CA2330461C - Procede de conversion de fractions petrolieres comprenant une etape d'hydroconversion en lit bouillonnant, une etape de separation, une etape d'hydrodesulfuration et une etape de craquage - Google Patents
Procede de conversion de fractions petrolieres comprenant une etape d'hydroconversion en lit bouillonnant, une etape de separation, une etape d'hydrodesulfuration et une etape de craquage Download PDFInfo
- Publication number
- CA2330461C CA2330461C CA2330461A CA2330461A CA2330461C CA 2330461 C CA2330461 C CA 2330461C CA 2330461 A CA2330461 A CA 2330461A CA 2330461 A CA2330461 A CA 2330461A CA 2330461 C CA2330461 C CA 2330461C
- Authority
- CA
- Canada
- Prior art keywords
- fraction
- sent
- diesel
- catalyst
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G69/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/04—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/12—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Procédé de conversion d'une fraction d'hydrocarbures comprenant une étape a) de traitement d'une charge hydrocarbonée en présence d'hydrogène dans au moins un réacteur triphasique (1), contenant au moins un catalyseur d'hydroconversion en lit bouillonnant, une étape b) dans laquelle au moins une partie de l'effluent issu de l'étape a) est envoyé dans une zone de séparation (2) à partir de laquelle on obtient une fraction F1 contenant habituellement au moins une partie du gaz, de l'essence, et du gazole atmosphérique contenu dans l'effluent de l'étape a), et une fraction F2 contenant habituellement principalement des composés ayant des points d'ébullition supérieurs à ceux du gazole atemosphérique, une étape c) de d'hydrodésulfuration d'au moins une partie de la fraction F1 dans au moins un réacteur (4) contenant au moins un catalyseur d'hydrotraitement en lit fixe dans des conditions permettant d'obtenir un effluent à teneur réduite en soufre, et une étape d) dans laquelle au moins une partie de la fraction F2 est envoyée dans une section de craquage catalytique (6).
Description
PROCÉDÉ DE CONVERSION DE FRACTIONS PÉTROLIERES COMPRENANT
UNE ÉTAPE D'HYDROCONVERSION EN LIT BOUILLONNANT, UNE
ÉTAPE DE SÉPARATION, UNE ÉTAPE D'HYDRODÉSULFURATION
ET UNE ÉTAPE DE CRAQUAGE
La présente invention concerne le raffinage et la conversion des fractions pétrolières et en particulier de distillats d'hydrocarbures contenant entre autre des impuretés soufrées. Elle concerne plus particulièrement un procédé permettant de convertir au moins en partie une charge d'hydrocarbures, par exemple un distillat sous vide obtenu par distillation directe d'un pétrole brut en fractions légères essence et gazole de très bonne qualité
et en un produit plus lourd utilisé comme charge pour le craquage catalytique dans une unité
classique de craquage catalytique en lit fluide et/ou dans une unité de craquage catalytique en lit tluide comportant un système de double régénération et éventuellement un système de refroidissement du catalyseur au niveau de la régénération. L'unité de craquage catalytique intégrée dans le procédé de la présente invention permet en particulier de produire de l'essence à très faible teneur en soufre qui peut être mélangée à la fraction essence légère pour former une essence de mélange ayant une teneur en soufre conforme à la future norme prévue pour les années 2005 L'un des objectifs de la présente invention consiste à produire à partir de certaines fractions particulières d'hydrocarbures qui seront précisées dans la suite de la description, par conversion partielle desdites fractions, des fractions plus légères facilement valorisables, telles que des distillats moyens (carburants moteurs : essence et gazole).
L'un des avantages du procédé de la présente invention est de pouvoir augmenter notablement le rapport diesel sur essence de la raffinerie et ainsi de mieux répondre au besoin du marché
dans de très nombreux pays dans lesquels la consommation de diesel augmente bien plus rapidement que celle de l'essence.
Dans le cadre de la présente invention la conversion de la charge en fractions plus légères est liabituellement comprise entre 20 et 100% dans le cas du recyclage de la fraction lourde non convertie, souvent entre 30 et 100 % et le plus souvent entre 30 et 95 %.
UNE ÉTAPE D'HYDROCONVERSION EN LIT BOUILLONNANT, UNE
ÉTAPE DE SÉPARATION, UNE ÉTAPE D'HYDRODÉSULFURATION
ET UNE ÉTAPE DE CRAQUAGE
La présente invention concerne le raffinage et la conversion des fractions pétrolières et en particulier de distillats d'hydrocarbures contenant entre autre des impuretés soufrées. Elle concerne plus particulièrement un procédé permettant de convertir au moins en partie une charge d'hydrocarbures, par exemple un distillat sous vide obtenu par distillation directe d'un pétrole brut en fractions légères essence et gazole de très bonne qualité
et en un produit plus lourd utilisé comme charge pour le craquage catalytique dans une unité
classique de craquage catalytique en lit fluide et/ou dans une unité de craquage catalytique en lit tluide comportant un système de double régénération et éventuellement un système de refroidissement du catalyseur au niveau de la régénération. L'unité de craquage catalytique intégrée dans le procédé de la présente invention permet en particulier de produire de l'essence à très faible teneur en soufre qui peut être mélangée à la fraction essence légère pour former une essence de mélange ayant une teneur en soufre conforme à la future norme prévue pour les années 2005 L'un des objectifs de la présente invention consiste à produire à partir de certaines fractions particulières d'hydrocarbures qui seront précisées dans la suite de la description, par conversion partielle desdites fractions, des fractions plus légères facilement valorisables, telles que des distillats moyens (carburants moteurs : essence et gazole).
L'un des avantages du procédé de la présente invention est de pouvoir augmenter notablement le rapport diesel sur essence de la raffinerie et ainsi de mieux répondre au besoin du marché
dans de très nombreux pays dans lesquels la consommation de diesel augmente bien plus rapidement que celle de l'essence.
Dans le cadre de la présente invention la conversion de la charge en fractions plus légères est liabituellement comprise entre 20 et 100% dans le cas du recyclage de la fraction lourde non convertie, souvent entre 30 et 100 % et le plus souvent entre 30 et 95 %.
2 Les charges que l'on traite dans le cadre de la présente invention telle que décrite de façon large sont des distillats sous vide notés le plus souvent DSV tels que par exemple des distillats sous vide de distillation directe, des distillats sous vide issus de procédé de conversion tels que par exemple ceux provenant du coking, d'une hydroconversion en lit fixe tels que ceux issus des procédés HYVAHLO' de traitement des lourds mis au point par la demanderesse ou des procédés d'hydrotraitement des lourds en lit bouillonnant tels que ceux issus des procédés H-OIL .
des liuiles désasphaltées aux solvant par exemple les huiles désasphaltées au propane, au butane ou au pentane qui proviennent du désasphaltage de résidu sous vide de distillation directe ou de résidus sous vide issus des procédés HYVAHL ou H-OIL . Les charges peuvent aussi être formées par mélange de ces diverses fractions dans n'importe quelles proportions notamment d'huile désasphaltée (DAO) et de distillat sous vide.
Elles peuvent éçalement contenir de l'huile de coupe légère (LCO pour light cycle oil en anglais) de diverses origines, de l'huile de coupe lourde (HCO pour high cycle oil en anglais) de diverses origines et également des coupes gazoles provenant du cracking catalytique ou du cOI .,,>~~t or rtPnéral nn intPrvallP ~iP ~lietillatinn d'environ 150 C à
environ 370 C.
n:;,g u,.. b.
Elles peuvent aussi contenir des extraits aromatiques obtenus dans le cadre de la fabrication d'huiles lubrifiantes.
Les charges traitées plus spécifiquement dans le cadre de l'invention telle que revendiquée sont toutefois restreintes aux distillats sous vide (DSV).
La présente invention a pour objet l'obtention de produits d'excellente qualité ayant notamment une très faible teneur en soufre dans des conditions notamment de pression relativerrient basse, de manière à limiter le coùt des investissements nécessaire. Ce procédé
permet d'obtenir un carburant moteur de type essence cozitenant moins de 50 ppm (partie par million) en masse de soufre répondant donc aux spécifications les plus sévères prévues pour les années 2005 en matière de teneur en soufre pour ce type de carburant et cela à
2a partir G' une charge pouvant contenir plus de 3% en masse de soufre. De même, ce qui est particulièrement important on obtient un carburant moteur de type diesel ayant une teneur en soufre inférieure à 50 ppm répondant donc aux spécifications les plus sévères prévues pour les années 2005 en matière de teneur en soufre pour ce type de carburant.
Il a été décrit dans l'art antérieur et en particulier dans les brevets US-A-4,344,840 et US-A- 4.457,829 des procédés de traitement de coupes lourdes d'hydrocarbures comportant une première étape de traitement en présence d'hydrogène dans un réacteur contenant un lit bouillonnant de catalyseur suivi dans une deuxième étape d'un hydrotraitement en lit fixe.
Ces descriptions illustrent le cas du traitement en lit fixe dans la deuxième étape d'une fraction légère gazeuse du produit issu de la première étape. Il a également été décrit très récemment dans le document de brevet FR-A-2769635 du demandeur un procédé de conversion de coupes hydrocarbonées contenant du soufre comportant une étape de traitement en lit bouillonnant en présence d'hydrogène et dans une deuxième étape soit l'ensemble du produit issu de la première étape de conversion en lit bouillonnant, soit la
des liuiles désasphaltées aux solvant par exemple les huiles désasphaltées au propane, au butane ou au pentane qui proviennent du désasphaltage de résidu sous vide de distillation directe ou de résidus sous vide issus des procédés HYVAHL ou H-OIL . Les charges peuvent aussi être formées par mélange de ces diverses fractions dans n'importe quelles proportions notamment d'huile désasphaltée (DAO) et de distillat sous vide.
Elles peuvent éçalement contenir de l'huile de coupe légère (LCO pour light cycle oil en anglais) de diverses origines, de l'huile de coupe lourde (HCO pour high cycle oil en anglais) de diverses origines et également des coupes gazoles provenant du cracking catalytique ou du cOI .,,>~~t or rtPnéral nn intPrvallP ~iP ~lietillatinn d'environ 150 C à
environ 370 C.
n:;,g u,.. b.
Elles peuvent aussi contenir des extraits aromatiques obtenus dans le cadre de la fabrication d'huiles lubrifiantes.
Les charges traitées plus spécifiquement dans le cadre de l'invention telle que revendiquée sont toutefois restreintes aux distillats sous vide (DSV).
La présente invention a pour objet l'obtention de produits d'excellente qualité ayant notamment une très faible teneur en soufre dans des conditions notamment de pression relativerrient basse, de manière à limiter le coùt des investissements nécessaire. Ce procédé
permet d'obtenir un carburant moteur de type essence cozitenant moins de 50 ppm (partie par million) en masse de soufre répondant donc aux spécifications les plus sévères prévues pour les années 2005 en matière de teneur en soufre pour ce type de carburant et cela à
2a partir G' une charge pouvant contenir plus de 3% en masse de soufre. De même, ce qui est particulièrement important on obtient un carburant moteur de type diesel ayant une teneur en soufre inférieure à 50 ppm répondant donc aux spécifications les plus sévères prévues pour les années 2005 en matière de teneur en soufre pour ce type de carburant.
Il a été décrit dans l'art antérieur et en particulier dans les brevets US-A-4,344,840 et US-A- 4.457,829 des procédés de traitement de coupes lourdes d'hydrocarbures comportant une première étape de traitement en présence d'hydrogène dans un réacteur contenant un lit bouillonnant de catalyseur suivi dans une deuxième étape d'un hydrotraitement en lit fixe.
Ces descriptions illustrent le cas du traitement en lit fixe dans la deuxième étape d'une fraction légère gazeuse du produit issu de la première étape. Il a également été décrit très récemment dans le document de brevet FR-A-2769635 du demandeur un procédé de conversion de coupes hydrocarbonées contenant du soufre comportant une étape de traitement en lit bouillonnant en présence d'hydrogène et dans une deuxième étape soit l'ensemble du produit issu de la première étape de conversion en lit bouillonnant, soit la
3 fraction liquide issue de cette étape en récupérant la fraction gazeuse convertie dans cette première étape. Selon cette manière d'opérer, il est possible de traiter dans la deuxième étape, dans des conditions favorables conduisant à une bonne stabilité de l'ensemble du système et à une sélectivité en distillat moyen améliorée par rapport à celle obtenue dans les procédés plus anciens.
Cependant, au vu des résultats obtenus selon ce procédé tels qu'ils sont décrits dans l'exemple 2 de cette demande de brevet, on constate que la teneur en soufre de la fraction gazole est supérieure à 200 ppm et donc ne satisfera pas à la future norme des années 2005.
Par ailleurs la conversion reste limitée à environ 65 % en masse et on constate que la production de gazole par rapport à la charge reste inférieure à 50 % en masse et le cétane moteur est relativement faible.
L'objet de la présente invention est de proposer un procédé permettant d'augmenter la production de distillats moyens (en particulier de gazole) ayant des caractéristiques en particulier de teneur en soufre répondant aux futures normes des années 2005, tout en conservant l'avantage de pouvoir opérer le procédé à une pression modérée tout en ayant une conversion élevée voire très élevée.
Dans sa forme la plus large, la présente invention se définit comme un procédé
de conversion d'une fraction d'hydrocarbures ayant une teneur en soufre d'au moins 0,05 %
en masse, souvent d'au moins 0,3 % en masse, très souvent d'au moins 1 % en masse et dépassant même 2 % en masse et une température initiale d'ébullition d'au moins 300 C, souvent d'au moins 340 C et le plus souvent d'au moins 360 C et une température finale d'ébullition d'au moins 400 C, souvent d'au moins 450 C et qui peut aller au-delà de 600 C voire de 700 C caractérisé en ce qu'il comprend les étapes suivantes a) on traite la charge hydrocarbonée (étape a) dans une section de traitement convertissant en présence d'hydrogène ladite section comprenant au moins un réacteur triphasique, contenant au moins un catalyseur d'hydroconversion dont le support minéral est au moins en partie amorphe, en lit bouillonnant, fonctionnant à courant ascendant de liquide et de gaz, ledit réacteur comportant au moins un moyen de soutirage (17) du catalyseur hors dudit réacteur situé à proximité du bas du réacteur et au moins un moyen d'appoint (16) de catalyseur frais dans ledit réacteur situé à proximité du sommet dudit réacteur,
Cependant, au vu des résultats obtenus selon ce procédé tels qu'ils sont décrits dans l'exemple 2 de cette demande de brevet, on constate que la teneur en soufre de la fraction gazole est supérieure à 200 ppm et donc ne satisfera pas à la future norme des années 2005.
