EP1546266A1 - Zinkoxiddispersionen in halogen- und wasserfreien dispersionsmedien - Google Patents

Zinkoxiddispersionen in halogen- und wasserfreien dispersionsmedien

Info

Publication number
EP1546266A1
EP1546266A1 EP03798155A EP03798155A EP1546266A1 EP 1546266 A1 EP1546266 A1 EP 1546266A1 EP 03798155 A EP03798155 A EP 03798155A EP 03798155 A EP03798155 A EP 03798155A EP 1546266 A1 EP1546266 A1 EP 1546266A1
Authority
EP
European Patent Office
Prior art keywords
zinc oxide
weight
halogen
dispersions
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03798155A
Other languages
English (en)
French (fr)
Inventor
Thiemo Marx
Michael Mager
Volker Wege
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanxess Deutschland GmbH
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Publication of EP1546266A1 publication Critical patent/EP1546266A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • C09C1/043Zinc oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof

Definitions

  • the invention relates to water- and halogen-free dispersions containing primary particulate redispersed zinc oxide particles with an average diameter between 1 and 200 nm and amino alcohols, a process for the preparation of the dispersions and the use of these dispersions for the production of moldings and coatings.
  • Zinc oxide nanoparticle dispersions in which the particles are primarily disperse are known from WO 00/50503.
  • zinc acetate dihydrate commercially available or made in situ from coarse-particle zinc oxide, water and glacial acetic acid
  • the purification and concentration of the reversibly agglomerated particles initially obtained as a slurry is carried out by sedimentation, removing the supernatant, refilling with fresh methanol while stirring and again sedimentation.
  • the brine (dispersions, colloidal solutions) is then formulated by suitable compression of the particles for gel and redispersion in water and / or organic solvents, if appropriate with the addition of surface-modifying substances.
  • Transparent, highly effective UV protective coatings based on condensation-crosslinking sol / gel materials can be produced from primary particulate dispersed zinc oxide (nano-ZnO dispersion) (EP 1 146 069 A2).
  • nano-ZnO dispersion primary particulate dispersed zinc oxide
  • the water-free nano-zinc oxide dispersion in dichloromethane or chloroform described in WO 00/50503 is used for this.
  • the use of halogenated solvents is prohibitive for the commercial marketing of these coatings and the brine they contain.
  • zinc oxide is particularly good in amino alcohols or mixtures of amino alcohols with halogen-free and water-free organic solvents. redisperse primary particles and formulate them into highly concentrated, stable dispersions from which molded articles and coatings containing primary particle dispersed Zihkoxid can be produced.
  • the invention relates to water-free and halogen-free dispersions which contain amino alcohols and primary particulate redispersed zinc oxide (nano-ZnO) with an average particle diameter (determined by means of ultracentrifugation) of 1 to 200 nm.
  • the dispersions according to the invention consist of the primary particulate redispersed zinc oxide particles and the water- and halogen-free dispersion medium.
  • the mixtures according to the invention preferably contain nano-zinc oxide with an average particle diameter, determined by means of ultracentrifugation, between 5 and 50 nm, particularly preferably between 5 and 20 nm.
  • primary particulate redispersible or redispersed zinc oxide means that the proportion of the zinc oxide used which cannot be broken up again into its primary particles or is not broken down in the dispersion in question is less than 15% by weight, in particular less accounts for 1% by weight of the total amount of zinc oxide used.
  • the water-free and halogen-free dispersion medium preferably consists essentially of pure amino alcohols or their mixtures with water-free and halogen-free solvents.
  • the proportion of water-free and halogen-free solvents in the total amount of the dispersion medium is between 0 and 96% by weight.
  • Amino alcohols of the formula (I) are preferably used as amino alcohols.
  • R 1 and R 2 independently of one another represent a C 1 -C 3 -alkyl radical or are part of an aliphatic or aromatic C 5 -C 20 radical or correspond to the radical - (CH 2 ) x -OH, and
  • x is an integer from 1 to 30.
  • R 1 and R 2 in formula (I) are particularly preferably the radical (CH 2 ) x -OH, where x is 2, 3 or 4.
  • Triethanolamine is very particularly preferred.
  • Alcohols, esters and / or ketones, in particular C 2 -C 6 -monoalcohols, are preferably used as the water- and halogen-free solvent.
  • the zinc oxide concentrations of the primary particle-redispersed particles in the dispersion medium are generally between 0.1 and 75% by weight, preferably 10 and 50% by weight, in particular 20 and 40% by weight.
  • the dispersions of primary particulate redispersed particles according to the invention are notable for the fact that they are stable in storage and show no tendency towards particle agglomeration, solid precipitation, segregation, gelling, solidification, discoloration and / or curing, even after weeks and months.
  • the zinc oxide dispersions according to the invention are produced by dispersing a primary particulate redispersible zinc oxide in the dispersion medium.
  • primary particulate redispersible zinc oxides in the form of methanolic suspensions or gels are used, which were prepared, for example, according to WO 00/50503.
  • the zinc oxide concentrations here are generally between 5 and 75% by weight, preferably between 25 and 50% by weight.
  • the conductivity of the methanolic liquid phase is less than 200 S / cm, preferably less than 10 mS / cm.
  • dispersions containing methanol are removed by distillation, which improves the state of dispersion of the particles, which is noticeable by increasing translucency of the dispersion.
  • state-of-the-art homogenization processes can be used, such as devices such as high-speed stirrers (e.g. IKA-Ultra-Turrax ® T25 basic, IKA-Werke GmbH & Co KG, D-79219 Staufen), ultrasonic dispersers (e.g. Use UP200S, UP400S, Dr. Hielscher GmbH, D-14513 Berlin) and / or jet dispersers (Chem. Ing. Tech. (69), 6/97, pp. 793-798; EP 07667997).
  • UV-absorbing and / or biocidal coatings and or shaped articles can be produced using the zinc oxide particle dispersions according to the invention.
  • Coatings are understood to mean polymer systems for coating materials such as metals, plastics or glass as well as creams, ointments, gels or similar solid or flowable formulations for use in the cosmetic or pharmaceutical field.
  • a preferred embodiment of the invention is shaped articles which contain inorganic and / or organic polymers and primarily particulate-dispersed zinc oxide particles.
  • a further preferred embodiment of the invention are coatings which contain inorganic and / or organic polymers and primarily particulate-dispersed zinc oxide particles.
  • the organic polymers are preferably polyurethanes, polyacrylates, polyamides and / or polyesters, in particular polycarbonates.
  • the inorganic polymers are preferably condensation-crosslinked sol / gel materials.
  • the ultracentrifuge measurements were carried out on approximately 0.5% by weight ZnO dispersions in a dispersion medium composed of ethylene glycol / water (weight ratio 2: 1).
  • the TEM recordings were carried out using ZnO dispersions in ethylene glycol / water (weight ratio 2: 1), which were dropped onto a carbon TEM grid, evaporated and then measured.
  • the dispersion according to the invention was characterized by recording and evaluating the UV absorption spectrum of the ZnO particles, preferably in the range between 450 and 300 nm. For this purpose, a sample of the dispersion was diluted to 1/500 in ethylene glycol / water (weight ratio 2: 1) and measured against a mixture of ethylene glycol / water (weight ratio 2: 1). qualitative
  • Oligomeric cc / o- ⁇ OSi [(CH 2 ) 2 Si (OC 2 H 5 ) 2 (CH 3 )] ⁇ 4 was used as polyfunctional organosilane in the subsequent experiments. Its preparation was carried out as described in US Pat. No. 6,136,939, Example 2.
  • the coupling agent an alkoxysilane-modified polyurethane, was produced as follows:
  • dispersions prepared according to Examples 2 and 3 were each treated three times with a
  • Nozzle jet disperser homogenized at 1500 bar. In this way, the extinction ratio E 350 / E 4 QQ of the dispersion from Example 2 to 250 and from Example 3 to 175 could be improved.
  • Example 8 Preparation of a UV protection formulation with nano-ZnO
  • Example 9 Removing the low boilers from the UV protection formulation from Example 8
  • Example 10 Production of a further UV protection formulation with nano-ZnO
  • the UV protection formulation prepared according to Example 10 was spun
  • UV protective formulation prepared according to Example 10 was also applied to glass, the application being carried out by spinning at 4 different maximum speeds (200, 400, 600 and 800 rpm). In this way, 4 glass plates with different layer thicknesses were obtained after curing (60 min at 125 ° C.).
  • the coatings produced in this way provide excellent UV protection below approx. 375 nm (high extinction and sharp extinction edge) and have no scatter or absorption in the visible light range.
  • Example 12 Production of a UN protective coating with nano-ZnO in organic binder
  • Baysilone ® OL17 (10% by weight in xylene) (GE Bayer Silicones, Leverkusen) and Modaflow ® (1% by weight in xylene), (Solutia Germany GmbH, Mainz) as leveling agents and
  • the UV protective formulation prepared according to Example 12 was applied by spinning (maximum speed 1500 rpm, 20 seconds holding time) to polycarbonate plates provided with an adhesion promoter as described. After curing, 60 minutes at 130 ° C, an optically perfect and well adhering film would be obtained.
  • the UV protective formulation prepared according to Example 12 was also applied to glass, the application being carried out by spinning (maximum speeds 1000 rpm, 20 seconds holding time). After curing (60 min at 130 ° C) an optically perfect and well adhering film was obtained.
  • the coating produced in this way provides excellent UV protection below approx. 375 nm (high extinction and sharp extinction edge) and has no scatter or absorption in the visible light range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Colloid Chemistry (AREA)

