EP1543573A2 - Aktives nickelmischhydroxid-kathodenmaterial für alkalische akkumulatoren und verfahren zu seiner herstellung - Google Patents

Aktives nickelmischhydroxid-kathodenmaterial für alkalische akkumulatoren und verfahren zu seiner herstellung

Info

Publication number
EP1543573A2
EP1543573A2 EP03770891A EP03770891A EP1543573A2 EP 1543573 A2 EP1543573 A2 EP 1543573A2 EP 03770891 A EP03770891 A EP 03770891A EP 03770891 A EP03770891 A EP 03770891A EP 1543573 A2 EP1543573 A2 EP 1543573A2
Authority
EP
European Patent Office
Prior art keywords
nickel
solution
reactor
hydroxide
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03770891A
Other languages
German (de)
English (en)
French (fr)
Inventor
Peter BÄUERLEIN
Bernd Schultheis
Wolfgang Reichel
Heinz Scherzberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clarios Technology and Recycling GmbH
Original Assignee
VARTA Automotive Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VARTA Automotive Systems GmbH filed Critical VARTA Automotive Systems GmbH
Publication of EP1543573A2 publication Critical patent/EP1543573A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/53Particles with a specific particle size distribution bimodal size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • a too high degree of order in the crystal leads to non-optimal electrochemical properties, such as a reduced storage capacity. So far, however, an increase in the disorder in the crystal has led to a deterioration in the mechanical properties, such as a drop in the tamped density below 1.5 g / m 3 , a poorer filterability and a wider range of the particle size distribution.
  • a nickel mixed hydroxide cathode material which is characterized in that it contains two defined populations, a main and a secondary population, it is possible to overcome the above disadvantages.
  • the median of the main population of the particles is between 6 and 12 ⁇ m and the median of the secondary population is between 0.3 and 1.5 ⁇ m. In a further embodiment, a mass fraction of the main population of 70 to 95% by weight is particularly preferred.
  • the nickel mixed hydroxide cathode material according to this invention is preferably composed such that it is made of nickel and additionally with respect to the cations at least one component from the group magnesium, calcium, zinc, cobalt, aluminum, manganese iron, chromium, rare earths.
  • the mixed hydroxide can furthermore contain mono- or divalent anions, in particular from the group consisting of chloride, nitrate and sulfate. Like the other divalent and trivalent cations present in minor amounts, these can be incorporated into the nickel hydroxide crystal structure.
  • the improved properties of the nickel mixed hydroxide material are achieved in that it has a certain bimodal grain size distribution.
  • Powders with a bimodal size distribution show a higher packing density with a suitable ball diameter ratio compared to powders with a corresponding monomodal particle distribution and the same pure density and morphology. It also increases the inner surface of the material and the number of contact points per unit volume. In spite of the considerably lower compactness of the precipitated materials, tamped densities between 1.8 g / cm 3 and 2.0 g / cm 3 can be achieved.
  • the electrochemical storage capacity increases to over 260 mAh / g.
  • the materials sediment quickly, are easy to filter and wash out and have a significantly increased BET surface area of 20 m 2 / g to 40 m 2 / g.
  • a suitable ball diameter ratio of the populations combined with a suitable mass ratio between these populations is essential for the inventive effect, as has not yet been set in the prior art.
  • the range between the percentiles D 90% and D ⁇ 0% of the mass-based particle distribution of the main and secondary population is such that it does not overlap.
  • the percentile indicates the x value at which the distribution sum via the variable x has reached the corresponding percentage of the total distribution.
  • the nickel mixed hydroxide material of this invention can be prepared by a precipitation process in a loop reactor with an integrated clarification zone, as described in detail below. Due to the integrated clarification zone, the average residence time of the solid in the reactor can be selected largely independently of the residence time of the reaction solution.
  • a possible production process for the nickel mixed hydroxide cathode material according to the invention is to bring about the oscillation phenomena in the reactor with respect to the grain size in a targeted manner by setting the parameters. It was found that this results in a synchronous mixing of a precipitate consisting of the finest primary particles and a coarse-grained agglomerate resulting from another phase of formation during the precipitation step and results in a material with a bimodal distribution in the sense of the invention.
  • Another way of generating a bimodal grain size distribution synchronously with a precipitation step in a continuous process is to initiate a spontaneous increase in the number of primary particles by a sudden supply of metal salt at regular intervals in addition to the continuous material flow.
  • the increased number of crystallization nuclei creates a second product population with a smaller grain diameter.