Par ailleurs la conversion reste limitée à environ 65 % en masse et on constate que la production de gazole par rapport à la charge reste inférieure à 50 % en masse et le cétane moteur est relativement faible.
L'objet de la présente invention est de proposer un procédé permettant d'augmenter la production de distillats moyens (en particulier de gazole) ayant des caractéristiques en particulier de teneur en soufre répondant aux futures normes des années 2005, tout en conservant l'avantage de pouvoir opérer le procédé à une pression modérée tout en ayant une conversion élevée voire très élevée.
Dans sa forme la plus large, la présente invention se définit comme un procédé
de conversion d'une fraction d'hydrocarbures ayant une teneur en soufre d'au moins 0,05 %
en masse, souvent d'au moins 0,3 % en masse, très souvent d'au moins 1 % en masse et dépassant même 2 % en masse et une température initiale d'ébullition d'au moins 300 C, souvent d'au moins 340 C et le plus souvent d'au moins 360 C et une température finale d'ébullition d'au moins 400 C, souvent d'au moins 450 C et qui peut aller au-delà de 600 C voire de 700 C caractérisé en ce qu'il comprend les étapes suivantes a) on traite la charge hydrocarbonée (étape a) dans une section de traitement convertissant en présence d'hydrogène ladite section comprenant au moins un réacteur triphasique, contenant au moins un catalyseur d'hydroconversion dont le support minéral est au moins en partie amorphe, en lit bouillonnant, fonctionnant à courant ascendant de liquide et de gaz, ledit réacteur comportant au moins un moyen de soutirage (17) du catalyseur hors dudit réacteur situé à proximité du bas du réacteur et au moins un moyen d'appoint (16) de catalyseur frais dans ledit réacteur situé à proximité du sommet dudit réacteur,
4 b) on envoie (étape b) ) au moins une partie, et souvent la totalité, de l'effluent EFO issu de l' étape a) dans une section de séparation (2) opérant sous une pression et à
une température sensiblement identique à la pression et à la température de la section de traitement de l'étape a) ladite section de séparation (2) permettant d'obtenir, habituellement en tête, une fraction F1 contenant habituellement au moins une partie du gaz, de l'essence, et du gazole atmosphérique contenu dans l'effluent EFO, et habituellement en fond, une fraction F2 contenant habituellement principalement des composés ayant des points d'ébullitions supérieurs à ceux du gazole atmosphérique et une faible proportion de composés ayant des points d'ébullition inférieurs à ceux du gazole atmosphérique, c) on envoie au moins une partie et souvent la totalité de la fraction F1 issue de l'étape b) dans une section de traitement (étape c) en présence d'hydrogène ladite section comprenant au moins un réacteur contenant au moins un catalyseur d'hydrodésulfuration en lit fixe dont le support minéral est au moins en partie amorphe, dans des conditions permettant d'obtenir un effluent EFl à teneur réduite en soufre, d) on envoie après détente au moins une partie et souvent la totalité de la fraction F2 issue de l'étape b) dans une section de craquage catalytique (étape d) dans laquelle elle est traitée dans des conditions permettant de produire un effluent de craquage EF2 contenant habituellement une fraction gazeuse, une fraction essence, une fraction gazole et une fraction slurry.
Habituellement, la section de traitement de l'étape a) comprend de un à trois réacteurs en série et la section de traitement de l'étape c) également de un à trois réacteurs en série.
Selon une forme préférée de mise en oeuvre du procédé de la présente invention, la section de traitement de l'étape a) comprend un seul réacteur.
Dans une forme courante de mise en oeuvre de l'invention, l'effluent EF1 obtenu à l'étape c) est au moins en partie et souvent en totalité, envoyé dans une zone de distillation (étape e) à partir de laquelle on récupère une fraction gazeuse, une fraction carburant moteur de type essence et une fraction carburant moteur de type gazole. De même, l'effluent de craquage EF2 obtenu à l'étape d) est habituellement au moins en partie, et souvent en totalité, envoyé dans une zone de distillation (étape f) ) à partir de laquelle on récupère une fraction gazeuse, une fraction carburant moteur de type essence, une fraction carburant moteur de type gazole et une fraction slurry.
Selon une variante la fraction F2 issue de l'étape b) est au moins en partie et de préférence
une température sensiblement identique à la pression et à la température de la section de traitement de l'étape a) ladite section de séparation (2) permettant d'obtenir, habituellement en tête, une fraction F1 contenant habituellement au moins une partie du gaz, de l'essence, et du gazole atmosphérique contenu dans l'effluent EFO, et habituellement en fond, une fraction F2 contenant habituellement principalement des composés ayant des points d'ébullitions supérieurs à ceux du gazole atmosphérique et une faible proportion de composés ayant des points d'ébullition inférieurs à ceux du gazole atmosphérique, c) on envoie au moins une partie et souvent la totalité de la fraction F1 issue de l'étape b) dans une section de traitement (étape c) en présence d'hydrogène ladite section comprenant au moins un réacteur contenant au moins un catalyseur d'hydrodésulfuration en lit fixe dont le support minéral est au moins en partie amorphe, dans des conditions permettant d'obtenir un effluent EFl à teneur réduite en soufre, d) on envoie après détente au moins une partie et souvent la totalité de la fraction F2 issue de l'étape b) dans une section de craquage catalytique (étape d) dans laquelle elle est traitée dans des conditions permettant de produire un effluent de craquage EF2 contenant habituellement une fraction gazeuse, une fraction essence, une fraction gazole et une fraction slurry.
Habituellement, la section de traitement de l'étape a) comprend de un à trois réacteurs en série et la section de traitement de l'étape c) également de un à trois réacteurs en série.
Selon une forme préférée de mise en oeuvre du procédé de la présente invention, la section de traitement de l'étape a) comprend un seul réacteur.
Dans une forme courante de mise en oeuvre de l'invention, l'effluent EF1 obtenu à l'étape c) est au moins en partie et souvent en totalité, envoyé dans une zone de distillation (étape e) à partir de laquelle on récupère une fraction gazeuse, une fraction carburant moteur de type essence et une fraction carburant moteur de type gazole. De même, l'effluent de craquage EF2 obtenu à l'étape d) est habituellement au moins en partie, et souvent en totalité, envoyé dans une zone de distillation (étape f) ) à partir de laquelle on récupère une fraction gazeuse, une fraction carburant moteur de type essence, une fraction carburant moteur de type gazole et une fraction slurry.
Selon une variante la fraction F2 issue de l'étape b) est au moins en partie et de préférence
5 en totalité envoyée après détente dans une section, de séparation à plus basse pression ou dans une colonne de fractionnement ou dans un stripeur à la vapeur d'eau(étape bl), à
partir de laquelle on obtient, habituellement en tête, une fraction gazeuse qui est llabituellement évacuée vers d'autres installations de la raffinerie et peut par exemple être employée comme gaz combustible, une fraction légère F3, qui est habituellement un lo mélange d'une fraction essence et d'une fraction gazole atmosphérique, que l'on envoie au moins en partie et de préférence en totalité dans la section de traitement de l'étape c) et, habituellement en fond, une fraction lourde F4, contenant habituellement principalement des composés ayant des points d'ébullition supérieurs à ceux du gazole atmosphérique, que l'on envoie après détente au moins en partie et de préférence en totalité dans la section de craquage catalytique de l'étape d). Dans une variante cette section de séparation à plus basse pression peut comprendre des moyens de séparation d'une fraction gazeuse qui est par exemple éliminée ou utilisée dans une autre unité de la raffinerie par exemple comme combustible, des moyens de récupération d'une fraction mixte essence-diesel qui est envoyée dans la section d'hydrodésulfuration en lit fixe, après ajustement de sa pression à
un niveau voisin de celle qui règne dans ladite section.
Selon une forme particulière qui peut être une forme préférée lorsque le catalyseur employé
dans l'étape a) a tendance à former des fines particules qui peuvent à la longue altérer le fonctionnement de la section de craquage catalytique de l'étape d), il est possible de prévoir une section (étape g) de séparation permettant l'élimination au moins partielle des dites fines avant l'introduction après détente de la fraction F2 issue de l'étape b), dans l'étape d) de craquage catalytique. Cette séparation sera, dans le cas où la fraction F2 issue de l'étape b) est envoyée dans la section de séparation à plus basse pression ou dans une colonne de fractionnement de l'étape bl) décrite ci-devant, de préférence effectuée avant l'introduction après détente de la fraction F4 issue de l'étape bl), dans l'étape d) de craquage catalytique.
Cette séparation peut être mise en o/uvre par tout moyen bien connu des hommes du métier. A titre d'exemple on peut effectuer cette séparation en utilisant au moins un système de centrifugation tel qu'un hydrocyclone ou au moins un filtre.
partir de laquelle on obtient, habituellement en tête, une fraction gazeuse qui est llabituellement évacuée vers d'autres installations de la raffinerie et peut par exemple être employée comme gaz combustible, une fraction légère F3, qui est habituellement un lo mélange d'une fraction essence et d'une fraction gazole atmosphérique, que l'on envoie au moins en partie et de préférence en totalité dans la section de traitement de l'étape c) et, habituellement en fond, une fraction lourde F4, contenant habituellement principalement des composés ayant des points d'ébullition supérieurs à ceux du gazole atmosphérique, que l'on envoie après détente au moins en partie et de préférence en totalité dans la section de craquage catalytique de l'étape d). Dans une variante cette section de séparation à plus basse pression peut comprendre des moyens de séparation d'une fraction gazeuse qui est par exemple éliminée ou utilisée dans une autre unité de la raffinerie par exemple comme combustible, des moyens de récupération d'une fraction mixte essence-diesel qui est envoyée dans la section d'hydrodésulfuration en lit fixe, après ajustement de sa pression à
un niveau voisin de celle qui règne dans ladite section.
Selon une forme particulière qui peut être une forme préférée lorsque le catalyseur employé
dans l'étape a) a tendance à former des fines particules qui peuvent à la longue altérer le fonctionnement de la section de craquage catalytique de l'étape d), il est possible de prévoir une section (étape g) de séparation permettant l'élimination au moins partielle des dites fines avant l'introduction après détente de la fraction F2 issue de l'étape b), dans l'étape d) de craquage catalytique. Cette séparation sera, dans le cas où la fraction F2 issue de l'étape b) est envoyée dans la section de séparation à plus basse pression ou dans une colonne de fractionnement de l'étape bl) décrite ci-devant, de préférence effectuée avant l'introduction après détente de la fraction F4 issue de l'étape bl), dans l'étape d) de craquage catalytique.
Cette séparation peut être mise en o/uvre par tout moyen bien connu des hommes du métier. A titre d'exemple on peut effectuer cette séparation en utilisant au moins un système de centrifugation tel qu'un hydrocyclone ou au moins un filtre.
6 Selon une forme particulière de réalisation de cette étape g) on utilisera au moins deux moyens de séparation en parallèles dont l'un au moins sera utilisé pour effectuer la séparation pendant qu'au moins un autre sera purgé des fines retenues.
La fraction gazeuse obtenue dans les étapes e) ou t) contient habituellement principalement des hydrocarbures saturés ayant de 1 à 4 atomes de carbone dans leurs molécules (tels que par exemple méthane, éthane, propane, butanes). Cette fraction gazeuse est habituellement évacuée vers d'autres installations de la raffinerie et peut par exemple être employée comme gaz combustible. La fraction de type essence obtenue à l'étape e) est par exemple au moins en partie envoyée dans la zone de stockage de la raffinerie pour ce type de carburant (cette zone de stockage est appelée par les hommes du métier pool carburant essence ). La fraction de type essence obtenue à l'étape f) est par exemple au moins en partie et de préférence en totalité envoyée dans la zone de stockage de la raffinerie pour ce type de carburant. La fraction de type gazole obtenue à l'étape e) est par exemple envoyée au moins en partie et de préférence en totalité envoyée au pool carburant gazole. La fraction de type gazole obtenue à l'étape f) est par exemple envoyée au moins en partie au pool carburant gazole. La fraction slurry obtenue à l'étape f) est le plus souvent au moins en partie voire en totalité envoyée au pool fuel lourd de la raffinerie généralement après séparation des fines particules qu'elle contient en suspension. Dans une autre forme de réalisation de l'invention cette fraction slurry est au moins en partie voire en totalité
renvoyée à l'entrée du craquage catalytique de l'étape d). Selon une autre forme de réalisation de l'invention au moins une partie de cette fraction slurry peut être renvoyée généralement après séparation des fines particules qu'elle contient en suspension soit à
l'étape a), soit à l'étape d), soit dans chacune de ces étapes.
