EP1505142A1 - Procédé de valorisation de charges lourdes par désasphaltage et hydrocraquage en lit bouillonnant - Google Patents
Procédé de valorisation de charges lourdes par désasphaltage et hydrocraquage en lit bouillonnant Download PDFInfo
- Publication number
- EP1505142A1 EP1505142A1 EP04290989A EP04290989A EP1505142A1 EP 1505142 A1 EP1505142 A1 EP 1505142A1 EP 04290989 A EP04290989 A EP 04290989A EP 04290989 A EP04290989 A EP 04290989A EP 1505142 A1 EP1505142 A1 EP 1505142A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- effluent
- residue
- process according
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 230000008569 process Effects 0.000 title claims abstract description 43
- 238000004517 catalytic hydrocracking Methods 0.000 title claims abstract description 32
- 239000003054 catalyst Substances 0.000 claims abstract description 59
- 239000002904 solvent Substances 0.000 claims abstract description 43
- 238000009835 boiling Methods 0.000 claims abstract description 22
- 239000003350 kerosene Substances 0.000 claims abstract description 22
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims abstract description 21
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 20
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 19
- 239000001257 hydrogen Substances 0.000 claims abstract description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 17
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 16
- 150000001875 compounds Chemical class 0.000 claims abstract description 11
- 239000003921 oil Substances 0.000 claims description 43
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- 238000004821 distillation Methods 0.000 claims description 19
- 239000007789 gas Substances 0.000 claims description 13
- 230000005587 bubbling Effects 0.000 claims description 12
- 238000000926 separation method Methods 0.000 claims description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims description 7
- 238000005292 vacuum distillation Methods 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 3
- 150000002736 metal compounds Chemical class 0.000 claims description 2
- 239000011949 solid catalyst Substances 0.000 claims 1
- 238000004523 catalytic cracking Methods 0.000 abstract description 20
- 238000005336 cracking Methods 0.000 abstract description 13
- 238000011282 treatment Methods 0.000 abstract description 8
- 238000005194 fractionation Methods 0.000 abstract description 6
- 238000011084 recovery Methods 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 239000000047 product Substances 0.000 description 18
- 239000003502 gasoline Substances 0.000 description 17
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 13
- 239000011593 sulfur Substances 0.000 description 13
- 229910052717 sulfur Inorganic materials 0.000 description 13
- 150000002739 metals Chemical class 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 10
- 239000010426 asphalt Substances 0.000 description 9
- 239000012535 impurity Substances 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 239000010457 zeolite Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 229910021536 Zeolite Inorganic materials 0.000 description 8
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 8
- 239000000446 fuel Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- -1 n-heptane selon Chemical compound 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 239000010779 crude oil Substances 0.000 description 4
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000395 magnesium oxide Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000008186 active pharmaceutical agent Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229910052810 boron oxide Inorganic materials 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000004939 coking Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000686 essence Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 102100039339 Atrial natriuretic peptide receptor 1 Human genes 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- UDHXJZHVNHGCEC-UHFFFAOYSA-N Chlorophacinone Chemical compound C1=CC(Cl)=CC=C1C(C=1C=CC=CC=1)C(=O)C1C(=O)C2=CC=CC=C2C1=O UDHXJZHVNHGCEC-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 101000961044 Homo sapiens Atrial natriuretic peptide receptor 1 Proteins 0.000 description 1
- 101001050607 Homo sapiens KH domain-containing, RNA-binding, signal transduction-associated protein 3 Proteins 0.000 description 1
- 102100023428 KH domain-containing, RNA-binding, signal transduction-associated protein 3 Human genes 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical class O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 238000011001 backwashing Methods 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000010763 heavy fuel oil Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- JSOQIZDOEIKRLY-UHFFFAOYSA-N n-propylnitrous amide Chemical compound CCCNN=O JSOQIZDOEIKRLY-UHFFFAOYSA-N 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- MOWNZPNSYMGTMD-UHFFFAOYSA-N oxidoboron Chemical class O=[B] MOWNZPNSYMGTMD-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- LEHFSLREWWMLPU-UHFFFAOYSA-B zirconium(4+);tetraphosphate Chemical class [Zr+4].[Zr+4].[Zr+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LEHFSLREWWMLPU-UHFFFAOYSA-B 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G55/00—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
- C10G55/02—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only
- C10G55/06—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only including at least one catalytic cracking step
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G69/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
- C10G69/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
- C10G69/04—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/107—Atmospheric residues having a boiling point of at least about 538 °C
Definitions
- the field of the present invention is that of the refining of the slices oil. It relates in particular to the field of heavy loads such as residues from atmospheric distillation or vacuum distillation.
- French patent FR 2 803 596 describes a process for converting distillates comprising a boiling bed hydroconversion step, a separation step in which a light fraction and a heavy fraction are obtained, and a step of catalytic cracking of the heavy fraction. Such a process can lead to conversion levels, but its implementation is not generally envisaged only for fillers with a final boiling point below 600 ° C.
- the described in this patent is, a priori, not suitable for the treatment of a atmospheric residue or a vacuum residue from a heavy crude.
- An advantage of the invention is to provide a method for obtaining a better recovery of heavy loads such as atmospheric residues, vacuum residues obtained from any crude oil, particularly from heavy crude oils. These crude oils generally have a API density less than 12.
- Another advantage of the invention is to provide a method for targeting a high overall yield of gasoline, kerosene and gas oils.
- Another advantage of the invention is to provide a method for to obtain gasolines, kerosene and gas oils with excellent qualities and to limit the number or severity of post-treatments.
- FIG. 1 represents, by way of example, an embodiment of the method according to the invention chaining a deasphalting step, a step ebullating hydroconversion, a fractionation step by distillation atmospheric and an FCC-type catalytic cracking step.
- Figure 2 represents, by way of example, a scheme similar to that of the Figure 1, but wherein the fractionation step comprises a distillation atmospheric and vacuum distillation, the vacuum distillate being sent to a hydrocracking step.
- the fillers that can be treated by the process of the invention are hydrocarbons of which at least 95% by weight are composed of compounds having a boiling point of at least 340 ° C and up to 700 ° C or higher, by between 500 ° C and 700 ° C.
- the hydrocarbon feedstock has a final boiling point, preferably greater than 600 ° C, more preferably greater than 650 ° C, still more preferred above 700 ° C.
- These charges may be atmospheric residues and residues empty.
- these charges may be residues from distillations processes or conversion processes such as coking, Fixed bed hydroconversion, such as the HYVAHL process or bed processes bubbling like the H-Oil process.
- Charges can be formed by mixture of these fractions in any proportion or by dilution into petroleum fractions having a boiling point of less than 360 ° C.
- the invention is particularly interesting for certain residues of heavy crudes, ie crudes containing few distillates. Typically raw Athabasca and Morichal contain 80% vacuum residues. Their API density is usually close to 10. These heavy crudes contain, compared to others gross, many more impurities such as, for example, metals (nickel, vanadium, silicon, etc.), a high Conradson Carbon, asphaltenes, sulfur and nitrogen.