Abstract

Die Erfindung betrifft wasser- und halogenfreie Dispersionen enthaltend primärpartikulär redispergierte Zinkoxidteilchen mit einem mittleren Durchmesser zwischen 1 und 200 nm und Aminoalkohole, ein Verfahren zur Herstellung der Dispersionen und die Verwendung dieser Dispersionen zur Herstellung von Formteilen und Überzügen.

Description

Zinkoxiddispersionen in halogen- und wasserfreien Dispersionsmedien
Die Erfindung betrifft wasser- und halogenfreie Dispersionen enthaltend primär- partikulär redispergierte Zinkoxidteilchen mit einem mittleren Durchmesser zwischen 1 und 200 nm und Aminoalkohole, ein Verfahren zur Herstellung der Dispersionen und die Verwendung dieser Dispersionen zur Herstellung von Formteilen und Überzügen.
Zinkoxid Nanopartikeldispersionen, in denen die Teilchen primärpartikulär dispers vorliegen, sind aus WO 00/50503 bekannt. Zur Herstellung wird Zinkacetatdihydrat (käuflich oder in situ aus grobteiligem Zinkoxid, Wasser und Eisessig hergestellt) in Methanol gelöst und durch Basenzugäbe in geeigneter Stöchiometrie die Fällung der Partikel vorgenommen. Die Aufreinigung und Aufkonzentration der zunächst als Aufschlämmung anfallenden, reversibel agglomerierten Partikel erfolgt durch Absitzen, Abnehmen des Überstandes, wieder Auffüllen mit frischem Methanol unter Rühren und erneutem Absitzen. Die Formulierung der Sole (Dispersionen, kolloidale Lösungen) erfolgt im Anschluss durch geeignete Verdichtung der Partikel zum Gel und Redispergieren in Wasser und/oder organischen Lösemitteln, gegebenenfalls unter Zusatz oberflächenmodifizierender Substanzen.
Aus primärpartikulär dispergiertem Zihkoxid (nano-ZnO-Dispersion) können transparente, hochwirksame UV-Schutzbeschichtungen auf Basis kondensationsver- netzender Sol/Gel-Matierialien hergestellt werden (EP 1 146 069 A2). Hierfür wird die in WO 00/50503 beschriebene, wasserfreie nano-Zinkoxid-Dispersion in Dichlormethan oder Chloroform eingesetzt. Die Verwendung halogenierter Lösemittel ist allerdings für eine kommerzielle Vermarktung dieser Beschichtungen wie auch der enthaltenen Sole prohibitiv.
Es wurde nun gefunden, dass sich Zinkoxid besonders gut in Aminoalkoholen oder Mischungen aus Aminoalkoholen mit halogen- und wasserfreien organischen Löse- mitteln primärpartikulär redispergieren und zu hochkonzentrierten, stabilen Dispersionen formulieren lässt, aus denen sich Formkörper und Überzüge enthaltend primärpartikulär dispergiertes Zihkoxid herstellen lassen.
Gegenstand der Erfindung sind wasser- und halogenfreie Dispersionen, die Aminoalkohole und primärpartikulär redispergiertes Zinkoxid (nano-ZnO) mit einem mittleren Teilchendurchmesser (bestimmt mittels Ultrazentrifugation) von 1 bis 200 nm enthalten. Die erfindungsgemäßen Dispersionen bestehen aus den primärpartikulär redispergierten Zinkoxidpartikeln sowie dem wasser- und halogenfreien Disper- sionsmedium.
Die erfindungsgemäßen Mischungen enthalten neben den Aminoalkoholen bevorzugt nano-Zinkoxid mit einem mittleren Teilchendurchmesser, bestimmt mittels Ultrazentrifugation, zwischen 5 und 50 nm, besonders bevorzugt zwischen 5 und 20 nm.
Angaben zur Bestimmung der Teilchengröße durch Ultrazentrifugenmessungen finden sich z.B. in H.G. Müller, Colloid. Polym. Sei., 267, 1113-1116 (1989).
Im Sinne der Erfindung bedeutet primärpartikulär redispergierbares bzw. redisper- giertes Zinkoxid, dass der Anteil des eingesetzten Zinkoxids, das nicht wieder in seine Primärpartikel aufgebrochen werden kann bzw. in der betreffenden Dispersion nicht aufgebrochen vorliegt, weniger als 15 Gew.-%, insbesondere weniger als 1 Gew.-% der Gesamtmenge des eingesetzten Zinkoxids ausmacht.
Das wasser- und halogenfreie Dispersionsmedium besteht bevorzugt im wesentlichen aus reinen Aminoalkoholen oder deren Mischungen mit wasser- und halogenfreien Lösemitteln. Der Anteil der wasser- und halogenfreien Lösemittel an der Gesamtmenge des Dispersionsmediums liegt zwischen 0 und 96 Gew.-%.
Als Aminoalkohole werden bevorzugt Aminoalkohole der Formel (I) eingesetzt. R1R2N-(CH2)x-OH (I),
wobei
R1 und R2 unabhängig voneinander für einen Cι-C3o-Alkylrest stehen oder Bestandteil eines aliphatischen oder aromatischen C5-C20-Restes sind oder dem Rest - (CH2)x-OH entsprechen, und