Selon une forme particulière de réalisation de l'invention il est possible de recycler, dans l'étape d) de craquage catalytique, au moins une partie de la fraction essence issue soit de l'étape e), soit de l'étape f), soit de ces deux étapes. Selon une autre forme de réalisation envisageable il est possible de recycler, soit dans l'étape d) de craquage catalytique, soit 3o dans l'étape c) d'hydrodésulfuration en lit fixe, soit dans ces deux étapes, au moins une partie de la fraction gazole issue soit de l'étape e), soit de l'étape f), soit de ces deux étapes. Habituellement seule au moins une partie de la fraction gazole issue de l'étape f) de craquage catalytique est recyclée dans l'étape c) d'hydrodésulfuration et/ou dans l'étape d) de craquage catalytique. Dans la présente description le terme une partie de la fraction
La fraction gazeuse obtenue dans les étapes e) ou t) contient habituellement principalement des hydrocarbures saturés ayant de 1 à 4 atomes de carbone dans leurs molécules (tels que par exemple méthane, éthane, propane, butanes). Cette fraction gazeuse est habituellement évacuée vers d'autres installations de la raffinerie et peut par exemple être employée comme gaz combustible. La fraction de type essence obtenue à l'étape e) est par exemple au moins en partie envoyée dans la zone de stockage de la raffinerie pour ce type de carburant (cette zone de stockage est appelée par les hommes du métier pool carburant essence ). La fraction de type essence obtenue à l'étape f) est par exemple au moins en partie et de préférence en totalité envoyée dans la zone de stockage de la raffinerie pour ce type de carburant. La fraction de type gazole obtenue à l'étape e) est par exemple envoyée au moins en partie et de préférence en totalité envoyée au pool carburant gazole. La fraction de type gazole obtenue à l'étape f) est par exemple envoyée au moins en partie au pool carburant gazole. La fraction slurry obtenue à l'étape f) est le plus souvent au moins en partie voire en totalité envoyée au pool fuel lourd de la raffinerie généralement après séparation des fines particules qu'elle contient en suspension. Dans une autre forme de réalisation de l'invention cette fraction slurry est au moins en partie voire en totalité
renvoyée à l'entrée du craquage catalytique de l'étape d). Selon une autre forme de réalisation de l'invention au moins une partie de cette fraction slurry peut être renvoyée généralement après séparation des fines particules qu'elle contient en suspension soit à
l'étape a), soit à l'étape d), soit dans chacune de ces étapes.
Selon une forme particulière de réalisation de l'invention il est possible de recycler, dans l'étape d) de craquage catalytique, au moins une partie de la fraction essence issue soit de l'étape e), soit de l'étape f), soit de ces deux étapes. Selon une autre forme de réalisation envisageable il est possible de recycler, soit dans l'étape d) de craquage catalytique, soit 3o dans l'étape c) d'hydrodésulfuration en lit fixe, soit dans ces deux étapes, au moins une partie de la fraction gazole issue soit de l'étape e), soit de l'étape f), soit de ces deux étapes. Habituellement seule au moins une partie de la fraction gazole issue de l'étape f) de craquage catalytique est recyclée dans l'étape c) d'hydrodésulfuration et/ou dans l'étape d) de craquage catalytique. Dans la présente description le terme une partie de la fraction
7 slurry, de la fraction essence ou de la fraction gazole doit être compris comme étant une fraction inférieure à 100 %. Dans le cas d'un recyclage d'une ou plusieurs de ces fractions dans une ou plusieurs étape(s) de traitement (par exemple, étape a) et étape d) dans le cas de la fraction slurry, étape c) et étape d) dans le cas de la fraction gazole ; l'ensemble de ces parties ne représentent pas forcément la totalité de ladite fraction. Il est également possible dans le cadre de la présente invention de recycler la totalité de la fraction slurry obtenue par craquage catalytique soit à l'étape a), soit à l'étape d), et de même la totalité de la fraction gazole obtenue par craquage catalytique soit à l'étape c), soit à
l'étape d), soit une fraction dans chacune de ces étapes, la somme de ces fractions représentant 100 % de ladite fraction obtenue à l'étape d).
Les conditions de l'étape a) de traitement de la charge en présence d'hydrogène sont habituellement des conditions classiques d'hydroconversion en lit bouillonnant d'une fraction hydrocarbonée liquide. On opère habituellement sous une pression absolue 2 à 35 MPa, souvent de 5 à 20 MPa et le plus souvent de 5 à 10 MPa à une température d'environ 300 à environ 600 C et souvent d'environ 350 à environ 550 C. La vitesse spatiale horaire (VVH) et la pression partielle d'hydrogène sont des facteurs importants que l'on choisit en fonction des caractéristiques du produit à traiter et de la conversion souhaitée. Le plus souvent la VVH se situe dans une gamme allant d'environ 0,1 h-1 à environ 10 h-1 et de préférence environ 0,5 h-1 à environ 5 h-1. La quantité d'hydrogène mélangée à
la charge est habituellement d'environ 50 à environ 5000 normaux mètres cube (Nm3) par mètre cube (m3) de charge liquide et le plus souvent d'environ 100 à environ 1000 Nm3/m3 et de préférence d'environ 300 à environ 500 Nm3/m3. On peut utiliser un catalyseur granulaire classique d'hydroconversion comprenant sur un support amorphe au moins un métal ou composé de métal ayant une fonction hydro-déshydrogénante. Ce catalyseur peut être un catalyseur comprenant des métaux du groupe VIII par exeinple du nickel et/ou du cobalt le plus souvent en association avec au moins un métal du groupe VIB par exemple du molybdène et/ou du tungstène. On peut par exemple employer un catalyseur comprenant de 0,5 à 10 % en poids de nickel et de préférence de 1 à 5 % en poids de nickel (exprimé en oxyde de nickel NiO) et de 1 à 30 % en poids de molybdène de préférence de 5 à
20 % en poids de molybdène (exprimé en oxyde de molybdène Mo03) sur un support minéral amorphe. Ce support sera par exemple choisi dans le groupe formé par l'alumine, la silice, les silices-alumines, la magnésie, les argiles et les mélanges d'au moins deux de ces
l'étape d), soit une fraction dans chacune de ces étapes, la somme de ces fractions représentant 100 % de ladite fraction obtenue à l'étape d).
Les conditions de l'étape a) de traitement de la charge en présence d'hydrogène sont habituellement des conditions classiques d'hydroconversion en lit bouillonnant d'une fraction hydrocarbonée liquide. On opère habituellement sous une pression absolue 2 à 35 MPa, souvent de 5 à 20 MPa et le plus souvent de 5 à 10 MPa à une température d'environ 300 à environ 600 C et souvent d'environ 350 à environ 550 C. La vitesse spatiale horaire (VVH) et la pression partielle d'hydrogène sont des facteurs importants que l'on choisit en fonction des caractéristiques du produit à traiter et de la conversion souhaitée. Le plus souvent la VVH se situe dans une gamme allant d'environ 0,1 h-1 à environ 10 h-1 et de préférence environ 0,5 h-1 à environ 5 h-1. La quantité d'hydrogène mélangée à
la charge est habituellement d'environ 50 à environ 5000 normaux mètres cube (Nm3) par mètre cube (m3) de charge liquide et le plus souvent d'environ 100 à environ 1000 Nm3/m3 et de préférence d'environ 300 à environ 500 Nm3/m3. On peut utiliser un catalyseur granulaire classique d'hydroconversion comprenant sur un support amorphe au moins un métal ou composé de métal ayant une fonction hydro-déshydrogénante. Ce catalyseur peut être un catalyseur comprenant des métaux du groupe VIII par exeinple du nickel et/ou du cobalt le plus souvent en association avec au moins un métal du groupe VIB par exemple du molybdène et/ou du tungstène. On peut par exemple employer un catalyseur comprenant de 0,5 à 10 % en poids de nickel et de préférence de 1 à 5 % en poids de nickel (exprimé en oxyde de nickel NiO) et de 1 à 30 % en poids de molybdène de préférence de 5 à
20 % en poids de molybdène (exprimé en oxyde de molybdène Mo03) sur un support minéral amorphe. Ce support sera par exemple choisi dans le groupe formé par l'alumine, la silice, les silices-alumines, la magnésie, les argiles et les mélanges d'au moins deux de ces
8 minéraux. Ce support peut également renfermer d'autres composés et par exemple des oxydes choisis dans le groupe formé par l'oxyde de bore, la zircone, l'oxyde de titane, l' anhydride phosphorique. On utilise le plus souvent un support d'alumine et très souvent un support d'alumine dopée avec du phosphore et éventuellement du bore. La concentration en anhydride phosphorique P205 est habituellement inférieure à environ 20 % en poids et le plus souvent inférieure à environ 10 % en poids. Cette concentration en P205 est habituellement d'au moins 0,001 % en poids. La concentration en trioxyde de bore B203 est habituellement d'environ 0 à environ 10 % en poids. L'alumine utilisée est habituellement une alumine y ou rl Ce catalyseur est le plus souvent sous forme d'extrudé.
La teneur totale en oxydes de métaux des groupes VI et VIII est souvent d'environ 5 à
environ 40 % en poids et en général d'environ 7 à 30 % en poids et le rapport pondéral exprimé en oxyde métallique entre métal (ou métaux) du groupe VI sur métal (ou métaux) du groupe VIII est en général d'environ 20 à environ 1 et le plus souvent d'environ 10 à
environ 2. Le catalyseur usagé est en partie remplacé par du catalyseur frais par soutirage en bas du réacteur et introduction en haut du réacteur de catalyseur frais ou neuf à
intervalle de temps régulier, c'est-à-dire par exemple par bouffée ou de façon quasi continue. On peut par exemple introduire du catalyseur frais tous les jours.
Le taux de remplacement du catalyseur usé par du catalyseur frais peut être par exemple d'environ 0,01 kilogramme à environ 10 kilogrammes par mètre cube de charge. Ce soutirage et ce remplacement sont effectués à l' aide de dispositifs permettant le fonctionnement continu de cette étape d'hydroconversion. L'unité comporte habituellement une pompe de recirculation permettant le maintien du catalyseur en lit bouillonnant par recyclage continu d'au moins une partie du liquide soutiré en tête du réacteur et réinjecté en bas du réacteur. Il est également possible d'envoyer le catalyseur usé soutiré du réacteur dans une zone de régénération dans laquelle on élimine le carbone et le soufre qu'il renferme puis de renvoyer ce catalyseur régénéré dans l'étape a) d'hydroconversion.
Le plus souvent cette étape a) d'hydroconversion est mise en oeuvre dans les conditions du procédé T-STAR tel que décrit par exemple dans l'article Heavy Oil Hydroprocessing, publié par l'Aiche, March 19-23, 1995, HOUSTON, Texas, paper number 42d. Elle peut également être mise en oeuvre dans les conditions du procédé H-OIL tel que décrit par exemple dans l'article publié par la NPRA Annual Meeting, March 16-18, 1997, J.J.
La teneur totale en oxydes de métaux des groupes VI et VIII est souvent d'environ 5 à
environ 40 % en poids et en général d'environ 7 à 30 % en poids et le rapport pondéral exprimé en oxyde métallique entre métal (ou métaux) du groupe VI sur métal (ou métaux) du groupe VIII est en général d'environ 20 à environ 1 et le plus souvent d'environ 10 à
environ 2. Le catalyseur usagé est en partie remplacé par du catalyseur frais par soutirage en bas du réacteur et introduction en haut du réacteur de catalyseur frais ou neuf à
intervalle de temps régulier, c'est-à-dire par exemple par bouffée ou de façon quasi continue. On peut par exemple introduire du catalyseur frais tous les jours.
Le taux de remplacement du catalyseur usé par du catalyseur frais peut être par exemple d'environ 0,01 kilogramme à environ 10 kilogrammes par mètre cube de charge. Ce soutirage et ce remplacement sont effectués à l' aide de dispositifs permettant le fonctionnement continu de cette étape d'hydroconversion. L'unité comporte habituellement une pompe de recirculation permettant le maintien du catalyseur en lit bouillonnant par recyclage continu d'au moins une partie du liquide soutiré en tête du réacteur et réinjecté en bas du réacteur. Il est également possible d'envoyer le catalyseur usé soutiré du réacteur dans une zone de régénération dans laquelle on élimine le carbone et le soufre qu'il renferme puis de renvoyer ce catalyseur régénéré dans l'étape a) d'hydroconversion.
Le plus souvent cette étape a) d'hydroconversion est mise en oeuvre dans les conditions du procédé T-STAR tel que décrit par exemple dans l'article Heavy Oil Hydroprocessing, publié par l'Aiche, March 19-23, 1995, HOUSTON, Texas, paper number 42d. Elle peut également être mise en oeuvre dans les conditions du procédé H-OIL tel que décrit par exemple dans l'article publié par la NPRA Annual Meeting, March 16-18, 1997, J.J.
9 Colyar et L.I. Wilson sous le titre THE H-OIL PROCESS A WORLDWIDE LEADER
IN VACUUM RESIDUE HYDROPROCESSING.
Les produits obtenus au cours de cette étape a) envoyés dans une zone de séparation haute pression opérant sous une pression et à une température sensiblement identique à la pression et à la température de la section de traitement convertissant de l'étape a) à partir de laquelle on récupère une fraction liquide lourde et une fraction plus légère.
Habituellement cette fraction liquide lourde a un point d'ébullition initial d'environ 350 à
environ 400 C et de préférence d'environ 360 à environ 390 C et par exemple environ 370 C. La fraction plus légère est habituellement envoyée dans une zone d'hydrodésulfuration en lit fixe. Cette fraction à un point final d'ébullition au plus égal au point initial d'ébullition de la fraction liquide lourde donné ci-devant.
Cette fraction sera par exemple la fraction C5-370 C.
Selon la variante dans laquelle la fraction F2 issue de l'étape b) est au moins en partie et de préférence en totalité envoyée après détente dans une section de séparation à
plus basse pression ou dans une colonne de fractionnement (étape bl) à partir de laquelle on obtient une fraction légère F3 et une fraction lourde F4 la pression régnant dans cette étape bl) sera inférieure à celle régnant dans l'étape b). Habituellement la pression régnant dans l'étape bl) sera inférieure à 1,1 fois, souvent inférieure à 2 fois et très souvent inférieure à
5 fois voire même à 10 fois à celle régnant dans l'étape b).
Dans l'étape c) d'hydrodésulfuration on utilise habituellement un catalyseur classique d'hydrodésulfuration et de préférence au moins l'un de ceux décrits par la demanderesse en particulier l'un de ceux décrits dans les brevets EP-B-113297 et EP-B-113284.
