FR3075807A1 - Procede ameliore de conversion de residus integrant des etapes d’hydroconversion profonde en lit entraine et une etape de desasphaltage - Google Patents
Procede ameliore de conversion de residus integrant des etapes d’hydroconversion profonde en lit entraine et une etape de desasphaltage Download PDFInfo
- Publication number
- FR3075807A1 FR3075807A1 FR1762864A FR1762864A FR3075807A1 FR 3075807 A1 FR3075807 A1 FR 3075807A1 FR 1762864 A FR1762864 A FR 1762864A FR 1762864 A FR1762864 A FR 1762864A FR 3075807 A1 FR3075807 A1 FR 3075807A1
- Authority
- FR
- France
- Prior art keywords
- hydroconversion
- fraction
- weight
- catalyst
- bed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 79
- 238000006243 chemical reaction Methods 0.000 title claims description 44
- 238000000926 separation method Methods 0.000 claims abstract description 44
- 238000009835 boiling Methods 0.000 claims abstract description 38
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 32
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 24
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 24
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 23
- 230000005587 bubbling Effects 0.000 claims abstract description 16
- 238000004523 catalytic cracking Methods 0.000 claims abstract description 16
- 238000004517 catalytic hydrocracking Methods 0.000 claims abstract description 16
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims abstract description 14
- 239000003054 catalyst Substances 0.000 claims description 112
- 239000007788 liquid Substances 0.000 claims description 47
- 229910052751 metal Inorganic materials 0.000 claims description 45
- 239000002184 metal Substances 0.000 claims description 45
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 40
- 229910052750 molybdenum Inorganic materials 0.000 claims description 39
- 229910052739 hydrogen Inorganic materials 0.000 claims description 32
- 239000001257 hydrogen Substances 0.000 claims description 32
- 239000011733 molybdenum Substances 0.000 claims description 29
- 239000012071 phase Substances 0.000 claims description 26
- 239000002243 precursor Substances 0.000 claims description 24
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 23
- 229910052759 nickel Inorganic materials 0.000 claims description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 22
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 22
- 239000010457 zeolite Substances 0.000 claims description 22
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 21
- 239000002904 solvent Substances 0.000 claims description 17
- 150000002739 metals Chemical class 0.000 claims description 16
- 229910021536 Zeolite Inorganic materials 0.000 claims description 15
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical group O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 15
- 239000010426 asphalt Substances 0.000 claims description 14
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 11
- 239000000377 silicon dioxide Substances 0.000 claims description 11
- 150000002431 hydrogen Chemical class 0.000 claims description 10
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 9
- 229910052721 tungsten Inorganic materials 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 229910017052 cobalt Inorganic materials 0.000 claims description 7
- 239000010941 cobalt Substances 0.000 claims description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 7
- 239000010937 tungsten Substances 0.000 claims description 7
- 125000005609 naphthenate group Chemical group 0.000 claims description 6
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims description 5
- 239000012074 organic phase Substances 0.000 claims description 5
- 239000001273 butane Substances 0.000 claims description 4
- 229910021472 group 8 element Inorganic materials 0.000 claims description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 150000002902 organometallic compounds Chemical class 0.000 claims description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- 238000005194 fractionation Methods 0.000 description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 19
- 238000004821 distillation Methods 0.000 description 15
- 239000007789 gas Substances 0.000 description 14
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 13
- 239000003921 oil Substances 0.000 description 13
- 229910052717 sulfur Inorganic materials 0.000 description 13
- 239000011593 sulfur Substances 0.000 description 13
- 239000010779 crude oil Substances 0.000 description 10
- 239000000945 filler Substances 0.000 description 10
- 238000005292 vacuum distillation Methods 0.000 description 9
- 239000000654 additive Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000005336 cracking Methods 0.000 description 6
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 6
- 239000003245 coal Substances 0.000 description 5
- 239000000571 coke Substances 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 238000004064 recycling Methods 0.000 description 5
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000003502 gasoline Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910000480 nickel oxide Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- -1 natural ores Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 239000005569 Iron sulphate Substances 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000007171 acid catalysis Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000012018 catalyst precursor Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- SHZIWNPUGXLXDT-UHFFFAOYSA-N ethyl hexanoate Chemical class CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 238000003304 gavage Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 239000003077 lignite Substances 0.000 description 1
- 239000002029 lignocellulosic biomass Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 1
- 239000010742 number 1 fuel oil Substances 0.000 description 1
- 239000006259 organic additive Substances 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- DHRLEVQXOMLTIM-UHFFFAOYSA-N phosphoric acid;trioxomolybdenum Chemical compound O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.OP(O)(O)=O DHRLEVQXOMLTIM-UHFFFAOYSA-N 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003716 rejuvenation Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000003079 shale oil Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G67/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
- C10G67/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
- C10G67/04—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
- C10G67/0454—Solvent desasphalting
- C10G67/049—The hydrotreatment being a hydrocracking
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G67/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
- C10G67/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/70—Catalyst aspects
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Abstract
L'invention concerne un procédé de conversion de charges hydrocarbonées lourdes dont au moins 50% poids bout à une température d'au moins 300 °C, et en particulier des résidus sous vide. Les charges sont soumises à une première étape a) d'hydroconversion profonde en lit entraîné, éventuellement suivie d'une étape b) de séparation d'une fraction légère, et il est obtenu une la fraction résiduelle lourde issue de l'étape b) dont au moins 80% poids présente une température d'ébullition d'au moins 250°C. Ladite fraction issue de l'étape b) ou l'effluent issu de l'étape a) est ensuite soumis à une seconde étape c) d'hydroconversion profonde en lit entraîné. La vitesse spatiale horaire globale pour les étapes a) à c) est inférieure à 0,1 h-1. L'effluent issu de l'étape c) est fractionné pour séparer une fraction légère. La fraction lourde obtenue dont 80% poids bout à une température d'au moins 300°C est envoyée dans une étape e) de désasphaltage. La fraction désasphaltée DAO est alors de préférence convertie dans une étape f) choisie parmi l'hydroconversion en lit bouillonnant, le craquage catalytique en lit fluidisé et l'hydrocraquage en lit fixe.
Description
La présente invention concerne la conversion des charges hydrocarbonées lourdes dont au moins 50% poids d’une fraction ayant une température d'ébullition d'au moins 300°C. Ce sont du pétrole brut ou des charges issues, directement ou après traitement, de la distillation atmosphérique et/ou sous vide d'un pétrole brut, telles que des résidus atmosphériques ou sous vide.
La valorisation de ces résidus pétroliers est relativement difficile tant au point de vue technique qu’au point de vue économique. En effet, de nouvelles contraintes réglementaires abaissent drastiquement la teneur maximale admissible en soufre dans les fuels de soute (de 3% poids à 0,5% poids de soufre). Aussi le marché est surtout demandeur en carburants pouvant être distillés à pression atmosphérique à une température inférieure à 380 °C voire à 320 °C.
ART ANTERIEUR
Le brevet FR-2906814 de la demanderesse décrit un procédé comprenant l'enchaînement successivement d'une étape de désasphaltage produisant une huile désasphaltée, une étape d'hydroconversion de ladite huile désasphaltée pour produire un effluent, et une étape de distillation dudit effluent pour produire un résidu qui est renvoyé avec la charge à l'étape de désasphaltage. Ce brevet décrit un enchaînement de procédés dans lequel l’étape de hydroconversion est réalisée à des vitesses spatiales (WH) classiques de 0,1 h"1 à 5 h'1 et l’étape de SDA est réalisée en amont de l’étape de hydroconversion. La forte quantité d’asphalte produite limite le niveau maximum de conversion globale du procédé.
Le brevet FR-2964386 de la demanderesse décrit l’enchaînement d’un procédé de traitement de charges issues du pétrole brut, ou de distillation atmosphérique ou sous vide de pétrole brut. Le procédé comprend une étape d’hydroconversion en lit bouillonnant (dit procédé H-Oil® ou LC-Fining) suivie d’une étape de séparation d’une fraction légère (point d’ébullition inférieur à 300°C, de préférence inféiieure à 375°C), et la fraction lourde résultante est directement soumise à une étape de désasphaltage pour produire une huile désasphaltée (DAO). Le DAO peut être hydrocraqué ou hydrotraité ou encore fractionné. L’étape d’hydroconversion en lit bouillonnant est réalisée à des vitesses spatiales (WH) de 0,1 h1 à 10 h'1. L’exemple du brevet est réalisé à WH = 0,3 h'1 et à une conversion (par rapport au résidu 540 °C+, i.e. bouillant à 540 °C oiplus) autour de 60% poids sur la partie lit bouillonnant.
Ce procédé simple et économique permet une intégration thermique au sein d’une même section réactionnelle et permet d’obtenir un DAO de bonne qualité, néanmoins les rendements en asphalte sont élevés ce qui limite la conversion globale maximale atteignable par ce procédé.
Il est également connu (brevet US-7,938,952) d’opérer avec deux étapes d’hydroconversion en lit bouillonnant à des vitesses spatiales globales d’au moins 0,1 h"1 (dit procédé H-Oil®) avec une séparation intermédiaire pour séparer la fraction légère et passage de la fraction lourde résultante dans la seconde étape d’hydroconversion, puis l’effluent issu de la seconde hydroconversion est directement distillé. Par « vitesses spatiales globales >> on entend le débit de la charge hydrocarbonée pris dans les conditions standards de température et pression divisé par l’ensemble des volumes des réacteurs constituant les étapes d’hydroconversion.