x eine ganze Zahl von 1 bis 30 ist.
Besonders bevorzugt ist R1 und R2 in Formel (I) der Rest (CH2)x-OH, wobei x gleich 2, 3 oder 4 ist.
Ganz besonders bevorzugt ist Triethanolamin.
Im einzelnen seien folgende Aminoalkohole genannt:
(HO-CH2-CH2)2N-CH2-CH2-N(CH2-CH2-OH)2- N(CH2-CH2-OH)3, HO-CH2-CH2- CH2-N(CH2-CH2-OH)2, HO-CH(CH3)-CH2-CH2-N(CH2-CH2-OH)2, H-N(CH2-CH2- OH)2, CH3-N(CH2-CH2-OH)2, CH3-CH2-N(CH2-CH2-OH)2, CH3-CH2-CH2-N(CH2- CH2-OH)2, (CH3)2.CH-N(CH2-CH2-OH)2, (CH3)3C-N(CH2-CH2-OH)2, C6H5-CH2-
N(CH2-CH2-OH)2, C6H5-N(CH2-CH2-OH)25 CH3-(CH2)5-N(CH2-CH2-OH)2, CH3- (CH2)17-N(CH2-CH2-OH)2, H2N-CH2-CH2-CH2-N(CH2-CH2-OH)2, H2N-CH2-CH2- OH, (CH3)2N-CH2-CH2-OH, CH3-NH-CH2-CH2-OH, (CH3-CH2)2N-CH2-CH2-OH, (CH3)2N-(CH2)2-OH, (CH3)2N-(CH2)3-OH, (CH3)2N-(CH2)4-OH, CH3-(CH2)3- N(CH3)-CH2-CH2-OH, C6H5-CH2-N(CH3)-CH2-CH2-OH, (CH3)2N-CH2-CH2-
N(CH3)-CH2-CH2-OH, CH3-(CH2)2-N(CH3)-CH2-CH2-OH5 H2N-CH2-CH2-N(CH3)- CH2-CH2-OH.
Als wasser- und halogenfreies Lösemittel werden bevorzugt Alkohole, Ester und/oder Ketone, insbesondere C2- bis C6-Monoalkohole eingesetzt. Die Zinkoxidkonzentrationen der primärpartü ilär redispergierten Partikel im Dispersionsmedium liegen allgemein zwischen 0,1 und 75 Gew.-%, vorzugsweise 10 und 50 Gew.-%, insbesondere 20 und 40 Gew.-%.
Die erfindungsgemäßen Dispersionen primärpartikulär redispergierter Teilchen zeichnen sich dadurch aus, dass sie lagerstabil sind und auch nach Wochen und Monaten keine Tendenz zu Partikelagglomeration, Feststoffausfällung, Entmischung, Vergelen, Erstarrung, Verfärbung und/oder Aushärtung zeigen.
Die erfindungsgemäßen Zinkoxid Dispersionen werden hergestellt, indem ein primärpartikulär redispergierbares Zinkoxid im Dispersionsmedium dispergiert wird.
In einer besonders bevorzugten Ausführungsform der Erfindung werden primärpartikulär redispergierbare Zinkoxide in Form methanolischer Suspensionen oder Gele verwendet, die beispielsweise nach WO 00/50503 hergestellt wurden. Die Zinkoxidkonzentrationen liegen hier allgemein zwischen 5 und 75 Gew.-%, vorzugsweise zwischen 25 und 50 Gew.-%. Die Leitfähigkeit der methanolischen Flüssigphase ist kleiner als 200 S/cm, vorzugsweise kleiner als 10 mS/cm.
In einer besonders bevorzugten Ausführungsform wird in den erfindungsgemäßen
Dispersionen enthaltenes Methanol nach Einbringen des Zinkoxids destillativ entfernt, wodurch der Dispersionszustand der Partikel verbessert wird, was sich durch zunehmende Transluzenz der Dispersion bemerkbar macht.
Zur Verbesserung des Dispersionsgrades der Partikel können zum Stand der Technik gehörende Homogenisierungsverfahren verwendet werden, die Geräte wie Hochge- schwindigkeitsrührer (z.B. IKA-Ultra-Turrax® T25 basic, IKA-Werke GmbH & Co KG, D-79219 Staufen), Ultraschälldispergatoren (z.B. UP200S, UP400S, Dr. Hielscher GmbH, D-14513 Berlin) und/oder Strahldispergatoren (Chem. Ing. Tech. (69), 6/97, S. 793-798; EP 07667997) einsetzen. Unter Verwendung der erfindungsgemäßen Zinkoxid-Partikeldispersionen lassen sich UV-absorbierende und/oder biozide Überzüge und oder Formkörper herstellen. Unter Überzügen werden sowohl Polymer-Systeme zur Beschichtung von Werkstoffen wie z.B. Metallen, Kunststoffen oder Glas als auch Cremes, Salben, Gele oder ähnliche feste oder fließfähige Formulierungen zur Verwendung im kosmetischen, oder pharmazeutischen Bereich verstanden.
Eine bevorzugte Ausführungsform der Erfindung sind Formkörper, die anorganische und/oder organische Polymere sowie primärpartikulär dispergierte Zinkoxidteilchen enthalten.
Eine weitere bevorzugte Ausführungsform der Erfindung sind Überzüge, die anorganische und /oder organische Polymere sowie primärpartikulär dispergierte Zinkoxidteilchen enthalten.
Bei den organischen Polymeren handelt es sich bevorzugt um Polyurethane, Poly- acrylate, Polyamide und/oder Polyester, insbesondere Polycarbonate.
Bei den anorganischen Polymeren handelt es sich bevorzugt um kondensationsver- netzte Sol/Gel-Materialien.
Beispiele:
Die Ultrazentrifugenmessungen wurden an ca. 0.5 Gew.-%-igen ZnO Dispersionen in einem Dispersionsmedium aus Ethylenglycol/Wasser (Gewichtsverhältnis 2:1) durchgeführt.