On opère habituellement sous une pression absolue sensiblement égale à la pression absolue de l'étape a) (c'est-à-dire aux pertes de charges près entre ces deux étapes). La température dans cette étape c) est habituellement d'environ 250 à environ 500 C, souvent d'environ 300 C à
environ 450 C et très souvent d'environ 300 C à environ 420 C. Cette température est habituellement ajustée en fonction du niveau souhaité d'hydrodésulfuration. La vitesse spatiale horaire (VVH) et la pression partielle d'hydrogène sont des facteurs importants que l' on choisit en fonction des caractéristiques du produit à traiter et de la conversion souhaitée. Le plus souvent la VVH se situe dans une gamme allant d'environ 0,1 h-1 à
lo environ 5 h-1 et de préférence environ 0,5 h-1 à environ 2 h-1. La quantité
d'hydrogène mélangé à la charge est habituellement d'environ 100 à environ 5000 normaux mètres cube (Nm3) par mètre cube (m3) de charge liquide et le plus souvent d'environ 200 à
environ 2000 Nm3/m3 et de préférence d'environ 300 à environ 1000 Nm3/m3. On opère utilement en présence d'hydrogène sulfuré et la pression partielle de l'hydrogène sulfuré est habituellement d'environ 0,002 fois à environ 0,1 fois et de préférence d'environ 0,005 fois à environ 0,05 fois la pression totale. Dans la zone d'hydrodésulfuration, le catalyseur idéal doit avoir un fort pouvoir hydrogénant de façon ài-éaliser un raffinage profond des produits et à obtenir un abaissement important du soufre. Dans le cas préféré
de réalisation la zone d'hydrodésulfuration opère à température relativement basse ce qui va dans le sens d'une hydrogénation profonde et d'une limitation de la formation de coke. On ne sortirait pas du cadre de la présente invention en utilisant dans la zone d'hydrodésulfuration de manière simultanée ou de manière successive un seul catalyseur ou plusieurs catalyseurs différents. Habituellement cette étape c) est effectué industriellement dans un ou plusieurs réacteurs à courant descendant de liquide.
Dans la zone d'hydrodésulfuration (étape c) ) on utilise au moins un lit fixe de catalyseur classique d'hydrodésulfuration dont le support est au moins en partie amorphe.
On utilisera de préférence un catalyseur dont le support est par exemple choisi dans le groupe formé par l'alumine, la silice, les silices-alumines, la magnésie, les argiles et les mélanges d'au moins deux de ces minéraux. Ce support peut également renfermer d'autres composés et par exemple des oxydes choisis dans le groupe formé par l'oxyde de bore, la zircone, l'oxyde de titane, l'anhydride phosphorique. On utilise le plus souvent un support d'alumine et très souvent un support d'alumine dopée avec du phosphore et éventuellement du bore. La concentration en anhydride phosphorique P205 est habituellement inférieure à
environ 20 % en poids et le plus souvent inférieure à environ 10 % en poids. Cette concentration en P205 est habituellement d'au moins 0,001 % en poids. La concentration en trioxyde de bore B203 est habituellement d'environ 0 à environ 10 % en poids. L'alumine utilisée est habituellement une alumine y ou rI Ce catalyseur est le plus souvent sous forme de billes ou d'extrudé. On peut utiliser un catalyseur granulaire classique d'hydrodésulfuration comprenant sur un support amorphe au moins un métal ou composé de métal ayant une fonction hydro-déshydrogènante. Ce catalyseur peut être un catalyseur comprenant des métaux du groupe VIII par exemple du nickel et/ou du cobalt le plus souvent en association avec au moins un métal du groupe VIB par exemple du molybdène et/ou du tungstène. On peut par exemple employer un catalyseur comprenant de 0,5 à 10 % en poids de nickel et de préférence de 1 à 5 % en poids de nickel (exprimé en oxyde de nickel NiO) et de 1 à 30 % en poids de molybdène de préférence de 5 à 20 % en poids de molybdène (exprimé en oxyde de molybdène Mo03) sur un support minéral amorphe. La teneur totale en oxydes de métaux des groupes VI et VIII est souvent d'environ 5 à environ 40 % en poids et en général d'environ 7 à 30 % en poids et le rapport pondéral exprimé en oxyde métallique entre métal (ou métaux) du groupe VI sur métal (ou métaux) du groupe VIII est en général d'environ 20 à environ 1 et le plus souvent d'environ 10 à environ 2.
Dans la zone de distillation dans l'étape e) les conditions sont généralement choisies de manière à ce que le point final d'ébullition de la fraction gazeuse soit d'environ 5 C. Dans cette zone de distillation on récupère également une fraction essence dont le point final d'ébullition est le plus souvent d'environ 150 C et une fraction gazole dont le point initial d'ébullition est habituellement d'environ 150 C et le point final d'ébullition d'environ 370 C.
Dans l'étape d) de craquage catalytique au moins une partie de la fraction lourde F2 obtenue à l'étape b) ou au moins une partie de la fraction F4 obtenue à
l'étape bl) est craquée catalytiquement de manière classique dans des conditions bien connues des hommes 2o du métier pour produire une fraction carburant (comprenant une fraction essence et une fraction gazole) que l'on envoie habituellement au moins en partie aux pools carburants et une fraction slurry qui sera par exemple au moins en partie, voire en totalité, envoyée au pool fuel lourd ou recyclée au moins en partie, voire en totalité, à l'étape d) de craquage catalytique. Dans le cadre de la présente invention l'expression craquage catalytique classique englobe les procédés de craquage comprenant au moins une étape de régénération par coinbustion partielle et ceux comprenant au moins une étape de régénération par combustion totale et/ou ceux comprenant à la fois au moins une étape de combustion partielle et au moins une étape de combustion totale.
On trouvera par exemple une description sommaire du craquage catalytique (dont la première mise en oeuvre industrielle remonte à 1936 (procédé HOUDRY) ou en 1942 pour l'utilisation de catalyseur en lit fluidisé) dans ULLMANS ENCYCLOPEDIA OF
INDUSTRIAL CHEMISTRY VOLUME A 18, 1991, pages 61 A 64. On utilise habituellenient un catalyseur classique comprenant une matrice, éventuellement un additif et au nioins une zéolithe. La quantité de zéolithe est variable mais habituellement d'environ 3 à 60 % en poids, souvent d'environ 6 à 50 % en poids et le plus souvent d'environ 10 à 45 ~, c;n poids. La zéolithe est habituellement dispersée dans la matrice. La quantité d'additif est habituel lement d'environ 0 à 30 % en poids et souvent d'environ 0 à 20 %
en poids La quantité de rnatrice représente le complément à 100 % en poids. L'additif est généralement choisi dans le groupe formé par les oxydes des métaux du groupe IIA de la classification périodique des élénients tels que par exemple l'oxyde de magnésium ou l'oxyde de calcium, les oxydes des terres rares et les titanates des métaux du groupe IIA.
La matrice est le plus souvent une silice, une alumine, une silice-alumine, une silice-magnésie, une argile ou un mélange de deux ou plusieurs de ces produits. La zéolithe la plus couramment utilisée est la zéolithe Y. On effectue le craquage dans un réacteur sensiblement vertical soit en mode ascendant (riser) soit en mode descendant (dropper).Le choix du catalyseur et des conditions opératoires sont fonctions des produits recherchés en fonction de la charge traitée comme cela est par exemple décrit dans l'article de M.
MARCILLY pages 990-991 publié dans la revue de l'Institut Français du Pétrole novembre-décembre.1975 pages 969-1006. On opère habituellement à une température Ll'environ 450 à environ 600 C et des temps de séjour dans le réacteur inférieur à 1 minute sc~uvent d'environ 0,1 à environ 50 secondes.
L'étape d) de craquage catalytique peut aussi être une étape de craquage catalytique en lit fluidisé par exemple selon le procédé mis au point par la demanderesse dénonuné R2R.
Cette étape peut être exécutée de manière classique connue des hommes du métier dans les conditions adéquates de craquage en vue de produire des produits hydrocarbonés de plus faible poids moléculaire. Des descriptions de fonctionnement et de catalyseurs utilisables dans le cadre du craquage en lit fluidisé dans cette étape d) sont décrits par exemple dans les documents de brevets US-A-4695370, EP-B-184517, US-A-4959334, EP-B-323297, US-A-4965232, US-A-5120691, US-A-5344554, US-A-5449496, EP-A-485259, US-A-5286690, US-A-5324696 et EP-A-699224.
12a Le réacteur de craquage catalytique en lit fluidisé peut fonctionner à courant ascendant ou à
cciurant descendant. Bien que cela ne soit pas une forme préférée de réalisation de la présente invention il est également envisageable d'effectuer le craquage catalytique dans un ~
réacteur à lit mobile. Les catalyseurs de craquage catalytique particulièrement préférés sont ceux qui contiennent au moins une zéolithe habituellement en mélange avec une matrice appropriée telle que par exemple l'alumine, la silice, la silice-alumine.
Les figures 1, 2, 3 et 4 représentent schématiquement les principales variantes pour la mise en oeuvre du procédé selon la présente invention. Sur ces figures, les organes similaires sont désignés par les mêmes chiffres et lettres de référence.
Sur la figure 1, la charge hydrocarbonée à traiter entre par les lignes 10 et 15 dans la io section ou zone de traitement 1 en présence d'hydrogène, ledit hydrogène étant introduit par les lignes 19 et 15 dans ladite section. L'appoint de catalyseur se fait par la ligne 16 et le soutirage par la ligne 17. L'effluent traité dans la section 1 est envoyé
par la ligne 18 dans une zone 2 de séparation haute pression et haute température à partir de laquelle on récupère, par la ligne 8 un effluent qui est envoyé dans la zone 4 d'hydrodésulfuration en lit fixe et par la ligne 7 un effluent qui est détendu dans la vanne Vl puis envoyé dans la section de craquage catalytique 6. Dans la zone 4 d'hydrodésulfuration l'hydrogène est introduit par la ligne 9 et on récupère l'effluent hydrotraité que l'on envoie par la ligne 100 dans une zone de distillation Dl à partir de laquelle on i=écupère une fraction gaz par la ligne 11, une fraction essence par la ligne 12 et une fiaction gazole par la ligne 13.
L'effluent de craquage catalytique est envoyé par la ligne 110 dans une zone de distillation D2 à partir de laquelle on récupère par la ligne 30 une fraction gazeuse, par la ligne 31 une fraction essence, par la ligne 29 une fraction gazole et par la ligne 32 une fraction slurry qui est en partie envoyée au pool fuel lourd de la raffinerie par la ligne 33, une autre partie de cette fraction slurry étant éventuellement envoyée par les lignes 34 et 36 dans la section de craquage catalytique 6, une autre partie étant éventuellement envoyée par la ligne 35 dans la section de traitement 1 en lit bouillonnant. Une partie de la fraction gazole est éventuellement envoyée par la ligne 39 et la ligne 8 dans la zone 4 d'hydrodésulfuration en lit fixe. Une autre partie de la fraction gazole est éventuellement envoyée par la ligne 38 et la ligne 36 dans la section de craquage catalytique 6. Une partie de la fraction essence est éventuellement envoyée par la ligne 37 et la ligne 36 dans la section de craquage catalytique 6.
Selon une forme particulière de l'invention schématisée sur la figure 2 l'effluent issu de la zone 2 de séparation haute pression et haute température circulant dans la ligne 7 est détendu dans la vanne V 1 est envoyé dans une section 3 de séparation à plus basse pression à partir de laquelle on récupère une fraction gazeuse qui est évacuée par la ligne 15, un effluent léger qui est envoyé par la ligne 14 dans la zone 4 d'hydrodésulfuration et par la ligne 20 un effluent plus lourd qui est détendu dans la vanne V2 puis envoyé
dans la section de craquage catalytique 6.
Selon une forme particulière de l'invention schématisée sur la figure 3 l'effluent issu de la zone 2 de séparation haute pression et haute température circulant dans la ligne 7 est clétendu dans la vanne V 1 puis envoyé dans une section 5 d'élimination des fines de catalyseur à partir de laquelle on récupère un effluent sensiblement exempt de fines particules solides de catalyseur que l'on envoie, après détente dans la vanne V2, par la ligne 21 dans la section de craquage catalytique 6.
Selon une forme particulière de l'invention schématisée sur la figure 4 l'effluent plus lourd issu de la section 3 de séparation à plus basse pression circulant dans la ligne 20 est envoyé
dans une section 5 d'élimination des fines de catalyseur à partir de laquelle on récupère un effluent sensiblement exempt de fines particules solides de catalyseur que l'on envoie, après détente dans la vanne V2, par la ligne 21 dans la section de craquage catalytique 6.
EXEMPLES
Ces exemples sont issus d'expérimentations réalisées dans des unités pilotes.
Exenzple 1 On traite un distillat sous vide (DSV) lourd d'origine Safaniya. Ses caractéristiques sont présentées sur le tableau 1. Tous les rendements sont calculés à partir d'une base 100 (en masse) de DSV.
Tableau 1 Charge DSV Safaniya Analyse Densité 15/4 0,940 Soufre, % masse 3,08 Carbone Conradson, % masse 1,2 Azote, ppm 1092 Hydrogène, % masse 11,9 Distillation simulée, % masse C
Température 5 366 Température 50 488 Température 95 578 On traite ce distillat sous vide (DSV) lourd d'origine Safaniya dans une unité
pilote comportant un réacteur à lit bouillonnant de catalyseur.
Ce réacteur simule une unité industrielle du procédé T-STAR à lit bouillonnant.
L'écoulement des fluides dans le réacteur est ascendant. Il a été en effet vérifié par ailleurs que ce mode de travail en unité pilote fournit des résultats équivalents à ceux des unités industrielles.
lo Ce réacteur contient 1 litre d'un catalyseur spécifique pour l'application T-STAR fabriqué par PROCATALYSE sous la référence HTS358.
Les conditions opératoires de mise en oeuvre sont les suivantes 15 - VVH par rapport au lit catalytique tassé : 1 h-1 - Pression d'hydrogène : 65 bars (6,5 Mpa) - Recyclage d'hydrogène : 400 litres d'hydrogène par litre de charge - Température dans le réacteur : 440 C
Les produits liquides issus du premier réacteur sont fractionnés en ligne sur l'unité pilote en une fraction essence + gazole atmosphérique (C5-370 C), et une fraction résiduelle (370 C).
La fraction C5-370 C est récupérée et va servir de charge à un autre test pilote d'hydrodésulfuration (HDS) en lit fixe. Ce pilote comporte un réacteur tubulaire à lit fixe.