- impurities such as, for example, metals (nickel, vanadium, silicon, etc.), a high Conradson Carbon, asphaltenes, sulfur and nitrogen.
- the hydrocarbon feedstock comprises essentially atmospheric residues, of which at least 95% by weight are consisting of compounds having a boiling point of at least 600 ° C, and vacuum residues of heavy crudes, of which at least 95% by weight consists of compounds having a boiling point of at least 650 ° C.
- step a) of the process of the invention the charge is brought into contact with a solvent to obtain a desalphalted effluent.
- This operation is often qualified solvent deasphalting. It makes it possible to extract a large part of asphaltenes and reduce the metal content. During this deasphalting, these The last elements are concentrated in an effluent called asphalt.
- the deasphalted effluent often referred to as deasphalted oil, has a reduced to asphaltenes and metals.
- One of the objectives of the deasphalting step is, on the one hand, to maximize the quantity of deasphalted oil and, on the other hand, to maintain or even minimize the asphaltenes content.
- This asphaltene content is generally determined by term of asphaltene content insoluble in heptane, ie measured according to a method described in standard NF-T 60-115 of January 2002.
- the asphaltenes content of the unphased effluent is less than 3000 ppm weight.
- the asphaltene content of the deasphalted effluent is less than 1000 ppm by weight, more preferably less than 500 ppm by weight.
- the applicant has developed an analytical method, covering the analysis quantification of asphaltenes from direct distillation products and heavy products from deasphalting residues. This method can be used for Asphaltene concentrations of less than 3000 ppm by weight and greater than 20 ppm weight.
- the method in question consists in comparing the absorbance at 750 nm of a sample in solution in toluene with that of a sample in solution in heptane after filtration. The difference between the two measured values is correlated at the concentration of insoluble asphaltenes in heptane using an equation calibration. This method complements the AFNOR T60-115 method and the IP143 standard method that are used for higher concentrations.
- the solvent used during step a) of deasphalting is advantageously a paraffinic solvent, a gasoline cutter or condensates containing paraffins.
- the solvent used in step a) comprises at least 50% by weight. the weight of hydrocarbon compounds having 3 to 7 carbon atoms, more preferred way between 5 and 7 carbon atoms, even more preferred 5 carbon atoms.
- the deasphalted oil yield and the quality of this oil may vary. For example, when we go from a solvent to 3 carbon atoms to a solvent with 7 carbon atoms, the oil yield increases but, in return, the levels of impurities (asphaltenes, metals, Conradson carbon, sulfur, nitrogen ...) also increase.
- the choice of operating conditions in particular the temperature and the amount of solvent injected has an impact on the yield of deasphalted oil and the quality of this oil.
- the skilled person can choose the optimal conditions to obtain a lower asphaltene content at 3000 ppm.
- Step a) of deasphalting can be carried out by any known means of the skilled person.
- Step a) is generally carried out in a mixer decanter or in an extraction column.
- the step of deasphalting is carried out in an extraction column.
- the extraction column a mixture comprising the hydrocarbon feedstock and a first fraction of a solvent charge, the volume ratio between the solvent feed fraction and the hydrocarbon feed being referred to as the rate of solvent injected with the feed.
- This step is to mix the feed with the solvent extraction column.
- a second fraction of the solvent charge the volume ratio between the second fraction of solvent charge and the hydrocarbon charge being called a rate of solvent injected at the bottom of the extractor.
- the volume of the hydrocarbon load considered in the settling zone is usually the one introduced into the extraction column.
- the sum of the two volume ratios between each of the solvent charge fractions and the hydrocarbon charge is called rate of global solvent.
- the decantation of the asphalt consists of the backwashing of the asphalt emulsion in the solvent + oil mixture with pure solvent. She is favored by an increase in the solvent ratio (it is actually a matter of replacing the solvent + oil environment by a pure solvent environment) and a decrease in temperature.
- the overall solvent level is preferably greater than 4/1, more preferably preferred greater than 5/1.
- This overall solvent content is decomposed into a level of solvent injected with the charge, preferably between 1/1 and 1.5 / 5, and a level of solvent injected extractor bottom, preferably greater than 3/1, more preferably higher at 4/1.
- a temperature gradient is established between the head and the bottom of the column to create an internal reflux, which improves the separation between the oily medium and the resins.
- the solvent mixture + heated oil at the top of the extractor makes it possible to precipitate a fraction comprising resin which goes down into the extractor.
- the upstream countercurrent of the mixture makes it possible to dissolve the fractions at a lower temperature. consisting of resin that are the lightest.
- the temperature at the extractor head is preferably between 175 and 195 ° C.
- the temperature at the bottom of the extractor is, for its part, preferably between 135 and 165 ° C.
- the pressure inside the extractor is usually adjusted so that all products remain in the liquid state. This pressure is, of preferably between 4 and 5 MPa.
- step b) of the process of the invention the effluent desalted in presence of hydrogen and a hydrocracking catalyst in a bed reactor bubbling according to the T-Star technology described, for example, in the article "Heavy Oil Hydroprocessing ", published by Aiche, Mar. 19-23, 1995, HOUSTON, Tex., Paper number 42 d, or according to the H-Oil technology described for example, in the published article by NPRA Annual Meeting, Mar. 16-18, 1997, J.J. Colyar and L.I. Wilson, "The H-Oil Process: A Worldwide Leader In Vacuum Residue Hydroprocessing ".
- step b) is conducted with the addition of fresh catalyst and spent catalyst removal.
- the presence of asphaltenes reduces the activity of the catalyst in the bubbling bed in terms of hydrodesulfurization, hydrodenitrogenation, Conradson Carbon reduction, hydrogenation of aromatics, demetallisation and leads to an increase in the rate of fresh catalyst replacement.
- the conversion into light products of the deasphalted oil is defined by the following formula: 100 * (500+ ch arg e - 500+ product) 500 + ch arg e - wherein 500 + filler represents the mass fraction of the deasphalted oil consisting of boiling components above 500 ° C and 500 + product is the mass fraction of the product consisting of boiling components above 500 ° C.
- step b) make it possible to achieve a conversion of at least 50% by weight.
- the conversion of the deasphalted effluent is at least 70% by weight, more preferably at least 75% by weight, even more preferably at least 80% by weight.
- the operating conditions must be chosen so as to achieve this level of performance.
- the temperature at which step b) is carried out can range from about 350 to about 550 ° C, preferably from about 380 to about 500 ° C. This temperature is usually adjusted according to the desired level of hydroconversion to light products.
- the hourly space velocity (VVH) and the hydrogen partial pressure are important factors that are chosen according to the characteristics of the product to be treated and the desired conversion. Most often the VVH can range from about 0.1 h -1 to about 10 h -1 , preferably from about 0.2 h -1 to about 5 h -1 .
