'air vicié évacué hors de l'atmosphère du local adopte une valeur constante préalablement déterminée,
    dans lequel le local (10) comprend une enceinte étanche aux gaz et aux aérosols, et la valeur constante préalablement déterminée est de préférence zéro ; et en ce que
    dans un cas où un agent d'extinction est amené à titre d'apport d'air, au moins une partie de l'air vicié à évacuer hors de l'atmosphère du local est comprimée avec l'aide d'un compresseur (19) agencé à l'intérieur du local fermé (10), dans lequel le volume aspiré par le compresseur (19) est supérieur ou égal au flux volumétrique de l'apport d'air amené au total dans l'atmosphère du local sous forme d'air frais et/ou d'agent d'extinction, et dans lequel
    de préférence, l'air vicié évacué hors de l'atmosphère du local et comprimé avec l'aide du compresseur (19) est stocké de manière intermédiaire sous forme comprimée dans un récipient de stockage à haute pression (20) agencé à l'intérieur du local fermé (10).
  2. Procédé selon la revendication 1, dans lequel au moins une partie de l'air vicié comprimé avec l'aide du compresseur (19) est évacuée vers l'extérieur après un traitement, en particulier un fltrage et/ou une stérilisation.
  3. Procédé selon l'une des revendications précédentes, dans lequel le flux volumétrique de l'apport d'air amené au total dans l'atmosphère du local sous forme d'air frais et/ou sous forme d'agent d'extinction est inférieur au flux volumétrique de l'air vicié évacué hors de l'atmosphère du local quand la différence déterminée entre la pression du local (px) et la pression de l'air environnant est inférieure à la valeur prédéterminée.
  4. Procédé selon l'une des revendications précédentes, dans lequel la différence entre la pression du local (px) et la pression de l'air environnant est déterminée en mesurant la pression (px) dans le local et la pression de l'air dans l'environnement.
  5. Procédé selon l'une des revendications précédentes, dans lequel on mesure en continu ou à des instants prédéterminés et/ou encore à des événements prédéterminés dans l'atmosphère du local au moins une grandeur caractéristique d'un incendie et dans le cas de la détection d'une grandeur caractéristique d'un incendie on amène à titre d'apport d'air l'agent d'extinction dans l'atmosphère du local et
    dans lequel dans le cas de la détection d'une grandeur caractéristique d'un incendie, l'amenée de l'apport d'air amené dans le cas normal sous forme d'air frais est de préférence arrêtée, ou dans lequel le flux volumétrique de l'agent d'extinction amené dans l'atmosphère du local dans le cas de la détection d'une grandeur caractéristique d'un incendie est de préférence plus élevé que le flux volumétrique de l'air frais amené dans le cas normal dans l'atmosphère du local.
  6. Procédé selon l'une des revendications précédentes, dans lequel pour prévenir un incendie, on amène dans l'atmosphère du local aussi bien de l'air frais qu'un agent d'extinction à titre d'apport d'air.
  7. Procédé selon la revendication 6, dans lequel on détermine dans l'atmosphère du local, en continu ou à des instants prédéterminés et/ou encore à des événements prédéterminés, la concentration en agent d'extinction dans l'atmosphère du local, et dans lequel le flux volumétrique de l'agent d'extinction amené à l'atmosphère du local pour prévenir un incendie est régulé en fonction de la concentration déterminée en agent d'extinction de telle façon que l'on établit et/ou on maintient dans l'atmosphère du local une concentration en agent d'extinction préalablement déterminée, et
    dans lequel l'agent d'extinction est de préférence un gaz inerte ou un mélange de gaz inertes, et dans lequel la concentration en agent d'extinction dans l'atmosphère du local est déterminée de préférence de manière indirecte en mesurant la teneur en oxygène.
  8. Procédé selon la revendication 7, dans lequel le flux volumétrique d'un gaz inerte ou d'un mélange de gaz inertes amené dans l'atmosphère du local pour la prévention d'un incendie, est régulé de telle façon que l'on établit et que l'on maintient dans l'atmosphère du local un niveau d'inertisation de base situé au-dessus d'un niveau destiné à empêcher des reprises d'incendie caractéristique pour le local (10), et dans lequel dans le cas d'un incendie le flux volumétrique du gaz inerte du mélange gaz inerte amené dans l'atmosphère du local est régulé de telle façon que l'on établit et que l'on maintient un niveau d'inertisation complète situé à un niveau destiné à empêcher des reprises d'incendie caractéristique pour le local (10), ou au-dessous de celui-ci.