L'écoulement des fluides est ascendant contrairement au cas d'une unité
industrielle. Il a été en effet vérifié par ailleurs que ce mode de travail en unité pilote fournit des résultats équivalents à ceux des unités industrielles comportant un lit fixe de catalyseur travaillant à courant descendant de fluides. Il est chargé avec 0.8 litre de catalyseur HR448 commercialisé par Procatalyse.
Les conditions opératoires sont les suivantes - VVH par rapport au lit catalytique tassé : 1 h-1 - Pression d'hydrogène : 65 bars (6,5 Mpa) - Recyclage d'hydrogène : 600 litres d'hydrogène par litre de charge - Température dans le réacteur : 350 C.
Les produits liquides issus du réacteur sont fractionnés en une fraction essence C5-150 C et une fraction gazole atmosphérique 150-370 C
Le bilan matière correspondant à l'enchaînement T-Star + HDS est indiqué dans le tableau 2 suivant. On remarque en particulier le très fort rendement en diesel que l'on obtient.
Tableau 2 Bilan matière T-Star + HDS intégré
H2S+NH3, %m/charge 3,2 C1-C4, %m/charge :3,7 C5-150, %m/charge 9,0 150-370, %m/charge 48,0 370+, %m/charge 37,4 Total, %m/charge 101,3 Les qualités de produit correspondant à l'enchaînement T-Star + HDS intégré
sont indiquées dans le tableau 3 suivant. On remarque en particulier les très bonnes propriétés de la fraction gazole obtenue. Sa teneur en soufre le rend compatible avec les spécifications de la communauté économique européenne (CEE) pour 2005.
Tableau 3 Produits ex T-Star + HDS intégrée Essence Gazole Rendt/VGO SR, %m 9,0 48,0 Densité 15/4 0,730 0,853 Soufre, ppm m < 10 30 (RON+MON)/2 60 Cétane 50 La fraction résiduelle (370 C+) résultant du fractionnement est envoyée dans un système de filtration permettant l'élimination des fines de catalyseur génërées dans le réacteur travaillant en lit bouillonnant. Ceci évite la désactivation rapide du catalyseur de craquage catalytique en lit fluide (FCC) par suite de la présence éventuelle de molybdène dans les fines du catalyseur contenues dans cette fraction.
Cette fraction ne contenant plus de fines de catalyseur est traitée dans une unité pilote de craquage catalytique utilisant un catalyseur contenant 20% poids de zéolithe Y
et 80 % en poids d'une matrice silice-alumine. Cette charge préchauffée à 135 C est mise en contact en bas d'un réacteur pilote vertical avec un catalyseur régénéré chaud provenant d'un régénérateur pilote. La température d'entrée dans le réacteur du catalyseur est 720 C. Le rapport du débit de catalyseur sur le débit de charge est de 6,0. L'apport calorique du catalyseur à 720 C
permet la vaporisation de la charge et la réaction de craquage qui est endothermique. Le temps de séjour moyen du catalyseur dans la zone réactionnelle est d'environ 3 secondes. La pression opératoire est 1,8 bars absolue. La température du catalyseur mesurée à la sortie du réacteur en lit fluidisé entraîné ascendant (riser) est 525 C. Les hydrocarbures craqués et le catalyseur sont séparés grâce à des cyclones situés dans une zone de désengagement (stripper) où le catalyseur est strippé. Le catalyseur qui a été coké pendant la réaction et strippé dans la zone de désengagement est ensuite envoyé dans le régénérateur. La teneur en coke du solide (delta coke) à l'entrée du régénérateur est de 0,85 %. Ce coke est brûlé par de l'air injecté dans le régénérateur. La combustion très exothermique élève la température du solide de 525 C à
720 C. Le catalyseur régénéré et chaud sort du régénérateur et est renvoyé en bas du réacteur.
Les hydrocarbures séparés du catalyseur sortent de la zone de désengagement ;
ils sont refroidis par des échangeurs et envoyés dans une colonne de stabilisation qui sépare les gaz et les liquides. Le liquide (C5 +) est également échantillonné puis il est fractionné dans une autre colonne afin de récupérer une fraction essence, une fraction gazole et une fraction fuel lourd ou slurry (370 C).Le tableau 4 donne les rendements et les principales caractéristiques des produits obtenus Tableau 4 Produits ex FCC Essence Gazole Rendt/DSV SR, % m 19,6 6,2 Soufre, ppm m 30 2700 (RON+MON)/2 86 Cétane 28 On mélange ensuite la fraction essence récupérée par distillation de l'effluent de sortie du deuxième réacteur et la fraction essence récupérée à partir du produit issu du craquage catalytique et on fait de même avec les deux fractions gazole. Le tableau 5 donne les rendements totaux en essence et en gazole ainsi obtenus et les principales caractéristiques de ces produits.
Tableau 5 Produits totaux Essence Gazole total totale Rendt/VGO SR, %m 28,6 54,2 Densité 15/4 0,723 0,862 Soufre, ppm m 24 350 (RON+MON)/2 78 Cétane 47 t5 On remarque ainsi notamment les bonnes propriétés de la coupe essence, en particulier sa teneur en soufre qui répond aux spécifications CEE pour 2005. On constate les forts rendements en gazole et son bon indice de cétane.
Exemple 2 On reprend le même schéma que dans l'exemple 1 et dans les mêmes conditions si ce n'est que la fraction gazole issu du FCC est envoyée dans l'étape d'HDS en mélange avec la fraction C5-370 C récupérée à la sortie du procédé T-Star. Un test d'HDS selon les conditions opératoires citées précédenunent dans l'exemple est réalisé en utilisant la fraction FCC et la fraction gazole mélangées au prorata des rendements de chaque unité (T-Star et FCC).
Les qualités de produit correspondant à l'enchaînement T-Star + HDS intégré
avec recyclage du gazole FCC sont indiqués dans le tableau 6 suivant. On remarque en particulier les très bonnes propriétés de la fraction gazole obtenue. Sa teneur en soufre le rend compatible avec les spécifications de la communauté économique européenne (CEE) pour 2005.
Tableau 6 Produits ex T-Star + HDS intégrée Essence Gazole avec recyclage du gazole de FCC
Rendt/VGO SR, %m 9,0 54,2 Densité 15/4 0,730 0,858 Soufre, ppm m < 10 30 (RON+MON)/2 60 Cétane 48 On mélange ensuite la fraction essence récupérée par distillation de l'effluent de sortie du réacteur d'HDS et la fraction essence récupérée à partir du produit issu du craquage catalytique. Le tableau 7 donne les rendements totaux en essence et en gazole ainsi obtenus et les principales caractéristiques de ces produits.
Tableau 7 Produits totaux Essence Gazole total totale Rendt/VGO SR, %m 28,6 54,2 Densité 15/4 0,723 0,858 Soufre, ppm m 24 30 (RON+MON)/2 78 Cétane 48 On remarque en particulier les très bonnes propriétés de la fraction gazole obtenue. Sa teneur en soufre le rend compatible avec les spécifications de la communauté
économique européenne 5 (CEE) pour 2005.
On remarque ainsi notamment les bonnes propriétés de la coupe essence, en particulier sa teneur en soufre qui répond aux spécifications CEE pour 2005. On constate les forts rendements en gazole et son très bon indice de cétane.
IN VACUUM RESIDUE HYDROPROCESSING.
Les produits obtenus au cours de cette étape a) envoyés dans une zone de séparation haute pression opérant sous une pression et à une température sensiblement identique à la pression et à la température de la section de traitement convertissant de l'étape a) à partir de laquelle on récupère une fraction liquide lourde et une fraction plus légère.
Habituellement cette fraction liquide lourde a un point d'ébullition initial d'environ 350 à
environ 400 C et de préférence d'environ 360 à environ 390 C et par exemple environ 370 C. La fraction plus légère est habituellement envoyée dans une zone d'hydrodésulfuration en lit fixe. Cette fraction à un point final d'ébullition au plus égal au point initial d'ébullition de la fraction liquide lourde donné ci-devant.
Cette fraction sera par exemple la fraction C5-370 C.
Selon la variante dans laquelle la fraction F2 issue de l'étape b) est au moins en partie et de préférence en totalité envoyée après détente dans une section de séparation à
plus basse pression ou dans une colonne de fractionnement (étape bl) à partir de laquelle on obtient une fraction légère F3 et une fraction lourde F4 la pression régnant dans cette étape bl) sera inférieure à celle régnant dans l'étape b). Habituellement la pression régnant dans l'étape bl) sera inférieure à 1,1 fois, souvent inférieure à 2 fois et très souvent inférieure à
5 fois voire même à 10 fois à celle régnant dans l'étape b).
Dans l'étape c) d'hydrodésulfuration on utilise habituellement un catalyseur classique d'hydrodésulfuration et de préférence au moins l'un de ceux décrits par la demanderesse en particulier l'un de ceux décrits dans les brevets EP-B-113297 et EP-B-113284.
On opère habituellement sous une pression absolue sensiblement égale à la pression absolue de l'étape a) (c'est-à-dire aux pertes de charges près entre ces deux étapes). La température dans cette étape c) est habituellement d'environ 250 à environ 500 C, souvent d'environ 300 C à
environ 450 C et très souvent d'environ 300 C à environ 420 C. Cette température est habituellement ajustée en fonction du niveau souhaité d'hydrodésulfuration. La vitesse spatiale horaire (VVH) et la pression partielle d'hydrogène sont des facteurs importants que l' on choisit en fonction des caractéristiques du produit à traiter et de la conversion souhaitée. Le plus souvent la VVH se situe dans une gamme allant d'environ 0,1 h-1 à
lo environ 5 h-1 et de préférence environ 0,5 h-1 à environ 2 h-1. La quantité
d'hydrogène mélangé à la charge est habituellement d'environ 100 à environ 5000 normaux mètres cube (Nm3) par mètre cube (m3) de charge liquide et le plus souvent d'environ 200 à
environ 2000 Nm3/m3 et de préférence d'environ 300 à environ 1000 Nm3/m3. On opère utilement en présence d'hydrogène sulfuré et la pression partielle de l'hydrogène sulfuré est habituellement d'environ 0,002 fois à environ 0,1 fois et de préférence d'environ 0,005 fois à environ 0,05 fois la pression totale. Dans la zone d'hydrodésulfuration, le catalyseur idéal doit avoir un fort pouvoir hydrogénant de façon ài-éaliser un raffinage profond des produits et à obtenir un abaissement important du soufre. Dans le cas préféré
de réalisation la zone d'hydrodésulfuration opère à température relativement basse ce qui va dans le sens d'une hydrogénation profonde et d'une limitation de la formation de coke. On ne sortirait pas du cadre de la présente invention en utilisant dans la zone d'hydrodésulfuration de manière simultanée ou de manière successive un seul catalyseur ou plusieurs catalyseurs différents. Habituellement cette étape c) est effectué industriellement dans un ou plusieurs réacteurs à courant descendant de liquide.
Dans la zone d'hydrodésulfuration (étape c) ) on utilise au moins un lit fixe de catalyseur classique d'hydrodésulfuration dont le support est au moins en partie amorphe.
On utilisera de préférence un catalyseur dont le support est par exemple choisi dans le groupe formé par l'alumine, la silice, les silices-alumines, la magnésie, les argiles et les mélanges d'au moins deux de ces minéraux. Ce support peut également renfermer d'autres composés et par exemple des oxydes choisis dans le groupe formé par l'oxyde de bore, la zircone, l'oxyde de titane, l'anhydride phosphorique. On utilise le plus souvent un support d'alumine et très souvent un support d'alumine dopée avec du phosphore et éventuellement du bore. La concentration en anhydride phosphorique P205 est habituellement inférieure à
environ 20 % en poids et le plus souvent inférieure à environ 10 % en poids. Cette concentration en P205 est habituellement d'au moins 0,001 % en poids. La concentration en trioxyde de bore B203 est habituellement d'environ 0 à environ 10 % en poids. L'alumine utilisée est habituellement une alumine y ou rI Ce catalyseur est le plus souvent sous forme de billes ou d'extrudé. On peut utiliser un catalyseur granulaire classique d'hydrodésulfuration comprenant sur un support amorphe au moins un métal ou composé de métal ayant une fonction hydro-déshydrogènante. Ce catalyseur peut être un catalyseur comprenant des métaux du groupe VIII par exemple du nickel et/ou du cobalt le plus souvent en association avec au moins un métal du groupe VIB par exemple du molybdène et/ou du tungstène. On peut par exemple employer un catalyseur comprenant de 0,5 à 10 % en poids de nickel et de préférence de 1 à 5 % en poids de nickel (exprimé en oxyde de nickel NiO) et de 1 à 30 % en poids de molybdène de préférence de 5 à 20 % en poids de molybdène (exprimé en oxyde de molybdène Mo03) sur un support minéral amorphe. La teneur totale en oxydes de métaux des groupes VI et VIII est souvent d'environ 5 à environ 40 % en poids et en général d'environ 7 à 30 % en poids et le rapport pondéral exprimé en oxyde métallique entre métal (ou métaux) du groupe VI sur métal (ou métaux) du groupe VIII est en général d'environ 20 à environ 1 et le plus souvent d'environ 10 à environ 2.
Dans la zone de distillation dans l'étape e) les conditions sont généralement choisies de manière à ce que le point final d'ébullition de la fraction gazeuse soit d'environ 5 C. Dans cette zone de distillation on récupère également une fraction essence dont le point final d'ébullition est le plus souvent d'environ 150 C et une fraction gazole dont le point initial d'ébullition est habituellement d'environ 150 C et le point final d'ébullition d'environ 370 C.
Dans l'étape d) de craquage catalytique au moins une partie de la fraction lourde F2 obtenue à l'étape b) ou au moins une partie de la fraction F4 obtenue à
l'étape bl) est craquée catalytiquement de manière classique dans des conditions bien connues des hommes 2o du métier pour produire une fraction carburant (comprenant une fraction essence et une fraction gazole) que l'on envoie habituellement au moins en partie aux pools carburants et une fraction slurry qui sera par exemple au moins en partie, voire en totalité, envoyée au pool fuel lourd ou recyclée au moins en partie, voire en totalité, à l'étape d) de craquage catalytique. Dans le cadre de la présente invention l'expression craquage catalytique classique englobe les procédés de craquage comprenant au moins une étape de régénération par coinbustion partielle et ceux comprenant au moins une étape de régénération par combustion totale et/ou ceux comprenant à la fois au moins une étape de combustion partielle et au moins une étape de combustion totale.