Le brevet FR-3033797 de la demanderesse décrit un procédé de traitement de charges issues du pétrole brut, ou de distillation atmosphérique ou sous vide de pétrole brut, dont au moins 80% poids présente une température d'ébullition d'au moins 300°C. Le procédé comporte une étape d’hydroconversion (première hydroconversion), suivie d’une séparation de la fraction légère (point d’ébullition inférieur à 350 °C) et la fraction lourde résultante est soumise à une hydroconversion (seconde hydroconversion) séparée de la première, l’effluent obtenu est ensuite fractionné par distillation. Ce procédé d’hydroconversion est opéré à faible WH globale, de préférence de 0,05 h1 à 0,09 h'1. L’avantage apporté par la WH globale faible est une purification importante qui permet l’obtention d’un résidu avec une faible teneur en asphaltènes et carbone Conradson, pour un niveau de conversion élevé du résidu (> 75 %). La stabilité des effluents liquides est améliorée. La teneur en sédiments en sortie d’hydroconversion est réduite, ce qui induit une meilleure opérabilité du procédé. La conversion globale de ce procédé est limitée par l’effluent lourd non converti.
RESUME DE L'INVENTION
Il a à présent été recherché un procédé ayant des performances améliorées, notamment avec une conversion élevée en carburants (naphta, kérosène, gasoil) pour s’adapter au marché.
Il était possible de modifier le procédé de l’art le plus récent (FR-3033797) pour augmenter la conversion des étapes d’hydroconversion profonde en abaissant encore davantage la WH globale.
La demanderesse a mis en évidence qu’une meilleure solution est d’ajouter une étape de désasphaltage au procédé de l’art le plus récent ce qui permet d’obtenir un niveau élevé du rendement et de qualité du DAO, et de traiter le DAO dans au moins une étape de conversion, celle-ci opérant de préférence à WH élevée, et ainsi augmenter la conversion tout en apportant une opérabilité nettement améliorée et une économie substantielle sur le capital investi et un meilleur en retour sur l’investissement. La présente invention permet également de réduire d’avantage la quantité d’asphalte résultante par rapport aux procédés à plus forte WH globale.
Plus précisément, l’invention concerne un procédé de conversion de charges hydrocarbonées dont au moins 50%, de préférence au moins 80% poids bout à une température d’au moins 300 °C, comprenant les étapes successives suivantes: - dans une étape a) est réalisée une première hydroconversion profonde de ladite charge hydrocarbonée en présence d’hydrogène dans au moins un premier réacteur triphasique fonctionnant en lit entraîné, sous une pression absolue comprise entre 2 MPa et 35 MPa, à une température comprise entre 300°C et 550°C, avec une quantité d'hydrogène comprise entre 50 Nm3/m3 et 5000 Nm3/m3, avec un premier catalyseur entraîné, - éventuellement une étape b) de séparation d’une fraction légère à partir d’une partie ou de la totalité de l’effluent issu de ladite première hydroconversion, et il est obtenu au moins une fraction lourde dont au moins 80% poids présente une température d’ébullition d’au moins 250 °C, - dans une étape c) est réalisée une seconde hydroconversion profonde d’une partie ou de la totalité de l’effluent liquide issu de l’étape a) ou la fraction lourde issue de l’étape b), en présence d’hydrogène, dans au moins un deuxième réacteur triphasique fonctionnant en lit entraîné, sous une pression absolue comprise entre 2 MPa et 35 MPa, à une température comprise entre 300 °C et 550 °C, avec une quantité dtydrogène comprise entre 50 Nm3/m3 et 5000 Nm3/m3, avec un deuxième catalyseur entraîné, - et la vitesse spatiale horaire globale pour les étapes a) à c) est inférieure à 0,1 h'1, la vitesse globale étant le débit de charge liquide de l’étape a) d’hydroconversion pris dans des conditions standards de température et de pression, rapporté au volume total des réacteurs des étapes a) et c), - une étape d) de séparation d’une partie ou de la totalité de l’effluent issu de ladite seconde hydroconversion en au moins une fraction légère et au moins une fraction lourde dont au moins 80% poids présente une température d’ébullition d’au moins 300 °C, - une étape e) de désasphaltage de ladite fraction lourde issue de l’étape d), à une température comprise entre 60°C et 250 °C avec au mdns un solvant hydrocarboné ayant de 3 à 7 atomes de carbone, et un ratio solvant/charge (volume/volume) compris entre 4/1 et 9/1, et il est obtenu une fraction désasphaltée DAO et un asphalte.
Avantageusement, le procédé comprend une étape f) de conversion d’une partie ou de la totalité de ladite fraction désasphaltée DAO éventuellement distillée.
De préférence, la DAO est distillée avant l’étape f) de conversion de façon à séparer une fraction lourde dont au moins 80% poids présente une température d’ébullition d’au moins 375°C, ou d’au moins 400°C, ou d’au moins 450°C oud’au moins 500°C, et de manière préférée d’au moins 540 °C, et ladite fraction lourcë envoyée en partie ou en totalité dans l’étape f) de conversion.
De façon préférée, une partie ou la totalité de la fraction DAO est envoyée, de préférence directement, dans une étape de conversion opérant avec un procédé choisi dans le groupe formé par l’hydrocraquage en lit fixe, le craquage catalytique en lit fluidisé, l’hydroconversion en lit bouillonnant, ces procédés pouvant comporter un hydrotraitement préalable.
Selon un mode de réalisation préféré, une partie ou la totalité de la fraction désasphaltée DAO est soumise à un hydrocraquage en lit fixe, en présence d’hydrogène, sous une pression absolue comprise entre 5 MPa et 35 MPa, à une température comprise avantageusement entre 300°C et 500°C, une WH compise entre 0,1 h"1 et 5 h'1, et une quantité d'hydrogène comprise entre 100 Nm3/m3 et 1000 Nm3/m3 (normaux mètres cube (Nm3) par mètre cube (m3) de charge liquide), et en présence d’un catalyseur contenant au moins un élément du groupe VIII non-noble et au moins un élément du groupe VIB et comprenant un support contenant au moins une zéolite.
Selon un autre mode préféré, une partie ou la totalité de la fraction désasphaltée DAO est soumise à un craquage catalytique en lit fluidisé FCC en présence d’un catalyseur, de préférence dépourvu de métaux, comprenant de l’alumine, de la silice, de la silice-alumine, et de préférence comprenant au moins une zéolite.
Selon un autre mode préféré, une partie ou la totalité de la fraction désasphaltée DAO est soumise à une hydroconversion en lit bouillonnant, réalisée en présence d’hydrogène, sous une pression absolue comprise entre 2 MPa et 35 MPa, à une température comprise entre 300°C et 550°C, une quantité d'hydrogène comprise œitre 50 Nm3/m3 et 5000 Nm3/m3 de charge liquide, une WH comprise entre 0,1 h1 et 10 h1 et en présence d’un catalyseur contenant un support et au moins un métal du groupe VIII choisi parmi le nickel et le cobalt et au moins un métal du groupe VIB choisi parmi le molybdène et le tungstène.
Il est possible qu’au moins une partie de ladite fraction désasphaltée DAO soit recyclée à l’étape a) et/ou à l’étape c).
Avantageusement, dans l’étape d) de séparation, l’effluent issu de ladite seconde hydroconversion est séparé en au moins une fraction légère et au moins une fraction lourde dont au moins 80% poids présente une température d’ébullition d’au moins 375°C, ou d’au moins 400°C, ou d’au moins 450°C ou d’au moins 500C, et de manière préférée d’au moins 540 °C. Généralement, les étapes a) et c) sont réalisées sous une pression absolue comprise entre 5 MPa et 25 MPa et de manière préférée, entre 6 MPa et 20 MPa, à une température comprise entre 350 °C et 500 °C et d’une manière préférée compise entre 370 °C et 480°C, et d’une manière encore préférée comprise entre 380°C et 43(^0, avec une quantité d'hydrogène comprise entre 100 Nm3/m3 et 2000 Nm3/m3 et de manière très préférée entre 200 Nm3/m3 et 1500 Nm3/m3, la vitesse spatiale horaire (WH) étant d’au moins 0,05 h'1, de préférence comprise entre 0,05 h"1 et 0,09 h"1. Généralement, l’étape e) est réalisée avec un solvant choisi dans le groupe formé par le butane, le pentane ou l'hexane, ainsi que leurs mélanges.
Selon un mise en œuvre de l’invention, le premier catalyseur entraîné de la première hydroconversion profonde a) et/ou le deuxième catalyseur entraîné de la deuxième hydroconversion profonde c) comporte un support et une phase active contenant au moins un métal du groupe VIB choisi parmi le molybdène et le tungstène, et de préférence le métal du groupe VIB est le molybdène, ledit métal du groupe VIB étant de préférence en association avec au moins un métal du groupe VIII non-noble choisi parmi le nickel, le cobalt, le ruthénium et le fer, et de préférence le métal du groupe VIII non-noble est le nickel.