- the amount of hydrogen mixed with the feed may be from about 50 to about 5000 Nm 3 / m 3 , preferably from about 100 to about 1000 Nm 3 / m 3 , more preferably from about 200 to about 500 Nm 3 / m 3 , expressed in normal cubic meters (Nm 3 ) per cubic meter (m 3 ) of liquid charge.
- the catalyst of step b) is preferably a catalyst hydroconversion process comprising an amorphous support and at least one metal or metal compound having a hydrogenating function.
- a catalyst is used whose porous distribution is adapted to the treatment of charges containing metals.
- the hydrogenating function may be provided by at least one Group VIII metal, for example nickel and / or cobalt most often in combination with at least one Group VIB metal, for example molybdenum and / or tungsten.
- a catalyst having a nickel content of 0.5 to 10% by weight, preferably 1 to 5% by weight (expressed as nickel oxide NiO) and a molybdenum content of 1 to 30% by weight can be used. weight, preferably from 5 to 20% by weight (expressed as molybdenum oxide MoO 3 ).
- the total content of Group VI and VIII metal oxides can range from about 5 to about 40% by weight, preferably from about 7 to 30% by weight.
- the weight ratio expressed as metal oxide between metal (or metals) of group VI on metal (or metals) of group VIII can range from about 1 to about 20, preferably from about 2 to about 10.
- the catalyst support of step b) can be chosen from the group formed by alumina, silica, silica-aluminas, magnesia, clays and mixtures at least two of these minerals.
- This support can also contain other compounds such as, for example, oxides selected from the group consisting of boron oxide, zirconia, titanium oxide, phosphoric anhydride.
- the support is based on alumina.
- the alumina used is usually a beta or gamma alumina. This support, in particular in the case of alumina, can be doped with phosphorus and possibly boron and / or silicon.
- the concentration of phosphorus pentoxide P205 is generally lower than about 20% by weight, preferably less than about 10% by weight and minus 0.001% by weight.
- the concentration of boron trioxide B203 is generally between 0 and about 10% by weight. This catalyst is the most often in the form of extruded.
- the catalyst of step b) is based on nickel and molybdenum, doped with phosphorus and supported on alumina
- the spent catalyst is usually replaced, in part, by catalyst cool thanks to a drawdown at the bottom of the reactor and a feed at the top of the fresh or new catalyst reactor.
- Racking and catalyst feed can be performed at regular time intervals, that is, for example by puff, or almost continuously or continuously. For example, we can introduce fresh catalyst every day.
- the replacement rate of the spent catalyst by fresh catalyst can range from about 0.05 kilogram to about 10 kilograms per cubic meter of charge.
- the withdrawal and the supply of catalyst are carried out using devices allowing continuous operation of step b) hydroconversion.
- the device in which step b) is implemented comprises generally a recirculation pump allowing the suspension to remain in suspension catalyst in the bubbling bed, by continuously reinjecting down the reactor at at least a portion of a liquid withdrawn at the top of the reactor. It is also possible to send spent catalyst withdrawn from the reactor into a regeneration zone in which one removes the carbon and the sulfur which it contains then to return this catalyst regenerated in the hydroconversion stage b).
- step c) of the process of the invention the effluent from the stage is fractionated. b) to recover gasoline, kerosene, diesel and a first residue. This The residue contains compounds with boiling points higher than those of diesel.
- step c) can be carried out by any known means of the skilled person such as, for example, by distillation.
- We can proceed to atmospheric distillation followed by vacuum distillation of the residue recovered during atmospheric distillation.
- the first residue can be a residue atmospheric or a vacuum residue.
- a separation of solid particles of catalyst is most often fines produced by mechanical degradation of the catalyst used in step b) hydroconversion.
- a rotary filter, a basket filter or still a centrifugation system such as a hydrocyclone associated with filters or a decanter online.
- This complementary step avoids deactivation the catalyst used in step d) because of the possible presence of molybdenum in the catalyst fines.
- at least two separation means are used in parallel, one is used to carry out the separation while the other is purged from the fines of the selected catalyst.
- step c) comprises a distillation under vacuum
- the distillate under vacuum can be sent in a catalytic hydrocracking step.
- This hydrocracking step is generally carried out on at least one fraction of the vacuum distillate in the presence of hydrogen to obtain an effluent including gasoline, kerosene, diesel and a residue.
- step c) At least a portion of the first residue obtained in step c) optionally with a direct distillation vacuum distillate are catalytically hydrocracked under conditions well known to man of the craft, to produce a fuel fraction (including a gasoline fraction, a kerosene fraction and a diesel fraction) which is usually sent to less in part to the fuel pools and a residue fraction.
- a fuel fraction including a gasoline fraction, a kerosene fraction and a diesel fraction
- hydrocracking catalytic system includes cracking processes comprising at least one step of conversion of the vacuum distillate fraction using at least one catalyst presence of hydrogen.
- the operating conditions used during the hydrocracking step allow to achieve pass conversions, products with boiling points less than 340 ° C, and better still below 370 ° C, greater than 10% by weight and even more preferably greater than 15% by weight, or even greater than 40% in weight.
- catalytic hydrocracking may include Mild hydrocracking, the objective of which is to convert hydrorefining an FCC and conventional hydrocracking.
- Conventional hydrocracking includes, for its part, the one-step diagrams primarily involving, in a general way, extensive hydrorefining which has purpose of carrying out extensive hydrodenitrogenation and desulfurization of the charge before the effluent is sent entirely onto the catalyst hydrocracking itself, in particular in the case where it comprises a zeolite. It also includes two-step hydrocracking that includes first step which aims, as in the "one step” process, to achieve hydrorefining the load, but also to achieve a conversion of the latter order in general from 40 to 60%. In the second step of a process two-stage hydrocracking process, only the fraction of the feed that is not converted during the first step is treated.
- hydrorefining catalysts usually contain minus an amorphous support and at least one hydro-dehydrogenating element (usually at least one element of groups VIB and VIII non-noble, and the most often at least one element of group VIB and at least one element of group VIII not noble).
- Dies that can be used in the hydrorefining catalyst alone or as a mixture are, by way of example, alumina, halogenated alumina, silica, silica-alumina, clays (chosen for example from clays such as kaolin or bentonite), magnesia, titanium oxide, boron oxide, zirconia, aluminum phosphates, phosphates of titanium, zirconium phosphates, coal, aluminates.
- matrices containing alumina in all known forms of human and even more preferably aluminas, for example alumina gamma.
- the catalysts described above are generally employed to ensure the cracking of the vacuum distillate fraction in a mild hydrocracking process, hydrorefining and in the hydrorefining step of conventional hydrocracking.
- the charge is generally brought into contact, in the presence of hydrogen, with at least one catalyst as described above, at a temperature between 330 and 450 ° C., preferably between 360 and 425 ° C., under a pressure of between 4 and 25 MPa, preferably less than 20 MPa, with a space velocity of between 0.1 and 6 h -1 , preferably between 0.2 and 3 h -1 , and a quantity of hydrogen introduced.