On trouvera par exemple une description sommaire du craquage catalytique (dont la première mise en oeuvre industrielle remonte à 1936 (procédé HOUDRY) ou en 1942 pour l'utilisation de catalyseur en lit fluidisé) dans ULLMANS ENCYCLOPEDIA OF
INDUSTRIAL CHEMISTRY VOLUME A 18, 1991, pages 61 A 64. On utilise habituellenient un catalyseur classique comprenant une matrice, éventuellement un additif et au nioins une zéolithe. La quantité de zéolithe est variable mais habituellement d'environ 3 à 60 % en poids, souvent d'environ 6 à 50 % en poids et le plus souvent d'environ 10 à 45 ~, c;n poids. La zéolithe est habituellement dispersée dans la matrice. La quantité d'additif est habituel lement d'environ 0 à 30 % en poids et souvent d'environ 0 à 20 %
en poids La quantité de rnatrice représente le complément à 100 % en poids. L'additif est généralement choisi dans le groupe formé par les oxydes des métaux du groupe IIA de la classification périodique des élénients tels que par exemple l'oxyde de magnésium ou l'oxyde de calcium, les oxydes des terres rares et les titanates des métaux du groupe IIA.
La matrice est le plus souvent une silice, une alumine, une silice-alumine, une silice-magnésie, une argile ou un mélange de deux ou plusieurs de ces produits. La zéolithe la plus couramment utilisée est la zéolithe Y. On effectue le craquage dans un réacteur sensiblement vertical soit en mode ascendant (riser) soit en mode descendant (dropper).Le choix du catalyseur et des conditions opératoires sont fonctions des produits recherchés en fonction de la charge traitée comme cela est par exemple décrit dans l'article de M.
MARCILLY pages 990-991 publié dans la revue de l'Institut Français du Pétrole novembre-décembre.1975 pages 969-1006. On opère habituellement à une température Ll'environ 450 à environ 600 C et des temps de séjour dans le réacteur inférieur à 1 minute sc~uvent d'environ 0,1 à environ 50 secondes.
L'étape d) de craquage catalytique peut aussi être une étape de craquage catalytique en lit fluidisé par exemple selon le procédé mis au point par la demanderesse dénonuné R2R.
Cette étape peut être exécutée de manière classique connue des hommes du métier dans les conditions adéquates de craquage en vue de produire des produits hydrocarbonés de plus faible poids moléculaire. Des descriptions de fonctionnement et de catalyseurs utilisables dans le cadre du craquage en lit fluidisé dans cette étape d) sont décrits par exemple dans les documents de brevets US-A-4695370, EP-B-184517, US-A-4959334, EP-B-323297, US-A-4965232, US-A-5120691, US-A-5344554, US-A-5449496, EP-A-485259, US-A-5286690, US-A-5324696 et EP-A-699224.
12a Le réacteur de craquage catalytique en lit fluidisé peut fonctionner à courant ascendant ou à
cciurant descendant. Bien que cela ne soit pas une forme préférée de réalisation de la présente invention il est également envisageable d'effectuer le craquage catalytique dans un ~
réacteur à lit mobile. Les catalyseurs de craquage catalytique particulièrement préférés sont ceux qui contiennent au moins une zéolithe habituellement en mélange avec une matrice appropriée telle que par exemple l'alumine, la silice, la silice-alumine.
Les figures 1, 2, 3 et 4 représentent schématiquement les principales variantes pour la mise en oeuvre du procédé selon la présente invention. Sur ces figures, les organes similaires sont désignés par les mêmes chiffres et lettres de référence.
Sur la figure 1, la charge hydrocarbonée à traiter entre par les lignes 10 et 15 dans la io section ou zone de traitement 1 en présence d'hydrogène, ledit hydrogène étant introduit par les lignes 19 et 15 dans ladite section. L'appoint de catalyseur se fait par la ligne 16 et le soutirage par la ligne 17. L'effluent traité dans la section 1 est envoyé
par la ligne 18 dans une zone 2 de séparation haute pression et haute température à partir de laquelle on récupère, par la ligne 8 un effluent qui est envoyé dans la zone 4 d'hydrodésulfuration en lit fixe et par la ligne 7 un effluent qui est détendu dans la vanne Vl puis envoyé dans la section de craquage catalytique 6. Dans la zone 4 d'hydrodésulfuration l'hydrogène est introduit par la ligne 9 et on récupère l'effluent hydrotraité que l'on envoie par la ligne 100 dans une zone de distillation Dl à partir de laquelle on i=écupère une fraction gaz par la ligne 11, une fraction essence par la ligne 12 et une fiaction gazole par la ligne 13.
L'effluent de craquage catalytique est envoyé par la ligne 110 dans une zone de distillation D2 à partir de laquelle on récupère par la ligne 30 une fraction gazeuse, par la ligne 31 une fraction essence, par la ligne 29 une fraction gazole et par la ligne 32 une fraction slurry qui est en partie envoyée au pool fuel lourd de la raffinerie par la ligne 33, une autre partie de cette fraction slurry étant éventuellement envoyée par les lignes 34 et 36 dans la section de craquage catalytique 6, une autre partie étant éventuellement envoyée par la ligne 35 dans la section de traitement 1 en lit bouillonnant. Une partie de la fraction gazole est éventuellement envoyée par la ligne 39 et la ligne 8 dans la zone 4 d'hydrodésulfuration en lit fixe. Une autre partie de la fraction gazole est éventuellement envoyée par la ligne 38 et la ligne 36 dans la section de craquage catalytique 6. Une partie de la fraction essence est éventuellement envoyée par la ligne 37 et la ligne 36 dans la section de craquage catalytique 6.
Selon une forme particulière de l'invention schématisée sur la figure 2 l'effluent issu de la zone 2 de séparation haute pression et haute température circulant dans la ligne 7 est détendu dans la vanne V 1 est envoyé dans une section 3 de séparation à plus basse pression à partir de laquelle on récupère une fraction gazeuse qui est évacuée par la ligne 15, un effluent léger qui est envoyé par la ligne 14 dans la zone 4 d'hydrodésulfuration et par la ligne 20 un effluent plus lourd qui est détendu dans la vanne V2 puis envoyé
dans la section de craquage catalytique 6.
Selon une forme particulière de l'invention schématisée sur la figure 3 l'effluent issu de la zone 2 de séparation haute pression et haute température circulant dans la ligne 7 est clétendu dans la vanne V 1 puis envoyé dans une section 5 d'élimination des fines de catalyseur à partir de laquelle on récupère un effluent sensiblement exempt de fines particules solides de catalyseur que l'on envoie, après détente dans la vanne V2, par la ligne 21 dans la section de craquage catalytique 6.
Selon une forme particulière de l'invention schématisée sur la figure 4 l'effluent plus lourd issu de la section 3 de séparation à plus basse pression circulant dans la ligne 20 est envoyé
dans une section 5 d'élimination des fines de catalyseur à partir de laquelle on récupère un effluent sensiblement exempt de fines particules solides de catalyseur que l'on envoie, après détente dans la vanne V2, par la ligne 21 dans la section de craquage catalytique 6.
EXEMPLES
Ces exemples sont issus d'expérimentations réalisées dans des unités pilotes.
Exenzple 1 On traite un distillat sous vide (DSV) lourd d'origine Safaniya. Ses caractéristiques sont présentées sur le tableau 1. Tous les rendements sont calculés à partir d'une base 100 (en masse) de DSV.
Tableau 1 Charge DSV Safaniya Analyse Densité 15/4 0,940 Soufre, % masse 3,08 Carbone Conradson, % masse 1,2 Azote, ppm 1092 Hydrogène, % masse 11,9 Distillation simulée, % masse C
Température 5 366 Température 50 488 Température 95 578 On traite ce distillat sous vide (DSV) lourd d'origine Safaniya dans une unité
pilote comportant un réacteur à lit bouillonnant de catalyseur.
Ce réacteur simule une unité industrielle du procédé T-STAR à lit bouillonnant.
L'écoulement des fluides dans le réacteur est ascendant. Il a été en effet vérifié par ailleurs que ce mode de travail en unité pilote fournit des résultats équivalents à ceux des unités industrielles.
lo Ce réacteur contient 1 litre d'un catalyseur spécifique pour l'application T-STAR fabriqué par PROCATALYSE sous la référence HTS358.
Les conditions opératoires de mise en oeuvre sont les suivantes 15 - VVH par rapport au lit catalytique tassé : 1 h-1 - Pression d'hydrogène : 65 bars (6,5 Mpa) - Recyclage d'hydrogène : 400 litres d'hydrogène par litre de charge - Température dans le réacteur : 440 C
Les produits liquides issus du premier réacteur sont fractionnés en ligne sur l'unité pilote en une fraction essence + gazole atmosphérique (C5-370 C), et une fraction résiduelle (370 C).
La fraction C5-370 C est récupérée et va servir de charge à un autre test pilote d'hydrodésulfuration (HDS) en lit fixe. Ce pilote comporte un réacteur tubulaire à lit fixe.
L'écoulement des fluides est ascendant contrairement au cas d'une unité
industrielle. Il a été en effet vérifié par ailleurs que ce mode de travail en unité pilote fournit des résultats équivalents à ceux des unités industrielles comportant un lit fixe de catalyseur travaillant à courant descendant de fluides. Il est chargé avec 0.8 litre de catalyseur HR448 commercialisé par Procatalyse.
Les conditions opératoires sont les suivantes - VVH par rapport au lit catalytique tassé : 1 h-1 - Pression d'hydrogène : 65 bars (6,5 Mpa) - Recyclage d'hydrogène : 600 litres d'hydrogène par litre de charge - Température dans le réacteur : 350 C.
Les produits liquides issus du réacteur sont fractionnés en une fraction essence C5-150 C et une fraction gazole atmosphérique 150-370 C
Le bilan matière correspondant à l'enchaînement T-Star + HDS est indiqué dans le tableau 2 suivant. On remarque en particulier le très fort rendement en diesel que l'on obtient.
Tableau 2 Bilan matière T-Star + HDS intégré
H2S+NH3, %m/charge 3,2 C1-C4, %m/charge :3,7 C5-150, %m/charge 9,0 150-370, %m/charge 48,0 370+, %m/charge 37,4 Total, %m/charge 101,3 Les qualités de produit correspondant à l'enchaînement T-Star + HDS intégré
sont indiquées dans le tableau 3 suivant. On remarque en particulier les très bonnes propriétés de la fraction gazole obtenue. Sa teneur en soufre le rend compatible avec les spécifications de la communauté économique européenne (CEE) pour 2005.
Tableau 3 Produits ex T-Star + HDS intégrée Essence Gazole Rendt/VGO SR, %m 9,0 48,0 Densité 15/4 0,730 0,853 Soufre, ppm m < 10 30 (RON+MON)/2 60 Cétane 50 La fraction résiduelle (370 C+) résultant du fractionnement est envoyée dans un système de filtration permettant l'élimination des fines de catalyseur génërées dans le réacteur travaillant en lit bouillonnant. Ceci évite la désactivation rapide du catalyseur de craquage catalytique en lit fluide (FCC) par suite de la présence éventuelle de molybdène dans les fines du catalyseur contenues dans cette fraction.
Cette fraction ne contenant plus de fines de catalyseur est traitée dans une unité pilote de craquage catalytique utilisant un catalyseur contenant 20% poids de zéolithe Y
et 80 % en poids d'une matrice silice-alumine. Cette charge préchauffée à 135 C est mise en contact en bas d'un réacteur pilote vertical avec un catalyseur régénéré chaud provenant d'un régénérateur pilote. La température d'entrée dans le réacteur du catalyseur est 720 C. Le rapport du débit de catalyseur sur le débit de charge est de 6,0. L'apport calorique du catalyseur à 720 C
permet la vaporisation de la charge et la réaction de craquage qui est endothermique. Le temps de séjour moyen du catalyseur dans la zone réactionnelle est d'environ 3 secondes. La pression opératoire est 1,8 bars absolue. La température du catalyseur mesurée à la sortie du réacteur en lit fluidisé entraîné ascendant (riser) est 525 C. Les hydrocarbures craqués et le catalyseur sont séparés grâce à des cyclones situés dans une zone de désengagement (stripper) où le catalyseur est strippé. Le catalyseur qui a été coké pendant la réaction et strippé dans la zone de désengagement est ensuite envoyé dans le régénérateur. La teneur en coke du solide (delta coke) à l'entrée du régénérateur est de 0,85 %. Ce coke est brûlé par de l'air injecté dans le régénérateur. La combustion très exothermique élève la température du solide de 525 C à
720 C. Le catalyseur régénéré et chaud sort du régénérateur et est renvoyé en bas du réacteur.
Les hydrocarbures séparés du catalyseur sortent de la zone de désengagement ;
ils sont refroidis par des échangeurs et envoyés dans une colonne de stabilisation qui sépare les gaz et les liquides. Le liquide (C5 +) est également échantillonné puis il est fractionné dans une autre colonne afin de récupérer une fraction essence, une fraction gazole et une fraction fuel lourd ou slurry (370 C).Le tableau 4 donne les rendements et les principales caractéristiques des produits obtenus Tableau 4 Produits ex FCC Essence Gazole Rendt/DSV SR, % m 19,6 6,2 Soufre, ppm m 30 2700 (RON+MON)/2 86 Cétane 28 On mélange ensuite la fraction essence récupérée par distillation de l'effluent de sortie du deuxième réacteur et la fraction essence récupérée à partir du produit issu du craquage catalytique et on fait de même avec les deux fractions gazole. Le tableau 5 donne les rendements totaux en essence et en gazole ainsi obtenus et les principales caractéristiques de ces produits.