  • the process according to the invention for producing the desired nickel mixed hydroxide cathode material is therefore generally characterized in that in a loop reactor with an integrated clarification zone, a reaction mixture of nickel mixed hydroxide, for example an aqueous solution of alkali metal ions, nickel (II) ions, ammonia, OH " ions and from at least one component from the group of divalent or trivalent cations, in particular magnesium, calcium, zinc, cobalt, aluminum, manganese, iron, chromium, rare earths, and at least one component from the group of monovalent or divalent anions, in particular chloride, nitrate , Sulfate is present and that to form the mixed oxide, a nickel (II) salt solution provided with further metal ions, in particular the aforementioned cations, an aqueous ammonia solution and an alkali metal hydroxide solution are added and the granular nickel mixed hydroxide cathode material formed as a solid together with proportions of the discharged liquid component of the reaction mixture and
  • the nickel (II) salt solution and the alkali metal hydroxide solution can be added essentially simultaneously at a substantially constant pH, or in addition to the continuous and essentially simultaneous addition of the nickel salt solution and the alkali metal hydroxide solution, at regular time intervals between 0.5 and 5 hours, volume fractions between 0.5 and 15% of the nickel salt solution to be metered and the alkali metal hydroxide solution to be metered are added in batches to the reaction mixture without the pH value being changed in the long term.
  • the added nickel (II) salt solution preferably contains between 80 and 125 g / l nickel cations as well as one or more cations from the group magnesium, calcium, zinc, cobalt, aluminum, manganese, chromium, iron, rare earths in each case between 0.1 and 20 g / l.
  • the aqueous ammonia solution preferably contains between 1 and 25% by weight ammonia.
  • the alkali metal hydroxide solution can consist of aqueous NaOH, KOH and / or LiOH solution and preferably consists exclusively of NaOH solution.
  • the Total alkali metal hydroxide content is between 10 and 30 wt .-%, preferably about 20 wt .-% based on the total mass of the solution.
  • the concentrations in the reaction solution of the reaction mixture are advantageously reduced to 50 g / l to 60 g / l with respect to the total concentration of sodium, potassium and lithium and to 0.1 mg / l to 100 mg / l nickel (II) during the implementation of the process.
  • -Ions adjusted to 0.1 mg / l to 100 mg / l with respect to the total concentration of magnesium, calcium, zinc, cobalt, aluminum and manganese, OH " , chloride, nitrate and / or sulfate being present as counterions.
  • the product suspension withdrawn from the mixed area of the loop reactor is processed using known methods for solid / liquid separation, e.g. a vacuum belt filter, transferred into a solids-free solution and into a solid with 0.05 to 0.35 mass parts of adhesive solution.
  • solid / liquid separation e.g. a vacuum belt filter
  • the solid particles discharged with the reaction solution overflowing at the reactor are collected in a subsequent clarifying apparatus and returned to the reactor.
  • the temperature of the reaction mixture is preferably kept constant over time at 20 ° C. to 80 ° C., preferably 30 ° C. to 60 ° C. and more preferably within an interval of ⁇ 1 ° C.
  • the pH of the reaction solution is 9.8 to 13.7, preferably 11.6 to 12.9 and is kept constant over time within a tolerance of ⁇ 0.05.
  • the alkali metal hydroxide solution can be metered into the reactor in a molar ratio of 0.9 to 1.3, preferably 1.05 to 1.10 to the sum of the cations of the nickel (II) salt solution. It is advantageously introduced into the reactor directly below or directly on the liquid surface.
  • the nickel (II) salt solution is preferably introduced into the reactor below the liquid surface, more preferably in the hydrodynamic loop area.
  • the aqueous ammonia solution is also particularly advantageously introduced directly below or directly onto the liquid surface, preferably in the immediate vicinity of the nickel (II) salt solution.
  • a particularly advantageous procedure for producing the nickel mixed hydroxide cathode material according to the invention is based on a combination of coordinated chemical, physical and mechanical factors and comprises.
  • a nickel (II) salt solution provided with further metal ions, an aqueous ammonia solution and an alkali metal hydroxide solution are added to this reaction mixture.
  • the reaction solution contains from 50 to 60 g / l of alkali metal ions, from 0.1 to 100 mg / l of nickel (II) ions, 0.1 to 100 mg / l of cations and 0.1 to 200 g / l of anions.
  • the nickel (II) salt solution contains from 80 to 125 g / l nickel, from 0.1 to 20 g / l at least one divalent or trivalent cation, for example magnesium, calcium, zinc, cobalt, aluminum, manganese, iron, chromium, Rare earths and monovalent or divalent anions, for example chloride, nitrate, sulfate.
  • the alkali metal hydroxide solution contains from 10 to 30% of the mass at least one of the components NaOH, KOH, LiOH and optionally additionally NH 3 .
  • the aqueous ammonia solution contains 1 to 25% of the mass of ammonia.
  • Figure 1 is an equipment diagram of the process for producing the