Selon un mise en œuvre de l’invention, premier catalyseur entraîné de la première hydroconversion profonde a) et/ou le deuxième catalyseur entraîné de la deuxième hydroconversion profonde c) est obtenu à partir d’un précurseur soluble dans une phase organique, ledit précurseur étant de préférence choisi dans le groupe de composés organométalliques constitué par les naphténates de Mo, de Co, de Fe, de Ni, et des composés multi-carbonyl de Mo, de Co, de Fe, de Ni, et de préférence ledit précurseur est du naphténate de Mo. DESCRIPTION DETAILLEE DE L'INVENTION Les charges
Les charges que l'on traite dans le cadre de la présente invention sont celles dont au moins 50%, de préférence au moins 80% poids présente une température d'ébullition d'au moins 300°C (T20 = 300°C), de préférence d'au moins 350°ûhu d'au moins 375°C.
Ce sont des pétroles bruts ou des fractions lourdes hydrocarbonées issues de la distillation atmosphérique et/ou sous vide d'un pétrole brut. Ce peut être aussi des résidus atmosphériques et/ou des résidus sous vide, et en particulier des résidus atmosphériques et/ou sous vide issues de l’hydrotraitement, de l’hydrocraquage et/ou de l’hydroconversion. Ce peut être également des distillais sous vide, des coupes provenant d’une unité de craquage catalytique comme le FCC (craquage catalytique en lit fluidisé), d’une unité de cokage ou de viscoréduction.
De façon préférée, ce sont des résidus sous vide. Généralement ces résidus sont des fractions dont au moins 80% poids bout à température d'ébullition d’au moins 450°C ou plus, et le plus souvent d’au moins 500 °C ou 540 °C.
Peuvent également convenir comme charges des coupes aromatiques extraites d’une unité de production de lubrifiants, des huiles désasphaltées (raffinats issues d'une unité de désasphaltage), des asphaltes (résidus issus d'une unité de désasphaltage).
La charge peut également être une fraction résiduelle issue de la liquéfaction directe de charbon (un résidu atmosphérique et/ou un résidu sous vide issu par exemple du procédé H-Coal®), un distillât sous vide issue de la liquéfaction directe de charbon (par exemple du procédé H-Coal® ), des résidus de pyrolyse du charbon ou d’huiles de schiste, ou encore une fraction résiduelle issue de la liquéfaction directe de la biomasse lignocellulosique seule ou en mélange avec du charbon et/ou une fraction pétrolière.
Toutes ces charges peuvent être utilisées seules ou en mélange.
Les charges citées ci-dessus contiennent des impuretés, comme des métaux, du soufre, de l’azote, du carbone Conradson et des insolubles à l'heptane, également appelée asphaltènes C7. Les teneurs en métaux sont généralement supérieures à 20 ppm poids, le plus souvent supérieures à 100 ppm poids. La teneur en soufre est supérieure à 0,1% poids, souvent supérieure à 1% poids ou à 2% poids. Le taux d’asphaltènes C7 (asphaltènes insolubles dans l’heptane selon la norme NFT60-115) s'élève au minimum à 0,1% poids et est souvent supérieur à 3% poids. La teneur en carbone Conradson est d’au moins 1% poids, souvent d'au moins 3% poids ou d’au moins 5% poids. La teneur en carbone Conradson est définie par la norme ASTM D 482 et représente pour l'homme du métier une évaluation bien connue de la quantité de résidu de carbone produit après une pyrolyse sous des conditions standards de température et de pression.
La première étape d’hydroconversion profonde (étape a))
La charge est traitée dans une étape a) d’hydroconversion comprenant au moins au moins un réacteur triphasique fonctionnant en lit entraîné. Le ou les réacteurs triphasiques sont disposés en série et/ou en parallèle. Ces réacteurs d'hydroconversion sont des réacteurs de type lit entraîné (dit "slurry" selon la terminologie anglo-saxonne). De nombreux procédés opérant en lit entraîné sont connus, qui diffèrent pour l'essentiel par leurs catalyseurs et leurs conditions opératoires. Les procédés en lit entraîné sont décrits par exemple dans les brevets US 4,299,685 ou US 6,660,158 ou US 7,001,502 ou US 7,223,713 ou US 7,585,406 ou US 7,651,604 ou US 7,691,256 ou US 7,892,416 ou US 8,017,000 ou US 8,105,482 ou US 8,110,090, ou dans l'article de Castaneda et al., "Current situation of emerging technologies for upgrading of heavy oils", paru en 2014 dans Catalysis Today, vol 220-222, pages 248-273, ou dans le chapitre 18 "Catalytic Hydrotreatment and Hydroconversion: Fixed Bed, Moving Bed, Ebullated Bed and Entrained Bed" de l’ouvrage "Heavy Crude Oils: From Geology to Upgrading, An OverView", édité par les Éditions Technip en 2011. Selon l’invention, chaque réacteur triphasique est opéré en lit entraîné. Selon l’invention, chaque réacteur triphasique est opéré en lit entraîné. Le lit comporte au moins un catalyseur d’hydroconversion entraîné, c’est-à-dire qui entre dans le réacteur avec la charge et qui est entraîné en dehors du réacteur avec les effluents. Cet entraînement est notamment permis par une densité et une granulométrie adaptées du catalyseur.
Dans cette étape a), ladite charge est transformée dans des conditions spécifiques de l'hydroconversion en lit entraîné. L’étape a) est réalisée sous une pression absolue comprise entre 2 MPa et 35 MPa, de préférence entre 5 MPa et 25 MPa et de manière préférée, entre 6 MPa et 20 MPa, à une température comprise entre 300 °C et 550°C et de préférence comprise entre 350 °C et 500 °C et d’une manière préérée comprise entre 370 °C et 480 °C, et d’une manière encore préférée comprise entre 380°Cet 430°C. La quantité d'hydrogène, avantageusement mélangée à la charge, est de préférence comprise entre 50 Nm3/m3 et 5000 Nm3/m3 de charge liquide pris dans des conditions standards de température et pression, de manière préférée entre 100 Nm3/m3 et 2000 Nm3/m3 et de manière très préférée entre 200 Nm3/m3 et 1500 Nm3/m3.
Le catalyseur d'hydroconversion entraîné a une granulométrie et une densité adaptées à son entraînement. On entend par entraînement du catalyseur, sa mise en circulation dans le ou les réacteurs triphasiques par les flux liquides, ledit catalyseur entraîné circulant avec la charge dans le(s)dit(s) réacteurs triphasiques, et étant soutiré du ou desdits réacteurs triphasiques avec l'effluent liquide produit. À cause de sa faible taille, qui peut varier entre quelques nanomètres jusqu’à une centaine de micromètres (typiquement de 0,001 pm à 100 pm), le catalyseur entraîné est très bien dispersé dans la charge à convertir, améliorant ainsi fortement les réactions d’hydrogénation et d’hydroconversion dans la totalité d’un réacteur, réduisant considérablement la formation de coke et augmentant considérablement la conversion de la fraction lourde de la charge. Ces catalyseurs entraînés sont bien connus de l’homme du métier.
Le catalyseur entraîné peut être formé et activé ex situ, en dehors du réacteur dans des conditions adaptées à l’activation, puis être injecté avec la charge. Le catalyseur entraîné peut également être formé et activé in situ dans les conditions de réaction d’une des étapes d'hydroconversion.
Les catalyseurs entraînés, ou leurs précurseurs, sont injectés avec la charge à convertir à l'entrée des réacteurs. Les catalyseurs traversent les réacteurs avec les charges et les produits en cours de conversion, puis ils sont entraînés avec les produits de réaction hors des réacteurs. Ces catalyseurs existent soit sous forme de poudre (brevet US 4,303,634), ce qui est le cas des catalyseurs entraînés supportés décrits plus bas, soit sous forme de catalyseur dit soluble (brevet US 5,288,681). Dans le réacteur, les catalyseurs entraînés se trouvent sous forme de particules solides dispersées, de colloïdes ou d’espèces moléculaires dissoutes dans la charge, selon la nature du catalyseur. De tels précurseurs et catalyseurs utilisables dans le procédé selon l'invention sont largement décrits dans la littérature.
Les catalyseurs entraînés utilisés peuvent être des poudres de solides hétérogènes (tels que des minerais naturels, du sulfate de fer, etc.), des catalyseurs dispersés issus de précurseurs solubles dans l'eau, tels que l'acide phosphomolybdique, le molybdate d'ammonium, ou un mélange d'oxyde Mo ou Ni avec de l'ammoniaque aqueux, ou issus de précurseurs solubles dans une phase organique. De manière préférée, les catalyseurs utilisés sont issus de précurseurs solubles dans une phase organique. Les précurseurs solubles dans une phase organique sont de préférence choisis dans le groupe de composés organométalliques constitué par les naphténates de Mo, de Co, de Fe, ou de Ni, ou des composés multi-carbonyl de ces métaux, par exemple 2-ethyl hexanoates de Mo ou Ni, acetylacetonates de Mo ou Ni, sels d'acides gras C7-C12 de Mo ou W, etc. De préférence le précurseur est du naphténate de Mo. Les catalyseurs entraînés peuvent être utilisés en présence d'un agent tensio-actif pour améliorer la dispersion des métaux, notamment lorsque le catalyseur est bimétallique.
Selon un mode de réalisation préféré, des catalyseurs dits solubles dans l'huile sont utilisés, et le précurseur est mélangé à une charge carbonée (qui peut être une partie de la charge à traiter, une charge externe, etc.), le mélange est éventuellement séché au moins en partie, puis ou simultanément est sulfuré par addition d'un composé soufré et chauffé. Les préparations de ces catalyseurs sont décrites dans l'art antérieur.