- the volume ratio in liters of hydrogen per liter of hydrocarbon is between 100 and 2000 I / I.
- the vacuum distillate fraction undergoes in the hydrorefining zone, a hydrotreatment pushed on a catalyst such as described above, in order to be hydrodesulfurized and hydrodenitrogenated before being introduced in whole or in part into a second reaction zone containing a hydrocracking catalyst.
- the operating conditions used in the reactor (s) of this second reaction zone are generally a temperature greater than 200 ° C., often between 250 ° -480 ° C., advantageously between 320 ° C. and 450 ° C., preferably between 330 ° and 420 ° C. a pressure of between 5 and 25 MPa, preferably less than 20 MPa, a space velocity of between 0.1 and 20 h -1 and preferably between 0.1 and 6 h -1 , preferably between 0.2 and 3 h - 1 , and a quantity of hydrogen introduced such that the volume ratio in liters of hydrogen per liter of hydrocarbon is between 80 and 5000 I / I, most often between 100 and 2000 I / I.
- This reaction zone generally comprises at least one reactor containing at least one fixed bed of hydrocracking catalyst.
- This fixed bed of hydrocracking catalyst may be preceded by at least one fixed bed of a catalyst hydrorefining as described above.
- Hydrocracking catalysts used in hydrocracking processes are generally of the bi-functional type associating an acid function with a hydrogenating function.
- the acid function can be provided by supports having a large surface area (150 to 800 m2.g-1 generally) and having superficial acidity, such as aluminas halogenated (chlorinated or fluorinated in particular), the combinations of boron oxides and of aluminum, amorphous silica-aluminas known as hydrocracking catalysts amorphous and zeolites.
- the hydrogenating function can be provided either by a or more metals of Group VIII of the Periodic Table of Elements, either by a combination of at least one Group VIB metal of the classification and at least one Group VIII metal.
- the hydrocracking catalyst may comprise at least one acid function crystallized such as a zeolite Y, or an amorphous acid function such as a silica-alumina, at least one matrix and a hydro-dehydrogenating function.
- it may also comprise at least one element chosen from boron, phosphorus and silicon, at least one element of group VIIA (chlorine, fluorine for example), at least one element of group VIIB (manganese for example), least one element of the group VB (niobium for example).
- a cracking is carried out catalytically at least a part of the first residue to obtain an effluent comprising gasolines, kerosene, gas oils and a second residue.
- step a) of the process of the invention allows to obtain an effluent at the outlet of step b) preferably having a content of Conradson carbon less than 10% by weight, more preferably less than 5% by weight and a nitrogen content of less than 3000 ppm, which is favorable for obtaining a high conversion of the residue of step b) associated with obtaining yields of gasoline, kerosene and high diesel.
- step a) of deasphalting combined with the conditions of step b) hydroconversion and step d) cracking contribute to increase the yield of gasolines, kerosene and gas oils of the process of the invention and improve the quality of these products.
- step d) hydrocracking the products from catalytic cracking and catalytic hydrocracking are of sufficient quality to be exploitable directly or with few post-treatments.
- At least a portion of the first residue obtained in step c) is cracked catalytically under conditions well known to those skilled in the art for produce on the one hand a fuel fraction (comprising a gasoline fraction and a diesel fraction) that is usually sent at least partly to the pools fuels and on the other hand, a slurry fraction which may be, at least in part, even entirely, sent to the heavy fuel pool or recycled at least in part, or even all, in step d) of catalytic cracking.
- the conventional catalytic cracking term includes cracking processes comprising at least one partial combustion regeneration step and those comprising at least one full combustion regeneration step and / or those comprising at least one partial combustion step and at least one total combustion stage.
- This catalytic cracking may be as described in Ullmans Encyclopedia of Industrial Chemistry Volume A 18, 1991, pages 61 to 64.
- a conventional catalyst comprising a matrix, optionally a additive and at least one zeolite.
- the amount of zeolite is variable but usually from about 3 to 60% by weight, often from about 6 to 50% by weight and most often from about 10 to 45% by weight.
- Zeolite is usually dispersed in the matrix.
- the amount of additive is usually about 0 to 30% by weight and often from about 0 to 20% by weight.
- the amount of matrix represents the complement at 100% by weight.
- the additive is usually selected from the group formed by the oxides of metals in group IIA of the periodic table of such as, for example, magnesium oxide or calcium oxide, rare earth oxides and titanates of Group IIA metals.
- the matrix is the more often a silica, an alumina, a silica-alumina, a silica-magnesia, a clay or a mixture of two or more of these products.
- the most zeolite commonly used is zeolite Y.
- Cracking is carried out in a substantially vertical reactor either in ascending (riser) or in descending mode (dropper).
- the choice of catalyst and operating conditions depends on the products sought according to the load treated as is for example described in the article by M.
- Marcilly pages 990-991 published in the review of the Institut für du Pperile November-December 1975 pages 969-1006. It is usually carried out at a temperature of about 450 to about 600 ° C and residence times in the reactor less than 1 minute, often about 0.1 to about 50 seconds.
- the catalytic cracking may also be catalytic cracking in a fluidized bed, for example according to the process developed by the Applicant called R2R.
- This catalytic cracking in a fluidized bed can be carried out conventionally those skilled in the art under the appropriate conditions of cracking with a view to to produce hydrocarbon products of lower molecular weight.
- the reactor catalytic cracking in a fluidized bed can operate with updraft or current descending. Although this is not a preferred form of realization of the the present invention, it is also conceivable to carry out catalytic cracking in a moving bed reactor.
- Catalytic cracking catalysts particularly preferred are those containing at least one zeolite usually mixed with a suitable matrix such as for example alumina, silica, silica-alumina.
- the effluent obtained in step d) is generally fractionated to recover at least one gasoline fraction, a kerosene fraction, diesel fuel and a second residue.
- This fractionation can be achieved by any means known to the man of the such as, for example, by distillation.
- distillation we proceed to a atmospheric distillation followed by vacuum distillation of the residue recovered during atmospheric distillation.
- FIGS 1 and 2 show schematically the main variants for carrying out the method according to the present invention.
- the hydrocarbon feedstock to be treated enters the line 1 in the deasphalting section 2 in the presence of a solvent, said solvent being introduced by line 3.
- the asphalt fraction plus some of the solvent injected in Section 2 is withdrawn via line 4 and directed to a separation section 5 of the solvent and asphalt.
- the asphalt is drawn off by line 6.
- the solvent is drawn off by line 7 and reinjected in section 2 by lines 8, 1 and 3.
- the deasphalted fraction, called commonly deasphalted oil, plus some of the solvent injected into section 2 is withdrawn through line 9 and directed to a section 10 of solvent separation and unadapted oil.
- the solvent is withdrawn from line 8 and reinjected into the section 2 by lines 8, 1 and 3.
- the deasphalted oil to be hydrocracked enters line 11 in the boiling bed hydroconversion section 12.
- the catalyst booster made by the line 13 and the withdrawal line 14.