Die TEM-Aufhahmen wurden anhand von ZnO-Dispersionen in Ethylenglycol/Wasser (Gewichtsverhältnis 2:1) durchgeführt, die auf ein Kohlenstoff-TEM- Grid aufgetropft, eingedampft und anschließend vermessen wurden.
Die Charakterisierung der erfindungsgemäßen Dispersion erfolgte durch Aufnahme und Auswertung des UV- Absorptionsspektrums der ZnO-Teilchen, vorzugsweise im Bereich zwischen 450 und 300 nm. Dazu wurde eine Probe der Dispersion in Ethylenglycol/Wasser (Gewichtsverhältnis 2:1) auf 1/500 verdünnt und gegen eine reme Mischung aus Ethylengylcol/Wasser (Gewichtsverhältnis 2:1) gemessen. Qualitative
Aussagen über den Grad der Feinteiligkeit der Dispersion werden dadurch erhalten, dass man die Extinktion der Probe bei 350 nm (E 5o, Absorptionsbereich von Zinkoxid, Transmissionsverluste durch Streuung und Absorption) durch die bei 400 nm (E 0o, außerhalb des Absorptionsbereichs von Zihkoxid, Transmissionsverluste aus- schließlich durch Streuung) dividiert. Für sehr kleine Partikel, die keine Transmissionsverluste durch Lichtstreuung verursachen ist E350/E oo sehr groß; kleinere Werte dagegen werden erhalten, wenn E 0Q durch Lichtstreuung bei großen Partikeln oder Agglomeraten zunimmt.
Als polyfunktionelles Organosilan wurde in den nachfolgenden Versuchen oligome- res c c/o-{OSi[(CH2)2Si(OC2H5)2(CH3)]}4 (D4-Diethoxid-Oligomer) eingesetzt. Dessen Herstellung erfolgte wie in US-A 6,136,939, Beispiel 2, beschrieben.
Als Substrate wurden extrudierte Polycarbonat-Platten (Makrolon® 3103, Bayer AG, Leverkusen) eingesetzt. Vor der Beschichtung wurden die Platten auf ein Format von
10 x 10 cm zugeschnitten, durch Abspülen mit Isopropanol gereinigt und mit einem Haftvermittler versehen. Der Haftvermittler, ein Alkoxysilan-modifiziertes Polyurethan, wurde wie folgt hergestellt:
a) Herstellung der Polyol-Komponente: 9,24 g eines stark verzweigten, hydroxylgrupperihaltigen Polyesters mit einem OH-
Gehalt nach DIN 53240/2 von 8,6 ± 0,3 Gew.-% und einem Äquivalentgewicht von ca. 200 g/mol (Desmophen® 800, Bayer AG) wurden unter Rühren mit 3,08 g eines schwach verzweigten, hydroxylgrupperihaltigen Polyesters mit einem OH-Gehalt nach DIN 53240/2 von 4,3 ± 0,4 Gew.-% und einem Äquivalentgewicht von ca. 395 g/mol (Desmophen® 670, Bayer AG) in 3,08 g n-Butylacetat gelöst, danach wurden
0,4 g einer 10 Gew.-%-igen Lösung von Zink(II)octoat in Diacetonalkohol, 0,2 g einer 10 Gew.-%-igen Lösung eines Verlaufshilfinittels (Baysilone® OL 17, GE Bayer Silicones, Leverkusen) in Diacetonalkohol sowie 170,5 g Diacetonalkohol zugegeben. Es wurden 186,5 g der klaren, farblosen und lagerstabilen Polyol- Komponente erhalten.
b) Herstellung der Polyisocyanat-Komponente:
462,4 g eines aliphatischen Polyisocyanats (IPDI-Trimerisat) mit einem NCO-Gehalt nach DIN EN ISO 11909 von 11,9 ± 0,4 Gew.-% und einem Äquivalentgewicht von 360 g/mol (Desmodur® Z 4470 (70 Gew.-%-ig in n-Butylacetat), Bayer AG) wurden mit 27,23 g n-Butylacetat verdünnt, danach wurden innerhalb von ca. 2 h 60,4 g n-Butylanünopropyltrimethoxysilan so zugetropft, dass die Reaktionstemperatur (Innenthermometer) nicht über 40°C stieg. Nach dem Abkühlen wurden 550 g der klaren, schwach gelben und lagerstabilen Polyisocyanat-Komponente erhalten.
c) Herstellung des verarbeitungsfertigen Haftvermittlers
Zur Herstellung des verarbeitungsfertigen Haftvermittlers wurden 42,3 g der Komponente a) und 7,7 g der Komponente b) unter Rühren vermischt; die erhaltene klare Lösung wurde innerhalb von einer Stunde verarbeitet. Der Auftrag des wie beschrieben hergestellten Haftvermittlers erfolgte durch Schleudern (2000 U/min, 20 sec Haltezeit), danach wurde dieser 60 min bei 130°C thermisch behandelt. Die so erzielte Schichtdicke lag typischerweise bei ca. 0,3-0,6 μm. Die Applikation der erfindungsgemäßen UV- Schutzformulierungen erfolgte inner- halb einer Stunde nach Aushärtung des Haftvermittlers.
Beispiel 1:
(Nachstellung der Herstellung von nano-ZnO-Aufschlämmungen nach WO 00/50503)
240,35 g Zinkoxid (techn. 99,8 Gew.-%) wurden in 1320 g Methanol (techn. 99,9 Gew.-%) vorgelegt und auf 50°C temperiert. Durch Zugabe von 355,74 g Eisessig (techn. 99,9 Gew.-%) und 51,15 g VE- Wasser wurde der Feststoff gelöst und an- schließend auf 60°C temperiert. Zur Beseitigung ungelöster Anteile ZnO wurde in 3