Des additifs peuvent être ajoutés lors de la préparation du catalyseur ou au catalyseur en slurry avant qu'il soit injecté dans le réacteur. Ce sont par exemple un gasoil, un additif aromatique, des particules solides dont la taille est de préférence inférieure à 1mm, etc. Les additifs préférés sont des oxydes minéraux tels que l’alumine, la silice, des oxydes mixtes Al/Si, des catalyseurs usagés supportés (par exemple, sur alumine et/ou silice) contenant au moins un élément du groupe VIII (tel Ni, Co) et/ou au moins un élément du groupe VIB (tel Mo, W). On citera par exemple les catalyseurs décrits dans le brevet US 2008/177124. Du coke, éventuellement prétraité, peut également être utilisé. Ces additifs sont largement décrits dans la littérature.
Le catalyseur entraîné peut avantageusement être obtenu par injection d'au moins un précurseur de phase active directement dans le ou les réacteurs d’hydroconversion et/ou dans la charge préalablement à l'introduction de ladite charge dans le ou les étapes d'hydroconversion. L’ajout de précurseur peut être introduit en continu ou de façon discontinue (en fonction de l’opération, du type de charges traitées, des spécifications produits recherchés et de l’opérabilité). Selon un ou plusieurs modes de réalisation, le(s) précurseur(s) de catalyseur entraîné est (sont) pré-mélangé(s) à une huile hydrocarbonée composée par exemple d’hydrocarbures dont au moins 50 % en poids par rapport au poids total de l’huile hydrocarbonée ont une température d'ébullition comprise entre 180°C et 540 °C, pour former un pré-mélange de précurseur dilié. Selon un ou plusieurs modes de réalisation, le précurseur ou le pré-mélange de précurseur dilué est dispersé dans la charge hydrocarbonée lourde, par exemple par mélange dynamique (par exemple à l’aide d’un rotor, d’un agitateur, etc.), par mélange statique (par exemple à l’aide d’un injecteur, par gavage, via un mélangeur statique, etc.), ou uniquement additionné à la charge pour obtenir un mélange. Toutes les techniques de mélange et d’agitation connues de l’homme du métier peuvent être utilisées pour disperser le précurseur ou le mélange de précurseurs dilué dans la charge d’une ou de plusieurs étapes d’hydroconversion.
Le ou lesdits précurseur(s) de phase active du catalyseur non supporté peut ou peuvent être sous forme liquide tels que par exemple des précurseurs de métaux solubles dans des milieux organiques, comme par exemple des octoates de molybdène et/ou des naphténates de molybdène, ou des composés aquasolubles, comme par exemple des acides phosphomolybdiques et/ou des heptamolybdates d’ammonium.
Selon un mode de réalisation, ledit catalyseur entraîné peut-être supporté, c’est-à-dire comporter un support pour la phase active. Dans ce cas, le catalyseur supporté peut avantageusement être obtenu : - par broyage d’un catalyseur supporté d'hydroconversion, frais ou usé ou par broyage d'un mélange des catalyseurs frais et usé, ou - par imprégnation d'au moins un précurseur de phase active sur un support présentant une granulométrie adaptée à son entraînement et de préférence une taille comprise entre 0,001 pm et 100 pm.
Ledit catalyseur entraîné supporté comporte de préférence un support, tel que de la silice, de l'alumine, de la silice-alumine, du dioxyde de titane, des argiles, du carbone, du charbon, du coke, du noir de carbone, de la lignite, ou des combinaisons de ces structures, et de manière très préférée de l'alumine.
La phase active dudit catalyseur entraîné supporté contient un ou plusieurs éléments des groupes 4 à 12 du tableau périodique des éléments, qui peuvent être déposé sur un support ou pas. La phase active dudit catalyseur entraîné contient avantageusement au moins un métal du groupe VIB choisi parmi le molybdène et le tungstène, et de préférence le métal du groupe VIB est le molybdène. Ledit métal du groupe VIB peut être en association avec au moins un métal du groupe VIII non-noble choisi parmi le nickel, le cobalt, le fer, le ruthénium et de préférence le nickel.
Dans la présente description, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81ème édition, 2000-2001). Par exemple, les métaux du groupe VIII selon la classification CAS correspondent aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC.
Dans le cas des catalyseurs entraînés supportés la teneur en métal du groupe VIII non-noble, en particulier en nickel, est avantageusement comprise entre 0,5 % à 10 % exprimée en poids d'oxyde de métal (en particulier de NiO), et de préférence entre 1 % à 6 % poids. La teneur en métal du groupe VIB, en particulier en molybdène, est avantageusement comprise entre 1 % et 30 % exprimée en poids d’oxyde du métal (en particulier de trioxyde de molybdène Mo03), et de préférence entre 4 % et 20 % poids. Les teneurs en métaux sont exprimées en pourcentage poids d'oxyde de métal par rapport au poids du catalyseur supporté entraîné.
De manière avantageuse, le catalyseur entraîné supporté peut renfermer en outre au moins un élément dopant choisi parmi le phosphore, le bore et les halogènes (groupe VIIA ou groupe 17 de la nouvelle notation de la table périodique des éléments), de préférence le phosphore.
Selon un ou plusieurs modes de réalisation, la concentration du catalyseur entraîné est comprise entre 10ppm poids et 10000ppm poids de métal actif par rapport à la charge hydrocarbonée lourde en entrée du réacteur, de préférence entre 50 ppm poids et 6000 ppm poids, de manière préférée entre 100 ppm poids et 1000 ppm poids, de manière particulièrement préférée entre 100 ppm poids et 800 ppm poids.
Dans une des mises en œuvre du procédé selon l'invention, il est utilisé plusieurs types de catalyseurs entraînés dans chaque réacteur.
Dans une des mises en œuvre du procédé selon l'invention, chaque réacteur contient un ou plusieurs catalyseurs entraînés adaptés à un fonctionnement en lit entraîné.
Dans une des mises en œuvre du procédé selon l'invention, le catalyseur entraîné ou les catalyseurs entraînés sont, en partie ou en totalité, des catalyseurs recyclés. En effet, afin de limiter la consommation de catalyseur entraîné frais, le catalyseur entraîné usagé peut être récupéré dans la section de fractionnement et peut être réinjecté dans une ou plusieurs sections d’hydroconversion en lit entraîné. Généralement, au lieu de recycler directement le catalyseur dans un réacteur à lit entraîné, il subit une ou plusieurs séparations et éventuellement un ou plusieurs traitements, tels que par exemple une combustion, un lavage au solvant, une gazéification ou toute autre technique de séparation, ou une combinaison de ces étapes, afin de récupérer des particules contenant le catalyseur entraîné. Elles peuvent alors être au moins en partie recyclées directement à une étape d’hydroconversion ou être en partie ou en totalité retraitées avant d'être recyclées vers la préparation du catalyseur.
Etape b) de séparation - optionnelle Le procédé opère de préférence avec l’étape b).
Au moins une partie, et de préférence la totalité de l’effluent issu de l’étape a) d'hydroconversion peut subir une ou plusieurs étapes de séparation.
Cette étape de séparation est réalisée avec l’objectif de séparer de l’effluent au moins une fraction légère (dite première fraction légère) et obtenir ainsi au moins une fraction liquide lourde dont au moins 80% poids présente une température d’ébullition d’au moins 250 °C, et de préférence d’au moins 300 °C.
La fraction légère peut ensuite être envoyée au moins en partie à une section de fractionnement où elle est ensuite avantageusement séparée des gaz légers (H2 et CrC4), par exemple par passage dans un ballon de flash. L’hydrogène gazeux est récupéré puis est alors avantageusement recyclé à l'entrée de l’étape a) d'hydroconversion profonde ou envoyé vers l’étape c) d’hydroconversion profonde et/ou vers d’autres unités de la raffinerie. La fraction liquide légère séparée des gaz légers peut alors être avantageusement envoyée dans l’étape d) de fractionnement. Cette fraction liquide légère ainsi séparée contient les gaz légers dissous, le naphta (fraction bouillant à une température inférieure à 150°C), le kérosène (fraction bouillant entre 150°C et 250°C)et au moins une partie du gazole bouillant entre 250°C et 375°C.
La fraction liquide lourde issue de l’étape b) contient les composés bouillant à 250°C, de préférence à 300°C, ou plus, et en particulier ceux bouillant de 375°C et jusqu’à moins de 540°C (distillât sous vide) et ceux bouillant à une température de 540°C et plus qui correspondent au résidu sous vide (qui est la fraction non convertie). Elle peut donc contenir une partie de la fraction gazole, c’est-à-dire des composés bouillant entre 250°C et 375°C. Cette fraction liquide lourde est envoyée en totalité ou en partie vers l’étape c) d'hydroconversion. L’étape de séparation peut être mise en œuvre par tout moyen de séparation connu par l'homme du métier. De préférence, l’étape b) de séparation est réalisée par un ou plusieurs ballons de flash en série, et de manière préférée par un seul ballon de flash. De manière préférée, le ballon de flash est opéré à une pression et une température proches des conditions opératoires du dernier réacteur de l’étape a) d'hydroconversion.
Dans une autre mise en œuvre, l’étape de séparation est réalisée par un enchaînement de plusieurs ballons de flash, opérant à des conditions opératoires différentes de celles du dernier réacteur de l’étape a) d'hydroconversion et permettant d'obtenir plusieurs fractions liquides légères. Celles-ci pourront ensuite envoyées en totalité ou en partie à une section de fractionnement.
Dans une autre mise en œuvre, l’étape de séparation est réalisée par une ou plusieurs colonnes de stripage (entraînement) à la vapeur et/ou à l'hydrogène. Par ce moyen, l'effluent issu de l’étape a) d'hydroconversion sera séparé en une fraction légère et une fraction liquide lourde.
Dans une autre mise en œuvre, l’étape de séparation est réalisée par une colonne de distillation atmosphérique seule ou suivie d’une colonne de distillation sous vide. L’étape de séparation peut également être une combinaison de ces différentes mises en œuvre.
Optionnellement, avant d'être envoyée vers l’étape c) d’hydroconversion selon l'invention, la fraction liquide lourde peut être soumise à une étape de séparation de composés à point d’ébullition de 540°C ou moins. Au moins 80% poids de la fraction lourde qui est obtenue présente une température d’ébullition d’au moins 540°C. Cette séparation peut être réalisée par stripage à la vapeur et/ou à l'hydrogène, à l'aide d'une ou plusieurs colonnes de stripage.
La seconde hvdroconversion profonde (étape c)) L’effluent liquide issu de l’étape a) ou la fraction lourde issue de l’étape de séparation b) est soumis à une hydroconversion profonde dans l’étape c) dans au moins un réacteur triphasique fonctionnant en lit entraîné. Il peut y avoir ou non de recyclage dudit effluent ou desdites fractions vers l’étape a). Les étapes a) et c) sont des étapes différentes réalisées dans des zones séparées.
Les intervalles de conditions opératoires, catalyseurs, mises en œuvre sont ceux décrits pour l’étape a).
Les conditions opératoires de l’étape c) sont identiques ou différentes de celles de l’étape a).
Conformément à l’invention, la vitesse spatiale horaire globale (WH), c'est-à-dire le débit de charge liquide de l’étape a) d’hydroconversion pris dans des conditions standards de température et de pression, rapporté au volume total des réacteurs des étapes a) et c), est inférieure à 0,1 h"1, généralement d’au moins 0,05 h"1, de préférence comprise entre 0,05 h"1 et 0,09 h"1.
Etape d) de fractionnement L'effluent issu de l’étape c) d'hydroconversion est ensuite soumis, en totalité ou en partie, à une étape d) de fractionnement. Ce fractionnement peut être réalisé par un ou plusieurs ballons de flash en série, de préférence par un enchaînement d'au moins deux ballons de flash successifs, de manière préférée par une ou plusieurs colonnes de stripage à la vapeur et/ou à l'hydrogène, de manière plus préférée par une colonne de distillation atmosphérique, de manière plus préférée par une colonne de distillation atmosphérique et une colonne sous vide sur le résidu atmosphérique, de manière encore plus préférée par un ou plusieurs ballons de flash, une colonne de distillation atmosphérique et une colonne sous vide sur le résidu atmosphérique. Ce fractionnement peut également être réalisé par une combinaison des différents moyens de séparation décrits ci-dessus. L’étape de fractionnement est réalisée avec l’objectif de séparer les gaz légers et les distillais valorisables (essence, gasoil) et de façon à obtenir au moins une fraction liquide lourde dont au moins 80% poids bout à au moins 300 °C, ou à au moins 350 °C, avantageusement à au moins 375°C, ou à au moins 400°C, ou à au moins 450Ό ou à au moins 500°C et de manière préférée on obtient une fraction résidu dont 80% poids bout à au moins 540°C ou plus. De préférence, on sépare un résidu sous vide (par distillation atmosphérique puis distillation sous vide du résidu atmosphérique) ayant une température initiale d’ébullition de 540 °C.
Etape e) de désasphaltage
Ladite fraction liquide lourde obtenue à l’étape d), et en ladite fraction résidu, subit ensuite conformément au procédé selon l'invention une étape e) de désasphaltage, pour obtenir une coupe hydrocarbonée désasphaltée appelée DAO et de l'asphalte.
Le désasphaltage est généralement effectué à une température comprise entre 60°C et 250 °C avec au moins un solvant hydrocarboné ayant cè 3 à 7 atomes de carbone, de préférence, le solvant est le butane, le pentane ou l'hexane, ainsi que leurs mélanges, éventuellement additionné d'au moins un additif. Les ratios solvant/charge (volume/volume) au désasphaltage sont généralement compris entre 4/1 et 9/1, souvent entre 4/1 et 8/1.
Les solvants utilisables et les additifs sont largement décrits. Il est également possible et avantageux d'effectuer la récupération du solvant selon le procédé opticritique c'est-à-dire en utilisant un solvant dans des conditions supercritiques dans la section de séparation. Ce procédé permet en particulier d'améliorer notablement l'économie globale du procédé. Ce désasphaltage peut être fait dans un ou plusieurs mélangeurs-décanteurs ou dans une ou plusieurs colonnes d'extraction.
Il est possible d’utiliser une technique utilisant au moins une colonne d'extraction et de préférence une seule (par ex. le procédé Solvahl™). L'unité de désasphaltage produit une coupe hydrocarbonée désasphaltée DAO (encore appelée huile désasphaltée ou raffinât de désasphaltage) pratiquement exempt d'asphaltènes C7 et un asphalte résiduel concentrant la majeure partie des impuretés du résidu et qui est soutiré.
Le rendement en DAO est généralement compris entre 40 % et 90% poids selon la qualité de la fraction liquide lourde envoyée, les conditions opératoires et le solvant utilisé.
Le tableau suivant donne les gammes des conditions opératoires typiques pour le désasphaltage en fonction du solvant :
Les conditions du désasphaltage sont adaptées à la qualité du DAO à obtenir et à la charge entrant au désasphaltage.
Ces conditions permettent un abaissement important de la teneur en carbone Conradson et de la teneur en asphaltènes C7. La coupe hydrocarbonée désasphaltée DAO obtenue présente avantageusement une teneur en asphaltènes C7 inférieure à 0,5% poids, de manière préférée inférieure à 0,1% poids, et mieux inférieure à 0,08% poids ou à 0,07% poids.
Dans un mode de réalisation, la totalité ou de préférence une partie de ladite fraction désasphaltée DAO est recyclée à l’étape a) et/ou à l’étape c).
Conversion de la fraction DAO (étape f)
La fraction DAO peut être envoyée en totalité ou en partie dans une étape f) de conversion supplémentaire. De manière préférée, la DAO est envoyée directement dans l’étape de conversion. De préférence, la totalité de la fraction DAO est envoyée directement à l’étape de
conversion, c’est-à-dire qu’elle ne subit aucun traitement sauf éventuellement une ou des étapes de fractionnement.
Cette étape permet d’amener la conversion du procédé à un niveau très élevé (par rapport à la coupe 540°C+), et le plus souvent à plus de 90%. Les procédés de conversion ciblés dans cette étape sont l’hydrocraquage en lit fixe, le craquage catalytique en lit fluidisé FCC, l’hydroconversion en lit bouillonnant (procédé H-Oil® DC décrit par exemple dans les brevets US-4521295 ou US-4495060 ou US-4457831 ou dans l'article Aiche, March 19-23, 1995, Houston, Texas, paper number 46d, "Second génération ebullated bed technology"), ces procédés de conversion peuvent être précédés d’un hydrotraitement.
Si besoin, ladite coupe hydrocarbonée désasphaltée DAO peut être soumise à une distillation atmosphérique, éventuellement suivie d’une distillation sous vide, notamment lorsque l’étape c) ne comporte pas de distillation.
Les coupes de produits valorisables obtenues sont la coupe essence (150°C-), une ou des coupe(s) distillât moyen (150-375°C) et une ou des fraction(s) plus lourde(s) à point d’ébullition de 375°C ou plus.
Ce(s) fraction(s) plus lourde(s) est de préférence envoyée dans l’étape f) de conversion.
Les caractéristiques de cette fraction sont particulièrement intéressantes (bas carbone Conradson, basse teneur en C7 asphaltènes, basses teneurs en soufre, métaux).
Dans un mode de réalisation, la coupe hydrocarbonée désasphaltée DAO est avantageusement distillée en mélange avec au moins une partie et de préférence la totalité, de la fraction liquide légère issue de l'étape b).
Dans un autre mode de réalisation, ledit mélange peut être envoyé dans l’étape f) de conversion sans fractionnement (distillation) préalable.
Pour la distillation, la DAO peut aussi avoir été mélangée avec une charge externe au procédé, telle que par exemple des coupes distillais sous vide, résidu atmosphérique ou résidu sous vide issues du fractionnement primaire (du brut) de la raffinerie.
Le procédé opère de préférence sans distillation. La fraction DAO, en partie ou en totalité, est alors envoyée telle que dans l’étape f). L’étape de conversion peut être un hydrocraquage en lit fixe. Il peut avantageusement avoir lieu dans un ou plusieurs réacteurs ou dans un seul réacteur comprenant un ou plusieurs lits catalytiques. L'hydrocraquage en lit fixe met en œuvre une catalyse acide en présence d'hydrogène. La présence d'azote et autres impuretés dans ledit mélange nécessite un prétraitement préalable pour éviter la désactivation du catalyseur. Pour cela, on utilise généralement au moins un lit fixe de catalyseur d'hydrotraitement suivi d’au moins un lit fixe d’un catalyseur d'hydrocraquage. Ces catalyseurs sont bien connus de l'homme du métier. On peut de préférence employer l'un des catalyseurs décrits par la demanderesse dans les brevets EP-B-113297 et EP-B-113284.