- the hydrogen is introduced by the line 15.
- the effluent treated in section 12 is sent via line 16 to a section 17 separation from which, after relaxation, the line 18 effluent that is sent to distillation section 19 from which one recovers a gas fraction by the line 20, a gasoline fraction by the line 21, a kerosene fraction by line 22 and a diesel fraction by line 23.
- the residual atmospheric is sent through line 24 in section 25 cracking Catalytic.
- the effluent from the catalytic cracking section is sent through the line 24 to a distillation section 27 from which we retrieve via line 28 a gaseous fraction, by line 29 a gasoline fraction, by line 30 a diesel fraction and by line 31 a slurry fraction which is partly sent to the pool heavy fuel oil from the refinery, another part of this slurry fraction being possibly sent via line 32 into the catalytic cracking section 25, another part possibly being sent to the processing section 12 in bed bubbly.
- Part of the diesel fraction of line 23 is possibly sent with the residue of line 24 in the catalytic cracking section 25.
- Part of the gasoline fraction of line 21 or 22 is eventually sent with the residue of line 24 in the catalytic cracking section 25.
- a vacuum residue (RSV) of heavy crude oil is deasphalted with pentane:
- the vacuum residue has the following properties: Properties of the Vacuumed Residue D15 / 4 1.06 Sulfur,% by weight 5.7 Ni + V, ppm weight 500 Nitrogen, ppm by weight 6800 Insoluble Asphaltenes C7,% by weight 17 Carbon Conradson,% weight 25
- the operating conditions of the deasphalting step are as follows: Overall dilution rate, v / v 5/1 Solvent content injected with the charge, v / v 1/1 Solvent content in bottom of extractor, v / v 4/1 Extractor head temperature, ° C 188 Extractor bottom temperature, ° C 158 Extractor pressure, MPa 4.2
- a deasphalted oil is produced with a yield of 62% by weight and an asphalt is produced with a yield of 38% by weight. All returns are calculated from a base 100 (by mass) of vacuum residue.
- the deasphalted oil has the following properties: Deasphalted oil Specific density 1.01 Nickel + Vanadium content, ppm by weight 130 Sulfur content,% by weight 4.6 Nitrogen content,% by weight 0.42 Conradson Carbon,% by weight 12.0 Asphaltenes content (insoluble in heptane) NF-T 60-115,% by weight ⁇ 0.05
- Disaspahalated oil is mainly characterized by its asphaltenes (insoluble in heptane) according to standard NF-T 60-115 lower than 0.05% by weight which makes it a clean, unadulterated oil of very high quality.
- This deasphalted oil is then introduced, in the presence of hydrogen, in a pilot reactor in a bubbling bed in order to obtain a conversion of 85% weight of fraction 524 ° C +.
- This reactor contains 1 liter of a specific catalyst for the T-STAR® application manufactured by AXENS under the reference HTS-458 which is specific to bubbling bed treatment of heavy loads containing metals.
- the overall performance of the catalyst is as follows: HDS desulfurization rate,% 96.7 HDN denitration rate,% 71 Carbon conversion rate Conradson HDCCR,% 90 HDM demetallization rate,% 99.9
- the degree of purification of an impurity X is defined as follows: 100 * (Xch arg e - Xproduit) Xcharge where Xcharge represents the impurity content of the charge and Xproduct represents the impurity content of the liquid product
- the qualities of the associated products are as follows: Essence1 Sulfur / nitrogen, ppm weight ⁇ 50/10 Density 0.737 Kerosene 1 Sulfur / nitrogen, ppm weight 210/175 Density 0.824 Gazole1 Sulfur / nitrogen, ppm weight 280/500 Density 0.866 Number of cetane, ASTM D613 46 Atmospheric residue1 Sulfur / nitrogen, ppm weight 2950/2320 Density 0.932 NMR hydrogen,% by weight 11.8 Ni + V, ppm weight ⁇ 1 CCR,% weight 2.5
- distillates produced at the end of this stage possess qualities which make it possible to envisage a moderate hydrotreatment in order to to meet current specifications.
- the atmospheric residue1 called the first residue in the present invention, is processed in a conventional catalytic cracking unit.
- the residue thus prepared has, in fact surprisingly, properties of purity and remarkable hydrogenation.
- this residue is characterized by a carbon Conradson weak that limits the formation of coke.
- distillates produced are furthermore characterized by levels of low impurities (eg diesel sulfur) which will require moderate additional hydrotreatments in order to reach the specifications in force. These distillates can therefore be valued commercially so individual.
- low impurities eg diesel sulfur
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
Solvant | C3 | C4 | C5 |
Rendement en huile désaphaltée par rapport au résidu sous vide, % en poids | base | base+30 | base+45 |
Caractéristiques de l'huile | |||
Densité d15/4 | 0,933 | 0,959 | 0,974 |
Soufre (% en poids) | 2,6 | 3,3 | 3,7 |
Carbone Conradson (% en poids) | 1,9 | 5,9 | 7,9 |
Asphaltènes C7 (% en poids) | <0,05 | 0,07 | 0,15 |
Ni(ppm) | 1 | 3 | 7 |
V (ppm) | 1,5 | 2,5 | 15,5 |
Propriétés du Résidu Sous Vide | |
D15/4 | 1,06 |
Soufre, % poids | 5,7 |
Ni+V, ppm poids | 500 |
Azote, ppm poids | 6800 |
Asphaltènes insolubles C7, % poids | 17 |
Carbon Conradson, % poids | 25 |
Taux de dilution global, v/v | 5/1 |
Taux de Solvant injecté avec la charge, v/v | 1/1 |
Taux de Solvant en fond d'extracteur, v/v | 4/1 |
Température en tête d'extracteur, °C | 188 |
Température en fond d'extracteur, °C | 158 |
Pression de l'extracteur, MPa | 4,2 |
Huile désasphaltée | |
Densité spécifique | 1,01 |
Teneur en Nickel + Vanadium, ppm poids | 130 |
Teneur en soufre, % poids | 4,6 |
Teneur en azote , % poids | 0,42 |
Carbone Conradson, % poids | 12,0 |
Teneur en asphaltènes (insolubles dans l'heptane) NF-T 60-115, % poids | < 0,05 |
- VVH par rapport au lit catalytique tassé : 0.8 h-1
- Pression d'hydrogène : 13,5 MPa
- Recyclage d'hydrogène : 600 litres d'hydrogène par litre de charge
- Température dans le réacteur : 435°C
- Age du catalyseur: 29 jours
Taux de désulfuration HDS, % | 96,7 |
Taux de désazotation HDN, % | 71 |
Taux de réduction du Carbone Conradson HDCCR, % | 90 |
Taux de démétallisation HDM, % | 99.9 |
et Xproduit représente la teneur en impuretés du produit liquide