Tableau 5 Produits totaux Essence Gazole total totale Rendt/VGO SR, %m 28,6 54,2 Densité 15/4 0,723 0,862 Soufre, ppm m 24 350 (RON+MON)/2 78 Cétane 47 t5 On remarque ainsi notamment les bonnes propriétés de la coupe essence, en particulier sa teneur en soufre qui répond aux spécifications CEE pour 2005. On constate les forts rendements en gazole et son bon indice de cétane.
Exemple 2 On reprend le même schéma que dans l'exemple 1 et dans les mêmes conditions si ce n'est que la fraction gazole issu du FCC est envoyée dans l'étape d'HDS en mélange avec la fraction C5-370 C récupérée à la sortie du procédé T-Star. Un test d'HDS selon les conditions opératoires citées précédenunent dans l'exemple est réalisé en utilisant la fraction FCC et la fraction gazole mélangées au prorata des rendements de chaque unité (T-Star et FCC).
Les qualités de produit correspondant à l'enchaînement T-Star + HDS intégré
avec recyclage du gazole FCC sont indiqués dans le tableau 6 suivant. On remarque en particulier les très bonnes propriétés de la fraction gazole obtenue. Sa teneur en soufre le rend compatible avec les spécifications de la communauté économique européenne (CEE) pour 2005.
Tableau 6 Produits ex T-Star + HDS intégrée Essence Gazole avec recyclage du gazole de FCC
Rendt/VGO SR, %m 9,0 54,2 Densité 15/4 0,730 0,858 Soufre, ppm m < 10 30 (RON+MON)/2 60 Cétane 48 On mélange ensuite la fraction essence récupérée par distillation de l'effluent de sortie du réacteur d'HDS et la fraction essence récupérée à partir du produit issu du craquage catalytique. Le tableau 7 donne les rendements totaux en essence et en gazole ainsi obtenus et les principales caractéristiques de ces produits.
Tableau 7 Produits totaux Essence Gazole total totale Rendt/VGO SR, %m 28,6 54,2 Densité 15/4 0,723 0,858 Soufre, ppm m 24 30 (RON+MON)/2 78 Cétane 48 On remarque en particulier les très bonnes propriétés de la fraction gazole obtenue. Sa teneur en soufre le rend compatible avec les spécifications de la communauté
économique européenne 5 (CEE) pour 2005.
On remarque ainsi notamment les bonnes propriétés de la coupe essence, en particulier sa teneur en soufre qui répond aux spécifications CEE pour 2005. On constate les forts rendements en gazole et son très bon indice de cétane.
Claims (17)
1. Procédé de conversion d'un distillat sous vide ayant une teneur en soufre d'au moins 0,05%, une température initiale d'ébullition d'au moins 300°C et une température finale d'ébullition d'au moins 400°C caractérisé en ce qu'il comprend les étapes suivantes:
a) on traite le distillat sous vide dans une section de traitement en présence d'hydrogène, ladite section comprenant au moins un réacteur triphasique, contenant au moins un catalyseur d'hydroconversion dont le support minéral est au moins en partie amorphe, en lit bouillonnant, fonctionnant à courant ascendant de liquide et de gaz, ledit réacteur comportant au moins un moyen de soutirage (17) du catalyseur hors dudit réacteur situé à proximité du bas du réacteur et au moins un moyen d'appoint (16) de catalyseur frais dans ledit réacteur situé à proximité du sommet dudit réacteur, b) on envoie au moins une partie de l'effluent EFO issu de l'étape a) dans une section de séparation (2) opérant sous une pression et à une température sensiblement identique à la pression et à la température de la section de traitement de l'étape a), ladite section de séparation (2) permettant d'obtenir, une fraction F1 contenant au moins une partie du gaz, de l'essence, et du gazole atmosphérique contenu dans l'effluent EFO et une fraction F2 contenant principalement des composés ayant des points d'ébullitions supérieurs à ceux du gazole atmosphérique et une faible proportion de composés ayant des points d'ébullition inférieurs à ceux du gazole atmosphérique, c) on envoie au moins une partie de la fraction F1 issue de l'étape b) dans une section de traitement en présence d'hydrogène, ladite section comprenant au moins un réacteur contenant au moins un catalyseur d'hydrodésulfuration en lit fixe dont le support minéral est au moins en partie amorphe, dans des conditions permettant d'obtenir un effluent EF1 à teneur réduite en soufre, et d) on envoie après détente au moins une partie de la fraction F2 issue de l'étape b) dans une section de craquage catalytique dans laquelle elle est traitée dans des conditions permettant de produire un effluent de craquage EF2.
a) on traite le distillat sous vide dans une section de traitement en présence d'hydrogène, ladite section comprenant au moins un réacteur triphasique, contenant au moins un catalyseur d'hydroconversion dont le support minéral est au moins en partie amorphe, en lit bouillonnant, fonctionnant à courant ascendant de liquide et de gaz, ledit réacteur comportant au moins un moyen de soutirage (17) du catalyseur hors dudit réacteur situé à proximité du bas du réacteur et au moins un moyen d'appoint (16) de catalyseur frais dans ledit réacteur situé à proximité du sommet dudit réacteur, b) on envoie au moins une partie de l'effluent EFO issu de l'étape a) dans une section de séparation (2) opérant sous une pression et à une température sensiblement identique à la pression et à la température de la section de traitement de l'étape a), ladite section de séparation (2) permettant d'obtenir, une fraction F1 contenant au moins une partie du gaz, de l'essence, et du gazole atmosphérique contenu dans l'effluent EFO et une fraction F2 contenant principalement des composés ayant des points d'ébullitions supérieurs à ceux du gazole atmosphérique et une faible proportion de composés ayant des points d'ébullition inférieurs à ceux du gazole atmosphérique, c) on envoie au moins une partie de la fraction F1 issue de l'étape b) dans une section de traitement en présence d'hydrogène, ladite section comprenant au moins un réacteur contenant au moins un catalyseur d'hydrodésulfuration en lit fixe dont le support minéral est au moins en partie amorphe, dans des conditions permettant d'obtenir un effluent EF1 à teneur réduite en soufre, et d) on envoie après détente au moins une partie de la fraction F2 issue de l'étape b) dans une section de craquage catalytique dans laquelle elle est traitée dans des conditions permettant de produire un effluent de craquage EF2.
2. Procedé selon la revendication 1, comprenant en outre une étape e) dans laquelle l'effluent EF1 est au moins en partie, envoyé dans une zone de distillation à
partir de laquelle on récupère une fraction gazeuse, une fraction carburant moteur de type essence et une fraction carburant moteur de type gazole.
partir de laquelle on récupère une fraction gazeuse, une fraction carburant moteur de type essence et une fraction carburant moteur de type gazole.
3. Procédé selon la revendication 2, dans lequel la fraction gazeuse est évacuée vers d'autres installations de la raffinerie, la fraction carburant moteur de type essence est au moins en partie envoyée au pool de ce type de carburant, la fraction carburant moteur de type gazole est au moins en partie envoyée au pool de ce type de carburant.
4. Procédé selon la revendication 1, dans lequel l'étape d) de craquage catalytique est effectuée dans des conditions permettant de produire un effluent de craquage EF2 contenant une fraction gazeuse, une fraction carburant moteur de type essence, une fraction carburant moteur de type gazole et une fraction slurry.
5. Procédé selon la revendication 4, comprenant en outre une étape f) dans lequel l'effluent de craquage EF2 obtenu à l'étape d) de craquage catalytique est au moins en partie, envoyé dans une zone de distillation à partir de laquelle on récupère une fraction gazeuse, une fraction carburant moteur de type essence, une fraction carburant moteur de type gazole et une fraction slurry.
6. Procédé selon la revendication 5, dans lequel la fraction gazeuse est évacuée vers d'autres installations de la raffinerie, la fraction carburant moteur de type essence est au moins en partie envoyée au pool de ce type de carburant, la fraction carburant moteur de type gazole est au moins en partie envoyée au pool de ce type de carburant.
7. Procédé selon l'une quelconque des revendications 1 à 6, comprenant en outre une étape b1) dans laquelle au moins une partie de la fraction F2 issue de l'étape b) est envoyée après détente dans une section de séparation à plus basse pression ou dans une colonne de fractionnement ou dans un stripeur à la vapeur d'eau, à partir de laquelle on obtient, une fraction gazeuse qui est évacuée vers d'autres installations de la raffinerie, une fraction légère F3, que l'on envoie au moins en partie dans la section de traitement de l'étape c) et une fraction lourde F4, que l'on envoie après détente au moins en partie dans la section de craquage catalytique de l'étape d).
8. Procédé selon la revendication 7, comprenant en outre une étape g) dans lequel la fraction F2 issue de l'étape b) ou la fraction F4 issue de l'étape b1) est envoyé dans une section de séparation et d'élimination au moins partielle des fines particules de catalyseur avant son introduction après détente dans l'étape d) de craquage catalytique.
9. Procédé selon la revendication 8, dans lequel l'étape g) comporte l'utilisation d'au moins deux moyens de séparation et d'élimination au moins partielle des fines particules de catalyseur en parallèles dont l'un au moins sera utilisé pour effectuer la séparation et d'élimination au moins partielle des fines particules de catalyseur pendant qu'au moins un autre sera purgé desdites fines particules retenues.
10. Procédé selon la revendication 2 ou 3, dans lequel au moins une partie de la fraction gazole obtenue à l'étape e) est recyclée à l'étape c) et/ou à l'étape d).
11. Procédé selon la revendication 5 ou 6, dans lequel au moins une partie de la fraction gazole obtenue à l'étape f) est recyclée à l'étape c) et/ou à l'étape d).
12. Procédé selon l'une quelconque des revendications 2, 3 et 10, dans lequel au moins une partie de la fraction essence obtenue à l'étape e) est recyclée à
l'étape d).
l'étape d).
13. Procédé selon l'une quelconque des revendications 5, 6 et 11, dans lequel au moins une partie de la fraction essence obtenue à l'étape f) est recyclée à
l'étape d).
l'étape d).
14. Procédé selon la revendication 5, dans lequel dans lequel au moins une partie de la fraction slurry obtenue à l'étape f) est recyclée à l'étape a) et/ou à
l'étape d).
l'étape d).
15. Procédé selon l'une quelconque des revendications 1 à 14, dans lequel au cours de l'étape a) le traitement en présence d'hydrogène est effectué sous une pression absolue de 2 à 35 MPa, à une température d' environ 300 à
600°C avec une vitesse spatiale horaire d'environ 0,1 à 10 h-1 et la quantité d'hydrogène mélangé à la charge est d'environ 50 à 5000 Nm3/m3.
600°C avec une vitesse spatiale horaire d'environ 0,1 à 10 h-1 et la quantité d'hydrogène mélangé à la charge est d'environ 50 à 5000 Nm3/m3.
16. Procédé selon l'une quelconque des revendications 1 à 15, dans lequel l'étape c) d'hydrodésulfuration est effectuée sous une pression sensiblement égale à
la pression absolue de l'étape a), à une température d'environ 250 à 500°C
avec une vitesse spatiale horaire d'environ 0,1 à 5 h-1 et la quantité d'hydrogène mélangé à la charge est d'environ 100 à 5000 Nm3/m3.
la pression absolue de l'étape a), à une température d'environ 250 à 500°C
avec une vitesse spatiale horaire d'environ 0,1 à 5 h-1 et la quantité d'hydrogène mélangé à la charge est d'environ 100 à 5000 Nm3/m3.