Les catalyseurs contiennent au moins un élément du groupe VIII non noble (Ni et/ou Co) et au moins un élément du groupe VIB (Mo et/ou W). La teneur en éléments du groupe VIII est avantageusement comprise entre 1 % poids et 10 % poids d'oxydes par rapport à la masse totale catalyseur, de préférence entre 1,5 % poids et 9 % poids et de manière très préférée, entre 2 %poids et 8 % poids. Les teneurs des éléments du groupe VIB sont avantageusement comprises entre 5 % poids et 40 % poids d'oxydes par rapport à la masse totale du catalyseur, de préférence entre 8 % poids et 37 % poids et de manière très préférée entre 10 % poids et 35 % poids.
Le support des catalyseurs d’hydrotraitement est généralement de l’alumine ; celui des catalyseurs d’hydrocraquage contient une ou plusieurs zéolites (zéolites Y ou β le plus souvent) généralement en mélange avec de l’alumine et/ou de la silice-alumine. Les teneurs pondérales en zéolite sont généralement inférieures à 80%poids.
Les catalyseurs d’hydrotraitement et d’hydrocraquage peuvent aussi contenir au moins un additif organique.
On opère de préférence sous une pression absolue comprise entre 5 MPa et 35 MPa et de manière préférée entre 10 MPa et 20 MPa, à une température comprise avantageusement entre 300 °C et 500 °C et de préférence entre 350 °C fe450°C. La WH et la pression partielle d'hydrogène sont choisies en fonction des caractéristiques de la charge à traiter et de la conversion souhaitée. De préférence, la WH est comprise entre 0,1 h'1 et 5 h"1 et de manière préférée, entre 0,15 h'1 et 2 h'1. La quantité d'hydrogène, avantageusement mélangé à la charge, est de préférence comprise entre 100 Nm3/m3 et 1000 Nm3/m3 de charge liquide et de manière préférée entre 500 Nm3/m3 et 3000 Nm3/m3. L’étape d’hydroconversion en lit bouillonnant traitant la fraction DAO (H-Oil® DC) peut avantageusement être réalisée sous une pression absolue comprise entre 2 MPa et 35 MPa, de préférence entre 5 MPa et 25 MPa et de manière préférée, entre 6 MPa et 20 MPa, à une température comprise entre 300 °C et 550 °C et de préérence comprise entre 350 °C et 500 °C et d’une manière préférée comprise entre 380 °C et 470 °C, et d’une manière encore préférée comprise entre 400 °C et 450 °C. La quantité d'hydroepne, avantageusement mélangée à la charge, est de préférence comprise entre 50 Nm3/m3 et 5000 Nm3/m3 de charge liquide pris dans des conditions standards de température et pression, de manière préférée entre 100 Nm3/m3 et 2000 Nm3/m3 et de manière très préférée entre 200 Nm3/m3 et 1000 Nm3/m3. De préférence, la WH de cette étape est comprise entre 0,1 h'1 et 10 h-1 et de manière préférée entre 0,15 h'"* et 5 h-1.
Le catalyseur d'hydroconversion utilisé en lit bouillonnant contient un ou plusieurs éléments des groupes 4 à 12 du tableau périodique des éléments, qui sont déposés sur un support. On peut avantageusement utiliser un catalyseur comprenant un support, de préférence amorphe, tels que de la silice, de l'alumine, de la silice-alumine, du dioxyde de titane ou des combinaisons de ces structures, et de manière très préférée de l'alumine. Le catalyseur contient au moins un métal du groupe VIII choisi parmi le nickel et le cobalt et de préférence le nickel, et au moins un métal du groupe VIB choisi parmi le molybdène et le tungstène et de préférence, le métal du groupe VIB est le molybdène.
Avantageusement, le catalyseur d'hydroconversion est un catalyseur comprenant un support alumine et au moins un métal du groupe VIII choisi parmi le nickel et le cobalt, de préférence le nickel, et au moins un métal du groupe VIB choisi parmi le molybdène et le tungstène, de préférence, le métal du groupe VIB est le molybdène. De préférence, le catalyseur d'hydroconversion comprend du nickel et du molybdène.
La teneur en nickel est avantageusement comprise entre 0,5 % poids à 10 % poids, exprimée en poids d'oxyde de nickel (NiO) et de préférence entre 1 % poids à 6 % poids, et la teneur en molybdène est avantageusement comprise entre 1 % poids et 30 % poids, exprimée en poids de trioxyde de molybdène (Mo03) et de préférence entre 4 % poids et 20 % poids.
Ce catalyseur est avantageusement utilisé sous forme d'extrudés ou de billes. Les extrudés ont par exemple un diamètre compris entre 0,5 mm et 2,0 mm et une longueur comprise entre 1 mm et 5 mm. Ces catalyseurs sont bien connus de l’homme du métier.
Selon la technologie commune (décrite dans l’art antérieur, par exemple FR-3033797), le catalyseur d'hydroconversion usagé peut être en partie remplacé par du catalyseur frais par soutirage, ce dernier étant soutiré de préférence en bas du réacteur, et le catalyseur frais étant introduit dans le réacteur. Le catalyseur frais peut être remplacé en totalité ou en partie par du catalyseur usagé et/ou du catalyseur régénéré (sans coke) et/ou de catalyseur réjuvéné (catalyseur régénéré additionné d’un composé augmentant l’activité du catalyseur) et/ou catalyseur réactivé via l’extraction des poisons et inhibiteurs tel que les métaux déposés issus des réactions d’hydrodémétallation et élimination du coke formé. L’effluent issu de l’étape f) de conversion est ensuite généralement distillé de façon à récupérer les coupes valorisables essence et gasoil. La fraction non convertie résiduelle peut être recyclée à une des étapes du procédé.
Dans un autre mode de réalisation, l’étape f) de conversion peut être effectuée au travers d’une unité de craquage catalytique en lit fluidisé. La DAO peut être traitée en coprocessing avec une ou plusieurs charges lourdes de type VGO, HDT VGO, résidu ou seule. L'unité de craquage catalytique en lit fluidisé peut comporter un seul réacteur traitant à la fois la charge lourde et la DAO ou uniquement la DAO, ou deux réacteurs distincts traitant l'un la charge lourde, l'autre la DAO. De plus, chacun des réacteurs peut être à écoulement ascendant ou à écoulement descendant. Le plus souvent, les deux réacteurs auront le même mode d'écoulement.
Lorsque le craquage catalytique est effectué en coprocessing d’une ou plusieurs charges lourdes et d’une DAO : 1) dans un seul réacteur à écoulement ascendant, la température de sortie réacteur (ROT) est comprise entre 450 °C et 650 °C, préférentellement comprise entre 470°C et 620 °C, et le rapport C/O est compris entre 2 et 20 et préférentiellement compris entre 4 et 15. 2) dans un seul réacteur est à écoulement descendant, la température de sortie du réacteur (ROT) est comprise entre 480 °C et 650 °C, è le rapport C/O est compris entre 10 et 50. 3) dans deux réacteurs distincts à écoulement ascendant, le premier réacteur effectuant le craquage de la ou les charges lourdes travaille à une température de sortie réacteur (ROT1) comprise entre 450 °C et 650 °C, de [Déférence comprise entre 470 °C et 620 °C, et un rapport C/O compris entre 2 è20, préférentiellement entre 4 et 15. Le second réacteur effectuant le craquage de la DAO travaille à une température de sortie réacteur (ROT2) comprise entre 500°C et 600°C, préférentiellement comprise entre 520°C et 580°C, aec un rapport C/O compris entre 2 et 20. 4) dans deux réacteurs FCC distincts à écoulement descendant, le premier réacteur FCC effectuant le craquage de la ou les charges lourdes travaille à une température de sortie réacteur (ROT1) comprise entre 480°C et 650°C avec un rapport C/O compris entre 10 et 50. Le second réacteur FCC effectuant le craquage de la DAO travaille à une température de sortie réacteur (ROT2) comprise entre 570°C et 600°C, avec un rapport C/O compris entre 10 et 50.
Lorsque le craquage catalytique est effectué sur la DAO seule : 1) dans un réacteur à écoulement ascendant, le réacteur travaille à une température de sortie réacteur (ROT) comprise entre 500°C et 600°Ç préférentiellement comprise entre 520°C et 580°C, avec un rapport C/O compris ©tre 2 et 20. 2) dans un réacteur à écoulement descendant, le réacteur travaille à une température de sortie réacteur (ROT2) comprise entre 570 °C et 600 °C, avec un rapport C/O compris entre 10 et 50.
Les flux de catalyseur usé issus des deux réacteurs FCC sont séparés des effluents de craquage par tout système de séparation gaz solide connu de l'homme du métier et régénérés dans une zone de régénération commune. L'effluent du réacteur de craquage catalytique (ou bien les deux effluents s'il y a deux réacteurs) est envoyé dans une zone de fractionnement. Cette unité de séparation des comporte généralement une séparation primaire des effluents permettant entre autre la production de coupes valorisables telles que les coupes essence, distillât moyen et distillât lourd. La fraction non convertie résiduelle peut être recyclée à une des étapes du procédé.
Le catalyseur de l’étape de craquage catalytique en lit fluidisé est typiquement constitué de particules de diamètre moyen généralement compris entre 40 micromètres et 140 micromètres, et le plus souvent compris entre 50 micromètres et 120 micromètres.
Le catalyseur de craquage catalytique contient au moins une matrice appropriée telle que l'alumine, la silice ou la silice-alumine avec présence ou non d'une zéolithe de type Y dispersée dans cette matrice.
Le catalyseur peut comprendre en outre au moins une zéolithe présentant une sélectivité de forme de l'un des types structuraux suivants : MEL (par exemple ZSM-11), MFI (par exemple ZSM-5), NES, EUO, FER, CFIA (par exemple SAPO-34), MFS, MWW. Il peut également comprendre l'une des zéolithes suivantes: NU-85, NU-86, NU-88 et IM-5, qui présentent également une sélectivité de forme. L'avantage de ces zéolithes présentant une sélectivité de forme est l'obtention d'une meilleure sélectivité propylène / isobutène, c'est à dire un rapport propylène / isobutène plus élevé dans les effluents de craquage.
La proportion de zéolithe présentant une sélectivité de forme par rapport à la quantité totale de zéolithe peut varier en fonction des charges utilisées et de la structure des produits recherchés. Souvent, on utilise de 0,1 % poids à 60 % poids, préférentiellement de 0,1 % poids à 40 % poids, et en particulier de 0,1 % poids à 30 % poids de zéolithe présentant une sélectivité de forme.
La ou les zéolithes peuvent être dispersées dans une matrice à base de silice, d'alumine ou de silice alumine, la proportion de zéolithe (toutes zéolithes confondues) par rapport au poids du catalyseur étant souvent comprise entre 0,7 % poids et 80% poids, de préférence entre 1 % poids et 50% poids, et de manière encore préférée entre 5 % poids et 40 % poids.
Dans le cas ou plusieurs zéolithes sont utilisées, elles peuvent être incorporées dans une seule matrice ou dans plusieurs matrices différentes. La teneur en zéolithe présentant une sélectivité de forme dans l'inventaire totale est inférieure à 30 % poids.
Le catalyseur utilisé dans le réacteur de craquage catalytique peut être constitué d'une zéolithe de type Y ultra stable dispersée dans une matrice d'alumine, de silice, ou de silice alumine, à laquelle on ajoute un additif à base de zéolithe ZSM5, la quantité en cristaux de ZSM5 dans l'inventaire total étant inférieure à 30 % poids. DESCRIPTION DE LA FIGURE La figure 1 illustre l’invention.
Elle comprend une section d’hydroconversion profonde A dans laquelle est réalisée l’étape a) d’hydroconversion profonde. La charge 1 est convertie en présence d’hydrogène 2 et l’effluent résultant 3 est séparé (étape b, éventuellement suivie de l’étape b’) dans la section de séparation B. Il est obtenu une fraction légère 4 et une fraction lourde 5. Cette dernière est envoyée dans la section d’hydroconversion profonde C où elle subit l’étape c) d’hydroconversion profonde en présence d’hydrogène 6. De l’effluent résultant 7 est séparé une fraction légère 8 et une fraction lourde 9 qui est dirigée vers la section de désasphaltage E où est réalisée l’étape de désasphaltage e) à l’aide d’un solvant 12. L’huile désasphaltée DAO 10 est envoyée vers une section de conversion F où a lieu l’étape de conversion f) et l’asphalte 11 est récupéré. L’effluent 13 issu de l’étape f) de conversion est ensuite généralement envoyé dans une étape de séparation de façon à récupérer les coupes valorisables, par exemple essence et gasoil.
Exemples:
Les exemples suivants illustrent un exemple de mise en œuvre du procédé selon l'invention, sans en limiter la portée, et certaines de ses performances, en comparaison avec des procédés selon l’art antérieur.
Les exemples 1 et 2 sont non conformes à l’invention. L’exemple 3 est conforme à l’invention.
Charge
La charge lourde est un résidu sous vide (RSV) provenant d’un brut Oural et dont les principales caractéristiques sont présentées dans le tableau 1 ci-après. Cette charge lourde RSV est la même charge fraîche pour les différents exemples.
Tableau 1 : composition de la charge du procédé
EXEMPLE 1 non conforme à l’invention: Schéma à haute vitesse spatiale horaire et température modérée (WH globale = 0,30 h'1 + 420°C/420°C) + étape de désasphaltage (SDA)
Dans cet exemple, deux réacteurs en lit entraîné (première et seconde section d’hydroconversion profonde) sont disposés en série, opérés à haute vitesse spatiale horaire
(WH) et température modérée avec une section de séparation inter-étage et un procédé de désasphaltage en aval.
Section d’hydroconversion A
La charge fraîche du tableau 1 est envoyée en totalité dans la première section d'hydroconversion A en lit entraîné, qui comprend un réacteur triphasique en lit entraîné, en présence d'hydrogène et d’un catalyseur entraîné à base de naphténate de molybdène, dont la concentration dans la charge est de 250 ppm poids de molybdène. La section fonctionne en lit entraîné à courant ascendant de liquide et de gaz.
Les conditions appliquées dans la section d'hydroconversion A sont présentées dans le tableau 2.
Tableau 2 : conditions opératoires de la section d’hydroconversion A
Ces conditions opératoires permettent d'obtenir un effluent liquide à teneur réduite en carbone Conradson, en métaux et en soufre.
Section de séparation B L'effluent liquide issu de la section A est ensuite envoyé dans une section de séparation B composé par un seul séparateur gaz / liquide fonctionnant à la pression et à la température du réacteur de la première section d’hydroconversion A. Une fraction dite légère et une fraction dite lourde sont ainsi séparées. La fraction dite légère est majoritairement composée par des molécules à point d’ébullition inférieure à 350 °C et la fraction dite lourde est majoritairement composée par des molécules d’hydrocarbures bouillant à une température d’au moins 350 °C.
Section d’hydroconversion C
La fraction lourde issue de la section de séparation B est envoyée seule et en totalité dans une deuxième section d'hydroconversion C en présence d'hydrogène et d’un catalyseur entraîné à base de naphténate de molybdène, dont la concentration dans la charge est de 250 ppm poids de molybdène. Ladite section comprend un réacteur triphasique en lit entraîné à courant ascendant de liquide et de gaz.
Les conditions appliquées dans la section d'hydroconversion C sont présentées dans le tableau 3.
Tableau 3 : conditions opératoires de la section d’hydroconversion C
Ces conditions opératoires permettent d'obtenir un effluent liquide à teneur réduite en carbone Conradson, en métaux et en soufre.
Section de fractionnement D L’effluent de la section d'hydroconversion C est envoyé dans une section de fractionnement D composée par un ballon de flash, une distillation atmosphérique suivie d’une distillation sous vide de laquelle on récupère une fraction lourde résidu sous vide (RSV) non converti bouillant à une température d’au moins 540°C dont bs rendements par rapport à la charge fraîche et la qualité sont donnés dans le tableau 4 ci-dessous.
Tableau 4 : Rendement et qualité du RSV issu de la section de fractionnement D
Section de désasphaltage E
Le résidu sous vide issu de la section D est envoyé dans la section de désasphaltage E. Les conditions appliquées dans l'unité de désasphaltage sont décrites dans le tableau 5.
Tableau 5 : Conditions opératoires dans l’unité E de SDA
À l’issue de la section E, on obtient une fraction DAO pouvant être valorisée dans un procédé de conversion (hydrocraquage en lit fixe, FCC ou recyclage au procédé d’hydroconversion en conditions douces en lit bouillonnant) et une fraction dite « asphalte » difficilement valorisable.
Les rendements et qualités de ces deux produits sont donnés en Tableau 6.
Tableau 6 : Rendements et qualités des effluents issus de la section de désasphaltage E
Performances globales
Avec ce schéma non conforme à l’invention, pour une vitesse spatiale horaire (WH) globale de 0,30 h'1 et des températures modérées (420/420°C), la conve'sion de la coupe lourde 540°C+ est de 80 % poids. De plus, le RSV non conveli contient des teneurs importantes en carbone Conradson et C7 asphaltènes (respectivement 14,2 % poids et 5,1 % poids). Ainsi, ce schéma classique est accompagné d’une génération d’asphalte importante de 15,8% poids par rapport à la charge fraîche de départ.
EXEMPLE 2 non conforme à l’invention: Schéma à haute vitesse spatiale horaire et haute température (WH globale = 0,30 h'1 + 450°C/450°C) + étape de désasphaltage (SDA)
Dans cet exemple, deux réacteurs en lit entraîné (première et seconde section d’hydroconversion profonde) sont disposés en série, opérés à haute vitesse spatiale horaire (WH) et haute température afin d’atteindre de fortes conversions du résidu, avec une section de séparation inter-étage et un procédé de désasphaltage en aval.
Section d’hydroconversion A
La charge fraîche du tableau 1 est envoyée en totalité dans la première section d'hydroconversion A en lit entraîné, qui comprend un réacteur triphasique en lit entraîné, en présence d'hydrogène et d’un catalyseur entraîné à base de naphténate de molybdène, dont la concentration dans la charge est de 250 ppm poids de molybdène. La section fonctionne en lit entraîné à courant ascendant de liquide et de gaz.
Les conditions appliquées dans la section d'hydroconversion A sont présentées dans le tableau 7.
Tableau 7 : conditions opératoires de la section d’hydroconversion A
Ces conditions opératoires permettent d'obtenir un effluent liquide à teneur réduite en carbone Conradson, en métaux et en soufre.