Portionen insgesamt 34,36 g KOH (techn. 90,22 Gew.-%) zugegeben. Nach 40- minütigem Nachrühren wurde innerhalb von 8 min. eine Lösung von 290,00 g KOH (techn. 90,22 Gew.-%) in 660,00 g Methanol zugegeben. Während des gesamten Fällungsvorganges betrug die Reaktionstemperatur 60°C. Nach einer Reifungszeit von 35 min. wurde der Reaktionsansatz durch äußere Eiskühlung auf Raumtemperatur gekühlt. Über Nacht sedimentierten die ZnO-Partikel und der salzhaltige Überstand konnte abgehoben werden. Nun wurde die Menge des entfernten Methanols durch frisches Methanol ersetzt, der Ansatz für 10 Minuten wieder aufgerührt und für 12 h sedimentieren gelassen. Diese Waschprozedur wurde noch zweimal wiederholt bis die Leitfähigkeit des methanolischen Überstandes 3 mS/cm betrug. Nach vollständigem Entfernen des klaren methanolischen Überstandes wurde eine 34,8 Gew.- %-ige methanolische Zinkoxid Aufschlämmung erhalten. Beispiel 2:
28,7 g einer nach Beispiel 1 hergestellten nano-ZnO Aufschlämmung (34,8 Gew.-% ZnO, Leitfähigkeit der flüssigen Phase 3 mS/cm) wurden mit 71,3 g einer 4 gew.-%-igen Lösung von Triethanolamin in n-Butanol unter Rühren versetzt. Die
UN-spektroskopische Charakterisierung lieferte ein Extinktionsverhältnis E35o/E oo von 109.
Beispiel 3
71,6 g einer nach Beispiel 1 hergestellten nano-ZnO Aufschlämmung (34,8 Gew.-% ZnO, Leitfähigkeit der flüssigen Phase 3 mS/cm) wurde/? mit 28,4 g einer 4 gew.-%-igen Lösung von Triethanolamin in n-Butanol unter Rühren versetzt. Die UV-spektroskopische Charakterisierung lieferte ein Extinktionsverhältnis E35o/E 0o von 91.
Beispiel 4
Zur Verbesserung des Dispersionsgrades der Primärpartikel wurden nach den Bei- spielen 2 und 3 hergestellte Dispersionen durch je dreimalige Behandlung mit einem
Düsenstrahldispergator bei 1500 bar homogenisiert. Auf diese Weise konnte das Extinktionsverhältnis E350/E4QQ der Dispersion aus Beispiel 2 auf 250 und aus Beispiel- 3 auf 175 verbessert werden.
Beispiel 5
412,0 g einer analog zu Beispiel 1 hergestellten nano-ZnO Aufschlämmung (33,1 Gew.-% ZnO, Leitfähigkeit der flüssigen Phase 3 mS/cm) wurde mit 545,48 g einer 4 gew.-%-igen Lösung von Triethanolamin in n-Butanol unter Rühren versetzt. Anschließend wurden bei 50°C Wasserbadtemperatur und 100 mbar Druck 275,63 g
Leichtsieder zur Entfernung des Methanols abdestilliert. Die UV-spektroskopische Charakterisierung lieferte ein Extinktionsverhältnis E35o/E400 von 100. Eine Hochdruckhomogenisierung mittels Düsenstrahldispergator (einmaliger Durchgang, 400 bar) führte zu einer Steigerung auf 199.
Beispiel 6:
60 g Triethanolamin wurden mit 105,1 g einer analog zu Beispiel 1 hergestellten methanolischen Zinkoxid Aufschlämmung (37,1 Gew.-% ZnO, Leitfähigkeit der flüssigen Phase 3 mS/cm) unter Rühren gemischt. Das enthaltene Methanol wurde anschließend bei 50°C Wasserbadtemperatur im Rotationsverdampfer abdestilliert
(Vakuum 200 mbar), wobei ein transluzentes lagerstabiles Sol erhalten wurde. Die UV-spektroskopische Charakterisierung lieferte ein Extinktionsverhältnis E350/E oo von 117.
Beispiel 7:
100 g einer nach Beispiel 6 hergestellten Dispersion in Triethanolamin wurde mit 100 g n-Butanol unter Rühren gemischt, wobei ein 19,9 Gew.-%-iges transluzentes, lagerstabiles Sol erhalten wurde. Die UV-spektroskopische Charakterisierung lieferte ein Extinktionsverhältnis E350/E oo von 360.
Beispiel 8: Herstellung einer UV-Schutzformulierung mit nano-ZnO
Unter Rühren wurden 13,98 g oligomeres cyclo-{SiO(CH3)[(CH2CH2Si(CH3)- (OC2H5)2]} (D4-Diethoxid-Oligomer) in 50 g l-Methoxy-2-propanol vorgelegt und
26,5 g Tetraethoxysilan und 0,1 g Verlaufshilfsmittels (Tegoglide® 410, Goldschmidt AG, Essen) zugegeben. Anschließend wurden 3,4 g 0,1 n p-Toluolsulfonsäure zugegeben und es wurde 30 min bei Raumtemperatur gerührt, bevor 38,87 g einer nach Beispiel 2 hergestellten und nach Beispiel 4 homogenisierten nano-Zinkoxid Dispersion (Menge entsprechend 10 g ZnO trocken) zugetropft wurde. Anschließend wird der Lack über einen Faltenfilter filtriert. Beispiel 9: Entfernen der Niedrigsieder aus der UV-Schutzformulierung aus Beispiel 8
Um die nach Beispiel 8 hergestellte UV-Schutzformulierung von niedrigsiedenden toxischen Bestandteilen wie Methanol zu befreien, wurden 60 g n-Butanol zugesetzt und anschließend wurden bei 50°C Wasserbadtemperatur und 200 mbar Druck 60 g Leichtsieder abdestilliert.