17. Procédé selon l'une quelconque des revendications 1 à 16, dans lequel la charge traitée est choisie dans le groupe formé par les distillats sous vide, les mélanges de distillats sous vide et d'au moins une huile de coupe légère et/ou une huile de coupe lourde et/ou de coupes gazole provenant du cracking catalytique et/ou de coupes gazole provenant du coking et/ou des huiles désasphaltées et/ou des extraits aromatiques.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0000368 | 2000-01-11 | ||
FR0000368A FR2803596B1 (fr) | 2000-01-11 | 2000-01-11 | Procede de conversion de fractions petrolieres comprenant une etape d'hydroconversion lit bouillonnant, une etape de separation, une etape d'hydrodesulfuration et une etape de craquage |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2330461A1 CA2330461A1 (fr) | 2001-07-11 |
CA2330461C true CA2330461C (fr) | 2010-06-08 |
Family
ID=8845850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2330461A Expired - Lifetime CA2330461C (fr) | 2000-01-11 | 2001-01-09 | Procede de conversion de fractions petrolieres comprenant une etape d'hydroconversion en lit bouillonnant, une etape de separation, une etape d'hydrodesulfuration et une etape de craquage |
Country Status (4)
Country | Link |
---|---|
US (1) | US6620311B2 (fr) |
EP (1) | EP1116777A1 (fr) |
CA (1) | CA2330461C (fr) |
FR (1) | FR2803596B1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012066572A2 (fr) | 2010-11-19 | 2012-05-24 | Indian Oil Corporation Ltd. | Procédé de désulfuration profonde d'essence de craquage à perte d'octane minimale |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2858668B1 (fr) * | 2003-08-04 | 2005-09-23 | Inst Francais Du Petrole | Utilisation d'une turbine diphasique dans un procede d'hydrotraitement |
US8696888B2 (en) | 2005-10-20 | 2014-04-15 | Exxonmobil Chemical Patents Inc. | Hydrocarbon resid processing |
US7390398B2 (en) * | 2005-12-16 | 2008-06-24 | Chevron U.S.A. Inc. | Process for upgrading heavy oil using a highly active slurry catalyst composition |
US7431822B2 (en) * | 2005-12-16 | 2008-10-07 | Chevron U.S.A. Inc. | Process for upgrading heavy oil using a reactor with a novel reactor separation system |
US7708877B2 (en) * | 2005-12-16 | 2010-05-04 | Chevron Usa Inc. | Integrated heavy oil upgrading process and in-line hydrofinishing process |
FR2900157B1 (fr) * | 2006-04-24 | 2010-09-24 | Inst Francais Du Petrole | Procede de desulfuration d'essences olefiniques comprenant au moins deux etapes distinctes d'hydrodesulfuration |
CN101210200B (zh) | 2006-12-27 | 2010-10-20 | 中国石油化工股份有限公司 | 一种渣油加氢处理与催化裂化组合工艺方法 |
EP2233550B1 (fr) * | 2007-11-09 | 2014-04-30 | Ranfeng Ding | Système et procédé de recombinaison d'hydrocarbure catalytique pour produire une essence de haute qualité |
EP2234710A2 (fr) * | 2007-11-28 | 2010-10-06 | Saudi Arabian Oil Company | Processus d'hydrotraitement catalytique des pétroles bruts sulfureux |
KR101589565B1 (ko) | 2007-12-20 | 2016-01-28 | 차이나 페트로리움 앤드 케미컬 코포레이션 | 탄화수소유의 수소화처리 및 촉매식 분해의 결합된 방법 |
CN101497806B (zh) * | 2008-01-29 | 2013-04-10 | 丁冉峰 | 一种制备高质量汽油的设备及其方法 |
US7938953B2 (en) * | 2008-05-20 | 2011-05-10 | Institute Francais Du Petrole | Selective heavy gas oil recycle for optimal integration of heavy oil conversion and vacuum gas oil treating |
US8372267B2 (en) * | 2008-07-14 | 2013-02-12 | Saudi Arabian Oil Company | Process for the sequential hydroconversion and hydrodesulfurization of whole crude oil |
US20100018904A1 (en) * | 2008-07-14 | 2010-01-28 | Saudi Arabian Oil Company | Prerefining Process for the Hydrodesulfurization of Heavy Sour Crude Oils to Produce Sweeter Lighter Crudes Using Moving Catalyst System |
US9260671B2 (en) * | 2008-07-14 | 2016-02-16 | Saudi Arabian Oil Company | Process for the treatment of heavy oils using light hydrocarbon components as a diluent |
EP2390303B1 (fr) * | 2009-01-21 | 2017-07-26 | Beijing Grand Golden-Bright Engineering & Technologies Co., Ltd. | Procédé de production d'essence de haute qualité par recombinaison et hydrogénation subséquente d'hydrocarbures obtenus par voie catalytique |
EP2443216A4 (fr) * | 2009-06-19 | 2015-12-16 | Innovative Energy Solutions Inc | Craquage thermo-catalytique pour la conversion d'hydrocarbures supérieurs en hydrocarbures inférieurs |
EP2445997B1 (fr) * | 2009-06-22 | 2021-03-24 | Saudi Arabian Oil Company | Demetallisation et desulfurisation d'un petrole brut por coquage retardé |
CN101591563B (zh) * | 2009-06-25 | 2012-06-27 | 中国石油化工集团公司 | 一种沸腾床加氢与固定床加氢的组合工艺 |
US10087377B2 (en) | 2010-09-07 | 2018-10-02 | Saudi Arabian Oil Company | Oxidative desulfurization of oil fractions and sulfone management using an FCC |
US9574144B2 (en) | 2010-09-07 | 2017-02-21 | Saudi Arabian Oil Company | Process for oxidative desulfurization and denitrogenation using a fluid catalytic cracking (FCC) unit |
US10093872B2 (en) | 2010-09-07 | 2018-10-09 | Saudi Arabian Oil Company | Oxidative desulfurization of oil fractions and sulfone management using an FCC |
CN102453543B (zh) * | 2010-10-15 | 2014-05-21 | 中国石油化工股份有限公司 | 一种渣油加氢处理和催化裂化组合工艺方法 |
US9101853B2 (en) * | 2011-03-23 | 2015-08-11 | Saudi Arabian Oil Company | Integrated hydrocracking and fluidized catalytic cracking system and process |
US9101854B2 (en) * | 2011-03-23 | 2015-08-11 | Saudi Arabian Oil Company | Cracking system and process integrating hydrocracking and fluidized catalytic cracking |
EP2737027B1 (fr) | 2011-07-29 | 2018-12-26 | Saudi Arabian Oil Company | Procédé d'hydrocraquage à distillation par entraînement à la vapeur d'eau |
ES2664626T3 (es) | 2012-08-09 | 2018-04-20 | Council Of Scientific & Industrial Research | Un proceso para la producción de gasolina pobre en benceno mediante la recuperación de benceno de alta pureza a partir de la fracción de gasolina craqueada sin procesar que contiene peróxidos orgánicos |
CN103773492B (zh) * | 2012-10-17 | 2015-11-25 | 中国石油化工股份有限公司 | 一种劣质柴油的改质方法 |
CN103773470B (zh) * | 2012-10-17 | 2016-01-20 | 中国石油化工股份有限公司 | 由劣质柴油生产清洁柴油的方法 |
CN103773480B (zh) * | 2012-10-17 | 2015-11-25 | 中国石油化工股份有限公司 | 一种改善重质柴油质量的方法 |
CN103691211B (zh) * | 2013-12-25 | 2015-07-01 | 中国石油化工股份有限公司 | 沸腾床渣油加氢反应器的气相产物旋流净化装置以及利用其对气相产物进行净化的方法 |
FR3101082B1 (fr) * | 2019-09-24 | 2021-10-08 | Ifp Energies Now | Procédé intégré d’hydrocraquage en lit fixe et d’hydroconversion en lit bouillonnant avec une séparation gaz/liquide améliorée |
FR3100992A1 (fr) | 2019-09-24 | 2021-03-26 | IFP Energies Nouvelles | Séparateur gaz/liquide haute pression et procédé de séparation mettant en œuvre un tel séparateur |
FR3104606B1 (fr) | 2019-12-17 | 2021-11-19 | Ifp Energies Now | Procédé intégré d’hydrocraquage en lit fixe et d’hydroconversion en lit bouillonnant avec un recyclage de l’hydrogène optimisé |
WO2022204073A1 (fr) * | 2021-03-24 | 2022-09-29 | Chevron U.S.A. Inc. | Procédés d'hydroconversion faisant appel à des réacteurs à lit bouillonnant et à une addition d'eau intermédiaire |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3098029A (en) * | 1959-07-22 | 1963-07-16 | Socony Mobil Oil Co Inc | Combination catalytic crackinghydroprocessing operation |
US3119765A (en) * | 1959-10-19 | 1964-01-28 | Exxon Research Engineering Co | Catalytic treatment of crude oils |
US3887455A (en) * | 1974-03-25 | 1975-06-03 | Exxon Research Engineering Co | Ebullating bed process for hydrotreatment of heavy crudes and residua |
US4344840A (en) * | 1981-02-09 | 1982-08-17 | Hydrocarbon Research, Inc. | Hydrocracking and hydrotreating shale oil in multiple catalytic reactors |
US4457829A (en) * | 1982-09-09 | 1984-07-03 | Hri, Inc. | Temperature control method for series-connected reactors |
US5009768A (en) * | 1989-12-19 | 1991-04-23 | Intevep, S.A. | Hydrocracking high residual contained in vacuum gas oil |
ES2052324T3 (es) * | 1990-06-04 | 1994-07-01 | Eniricerche Spa | Procedimiento para desasfaltar y desmetalizar petroleo crudo o sus fracciones. |
US5851381A (en) * | 1990-12-07 | 1998-12-22 | Idemitsu Kosan Co., Ltd. | Method of refining crude oil |
FR2753982B1 (fr) * | 1996-10-02 | 1999-05-28 | Inst Francais Du Petrole | Procede catalytique en plusieurs etapes de conversion d'une fraction lourde d'hydrocarbures |
FR2753984B1 (fr) * | 1996-10-02 | 1999-05-28 | Inst Francais Du Petrole | Procede de conversion d'une fraction lourde d'hydrocarbures impliquant une hydrodemetallisation en lit bouillonnant de catalyseur |
FR2753983B1 (fr) * | 1996-10-02 | 1999-06-04 | Inst Francais Du Petrole | Procede en plusieurs etapes de conversion d'un residu petrolier |
FR2753985B1 (fr) * | 1996-10-02 | 1999-06-04 | Inst Francais Du Petrole | Procede catalytique de conversion d'un residu petrolier impliquant une hydrodemetallisation en lit fixe de catalyseur |
FR2764902B1 (fr) * | 1997-06-24 | 1999-07-16 | Inst Francais Du Petrole | Procede de conversion de fractions lourdes petrolieres comprenant une etape de conversion en lit bouillonnant et une etape d'hydrocraquage |
FR2769635B1 (fr) * | 1997-10-14 | 2004-10-22 | Inst Francais Du Petrole | Procede de conversion de fractions lourdes petrolieres comprenant une etape d'hydroconversion en lit bouillonnant et une etape d'hydrotraitement |
FR2776297B1 (fr) * | 1998-03-23 | 2000-05-05 | Inst Francais Du Petrole | Procede de conversion de fractions lourdes petrolieres comprenant une etape d'hydrotraitement en lit fixe, une etape de conversion en lit bouillonnant et une etape de craquage catalytique |
US6280606B1 (en) * | 1999-03-22 | 2001-08-28 | Institut Francais Du Petrole | Process for converting heavy petroleum fractions that comprise a distillation stage, ebullated-bed hydroconversion stages of the vacuum distillate, and a vacuum residue and a catalytic cracking stage |
-
2000
- 2000-01-11 FR FR0000368A patent/FR2803596B1/fr not_active Expired - Fee Related
- 2000-12-18 EP EP00403582A patent/EP1116777A1/fr not_active Ceased
-
2001
- 2001-01-09 CA CA2330461A patent/CA2330461C/fr not_active Expired - Lifetime
- 2001-01-11 US US09/757,602 patent/US6620311B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012066572A2 (fr) | 2010-11-19 | 2012-05-24 | Indian Oil Corporation Ltd. | Procédé de désulfuration profonde d'essence de craquage à perte d'octane minimale |
Also Published As
Publication number | Publication date |
---|---|
FR2803596B1 (fr) | 2003-01-17 |
US6620311B2 (en) | 2003-09-16 |
FR2803596A1 (fr) | 2001-07-13 |
CA2330461A1 (fr) | 2001-07-11 |
US20010027936A1 (en) | 2001-10-11 |
EP1116777A1 (fr) | 2001-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2330461C (fr) | Procede de conversion de fractions petrolieres comprenant une etape d'hydroconversion en lit bouillonnant, une etape de separation, une etape d'hydrodesulfuration et une etape de craquage | |
CA2248882C (fr) | Procede de conversion de fractions lourdes petrolieres comprenant une etape d'hydroconversion en lit bouillonnant et une etape d'hydrotraitement | |
CA2301985C (fr) | Procede de conversion de fractions lourdes petrolieres comprenant une etape d'hydroconversion en lits bouillonnants et une etape d'hydrotraitement | |
CA2239827C (fr) | Procede de conversion de fractions lourdes petrolieres comprenant une etape de conversion en lit bouillonnant et une etape d'hydrocraquage | |
CA2215580C (fr) | Procede de conversion d'une fraction lourde d'hydrocarbures impliquant une hydrodemetallisation en lit bouillonnant de catalyseur | |
CA2464796C (fr) | Procede de valorisation de charges lourdes par desasphaltage et hydrocraquage en lit bouillonnant | |
CA2215632C (fr) | Procede catalytique en plusieurs etapes de conversion d'une fraction lourde d'hydrocarbures | |
FR2776297A1 (fr) | Procede de conversion de fractions lourdes petrolieres comprenant une etape d'hydrotraitement en lit fixe, une etape de conversion en lit bouillonnant et une etape de craquage catalytique | |
CA2615197A1 (fr) | Procede de conversion de residus incluant 2 desasphaltages en serie | |
FR2964388A1 (fr) | Procede de conversion de residu integrant une etape de desasphaltage et une etape d'hydroconversion avec recyclage de l'huile desasphaltee | |
EP3728518A1 (fr) | Procede de conversion de charges lourdes d'hydrocarbures avec recycle d'une huile desasphaltee | |
WO2012085407A1 (fr) | Procède de conversion de charge hydrocarbonate comprenant une huile de schiste par hydre conversion en lit bouillonnant, fractionnement par distillation atmosphérique, et hydrocraquage | |
FR3014111A1 (fr) | Procede de raffinage d'une charge hydrocarbonee lourde mettant en œuvre un desasphaltage selectif en cascade | |
FR3075810A1 (fr) | Procede ameliore de conversion de residus integrant des etapes d’hydroconversion profonde et une etape de desasphaltage | |
FR2764300A1 (fr) | Procede de conversion de fractions lourdes petrolieres comprenant une etape d'hydrodesulfuration et une etape de conversion en lit bouillonnant | |
CA2215594C (fr) | Procede catalytique de conversion d'un residu petrolier impliquant une hydrodemetallisation en lit fixe de catalyseur | |
CA2891129A1 (fr) | Procede de conversion d'une charge hydrocarbonee lourde integrant un desasphaltage selectif avec recycle de l'huile desasphaltee | |
CA2215575C (fr) | Procede en plusieurs etapes de conversion d'un residu petrolier | |
FR3075807A1 (fr) | Procede ameliore de conversion de residus integrant des etapes d’hydroconversion profonde en lit entraine et une etape de desasphaltage | |
CA2607252C (fr) | Procede et installation de conversion de fractions lourdes petrolieres en lit fixe avec production integree de distillats moyens a tres basse teneur en soufre | |
CA2815618A1 (fr) | Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par hydroconversion en lit bouillonnant, fractionnement par distillation atmospherique et extraction liquide/liquide de la fraction lourde | |
WO2012085408A1 (fr) | Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par decontamination, hydroconversion en lit bouillonnant, et fractionnement par distillation atmospherique | |
FR3084371A1 (fr) | Procede de traitement d'une charge hydrocarbonee lourde comprenant un hydrotraitement en lit fixe, un desasphaltage et un hydrocraquage en lit bouillonnant de l'asphalte | |
FR3084372A1 (fr) | Procede de traitement d'une charge hydrocarbonee lourde comprenant un hydrotraitement en lit fixe, deux desasphaltages et un hydrocraquage en lit bouillonnant de l'asphalte | |
EP1310544B1 (fr) | Procédé de conversion de fractions lourdes pétrolières pour produire une charge de craquage catalytique et des distillats moyens de faible teneur en soufre |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |