EP1507898A1 - Procede electrochimique pour la production de silanes organofonctionnels - Google Patents

Procede electrochimique pour la production de silanes organofonctionnels

Info

Publication number
EP1507898A1
EP1507898A1 EP03755089A EP03755089A EP1507898A1 EP 1507898 A1 EP1507898 A1 EP 1507898A1 EP 03755089 A EP03755089 A EP 03755089A EP 03755089 A EP03755089 A EP 03755089A EP 1507898 A1 EP1507898 A1 EP 1507898A1
Authority
EP
European Patent Office
Prior art keywords
general formula
replaced
adjacent
groups
radicals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03755089A
Other languages
German (de)
English (en)
Inventor
Thomas Kammel
Bernd Pachaly
Christa Grogger
Bernhard Loidl
Harald STÜGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consortium fuer Elektrochemische Industrie GmbH
Original Assignee
Consortium fuer Elektrochemische Industrie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consortium fuer Elektrochemische Industrie GmbH filed Critical Consortium fuer Elektrochemische Industrie GmbH
Publication of EP1507898A1 publication Critical patent/EP1507898A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0896Compounds with a Si-H linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/1876Preparation; Treatments not provided for in C07F7/20 by reactions involving the formation of Si-C linkages
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction

Definitions

  • the invention relates to an electrochemical method for producing organofunctional silanes using a sacrificial anode.
  • silane must be used in large excess in order to obtain the desired product in acceptable yields: hitherto only bromides could be successfully reacted as starting materials under these conditions.
  • the invention relates to a process for the preparation of organofunctional silanes of the general formula (1)
  • R is a radical of the general formula (4)
  • the process manages with small amounts and also without the use of complexing agents such as the health-threatening HMPT (hexamethylphosphoric triamide) or DMPH (N, N'-dimethylpropylene urea) and can also be carried out without a catalyst or co-catalyst.
  • the silanes of the general formula (1) can thus be prepared in a simple and efficient manner.
  • Monomeric radicals R 6 , R 7 and R ⁇ are preferably hydrogen, cyano or optionally substituted C1-C3Q-
  • Halogens in particular fluorine, chlorine, bromine and iodine, cyano, amino, are suitable as substituents.
  • Particularly preferred monomeric residues R 6, R 7 and R 8 are C_-C2o _ aryl and C] _- C2n-alkyl radicals, which may be in non-adjacent methylene units by groups -0- and nonadjacent carbon atoms are replaced by silicon atoms.
  • Oligomers and polymeric radicals R ⁇ , R 7 and R 8 are, for example, polymers, synthetic oligomers and polymers such as polyvinyl chloride, polyethylene, polypropylene, polyvinyl acetate, polycarbonate, polyacrylate, polymethacrylate, polymethyl methacrylate, polystyrene, polyacrylonitrile, polyvinylidene chloride (PVC), polyvinyl fluoride, polyvinylidene fluoride, Polyvinylidene cyanide, polybutadiene, polyisoprene, polyether, polyester, polyamide, polyimide, silicone, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylamide, polyethylene glycol and their derivatives and the like including copolymers such as styrene-acrylate copolymers, vinyl acetate-acrylate copolymers, ethylene-vinyl acetate-copolymers, ethylene Terpolymers (EPDM), Ethylene Propy
  • Oligomers and polymeric radicals R *>, R 7 and R 8 are, for example, also natural oligomers and polymers, such as cellulose, starch, casein and natural rubber, as well as semi-synthetic oligomers and polymers such as cellulose derivatives, e.g. B. methyl cellulose, hydroxymethyl cellulose and carboxymethyl cellulose.
  • the spellings of the general formulas (1) and (2) include that the radicals R 2 R 3 and R 4 are bonded to the silicon atom directly or via an oxygen atom.
  • hydrocarbon radicals R 2 , R 3 and R 4 are alkyl radicals, such as the methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert. -Butyl-, n-pentyl-, iso-pentyl-, neo-pentyl-, tert.
  • -Pentyl radical hexyl radicals, such as the n-hexyl radical, heptyl radicals, such as the n-heptyl radical, octyl radicals, such as the n-octyl radical and iso-octyl radicals, such as the 2, 2, 4-trimethylpentyl radical, nonyl radicals, such as the n-nonyl radical, decyl radicals, such as the n-decyl radical, dodecyl radicals, such as the n-dodecyl radical, octadecyl radicals, such as the n-octadecyl radical; Alkenyl groups such as the vinyl and allyl groups; Cycloalkyl radicals, such as cyclopentyl, cyclohexyl,
  • Cycloheptyl and methylcyclohexyl Aryl radicals, such as the phenyl, naphthyl and anthryl and phenanthryl radical; Alkaryl residues, such as o-, m-, p-tolyl residues, xylyl residues and ethylphenyl residues; Aralkyl radicals, such as the benzyl radical, the alpha and the ⁇ -phenylethyl radical.
  • radicals R 2 , R 3 and R 4 C ⁇ -Cg-alkyl radicals, in particular methyl and ethyl radicals or phenyl radicals are preferred.
  • X preferably at most 0.01 mol, in particular no complexing agent, are present per mol of X.
  • Complexing agents are, for example, hexamethylphosphoric triamide (HMPT), N, N '-dimethylpropylene urine . toff or tetrahydro-l, 3-dimethyl-2 (1H) pyrimidinone (DMPH), tris (3,6-dioxaheptyl) amine (TDA-1), tetramethyl urea (TMU).
  • the anode can consist of all materials that have sufficient electrical conductivity and are chemically inert under the selected reaction conditions.
  • a sacrificial anode is preferably used as the anode.
  • the Sacrificial anode comprises a metal or an alloy of metals that dissolve to form cations in the process.
  • Preferred metals are Mg, Fe, Ti, Zn, Al, Cu, Sn, especially Mg.
  • the counter electrode can also consist of all materials that have sufficient electrical conductivity and are chemically inert under the selected reaction conditions.
  • a conductive salt is preferably added. Inert salts or mixtures thereof which do not react with the reaction components are used as conductive salts.
  • conductive salts are salts of the general formula M + Y ⁇ , where M is, for example, Mg, Li, Na, NBU4, NMe4, NEt4, and Y, for example
  • SCN means in which Bu, Me, Et or Ph denotes a butyl, methyl, ethyl or phenyl group. Examples of more suitable
  • Electrolytes include tetraethylammonium tetrafluoroborate and tetrabutylammonium tetrafluoroborate.
  • Particularly preferred conductive salts are MgCl2 and LiCl.
  • the process preferably takes place in a solvent.
  • All aprotic solvents which do not react with the compounds of the general formulas (1) to (3) and which themselves only react with one can be used as solvents more negative potential than the compounds of the general formula (2) can be reduced.
  • Suitable solvents are all in which the compounds used are at least partially soluble under operating conditions with regard to concentration and temperature.
  • the compounds of the general formulas (2) and (3) themselves can also serve as solvents.
  • An example of this is dimethyldichlorosilane.
  • Suitable solvents are ethers such as tetrahydrofuran, 1, 2-dimethoxyethane, 1, 3-dioxolane, bis (2-methoxyethyl) ether, dioxane, acetonitrile, ⁇ -butyrolactone, nitromethane, liquid SO2, tris ( dioxa-3, 6-heptyl) amine, trimethyl urea, dimethylformamide, dimethyl sulfoxide, and mixtures of these solvents.
  • the solvents are preferably dry. Tetrahydrofuran is particularly preferred.
  • the concentration of compound of the general formula (3) in the solvent is preferably 0.05 to 5 mol / 1, in particular 0.1 to 2 mol / 1.
  • the amount of compound of the general formula (2) used is preferably 0.8 to 1.5 mol, in particular 0.9 to 1.2 mol.
  • the method can be carried out in any conventional way using an electrolytic cell with a cathode and a sacrificial anode.
  • the electrolytic cell can be a divided or undivided electrolytic cell, the undivided electrolytic cell being preferred since it is the simplest in construction.
  • the process preferably takes place under an inert gas atmosphere, nitrogen, argon or Helium are preferred.
  • the electrolysis cell is preferably provided with a potentiostat or a galvanostat (constant current flow) in order to regulate the potential or the intensity of the current.
  • the implementation can be carried out with and without controlled potential.
  • the amount of charge Q is preferably 1.1 to 5 F / mol, in particular 1.5 to 3 mol / F.
  • the process preferably takes place under the influence of ultrasound.
  • the temperature in the process is preferably 5 ° C to 50 ° C, in particular 10 to 30 ° C.
  • the reactions are carried out under a protective gas atmosphere (argon,
  • Electrolysis setup An undivided electrolysis cell is used for the electrolysis, in which the rod-shaped sacrificial anode (8 mm diameter) made of high-purity magnesium is arranged in the middle and the cathode, which is made of a cylindrical stainless steel sheet with 4 cm diameter is attached to the anode.
  • the electrolysis is carried out galvanostatically, the current density at the cathode not exceeding 0.5 mA / cm 2 .
  • the electrolysis cell is sonicated for the entire duration of the electrolysis in an ultrasonic bath, which is cooled by water so that the temperature does not rise significantly above RT (20 ° C).
  • Example 2 Analogously to Example 1, 10.00 g (53.5 mmol) of 4-bromoanisole are reacted electrochemically with the stoichiometric amount of 5.06 g (53.5 mol) of chlorodimethylsilane. After an electrolysis time of 48 h and workup analogous to that in Example 1, the desired product p-methoxyphenyldimethylsilane is obtained in 85% yield.
  • Example 2 Analogously to Example 1, starting from 5.00 g (30.3 mmol) of hexyl bromide and the stoichiometric amount of 2.86 g (30.3 mmol) of chlorodimethylsilane, a total of 22 hours and analogous working up as in Example 1 are obtained 2.90 g of the product n-hexyldimethylsilane. This corresponds to a yield of 66% of theory
  • Example 10 Synthesis of (N, N-diethylamino) -p-methoxyphenyldimethylsilane
  • 2.80 (15.1 mmol) p-bromoanisole and the stoichiometric amount of 2.50 g (15.1 mmol ) (N, N-diethylamino) dimethylchlorosilane implemented electrochemically.
  • the electrolysis is ended after 24 h.
  • 1.62 g of the desired product (N, N-diethylamino) -p-methoxyphenyldimethylsilane (45% of theory) are obtained.
  • Example 5 Analogously to Example 5, but using a titanium anode instead of a magnesium anode, 4.00 g (37.5 mmol) of 1-chloropentane and 3.55 g (37.5 mmol) of chlorodimethylsilane are electrolyzed for a total of 8 d under the same conditions.
  • GC / MS analysis detects the desired product in addition to the educt in the raw product (composition: 55% of the target product n-pentyldimethylsilane, 45% of the educt 1-chloropentane).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

L'invention concerne un procédé électrochimique pour la production de silanes organofonctionnels de formule générale (1), ledit procédé consistant à faire réagir, par voie électrochimique au moyen d'une cellule électrolytique non divisée, un silane de formule générale (2) avec un composé de formule générale R1-Y (3), à condition qu'au maximum 0,1 mole d'agent complexant soit présent par mole de X. Dans les formules, R1, R2, R3, R4, X et Y ont la signification indiquée dans la description.
EP03755089A 2002-05-29 2003-04-17 Procede electrochimique pour la production de silanes organofonctionnels Withdrawn EP1507898A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10223939 2002-05-29
DE10223939A DE10223939A1 (de) 2002-05-29 2002-05-29 Elektrochemisches Verfahren zur Herstellung von organofunktionellen Silanen
PCT/EP2003/004093 WO2003100134A1 (fr) 2002-05-29 2003-04-17 Procede electrochimique pour la production de silanes organofonctionnels

Publications (1)

Publication Number Publication Date
EP1507898A1 true EP1507898A1 (fr) 2005-02-23

Family

ID=29557390

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03755089A Withdrawn EP1507898A1 (fr) 2002-05-29 2003-04-17 Procede electrochimique pour la production de silanes organofonctionnels

Country Status (6)

Country Link
US (1) US20050234255A1 (fr)
EP (1) EP1507898A1 (fr)
JP (1) JP2005527706A (fr)
CN (1) CN1656252A (fr)
DE (1) DE10223939A1 (fr)
WO (1) WO2003100134A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004029258A1 (de) * 2004-06-17 2006-01-12 Consortium für elektrochemische Industrie GmbH Verfahren zur elektrochemischen Knüpfung von Silicium-Kohlenstoff- und Silicium-Wasserstoff-Bindungen unter Verwendung einer Wasserstoff-Elektrode
US8845877B2 (en) * 2010-03-19 2014-09-30 Liquid Light, Inc. Heterocycle catalyzed electrochemical process
CN103924259A (zh) * 2014-04-22 2014-07-16 浙江合盛硅业有限公司 一种室温制备聚二烷基硅氧烷混合环体的方法
CN103952716A (zh) * 2014-05-16 2014-07-30 罗凯 一种电解合成硅氧烷的方法
CN104072533B (zh) * 2014-06-10 2016-05-11 中国科学院广州能源研究所 一类含低聚氧化乙烯单元的硅腈类化合物及其制备方法、在锂电池中的应用
CN113403636B (zh) * 2021-05-26 2022-09-13 新疆大学 一种α,β-二氯苯亚砜类化合物的合成方法
WO2023222245A1 (fr) 2022-05-20 2023-11-23 Wacker Chemie Ag Procédé de production de composes organosiliciés