  9. Procédé selon l'une des revendications précédentes, dans lequel on détermine en continu ou à des instants prédéterminés et/ou encore à des événements prédéterminés la qualité de l'air du local, et dans lequel le flux volumétrique de l'air frais amené à l'atmosphère du local à titre d'apport d'air est régulé en fonction de la qualité déterminée de l'air du local ; et
    dans lequel on détermine de préférence la qualité de l'air du local indirectement par mesure de la teneur en CO2 dans l'atmosphère du local.
  10. Procédé selon l'une des revendications précédentes, dans lequel au moins une partie de l'air vicié évacué hors de l'atmosphère du local est ramenée, après traitement, à nouveau sous forme d'air frais dans l'atmosphère du local.
  11. Appareil pour la mise en oeuvre du procédé selon l'une des revendications 1 à 10, dans lequel l'appareil comprend au moins un système (11) pour préparer un agent d'extinction sous forme gazeuse sous les conditions normales, et pour injecter soudainement l'agent d'extinction gazeux dans l'atmosphère du local fermé (10) lorsqu'on détecte qu'un incendie s'est déclaré dans le local fermé (10),
    dans lequel l'appareil comprend un dispositif de décharge de pression (12) avec un moyen de production de dépression (13) et une commande (14), dans lequel la commande (14) est conçue pour piloter, en fonction de la pression (px) qui règne dans le local fermé (10), le moyen de production de dépression (13) de telle façon que la pression (px) qui règne dans l'atmosphère du local ne dépasse pas une valeur de pression maximum prédéterminée (pmax), et
    dans lequel l'appareil comprend en outre un dispositif de mesure de pression (15) pour détecter la pression physique du gaz présent dans l'atmosphère du local, ledit dispositif de mesure de pression (15) étant conçu pour mesurer, en continu ou à des instants prédéterminés et/ou à des événements prédéterminées, la pression momentanée dans le local (px) et pour amener les valeurs de mesure à la commande (14), dans lequel la commande (14) est ainsi conçue qu'elle pilote de façon correspondante le moyen de génération de dépression (13) en se basant sur la valeur de pression momentanée (px),
    caractérisé en ce que
    le moyen de génération de dépression (13) comprend un compresseur (19) pour comprimer au moins une partie de l'air vicié à évacuer hors de l'atmosphère du local, et un réservoir de stockage à haute pression (20) pour le stockage intermédiaire de l'air vicié comprimé avec l'aide du compresseur (19), et en ce qu'il est prévu un système de reconnaissance d'incendie (16) pour mesurer en continu ou à des instants prédéterminés et/ou encore à des événements prédéterminés au moins une grandeur caractéristique d'un incendie dans l'atmosphère du local et délivrer des signaux correspondant à la commande (14), ladite commande (14) étant conçue pour piloter un dispositif d'apport d'agent d'extinction (17) de telle manière que, dans le cas de la détection d'une grandeur caractéristique d'un incendie, l'agent d'extinction est amené à l'atmosphère du local à titre d'apport d'air, et dans lequel le compresseur (19) et le réservoir de stockage à haute pression (20) sont agencés à l'intérieur du local fermé (10).
  12. Appareil selon la revendication 11, dans lequel la commande (14) est en outre conçue pour piloter le moyen de génération de dépression (13) en fonction de la pression (px) qui règne dans l'atmosphère du local fermé (10) de telle façon que la pression (px) qui règne dans l'atmosphère du local ne passe pas au-dessous d'une valeur de pression minimale prédéterminée (pmin).
  13. Appareil selon la revendication 11 ou 12, dans lequel le compresseur (19) est susceptible d'être piloté par la commande (14) de telle façon que le volume aspiré par le compresseur (19) est supérieur ou égal au flux volumétrique de l'apport d'air amené au total dans l'atmosphère du local sous forme d'air frais et/ou d'agent d'extinction.
EP08786552.3A 2007-08-01 2008-07-29 Dispositif et procédé pour la prévention d'incendie et l'extinction d'un incendie déclenché dans une pièce fermée Active EP2173440B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08786552.3A EP2173440B1 (fr) 2007-08-01 2008-07-29 Dispositif et procédé pour la prévention d'incendie et l'extinction d'un incendie déclenché dans une pièce fermée