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
EP03770891A 2002-09-28 2003-09-26 Aktives nickelmischhydroxid-kathodenmaterial für alkalische akkumulatoren und verfahren zu seiner herstellung Withdrawn EP1543573A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10245467A DE10245467A1 (de) 2002-09-28 2002-09-28 Aktives Nickelmischhydroxid-Kathodenmaterial für alkalische Akkumulatoren und Verfahren zu seiner Herstellung
DE10245467 2002-09-28
PCT/DE2003/003219 WO2004032260A2 (de) 2002-09-28 2003-09-26 Aktives nickelmischhydroxid-kathodenmaterial für alkalische akkumulatoren und verfahren zu seiner herstellung

Publications (1)

Publication Number Publication Date
EP1543573A2 true EP1543573A2 (de) 2005-06-22

Family

ID=31984243

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03770891A Withdrawn EP1543573A2 (de) 2002-09-28 2003-09-26 Aktives nickelmischhydroxid-kathodenmaterial für alkalische akkumulatoren und verfahren zu seiner herstellung

Country Status (7)

Country Link
EP (1) EP1543573A2 (zh)
JP (1) JP2006515950A (zh)
KR (1) KR20050073456A (zh)
CN (1) CN100438152C (zh)
AU (1) AU2003280296A1 (zh)
DE (1) DE10245467A1 (zh)
WO (1) WO2004032260A2 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265086A (ja) * 2005-02-24 2006-10-05 Toyota Motor Corp 水酸化ニッケル粒子の製造方法及び製造装置
DE102006062762A1 (de) 2006-03-31 2008-01-31 H.C. Starck Gmbh Verfahren zur Herstellung pulverförmiger Ni, Co - Mischhydroxide und deren Verwendung
DE102006049107A1 (de) 2006-10-13 2008-04-17 H.C. Starck Gmbh Pulverförmige Verbindungen, Verfahren zu deren Herstellung sowie deren Verwendung in elektrochemischen Anwendungen
DE102007039471A1 (de) * 2007-08-21 2009-02-26 H.C. Starck Gmbh Pulverförmige Verbindungen, Verfahren zu deren Herstellung sowie deren Verwendung in Lithium-Sekundärbatterien
DE102007049108A1 (de) * 2007-10-12 2009-04-16 H.C. Starck Gmbh Pulverförmige Verbindungen, Verfahren zu deren Herstellung sowie deren Verwendung in Batterien
JP5614334B2 (ja) * 2010-03-02 2014-10-29 住友金属鉱山株式会社 ニッケルコバルト複合水酸化物およびその製造方法、ならびに該複合水酸化物を用いて得られる非水系電解質二次電池用正極活物質
WO2014180821A1 (de) * 2013-05-08 2014-11-13 Basf Se Verfahren zur herstellung von suspensionen
CN107922212B (zh) * 2015-08-24 2020-04-03 住友金属矿山株式会社 锰镍复合氢氧化物及制造方法、锂锰镍复合氧化物及制造方法、以及非水系电解质二次电池
DE102015115691B4 (de) * 2015-09-17 2020-10-01 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Lithium-Nickel-Mangan-basierte Übergangsmetalloxidpartikel, deren Herstellung sowie deren Verwendung als Elektrodenmaterial
JP6649489B2 (ja) * 2015-09-30 2020-02-19 ユミコア 充電式バッテリー用のリチウム遷移金属酸化物カソード材料の前駆体
WO2017217371A1 (ja) * 2016-06-14 2017-12-21 住友金属鉱山株式会社 化学反応装置、および、化学反応装置を用いた粒子の製造方法
KR102555562B1 (ko) * 2020-06-15 2023-07-17 주식회사 엘 앤 에프 다성분계 금속 수산화물의 제조장치
CN114171727A (zh) * 2021-10-27 2022-03-11 深圳市豪鹏科技股份有限公司 一种正极材料、正极浆料、正极片及镍氢电池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0353837B1 (en) * 1988-07-19 1994-07-27 Yuasa Corporation A nickel electrode for an alkaline battery
JP2805098B2 (ja) * 1990-02-27 1998-09-30 関西触媒化学株式会社 水酸化ニッケルの製造方法
US5700596A (en) * 1991-07-08 1997-12-23 Matsushita Electric Industrial Co., Ltd. Nickel hydroxide active material powder and nickel positive electrode and alkali storage battery using them
DE4342620C1 (de) * 1993-12-14 1995-07-06 Starck H C Gmbh Co Kg Verfahren zur Herstellung von Metallhydroxiden
KR0148827B1 (ko) * 1994-05-20 1998-10-15 전성원 알카리전지용 고밀도 수산화니켈의 제조방법
JPH1025117A (ja) * 1996-07-09 1998-01-27 Japan Metals & Chem Co Ltd 水酸化ニッケルの製造方法
KR19990015234A (ko) * 1997-08-04 1999-03-05 손욱 고밀도 수산화니켈 활물질의 제조방법
JPH11307092A (ja) * 1998-04-17 1999-11-05 Sakai Chem Ind Co Ltd アルカリ蓄電池正極活物質用水酸化ニッケル粉末及びその製造方法
KR100433593B1 (ko) * 1999-06-21 2004-05-31 가부시끼가이샤 도시바 이차전지용 양극 활성물질 및 그 제조방법과 그것을이용한 비수전해액 이차전지 및 재생 전자기능재료와전자기능재료의 재생방법
JP2002093417A (ja) * 2000-09-11 2002-03-29 Mitsubishi Cable Ind Ltd Li−Co系複合酸化物、ならびにそれを用いた正極板およびリチウムイオン二次電池
JP2002184405A (ja) * 2000-12-12 2002-06-28 Matsushita Electric Ind Co Ltd アルカリ蓄電池用非焼結式ニッケル正極およびその製造方法ならびにそれを用いたアルカリ蓄電池
JP3955175B2 (ja) * 2000-12-13 2007-08-08 松下電器産業株式会社 アルカリ蓄電池用非焼結式ニッケル正極およびそれを用いたアルカリ蓄電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004032260A2 *