Coupe | Rendement poids par rapport à l'huile désasphaltée |
Essence1 | 16 |
Kérosène1 | 13 |
Gazole1 | 18 |
Résidu atmosphérique1 | 42 |
Coupe | Rendement poids par rapport au résidu sous vide non désasphalté |
Essence1 | 16*0,62=9,9 |
Kérosène1 | 13*0,62=8,1 |
Gazole1 | 18*0,62=11,2 |
Résidu1 | 42*0,62=26,0 |
Essence1 | ||
Soufre/azote, ppm poids | <50/10 | |
Densité | 0,737 | |
Kérosène 1 | ||
Soufre/azote, ppm poids | 210/175 | |
Densité | 0,824 | |
Gazole1 | ||
Soufre/azote, ppm poids | 280/500 | |
Densité | 0,866 | |
Nombre de cétane, ASTM D613 | 46 | |
Résidu atmosphérique1 | ||
Soufre/azote, ppm poids | 2950/2320 | |
Densité | 0,932 | |
Hydrogène RMN, % poids | 11.8 | |
Ni+V, ppm poids | <1 | |
CCR, % poids | 2,5 |
Gaz et LPG | ||
% poids du résidu atmosphérique | 18,6 | |
Essence2 | ||
% poids du résidu atmosphérique | 47,6 | |
Teneur en soufre, ppm poids | 90 | |
Gazole 2 (LCO) | ||
% poids du résidu atmosphérique | 14,8 | |
Teneur en soufre, % poids | 0,390 | |
Slurry (second résidu selon l'invention) | ||
% poids du résidu atmosphérique | 11,6 | |
Coke | ||
% poids du résidu atmosphérique | 7,4 |
Coupe | Rendement poids par rapport au résidu sous vide non désasphalté |
Essence1+Essence2 | 9,9+12,4=22,3 |
Kérosène1 | 8,1 |
Gazole1+Gazole2 | 11,2+3,8=15,0 |
Résidu2 | 3,0 |
Asphalte | 38 |
Claims (11)
- Procédé de traitement d'une charge d'hydrocarbures dont au moins 95% en poids sont constitués de composés ayant une température d'ébullition d'au moins 340°C, caractérisé en ce qu'il comprend les étapes suivantes, dans lesquelles :a) on met en contact la charge avec un solvant de manière à obtenir un effluent désasphalté ayant une teneur en asphaltènes (insolubles dans le n-heptane selon la norme NF-T-60-115) inférieure à 3000 ppm poids,b) on craque l'effluent désasphalté en présence d'hydrogène et d'un catalyseur d'hydrocraquage, dans un réacteur à lit bouillonnant, de manière à convertir au moins 50 % en poids de la fraction de l'effluent désasphalté bouillant au dessus de 500°C en composés ayant un point d'ébullition inférieur à 500°C,c) on fractionne l'effluent de l'étape b) pour récupérer des essences, du kérosène, des gazoles et un premier résidu, etd) on craque catalytiquement au moins une partie de ce premier résidu de manière à obtenir un effluent comprenant des essences, du kérosène, des gazoles et un second résidu.
- Procédé selon la revendication 1, caractérisé en ce que la charge d'hydrocarbures présente un point d'ébullition final supérieur à 600°C.
- Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que la charge d'hydrocarbures comporte essentiellement des résidus atmosphériques et des résidus sous vide de bruts lourds.
- Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la teneur en asphaltènes de l'effluent désasphalté est inférieure à 1000 ppm poids.
- Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la teneur en asphaltènes de l'effluent désasphalté est inférieure à 500 ppm poids.
- Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le solvant utilisé lors de l'étape a) comprend au moins 50 % en poids de composés hydrocarbonés ayant entre 3 et 7 atomes de carbone.
- Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que l'étape de désasphaltage est réalisée dans une colonne d'extraction.
- Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le catalyseur de l'étape b) est un catalyseur d'hydroconversion comprenant un support amorphe et au moins un métal ou composé de métal ayant une fonction hydrogénante.
- Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'on effectue, consécutivement à l'étape c), une séparation des particules solides de catalyseur.
- Procédé selon l'une quelconque des revendications 1 à 9, dans lequel l'étape c) comporte une distillation atmosphérique suivie d'une distillation sous vide.
- Procédé selon la revendication 10, dans lequel le distillat sous vide est envoyé dans une étape d'hydrocraquage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL04290989T PL1505142T3 (pl) | 2003-04-25 | 2004-04-13 | Proces waloryzacji ciężkich wsadów przez odasfaltowanie i hydrokraking we wrzącym złożu |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0305211 | 2003-04-25 | ||
FR0305211A FR2854163B1 (fr) | 2003-04-25 | 2003-04-25 | Procede de valorisation de charges lourdes par desasphaltage et hydrocraquage en lit bouillonnant |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1505142A1 true EP1505142A1 (fr) | 2005-02-09 |
EP1505142B1 EP1505142B1 (fr) | 2008-02-13 |
Family
ID=33104458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04290989A Expired - Lifetime EP1505142B1 (fr) | 2003-04-25 | 2004-04-13 | Procédé de valorisation de charges lourdes par désasphaltage et hydrocraquage en lit bouillonnant |
Country Status (7)
Country | Link |
---|---|
US (2) | US20050006279A1 (fr) |
EP (1) | EP1505142B1 (fr) |
KR (1) | KR101088267B1 (fr) |
CA (1) | CA2464796C (fr) |
FR (1) | FR2854163B1 (fr) |
PL (1) | PL1505142T3 (fr) |
RU (1) | RU2344160C2 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101560330B (zh) * | 2009-06-01 | 2010-11-10 | 上海富沃地润滑油有限公司 | 环保型橡胶软化油的生产方法 |
FR3008711A1 (fr) * | 2013-07-19 | 2015-01-23 | IFP Energies Nouvelles | Procede de raffinage d'une charge hydrocarbonee de type residu sous-vide mettant en œuvre un desasphaltage selectif, un hydrotraitement et une conversion du residu sous-vide pour la production d'essence et d'olefines legeres |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101045884B (zh) * | 2006-03-31 | 2010-05-12 | 中国石油化工股份有限公司 | 一种由渣油和重馏分油生产清洁柴油和低碳烯烃的方法 |
KR101589565B1 (ko) * | 2007-12-20 | 2016-01-28 | 차이나 페트로리움 앤드 케미컬 코포레이션 | 탄화수소유의 수소화처리 및 촉매식 분해의 결합된 방법 |
US8048291B2 (en) * | 2007-12-27 | 2011-11-01 | Kellogg Brown & Root Llc | Heavy oil upgrader |
US8277637B2 (en) * | 2007-12-27 | 2012-10-02 | Kellogg Brown & Root Llc | System for upgrading of heavy hydrocarbons |
US8152994B2 (en) * | 2007-12-27 | 2012-04-10 | Kellogg Brown & Root Llc | Process for upgrading atmospheric residues |
MX2009002645A (es) * | 2009-03-11 | 2010-10-01 | Mexicano Inst Petrol | Hidroprocesamiento de hidrocarburos pesados, empleando corrientes liquidas para el apagado de la reaccion. |
WO2010151463A2 (fr) * | 2009-06-25 | 2010-12-29 | Uop Llc | Procédé et appareil de séparation du brai d'un gasoil sous vide hydrocraqué sous forme de boue et composition |