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07113646 2007-08-01
EP08786552.3A EP2173440B1 (fr) 2007-08-01 2008-07-29 Dispositif et procédé pour la prévention d'incendie et l'extinction d'un incendie déclenché dans une pièce fermée
PCT/EP2008/059914 WO2009016168A1 (fr) 2007-08-01 2008-07-29 Dispositif et procédé pour la prévention d'incendie et l'extinction d'un incendie déclenché dans une pièce fermée

Publications (2)

Publication Number Publication Date
EP2173440A1 EP2173440A1 (fr) 2010-04-14
EP2173440B1 true EP2173440B1 (fr) 2015-07-22

Family

ID=39938236

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08786552.3A Active EP2173440B1 (fr) 2007-08-01 2008-07-29 Dispositif et procédé pour la prévention d'incendie et l'extinction d'un incendie déclenché dans une pièce fermée

Country Status (13)

Country Link
US (1) US8079421B2 (fr)
EP (1) EP2173440B1 (fr)
JP (1) JP5184636B2 (fr)
CN (1) CN101801467B (fr)
AR (1) AR070013A1 (fr)
AU (1) AU2008281805B2 (fr)
CA (1) CA2694901C (fr)
CL (1) CL2008002251A1 (fr)
ES (1) ES2549754T3 (fr)
HK (1) HK1139348A1 (fr)
RU (1) RU2465933C2 (fr)
UA (1) UA97990C2 (fr)
WO (1) WO2009016168A1 (fr)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI2204219T1 (sl) * 2008-12-12 2011-06-30 Amrona Ag Postopek inertizacije za preprečevanje požarov in/ali gašenje ognja ter inertizacijski sistem za izvajanje postopka
JP2011115332A (ja) * 2009-12-02 2011-06-16 Ntt Facilities Inc 整流筒及びガス消火システム
GB2477718A (en) * 2010-02-04 2011-08-17 Graviner Ltd Kidde Inert gas suppression system for temperature control
KR20130130693A (ko) * 2010-07-27 2013-12-02 조십 파베틱 정상 상황 및 화재 상황에서 터널 환풍을 위한 방법 및 시스템
CN102375458A (zh) * 2010-08-12 2012-03-14 鸿富锦精密工业(深圳)有限公司 货柜数据中心及其氧气浓度调节装置
DE102010050742A1 (de) * 2010-11-08 2012-05-10 Li-Tec Battery Gmbh Verfahren und Vorrichtung zur Bekämpfung oder Vermeidung von Bränden im Inneren, an der Oberfläche oder in der Umgebung eines elektrochemischen Energiespeichers
PL2462994T3 (pl) * 2010-12-10 2014-01-31 Amrona Ag Sposób zobojętniania dla zapobiegania i/lub gaszenia pożarów oraz system zobojętniania do stosowania tego sposobu
DE102011001805A1 (de) * 2011-04-05 2012-10-11 Yit Germany Gmbh Verfahren sowie Vorrichtung zur Regelung eines Luftdrucks in einem Raum
US9550080B2 (en) 2011-06-17 2017-01-24 United Parcel Service Of America, Inc. Suppressing a fire condition in an aircraft
US9555271B2 (en) 2011-06-17 2017-01-31 United Parcel Service Of America, Inc. Suppressing a fire condition within a cargo container
US9796480B2 (en) 2011-11-15 2017-10-24 United Parcel Service Of America, Inc. System and method of notification of an aircraft cargo fire within a container
DE102011119146A1 (de) * 2011-11-22 2013-05-23 Linde Ag Integriertes Inertisierungsverfahren und Inertisierungssystem