Also Published As

Publication number Publication date
CN1685541A (zh) 2005-10-19
WO2004032260A3 (de) 2005-02-03
AU2003280296A1 (en) 2004-04-23
KR20050073456A (ko) 2005-07-13
JP2006515950A (ja) 2006-06-08
WO2004032260A2 (de) 2004-04-15
CN100438152C (zh) 2008-11-26
DE10245467A1 (de) 2004-04-08
AU2003280296A8 (en) 2004-04-23

Similar Documents

Publication Publication Date Title
EP2190786B1 (de) Pulverförmige ni(a)m1(b)m2(c)o(x)oh(y) verbindungen, verfahren zu deren herstellung sowie deren verwendung in batterien
EP2169086B1 (de) Ventilmetallpulver
EP1637503B1 (de) Mischmetallhydroxide, deren Herstellung und Verwendung
US20050221179A1 (en) Active mixed nickel hydroxide cathode material for alkaline storage batteries and process for its production
DE68905683T2 (de) Trifluorid der Seltenen Erden mit neuen morphologischen Kennzeichen und Verfahren zu seiner Herstellung.
EP1543573A2 (de) Aktives nickelmischhydroxid-kathodenmaterial für alkalische akkumulatoren und verfahren zu seiner herstellung
DE102005012640A1 (de) Kreisprozess zur nasschemischen Herstellung von Lithiummetallphosphaten
EP0828690B1 (de) Sphäroidisch agglomeriertes basisches kobalt(ii)carbonat und sphäroidisch agglomeriertes kobalt(ii)hydroxid, verfahren zu ihrer herstellung sowie deren verwendung
DE69737435T2 (de) Positives aktives Material für nichtwässrige Sekundärzellen und Verfahren zur Herstellung von diesem activen Material
DE102007033460A1 (de) Kreisprozess zur Herstellung von Bariumsulfat und Lithiummetallphosphatverbindungen
EP2209741B1 (de) Pulverförmige niambox(oh)y verbindungen, verfahren zu deren herstellung sowie deren verwendung in batterien
DE19849343A1 (de) Lithiumcompositoxid, dessen Herstellung und sekundäre Lithiumionzelle mit Lithiumcompositoxid als aktives Material der positiven Elektrode
DE102006062762A1 (de) Verfahren zur Herstellung pulverförmiger Ni, Co - Mischhydroxide und deren Verwendung
DE69626495T2 (de) Elektrode mit aktivem material für positive platte eines akkus
EP1190114B1 (de) Verfahren zur herstellung von nickelhydroxiden
DE4342620C1 (de) Verfahren zur Herstellung von Metallhydroxiden
DE69105367T2 (de) Verfahren zur Herstellung eines metallischen Hydroxidpulvers und auf diese Weise hergestellte Pulver.
DE3046913C2 (zh)
EP2604576B1 (de) Verfahren zur herstellung von lithium-metallphosphat
DE19823129A1 (de) Verfahren zur Herstellung einer hochdichten Formiermasse aus Nickelhydroxid
DE2908762C2 (zh)
EP4073177B1 (de) Phosphathaltiges korrosionsschutzpigment
EP1827739B1 (de) Herstellung von ventilmetallpulvern
DE2000793B2 (de) Verfahren und anordnung zur herstellung eines fuer nickelhydroxid-elektroden fuer alkalische akkumulatoren vorgesehenen elektrochemisch aktiven materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050405

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1079905

Country of ref document: HK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHERZBERG, HEINZ

Inventor name: REICHEL, WOLFGANG

Inventor name: SCHULTHEIS, BERND

Inventor name: BAEUERLEIN, PETER

17Q First examination report despatched

Effective date: 20071008

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091001

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1079905

Country of ref document: HK