US8231775B2 (en) * | 2009-06-25 | 2012-07-31 | Uop Llc | Pitch composition |
US8193401B2 (en) * | 2009-12-11 | 2012-06-05 | Uop Llc | Composition of hydrocarbon fuel |
US8133446B2 (en) * | 2009-12-11 | 2012-03-13 | Uop Llc | Apparatus for producing hydrocarbon fuel |
US9074143B2 (en) * | 2009-12-11 | 2015-07-07 | Uop Llc | Process for producing hydrocarbon fuel |
CA2862613C (fr) * | 2009-12-11 | 2016-02-23 | Uop, Llc | Composition d'hydrocarbures |
JP5421793B2 (ja) * | 2010-01-12 | 2014-02-19 | 日揮株式会社 | 原油処理システム |
US9410090B2 (en) | 2010-11-29 | 2016-08-09 | Jgc Corporation | Method of operating crude treatment system |
FR2969648B1 (fr) * | 2010-12-24 | 2014-04-11 | Total Raffinage Marketing | Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par hydroconversion en lit bouillonnant, fractionnement par distillation atmospherique, et hydrocraquage |
FR2969651B1 (fr) * | 2010-12-24 | 2014-02-21 | Total Raffinage Marketing | Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par decontamination, hydroconversion en lit bouillonnant, et fractionnement par distillation atmospherique |
US8993824B2 (en) | 2011-09-28 | 2015-03-31 | Uop Llc | Fluid catalytic cracking process |
US9650312B2 (en) | 2013-03-14 | 2017-05-16 | Lummus Technology Inc. | Integration of residue hydrocracking and hydrotreating |
US9410089B2 (en) * | 2013-12-19 | 2016-08-09 | Epic Oil Extractors, Llc | Propane process for producing crude oil and bitumen products |
US9901849B2 (en) | 2014-06-13 | 2018-02-27 | Uop Llc | Process for removing catalyst fines from a liquid stream from a fixed bed reactor |
US9783748B2 (en) | 2014-09-09 | 2017-10-10 | Uop Llc | Process for producing diesel fuel |
US9663732B2 (en) | 2014-09-09 | 2017-05-30 | Uop Llc | Process for controlling operations of a residue process unit |
CN114774163B (zh) * | 2016-10-18 | 2024-01-19 | 马威特尔有限责任公司 | 用作燃料的配制的组合物 |
CN106753553B (zh) * | 2016-12-29 | 2018-05-04 | 中石化南京工程有限公司 | 一种渣油/煤焦油轻质化生产碳微球的装置及方法 |
RU2709515C1 (ru) * | 2019-03-22 | 2019-12-18 | Маветал Ллс | Топливная композиция, образованная из лёгкой нефти низкопроницаемых коллекторов и топочных масел с высоким содержанием серы |
WO2020206527A1 (fr) * | 2019-04-12 | 2020-10-15 | Clinique De Valorisation- Fournier Et Filles Inc. (Cv-Ff Inc.) | Amélioration d'un processus simplifié pour la fluidisation d'huiles lourdes servant au transport d'huiles lourdes et à la réduction des gaz à effet de serre |
FR3101637B1 (fr) * | 2019-10-07 | 2021-10-22 | Ifp Energies Now | Procede de production d’olefines comprenant un desasphaltage, une hydroconversion, un hydrocraquage et un vapocraquage |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3245900A (en) * | 1963-12-26 | 1966-04-12 | Chevron Res | Hydrocarbon conversion process |
US3268437A (en) * | 1963-08-29 | 1966-08-23 | Gulf Research Development Co | Hydrocracking of nitrogen containing hydrocarbon oils for the preparation of middle oils |
US4447313A (en) * | 1981-12-01 | 1984-05-08 | Mobil Oil Corporation | Deasphalting and hydrocracking |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2973313A (en) * | 1957-05-13 | 1961-02-28 | Texaco Inc | Treatment of deasphalted oil and asphalt to make reformed gasoline |
NL7610510A (nl) * | 1976-09-22 | 1978-03-28 | Shell Int Research | Werkwijze voor het omzetten van koolwater- stoffen. |
DE3152896A1 (de) * | 1981-06-09 | 1983-06-16 | Chiyoda Chem Eng Construct Co | Verfahren zum hydrocracken von kohlenwasserstoffen |
US5089114A (en) * | 1988-11-22 | 1992-02-18 | Instituto Mexicano Del Petroleo | Method for processing heavy crude oils |
JP2966985B2 (ja) * | 1991-10-09 | 1999-10-25 | 出光興産株式会社 | 重質炭化水素油の接触水素化処理方法 |
US6179995B1 (en) * | 1998-03-14 | 2001-01-30 | Chevron U.S.A. Inc. | Residuum hydrotreating/hydrocracking with common hydrogen supply |
FR2885134B1 (fr) * | 2005-04-28 | 2008-10-31 | Inst Francais Du Petrole | Procede de prerafinage de petrole brut avec hydroconversion moderee en plusieurs etapes de l'asphalte vierge en presence de diluant |
FR2885135B1 (fr) * | 2005-04-28 | 2007-06-29 | Inst Francais Du Petrole | Procede de pre-raffinage de petrole brut pour la production d'au moins deux petroles non asphalteniques pa, pb et un petrole asphaltenique pc |
FR2904831B1 (fr) * | 2006-08-08 | 2012-09-21 | Inst Francais Du Petrole | Procede et installation de traitement de petrole brut avec conversion de residu asphaltenique |
US7938952B2 (en) * | 2008-05-20 | 2011-05-10 | Institute Francais Du Petrole | Process for multistage residue hydroconversion integrated with straight-run and conversion gasoils hydroconversion steps |
US9284499B2 (en) * | 2009-06-30 | 2016-03-15 | Uop Llc | Process and apparatus for integrating slurry hydrocracking and deasphalting |
US9074143B2 (en) * | 2009-12-11 | 2015-07-07 | Uop Llc | Process for producing hydrocarbon fuel |
-
2003
- 2003-04-25 FR FR0305211A patent/FR2854163B1/fr not_active Expired - Lifetime
-
2004
- 2004-04-13 PL PL04290989T patent/PL1505142T3/pl unknown
- 2004-04-13 EP EP04290989A patent/EP1505142B1/fr not_active Expired - Lifetime
- 2004-04-21 CA CA2464796A patent/CA2464796C/fr not_active Expired - Lifetime
- 2004-04-23 KR KR1020040028180A patent/KR101088267B1/ko active IP Right Grant
- 2004-04-23 RU RU2004112558/15A patent/RU2344160C2/ru active
- 2004-04-26 US US10/831,365 patent/US20050006279A1/en not_active Abandoned
-
2010
- 2010-10-08 US US12/900,987 patent/US8636896B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3268437A (en) * | 1963-08-29 | 1966-08-23 | Gulf Research Development Co | Hydrocracking of nitrogen containing hydrocarbon oils for the preparation of middle oils |
US3245900A (en) * | 1963-12-26 | 1966-04-12 | Chevron Res | Hydrocarbon conversion process |
US4447313A (en) * | 1981-12-01 | 1984-05-08 | Mobil Oil Corporation | Deasphalting and hydrocracking |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101560330B (zh) * | 2009-06-01 | 2010-11-10 | 上海富沃地润滑油有限公司 | 环保型橡胶软化油的生产方法 |
FR3008711A1 (fr) * | 2013-07-19 | 2015-01-23 | IFP Energies Nouvelles | Procede de raffinage d'une charge hydrocarbonee de type residu sous-vide mettant en œuvre un desasphaltage selectif, un hydrotraitement et une conversion du residu sous-vide pour la production d'essence et d'olefines legeres |