Beispiel 10: Herstellung einer weiteren UV-Schutzformulierung mit nano-ZnO
Zu einer Mischung aus 18,9 g D4-Diethoxid-Oligomer, 26,6 g Tetraethoxysilan und 35,6 g l-Methoxy-2-propanol wurden unter Rühren 3,6 g einer 0,1 n, wässrigen p- Toluolsulfonsäurelösung gegeben. Nach 60 Minuten Rühren wurden dann 57,8 g eines nano-ZnO-Sols, hergestellt wie in Beispiel 5 beschrieben, zugegeben und nach
15 Minuten Rühren schließlich noch 15,0 g mit Acetessigsäure komplexierten Alu- miniumtributylats in l-Methoxy-2-propanol (hergestellt durch Zugabe von 4,28 g Acetessigsäureethylester zu einer Mischung aus 8,1 g und 2,63 g l-Methoxy-2-propanol unter Rühren). Es wurde eine UV-Schutzformulierung mit 35 Gew.-% nano-ZnO, berechnet auf die Feststoffe, erhalten.
Beispiel 11: Herstellung von UV-Schutzbeschichtungen auf Glas und Polycar- bonat
Die nach Beispiel 10 hergestellte UV-Schutzformulierung wurde durch Schleudern
(maximale Drehzahl 500 U/min, 20 Sekunden Haltezeit) auf wie beschrieben mit einem Haftvermittler versehene Polycarbonat-Platten appliziert. Nach der Aushärtung, 60 Minuten bei 125°C, wurde ein optisch einwandfreier und gut haftender Film erhalten. Zur Messung der UV-/VIS-Absorptionsspektren wurde die nach Beispiel 10 hergestellte UV-Schutzformulierung ebenfalls auf Glas appliziert, wobei der Auftrag durch Schleudern bei 4 verschiedenen maximalen Drehzahlen erfolgt (200, 400, 600 und 800 U/min). Auf diese Weise wurden nach der Aushärtung (60 min bei 125°C) 4 Glasplatten mit unterschiedlichen Schichtdicken erhalten.
Wie den Absorptionsspektren zu entnehmen ist (siehe Figur 1), gewähren die so hergestellten Beschichtungen unterhalb von ca. 375 nm einen - hervorragenden UV- Schutz (hohe Extinktion und scharfe Extinktionskante) und weisen im Bereich des sichtbaren Lichts keinerlei Streuung oder Absorption auf.
Beispiel 12: Herstellung einer UN-Schutzbeschichtung mit nano-ZnO in organischem Binder
40,42 g eines hydroxylgruppenhaltigen Polyaciylats mit einem OH-Gehalt nach DIΝ
53240/2 von 3,2 + 0,4 Gew.-% und einem Äquivalentgewicht von 530 g/mol (Desmophen® A 665 (70 Gew.-%-ig in Butylacetat), Bayer AG) wurden in 11,41 g einer l:l-Mischung aus l-Methoxypropylacetat-2 und Solvent Νaphtha 100 (höhersiedendes Aromatengemisch, Exxon Chemie GmbH, Hamburg) gelöst und anschließend unter Rühren mit einem aliphatischen, vernetzenden Einbrennurethanharz mit einem blockierten ΝCO-Gehalt von 10,5 Gew.-% und einem Äquivalentgewicht von ca. 400 g/mol (Desmodur® VP LS 2253 (75 Gew.-%-ig in l-Methoxypropylacetat-2 und Solvent Νaphtha 100 (8:17), Bayer AG) versetzt. Dann wurden je.0,49 g Baysilone® OL17 (10 Gew.-%-ig in Xylol) (GE Bayer Silicones, Leverkusen) und Modaflow® (1 Gew.-% in Xylol), (Solutia Germany GmbH, Mainz) als Verlaufshilfsmittel sowie
4,9 g Dibutylzinndilaurat zugesetzt. Nach 30 minütigem Rühren wurden 103,4 g einer 20,3 Gew.-%-igen ZnO-Dispersion in Butanol/TEA (96:4) (hergestellt nach Beispiel 5) zugegeben und weitere 10 min gerührt.
Anschließend wurde das applikationsfertige Beschichtungssystem als lagerstabile
Flüssigkeit erhalten. Beispiel 13: Herstellung von UV-Schutzbeschichtungen auf Glas und Polycar- bonat
Die nach Beispiel 12 hergestellte UV-Schutzformulierung wurde durch Schleudern (maximale Drehzahl 1500 U/min , 20 Sekunden Haltezeit) auf wie beschrieben mit einem Haftvermittler versehene Polycarbonat-Platten appliziert. Nach der Aushärtung, 60 Minuten bei 130°C, würde ein optisch einwandfreier und gut haftender Film erhalten.
Zur Messung des UV-/VIS-Abso tionsspektrums wurde die nach Beispiel 12 hergestellte UV-Schutzformulierung ebenfalls auf Glas appliziert, wobei der Auftrag durch Schleudern erfolgte (maximale Drehzahlen 1000 U/min, 20 Sekunden Haltezeit). Nach Aushärtung (60 min bei 130°C) wurde ein optisch einwandfreier und gut haftender Film erhalten.
Wie dem Absorptionsspektrum zu entnehmen ist (siehe Figur 2), gewährt die so hergestellte Beschichtung unterhalb von ca. 375 nm einen hervorragenden UV-Schutz (hohe Extinktion und scharfe Extinktionskante) und weist im Bereich des sichtbaren Lichts keinerlei Streuung oder Absorption auf.