US9182331B2 (en) * 2012-08-31 2015-11-10 The Boeing Company Measurement of solid, aerosol, vapor, liquid and gaseous concentration and particle size
RU2532812C1 (ru) * 2013-04-15 2014-11-10 Научно-производственное акционерное общество закрытого типа (НПАО) "ЗОЯ" Способ пожаротушения и устройство для его осуществления
PT2801392T (pt) * 2013-05-06 2016-08-22 Amrona Ag Método e sistema de inertização para a redução de oxigénio
US10391345B2 (en) * 2013-12-13 2019-08-27 Universal Laser Systems, Inc. Laser material processing systems configured to suppress self-sustained combustion, and associated apparatuses and methods
CN104841073A (zh) * 2014-02-17 2015-08-19 王彬 一种对棉包内部隐燃火点进行检查及扑灭的处理方法
ES2646193T3 (es) 2014-10-24 2017-12-12 Amrona Ag Sistema y procedimiento para la reducción de oxígeno en un espacio objetivo
US10933262B2 (en) 2015-12-22 2021-03-02 WAGNER Fire Safety, Inc. Oxygen-reducing installation and method for operating an oxygen-reducing installation
AU2016378491B2 (en) * 2015-12-22 2018-11-08 Amrona Ag Oxygen reduction plant and method for operating an oxygen reduction plant
EA037789B1 (ru) * 2016-04-19 2021-05-21 Джеосинтек Консалтантс, Инк. Способ производства или извлечения материалов путем неполного сжигания
JP2018057576A (ja) * 2016-10-05 2018-04-12 日本ドライケミカル株式会社 空気調整装置
WO2018119098A1 (fr) 2016-12-20 2018-06-28 Carrier Corporation Système et procédé de protection contre l'incendie pour enceinte
WO2018130642A1 (fr) * 2017-01-12 2018-07-19 Fire Eater A/S Système de gaz d'inertage d'incendie à base de capteur
WO2018176196A1 (fr) * 2017-03-27 2018-10-04 孙强丹 Système d'étanchéité inerte cyclique fondé sur un dispositif asservi de source de gaz et procédé de stockage et de transport de qhse
CN106870948B (zh) * 2017-03-27 2018-03-23 孙强丹 基于气源伺服装置的循环惰封系统及qhse储运方法
KR102212185B1 (ko) * 2017-03-27 2021-02-04 치앙단 선 돔 기반의 외부 플로팅 루프 탱크용 순환 불활성 실링 시스템 및 qhse 저장 운송 방법
CN107875539A (zh) * 2017-10-31 2018-04-06 天津森罗科技股份有限公司 一种低氧防火系统及其方法
US11247082B2 (en) * 2018-05-04 2022-02-15 ArchAngel Fire Systems Holdings, LLC System, method, and apparatus for the suppression of fire growth
EP3569290B1 (fr) * 2018-05-14 2024-02-14 Wagner Group GmbH Système de commande et de réglage d'une installation de réduction d'oxygène
US11318337B2 (en) 2020-04-21 2022-05-03 The Boeing Company Systems and methods for suppressing a fire condition in an aircraft
CN111821618B (zh) * 2020-09-14 2021-02-02 南京酷朗电子有限公司 用于储能电站的事故隔离处置系统和方法
JP2021041209A (ja) * 2020-11-25 2021-03-18 エア・ウォーター防災株式会社 ガス系消火設備およびその施工方法
CN114042278A (zh) * 2021-10-26 2022-02-15 中国核电工程有限公司 一种核燃料后处理厂的控火方法及控火系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030226669A1 (en) * 2001-01-11 2003-12-11 Wagner Ernst Werner Inert rendering method with a nitrogen buffer
EP1683548A1 (fr) * 2005-01-21 2006-07-26 Amrona AG Procédé d'inertisation pour éviter des incendies