US9926499B2 (en) | 2013-07-19 | 2018-03-27 | IFP Energies Nouvelles | Process for refining a hydrocarbon feedstock of the vacuum residue type using selective deasphalting, a hydrotreatment and a conversion of the vacuum residue for production of gasoline and light olefins |
Also Published As
Publication number | Publication date |
---|---|
FR2854163B1 (fr) | 2005-06-17 |
RU2004112558A (ru) | 2005-10-10 |
CA2464796C (fr) | 2011-11-15 |
KR101088267B1 (ko) | 2011-11-30 |
US8636896B2 (en) | 2014-01-28 |
KR20040093010A (ko) | 2004-11-04 |
RU2344160C2 (ru) | 2009-01-20 |
CA2464796A1 (fr) | 2004-10-25 |
US20050006279A1 (en) | 2005-01-13 |
US20110062055A1 (en) | 2011-03-17 |
PL1505142T3 (pl) | 2008-06-30 |
FR2854163A1 (fr) | 2004-10-29 |
EP1505142B1 (fr) | 2008-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1505142B1 (fr) | Procédé de valorisation de charges lourdes par désasphaltage et hydrocraquage en lit bouillonnant | |
CA3021600C (fr) | Procede de conversion comprenant des lits de garde permutables d'hydrodemetallation, une etape d'hydrotraitement en lit fixe et une etape d'hydrocraquage en reacteurs permutables | |
CA2330461C (fr) | Procede de conversion de fractions petrolieres comprenant une etape d'hydroconversion en lit bouillonnant, une etape de separation, une etape d'hydrodesulfuration et une etape de craquage | |
EP3303523B1 (fr) | Procede de conversion de charges comprenant une etape d'hydrotraitement, une etape d'hydrocraquage, une etape de precipitation et une etape de separation des sediments pour la production de fiouls | |
EP3303522B1 (fr) | Procede de conversion de charges comprenant une etape d'hydrocraquage, une etape de precipitation et une etape de separation des sediments pour la production de fiouls | |
CA2239827C (fr) | Procede de conversion de fractions lourdes petrolieres comprenant une etape de conversion en lit bouillonnant et une etape d'hydrocraquage | |
EP3260520B1 (fr) | Procede ameliore d'hydroconversion profonde au moyen d'une extraction des aromatiques et resines avec valorisation de l'extrait a l'hydroconversion et du raffinat aux unites aval | |
EP3018188B1 (fr) | Procede de conversion de charges petrolieres comprenant une etape d'hydrotraitement en lit fixe, une etape d'hydrocraquage en lit bouillonnant, une etape de maturation et une etape de separation des sediments pour la production de fiouls a basse teneur en sediments | |
CA2248882C (fr) | Procede de conversion de fractions lourdes petrolieres comprenant une etape d'hydroconversion en lit bouillonnant et une etape d'hydrotraitement | |
EP3018189B1 (fr) | Procede de conversion de charges petrolieres comprenant une etape de viscoreduction, une etape de maturation et une etape de separation des sediments pour la production de fiouls a basse teneur en sediments | |
FR2776297A1 (fr) | Procede de conversion de fractions lourdes petrolieres comprenant une etape d'hydrotraitement en lit fixe, une etape de conversion en lit bouillonnant et une etape de craquage catalytique | |
FR2964387A1 (fr) | Procede de conversion de residu integrant une etape de desasphaltage et une etape d'hydroconversion avec recycle de l'huile desasphaltee | |
FR3014111A1 (fr) | Procede de raffinage d'une charge hydrocarbonee lourde mettant en œuvre un desasphaltage selectif en cascade | |
CA2915282C (fr) | Procede de conversion profonde de residus maximisant le rendement en essence | |
CA2915286C (fr) | Procede de conversion profonde de residus maximisant le rendement en gazole | |
FR3075807A1 (fr) | Procede ameliore de conversion de residus integrant des etapes d’hydroconversion profonde en lit entraine et une etape de desasphaltage | |
FR3008711A1 (fr) | Procede de raffinage d'une charge hydrocarbonee de type residu sous-vide mettant en œuvre un desasphaltage selectif, un hydrotraitement et une conversion du residu sous-vide pour la production d'essence et d'olefines legeres | |
WO2012085406A1 (fr) | Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par hydroconversion en lit bouillonnant, fractionnement par distillation atmospherique et extraction liquide/liquide de la fraction lourde. | |
WO2010004127A2 (fr) | Procede de conversion comprenant une viscoreduction de residu puis un desasphaltage et une hydroconversion | |
WO2010004126A2 (fr) | Procede de conversion comprenant une hydroconversion d'une charge, un fractionnement puis un desasphaltage de la fraction residu sous vide | |
WO2012085408A1 (fr) | Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par decontamination, hydroconversion en lit bouillonnant, et fractionnement par distillation atmospherique | |
FR3084371A1 (fr) | Procede de traitement d'une charge hydrocarbonee lourde comprenant un hydrotraitement en lit fixe, un desasphaltage et un hydrocraquage en lit bouillonnant de l'asphalte | |
FR3084372A1 (fr) | Procede de traitement d'une charge hydrocarbonee lourde comprenant un hydrotraitement en lit fixe, deux desasphaltages et un hydrocraquage en lit bouillonnant de l'asphalte | |
WO2014096602A1 (fr) | Procédé de raffinage d'une charge hydrocarbonée lourde mettant en oeuvre un des désasphaltage sélectif | |
WO2016192893A1 (fr) | Procédé de conversion de charges comprenant une étape de viscoréduction, une étape de précipitation et une étape de séparation des sédiments pour la production de fiouls |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
17P | Request for examination filed |
Effective date: 20050809 |
|
AKX | Designation fees paid |
Designated state(s): CZ IT PL SK |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
17Q | First examination report despatched |
Effective date: 20060424 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CZ IT PL SK |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20081114 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20230331 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230421 Year of fee payment: 20 Ref country code: CZ Payment date: 20230412 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20230403 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: MK4A Ref document number: E 3266 Country of ref document: SK Expiry date: 20240413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240413 |