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8917725D0 (en) * 1989-08-03 1989-09-20 Dow Corning Electrochemical synthesis of organosilicon compounds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03100134A1 *

Also Published As

Publication number Publication date
WO2003100134A1 (fr) 2003-12-04
CN1656252A (zh) 2005-08-17
JP2005527706A (ja) 2005-09-15
DE10223939A1 (de) 2003-12-24
US20050234255A1 (en) 2005-10-20

Similar Documents

Publication Publication Date Title
DE60012571T2 (de) Metallkomplexe als hyrdosilylierungskatalysatoren
DE2260282B2 (de) Verfahren zur Herstellung von Silanen aus Disilanen
WO2008102661A1 (fr) Procédé de fabrication de trialkylsilylnitrile
WO2003100134A1 (fr) Procede electrochimique pour la production de silanes organofonctionnels
DE69119123T2 (de) Methoden zur Herstellung von Silanen und Polysilanen
DE69909208T2 (de) Verfahren zur Herstellung von Alkylhalogensilanen
DE69022491T2 (de) Herstellung von Tertiär-Kohlenwasserstoff-Silyl-Verbindungen.
EP1621541A2 (fr) Procédé de préparation d'alkyles d'esters d' acides boroniques
WO2005123811A1 (fr) Procede de combinaison electrochimique de liaisons silicium-carbone et silicium-hydrogene a l'aide d'une electrode a hydrogene
EP2278048A1 (fr) Procédé de production d un dérivé de phosphine à partir d un dérivé d oxyde de phosphine
DE1239687B (de) Verfahren zur Herstellung metallorganischer Verbindungen
Yamamoto et al. Electrochemical preparation of isocyanide complexes of low-valent platinum containing a metal–metal bond
EP0629718B1 (fr) Procédé de synthèse électrochimique composés organiques du silicium ainsi qu un appareillage pour le effectuer procédé et usage de cet appareillage pour la préparation desdits composés organiques du silicium
DE19837906C1 (de) Verfahren zur Herstellung von Silanen mit einer tertiären Kohlenwasserstoff-Gruppe in alpha-Position zum Silicium-Atom
DE69311213T2 (de) Verfahren zur Herstellung von 1-Aza-2-silacyclopentan-Verbindungen
DE69930733T2 (de) Herstellung von substituierten (amino)alkoxysilanen
EP1919925B1 (fr) Forme de zinc hautement reactive, son procede de production, et son utilisation
DE4024600A1 (de) Elektrochemische synthese von organosiliciumverbindungen
Davies et al. Electrochemical generation and reactivity of bis (triethylphosphine) platinum (O): formation of a platinum hydride via a Hofmann elimination reaction with the tetra-n-butylammonium cation
Volkov et al. Undecahalo‐closo‐undecaborates [B11Hal11] 2–
WO2023222245A1 (fr) Procédé de production de composes organosiliciés
JP5665003B2 (ja) ホスフィンオキシド誘導体からのホスフィン誘導体の直接製造法
DE3728801A1 (de) (2-phenylpropan-2-yl) silan-verbindungen und ein verfahren zu deren herstellung
Yakhvarov et al. Selective monoarylation of phosphorus trichloride by the electrochemically generated organonickel σ-complex MesNiBrbpy
DE102006055716A1 (de) Imidazo(1,5-b)pyridazin-amido-Liganden und deren Komplexverbindungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LOIDL, BERNHARD

Inventor name: GROGGER, CHRISTA

Inventor name: PACHALY, BERND

Inventor name: KAMMEL, THOMAS

Inventor name: STUEGER, HARALD

RBV Designated contracting states (corrected)

Designated state(s): BE DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071031