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3438445A (en) * 1967-07-25 1969-04-15 Calmac Mfg Corp Life-supporting and property protecting firefighting process and apparatus
US4616694A (en) * 1984-10-22 1986-10-14 Hsieh Shih Yung Fireproof cabinet system for electronic equipment
US4846410A (en) * 1986-04-26 1989-07-11 The Babcock & Wilcox Company Apparatus for monitoring low-level combustibles
DE4413074C2 (de) 1994-04-15 1998-01-15 Messer Griesheim Gmbh Verfahren zum Inertisieren von Reaktoren
US6314754B1 (en) 2000-04-17 2001-11-13 Igor K. Kotliar Hypoxic fire prevention and fire suppression systems for computer rooms and other human occupied facilities
US20020040940A1 (en) * 1998-03-18 2002-04-11 Wagner Ernst Werner Inerting method and apparatus for preventing and extinguishing fires in enclosed spaces
DE19811851C2 (de) 1998-03-18 2001-01-04 Wagner Alarm Sicherung Inertisierungsverfahren zur Brandverhütung und -löschung in geschlossenen Räumen
JP3880191B2 (ja) * 1998-03-20 2007-02-14 日本碍子株式会社 消火方法
EP1274490B1 (fr) * 2000-04-17 2006-08-09 Igor K. Kotliar Systemes de lutte contre les incendies par hypoxie et compositions extinctrices respirables destinees a des lieux fermes
JP4471461B2 (ja) * 2000-06-22 2010-06-02 日本フェンオール株式会社 負圧室用消火装置及び負圧室用消火方法
US6634598B2 (en) * 2001-11-28 2003-10-21 Kenneth Susko On-board fuel inerting system
DE10249126B4 (de) * 2002-10-22 2004-08-19 Minimax Gmbh Verfahren und Anlage zum Erzeugen einer sauerstoffarmen Atmosphäre
US7013905B2 (en) * 2004-04-14 2006-03-21 Shaw Aero Devices, Inc. System and method for monitoring the performance of an inert gas distribution system
DE102005023101B4 (de) * 2005-05-13 2013-10-10 Minimax Gmbh & Co. Kg Verfahren zum Einbringen eines Inertgases und Anlage zum Inertisieren
US7594545B2 (en) * 2006-01-25 2009-09-29 Ronald Jay Love System and methods for preventing ignition and fire via a maintained hypoxic environment
SI1930048T1 (sl) * 2006-12-08 2012-04-30 Amrona Ag Postopek in naprava za regulirano dovajanje dovodnega zraka

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030226669A1 (en) * 2001-01-11 2003-12-11 Wagner Ernst Werner Inert rendering method with a nitrogen buffer
EP1683548A1 (fr) * 2005-01-21 2006-07-26 Amrona AG Procédé d'inertisation pour éviter des incendies