Claims

Patentansprttche:
1. Wasser- und halogenfreie Dispersion enthaltend prfmärpartikulär redispergierte Zinkoxidteilchen mit einem Durchmesser zwischen 1 und 200 nm und Aminoalkohole.
2. Dispersion nach Anspruch 1 dadurch gekennzeichnet, dass zusätzlich halogenfreie organische Lösemittel enthalten sind.
3. Ein Verfahren zur Herstellung der Zinkoxid-Dispersionen nach Anspruch 1 bei dem primärpartikulär redispergierbare Zinkoxidteilchen unter Rühren in Aminoalkohole oder amino alkoholhaltige, wasserfreie organische Lösemittel gegeben werden.
4. Formteile und Überzüge hergestellt unter Verwendung der Dispersionen nach
Anspruch 1.
EP03798155A 2002-09-23 2003-09-10 Zinkoxiddispersionen in halogen- und wasserfreien dispersionsmedien Withdrawn EP1546266A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10244212A DE10244212A1 (de) 2002-09-23 2002-09-23 Zinkoxiddispersionen in halogen- und wasserfreien Dispersionsmedien
DE10244212 2002-09-23
PCT/EP2003/010024 WO2004029161A1 (de) 2002-09-23 2003-09-10 Zinkoxiddispersionen in halogen- und wasserfreien dispersionsmedien

Publications (1)

Publication Number Publication Date
EP1546266A1 true EP1546266A1 (de) 2005-06-29

Family

ID=31896310

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03798155A Withdrawn EP1546266A1 (de) 2002-09-23 2003-09-10 Zinkoxiddispersionen in halogen- und wasserfreien dispersionsmedien

Country Status (9)

Country Link
US (1) US20040071958A1 (de)
EP (1) EP1546266A1 (de)
JP (1) JP4585315B2 (de)
CN (1) CN1685018A (de)
AU (1) AU2003264285A1 (de)
CA (1) CA2501378C (de)
DE (1) DE10244212A1 (de)
MX (1) MXPA05003060A (de)
WO (1) WO2004029161A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004003675A1 (de) * 2004-01-24 2005-08-11 Degussa Ag Dispersion und Beschichtungszubereitung enthaltend nanoskaliges Zinkoxid
JP4993875B2 (ja) * 2005-05-06 2012-08-08 富士フイルム株式会社 凝集ナノ粒子の分散方法
US8679341B2 (en) 2005-05-06 2014-03-25 Fujifilm Corporation Method of concentrating nanoparticles and method of deaggregating aggregated nanoparticles
JP5118850B2 (ja) 2005-05-09 2013-01-16 富士フイルム株式会社 有機顔料分散液の製造方法
DE102005023378B3 (de) * 2005-05-17 2006-08-31 Wolfgang Dr.-Ing. Beck Beschichtungsstoff für In-Mould-Coating (IMC) auf der Basis eines aminofunktionellen Reaktionspartners für Isocyanate
US8119548B2 (en) * 2005-05-18 2012-02-21 Building Materials Investment Corporation Nanosilver as a biocide in building materials
US20070116987A1 (en) * 2005-06-16 2007-05-24 Khan Amir G Nanosized metal and metal oxide particles as a biocides in roofing coatings
DE102005056622A1 (de) * 2005-11-25 2007-05-31 Merck Patent Gmbh Nanopartikel
US20080182927A1 (en) * 2007-01-31 2008-07-31 Air Products And Chemicals, Inc. Polyisobutenyl containing dispersions and uses thereof
EP2019085A1 (de) * 2007-05-29 2009-01-28 Basf Se Verfahren zur Herstellung von Zinkoxiddispersionen zur Verwendung in kosmetischen Zubereitungen
EP2025381A1 (de) * 2007-07-30 2009-02-18 Nanoresins AG Verfahren zum Entfernen basischer oder saurer Verbindungen aus einer lösungsmittelhaltigen Metalloxiddispersion insbesondere Kieselsäure
CN102459471B (zh) * 2009-06-24 2014-08-13 巴斯夫欧洲公司 改性ZnO纳米颗粒
JP2015066865A (ja) * 2013-09-30 2015-04-13 マツダ株式会社 積層塗膜及び塗装物
CN106106519A (zh) * 2016-06-25 2016-11-16 王赞 用于瓷砖的氧化锌溶胶及其制作方法
JP6922529B2 (ja) * 2017-08-01 2021-08-18 住友大阪セメント株式会社 表面処理酸化亜鉛粒子の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9121143D0 (en) * 1991-10-04 1991-11-13 Tioxide Chemicals Limited Dispersions
JPH05262524A (ja) * 1992-03-19 1993-10-12 Idemitsu Kosan Co Ltd 酸化亜鉛薄膜の製造方法
DE4242949A1 (de) * 1992-12-18 1994-06-23 Bayer Ag Feinteiliges, hochreines, neutrales Zinkoxidpulver, Verfahren zu dessen Herstellung und seine Verwendung
JPH06265830A (ja) * 1993-03-11 1994-09-22 Nikon Corp 着色されたプラスチックレンズ
US5672427A (en) * 1993-08-31 1997-09-30 Mitsubishi Materials Corporation Zinc oxide powder having high dispersibility
DE69531705T2 (de) * 1994-06-06 2004-03-18 Nippon Shokubai Co. Ltd. Feine Zinkoxid-Teilchen, Verfahren zu ihrer Herstellung und ihre Verwendung
IT1270253B (it) * 1994-06-20 1997-04-29 Spherilene Srl Copolimeri dell'etilene e procedimento per la preparazione di polimeri dell'etilene
JPH085591A (ja) * 1994-06-21 1996-01-12 Kyocera Corp ガスセンサ及びその製造方法
JP3398829B2 (ja) * 1994-12-13 2003-04-21 株式会社日本触媒 酸化亜鉛系微粒子の製造方法
US5728184A (en) * 1996-06-26 1998-03-17 Minnesota Mining And Manufacturing Company Method for making ceramic materials from boehmite
AU7653698A (en) 1997-05-23 1998-12-11 Agfa-Gevaert A.G. Organosilane oligomers
DE19907704A1 (de) * 1999-02-23 2000-08-24 Bayer Ag Nanopartikuläres, redispergierbares Fällungszinkoxid
WO2000069776A1 (fr) * 1999-05-12 2000-11-23 Sakai Chemical Industry Co., Ltd. Particules d'oxyde de zinc a activite de surface supprimee, leur production et leur utilisation
DE10018429A1 (de) * 2000-04-14 2001-10-18 Bayer Ag Kunststoffe die mit zinkoxidhaltigen, abriebfesten Multischichten stabilisiert sind
US6861091B2 (en) * 2000-12-27 2005-03-01 Canon Kabushiki Kaisha Self-assembly of organic-inorganic nanocomposite thin films for use in hybrid organic light emitting devices (HLED)
DE10212121A1 (de) * 2002-03-15 2003-09-25 Bayer Ag Verfahren zur Herstellung von nano-Zinkoxid-Dispersionen stabilisiert durch hydroxylgruppenhaltige anorganische Polymere