Also Published As

Publication number Publication date
JP2010534543A (ja) 2010-11-11
US8079421B2 (en) 2011-12-20
US20090038811A1 (en) 2009-02-12
AU2008281805A1 (en) 2009-02-05
CA2694901C (fr) 2015-01-27
HK1139348A1 (en) 2010-09-17
CA2694901A1 (fr) 2009-02-05
UA97990C2 (uk) 2012-04-10
WO2009016168A1 (fr) 2009-02-05
CL2008002251A1 (es) 2009-01-02
EP2173440A1 (fr) 2010-04-14
RU2465933C2 (ru) 2012-11-10
CN101801467B (zh) 2012-12-26
ES2549754T3 (es) 2015-11-02
JP5184636B2 (ja) 2013-04-17
AR070013A1 (es) 2010-03-10
CN101801467A (zh) 2010-08-11
RU2010108167A (ru) 2011-09-10
AU2008281805B2 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
EP2173440B1 (fr) Dispositif et procédé pour la prévention d'incendie et l'extinction d'un incendie déclenché dans une pièce fermée
EP1062005B2 (fr) Procede d'inertisation pour la prevention et l'extinction des incendies dans des locaux fermes
EP1930048B1 (fr) Procédé et dispositif de réglage d'alimentation de l'air d'admission
EP1683548B1 (fr) Procédé d'inertisation pour éviter des incendies
EP1913978B1 (fr) Dispositif pour inertiser avec un générateur d'azote
EP1941932B1 (fr) Procédé pour déterminer l'étanchéité à l'air des espaces enclavé
EP2046459B1 (fr) Procédé d'inertisation pour réduire le risque d'un début d'incendie dans une pièce fermée ainsi qu'un dispositif pour exécuter le procédé
WO2018219374A1 (fr) Armoire de sécurité pour composants électriques et/ou électroniques actifs
EP1550482B1 (fr) Procédé d'inertisation pour l'extinction des incendies
WO2014067694A1 (fr) Procédé et dispositif pour déterminer et/ou surveiller l'étanchéité à l'air d'un espace fermé
EP1913980B1 (fr) Dispositif pour l'inertisation avec dispositif de securite
WO2010040771A1 (fr) Installation d'extinction à gaz inerte destinée à réduire le risque et à éteindre les incendies dans un local protégé
EP2881149B1 (fr) Installation de réduction d'oxygène et procédé de fonctionnement d'une installation de réduction d'oxygène
EP1312392B1 (fr) Procédé et dispositif d'extinction d'incendies dans un tunnel
WO2013083324A1 (fr) Procédé d'extinction d'un incendie dans un espace fermé et installation d'extinction
EP1913979B1 (fr) Dispositif pour inertiser avec un générateur d'azote
EP1550481B1 (fr) Procédé d'inertisation pour réduire le risque d'un feu
DE102015115556A1 (de) Verfahren und Vorrichtung zur Brandbekämpfung
EP2998002A1 (fr) Installation d'extinction à gaz inerte
DE102006025212B4 (de) Feuerlöschverfahren und Anlage zum Feuerlöschen in einem umschlossenen Raum

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100224

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1139348

Country of ref document: HK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110411

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502008013179

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: A62C0039000000

Ipc: A62C0099000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: A62C 99/00 20100101AFI20150313BHEP

INTG Intention to grant announced

Effective date: 20150331

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTG Intention to grant announced

Effective date: 20150601

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 737555

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008013179

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FIAMMENGHI-FIAMMENGHI, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1139348

Country of ref document: HK

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150722

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150722

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151023

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151022

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151123

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150722

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150722

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151122

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150722

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008013179

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150722

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150722

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150722

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150722

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150722

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150722

26N No opposition filed

Effective date: 20160425

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150722

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150722

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150729

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20210721

Year of fee payment: 14

Ref country code: TR

Payment date: 20210728

Year of fee payment: 14

Ref country code: ES

Payment date: 20210927

Year of fee payment: 14

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230719

Year of fee payment: 16

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220730

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230724

Year of fee payment: 16

Ref country code: GB

Payment date: 20230720

Year of fee payment: 16

Ref country code: CH

Payment date: 20230801

Year of fee payment: 16

Ref country code: AT

Payment date: 20230720

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 16

Ref country code: DE

Payment date: 20230719

Year of fee payment: 16