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004029161A1 *

Also Published As

Publication number Publication date
JP4585315B2 (ja) 2010-11-24
DE10244212A1 (de) 2004-03-25
CA2501378C (en) 2012-11-06
WO2004029161A1 (de) 2004-04-08
AU2003264285A1 (en) 2004-04-19
MXPA05003060A (es) 2005-05-27
CA2501378A1 (en) 2004-04-08
JP2006502943A (ja) 2006-01-26
US20040071958A1 (en) 2004-04-15
CN1685018A (zh) 2005-10-19

Similar Documents

Publication Publication Date Title
EP1546266A1 (de) Zinkoxiddispersionen in halogen- und wasserfreien dispersionsmedien
EP0373426B1 (de) Anorganische Pigmente mit Polyorganosiloxanbeschichtung
DE3817908C2 (de) Dispersionen
EP1157064B1 (de) Verfahren zur Herstellung von NANOPARTIKULÄRE, REDISPERGIERBARE ZINKOXIDGELE
EP1690902B1 (de) Oberflächenmodifizierte Nanopartikel, Verfahren zu ihrer Herstellung und ihrer Verwendung
EP0722992B1 (de) Oberflächenmodifizierte pyrogen hergestellte Mischoxide, Verfahren zu ihrer Herstellung und Verwendung
DE60003765T2 (de) Schuppenförmiges Pigment mit hoher Orientierung und Verfahren zur Herstellung desselben
EP1801073B1 (de) Pyrogen hergestelltes Siliciumdioxid
EP2691478B1 (de) Wetterstabile perlglanzpigmente, verfahren zu ihrer herstellung und verwendung
DE102005046263A1 (de) Verfahren zur Herstellung oberflächenmodifizierter nanopartikulärer Metalloxide, Metallhydroxide, und/oder Metalloxidhydroxide
EP1078957B1 (de) Oberflächenmodifiziertes Titandioxid
DE10212121A1 (de) Verfahren zur Herstellung von nano-Zinkoxid-Dispersionen stabilisiert durch hydroxylgruppenhaltige anorganische Polymere
EP0603627B1 (de) Feinteiliges, hochreines, neutrales Zinkoxidpulver, Verfahren zu dessen Herstellung und seine Verwendung
DE69918220T2 (de) Ultraviolettlicht-Absorber
WO2005071002A1 (de) Dispersion und beschichtungszubereitung enthaltend nanoskaliges zinkoxid
DE69505955T2 (de) Gegen verfärbung beständige silanisierte titandioxydpigmente wenn in polymere eingearbeitet
EP1398301B2 (de) Effiziente Mattierungsmittel basierend auf Fällungskieselsäuren
WO2010066640A1 (de) Silan-modifizierte nanopartikel aus metalloxiden
DE102007024100A1 (de) Pyrogen hergestellte silanisierte und vermahlene Kieselsäure
DE102005025717A1 (de) Strontiumcarbonat-Dispersion und daraus erhältliches redispergierbares Pulver
DE10324305A1 (de) Verfahren zur Herstellung sphärischer Zinkoxidpartikel
EP3116958A2 (de) Verfahren zur oberflächenbehandlung von partikeln, die so erhaltenen partikel und deren verwendung
EP2727966A1 (de) Pigment mit photokatalytischer Aktivität, Verfahren zu dessen Herstellung und Beschichtungsmittel
EP2145928B1 (de) Dispersion von hydrophobierten Siliciumdioxidpartikeln und Granulat hiervon
WO2015018897A1 (de) Oberflächenmodifizierte metallkolloide und ihre herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LANXESS DEUTSCHLAND GMBH

17Q First examination report despatched

Effective date: 20070613

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LANXESS DEUTSCHLAND GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20170215