Section de séparation B L'effluent liquide issu de la section A est ensuite envoyé dans une section de séparation B composé par un seul séparateur gaz / liquide fonctionnant à la pression et à la température du réacteur de la première section d’hydroconversion A. Une fraction dite légère et une fraction dite lourde sont ainsi séparées. La fraction dite légère est majoritairement composée par des molécules à point d’ébullition inférieur à 350°C et la fraction dite lourde est majoritairement composée par des molécules d’hydrocarbures bouillant à une température d’au moins 350°C.
Section d’hydroconversion C
La fraction lourde issue de la section de séparation B est envoyée seule et en totalité dans une deuxième section d'hydroconversion C en présence d'hydrogène et d’un catalyseur entraîné à base de naphténate de molybdène, dont la concentration dans la charge est de 250 ppm poids de molybdène. Ladite section comprend un réacteur triphasique en lit entraîné à courant ascendant de liquide et de gaz.
Les conditions appliquées dans la section d'hydroconversion C sont présentées dans le tableau 8.
Tableau 8 : conditions opératoires de la section d’hydroconversion C
Ces conditions opératoires permettent d'obtenir un effluent liquide à teneur réduite en carbone Conradson, en métaux et en soufre.
Section de fractionnement D L’effluent de la section d'hydroconversion C est envoyé dans une section de fractionnement D composée par un ballon de flash, une distillation atmosphérique suivie d’une distillation sous vide de laquelle on récupère une fraction lourde résidu sous vide (RSV) non converti bouillant à une température d’au moins 540°C dont bs rendements par rapport à la charge fraîche et la qualité sont donnés dans le tableau 9 ci-dessous.
Tableau 9 : Rendement et qualité du RSV issu de la section de fractionnement D
Section de désasphaltage E
Le résidu sous vide issu de la section D est envoyé dans la section de désasphaltage E. Les conditions appliquées dans l'unité de désasphaltage sont décrites dans le tableau 10.
Tableau 10 : Conditions opératoires dans l’unité E de SDA
A l’issue de la section E, on obtient une fraction DAO pouvant être valorisée dans un procédé de conversion (hydrocraquage en lit fixe, FCC ou recyclage au procédé d’hydroconversion en conditions douces en lit bouillonnant) et une fraction dite « asphalte >> difficilement valorisable.
Les rendements et qualités de ces deux produits sont donnés en tableau 11.
Tableau 11 : Rendements et qualités des effluents issus de la section de désasphaltage E
Performances globales
Avec ce schéma non conforme à l’invention, pour une vitesse spatiale horaire (WH) globale de 0,30 h"1 et des températures élevées (450/450 °C), la conveBion de la coupe lourde 540 °C+ est de 94,9 % poids. De plus, le RSV non corverti contient des teneurs importantes en carbone Conradson et C7 asphaltènes (respectivement 16,8% poids et 6,7% poids) impliquant que seulement 44,2 % poids du RSV non converti est récupérable sous forme de DAO. Ainsi, ce schéma classique est accompagné d’une génération d’asphalte importante de 4,0 % poids par rapport à la charge fraîche de départ.
EXEMPLE 3 selon l’invention : Schéma selon l’invention à faible vitesse spatiale horaire (WH global = 0,068 h'1 + 420°C/420°C) et à température modérée+ SDA
Dans cet exemple, on illustre la présente invention dans un schéma de procédé avec deux réacteurs en lit entraîné disposés en série, opérés à faible vitesse spatiale horaire (VVH=0,068 h"1) et à température modérée (420°C/420°C) et avec ui® section de séparation inter-étage et un procédé de désasphaltage en aval, tel que décrit en relation avec la figure 1.
Section d’hydroconversion A
La charge fraîche du tableau 1 est envoyée en totalité dans la première section d'hydroconversion A en lit entraîné, qui comprend un réacteur triphasique en lit entraîné, en présence d'hydrogène et d’un catalyseur entraîné à base de naphténate de molybdène, dont la concentration dans la charge est de 250 ppm poids de molybdène. La section fonctionne en lit entraîné à courant ascendant de liquide et de gaz.
Les conditions appliquées dans la section d'hydroconversion A sont présentées dans le tableau 12.
Tableau 12 : conditions opératoires de la section d’hydroconversion A
Ces conditions opératoires permettent d'obtenir un effluent liquide à teneur réduite en carbone Conradson, en métaux et en soufre.
Section de séparation B L'effluent liquide issu de la section A est ensuite envoyé dans une section de séparation B composé par un seul séparateur gaz / liquide fonctionnant à la pression et à la température des réacteurs de la première section d’hydroconversion A. Une fraction dite légère et une fraction dite lourde sont ainsi séparées. La fraction dite légère est majoritairement composée par des molécules à point d’ébullition inférieur à 350°C et la fraction dite lourde est majoritairement composée par des molécules d’hydrocarbures bouillant à une température d’au moins 350°C.
Section d’hydroconversion C
La fraction lourde issue de la section de séparation B est envoyée seule et en totalité dans une deuxième section d'hydroconversion C en lit bouillonnant, en présence d'hydrogène et d’un catalyseur entraîné à base de naphténate de molybdène, dont la concentration dans la charge est de 250 ppm poids de molybdène. Ladite section comprend un réacteur triphasique en lit entraîné à courant ascendant de liquide et de gaz.
Les conditions appliquées dans la section d'hydroconversion C sont présentées dans le tableau 13.
Tableau 13 : conditions opératoires de la section d’hydroconversion C
Ces conditions opératoires permettent d'obtenir un effluent liquide à teneur réduite en carbone Conradson, en métaux et en soufre.
Section de fractionnement D L’effluent de la section d'hydroconversion C est envoyé dans une section de fractionnement D composée par un ballon de flash, une distillation atmosphérique suivie d’une distillation sous vide de laquelle on récupère une fraction lourde résidu sous vide (RSV) non converti bouillant à une température d’au moins 540°C dont bs rendements par rapport à la charge fraîche et la qualité sont donnés dans le tableau 14 ci-dessous.
Tableau 14 : Rendement et qualité du RSV issu de la section de fractionnement D
Section de désasphaltage E
Le résidu sous vide issu de la section D est envoyé dans la section de désasphaltage E. Les conditions appliquées dans l'unité de désasphaltage décrites dans le tableau 15.
Tableau 15 : Conditions opératoires dans l’unité E de SDA
A l’issue de la section E, on obtient une fraction DAO pouvant être valorisée dans un procédé de conversion (hydrocraquage en lit fixe, FCC ou recyclage au procédé d’hydroconversion en conditions douces en lit bouillonnant) et une fraction dite « asphalte » difficilement valorisable.
Les rendements et qualités de ces deux produits sont donnés en tableau 16.
Tableau 16 : Rendements et qualités des effluents issus de la section de désasphaltage E
Performances globales
Avec ce schéma selon l’invention à WH globale = 0,068 h"1 et à des températures modérées (420/420 °C), la conversion de la coupe lourde 540°Q- est de 96,9 % poids soit supérieur de 17 points à l’exemple 1 (au même niveau de température) et supérieur de 2 points à l’exemple 2 (avec les réacteurs opérés à très fortes températures). Cependant, le RSV non converti contient des teneurs plus faible en carbone Conradson et C7 asphaltènes en comparaison aux exemples 1 et 2 (procédés classiques non-conformes à l’invention) ce qui permet de récupérer une quantité plus importante de DAO à partir du RSV non-converti (60,2% poids récupérable dans cet exemple contre 57,2 % poids dans l’exemple 1 et contre 44,2 % poids dans l’exemple 2). Ainsi, ce schéma selon l’invention est accompagné d’une
génération d’asphalte plus faible correspondant à 2,4 % poids par rapport à la charge fraîche de départ (contre 15,8 % poids dans l’exemple 1 et contre 4,0 % poids dans l’exemple 2). De plus, la DAO produite dans le procédé selon l’invention contient également moins d’impuretés (soufre, azote, carbone Conradson et asphaltènes C7) en comparaison aux coupes DAO produites dans les exemples 1 et 2. De ce fait, cette DAO du procédé selon l’invention est plus facile à convertir que les deux DAO produites dans les exemples non-conformes 1 et 2. Si l’intégralité de la DAO est convertie (hydrocraquage, FCC ou hydroconversion), alors une très haute conversion de la coupe lourde 540°C+ de départ peut ainsi être obtenue grâce à cet exemple selon l’invention. D’autres solvants comme le pentane (C5) peuvent être utilisés dans le procédé de désasphaltage à la place du butane (C4) comme décrit ici dans ces exemples. Le désasphaltage au C5 permet d’augmenter les rendements en DAO et d’exacerber les avantages de l’invention.
Claims (12)
- REVENDICATIONS1. Procédé de conversion de charges hydrocarbonées dont au moins 50%, de préférence au moins 80% poids bout à une température d’au moins 300 °C, comprenant les étapes successives suivantes: - dans une étape a) est réalisée une première hydroconversion profonde de ladite charge hydrocarbonée en présence d’hydrogène dans au moins un premier réacteur triphasique fonctionnant en lit entraîné, sous une pression absolue comprise entre 2 et 35 MPa, à une température comprise entre 300°C et 550C, avec une quantité d'hydrogène comprise entre 50 et 5000 Nm3/m3, avec un premier catalyseur entraîné, - éventuellement une étape b) de séparation d’une fraction légère à partir d’une partie ou de la totalité de l’effluent issu de ladite première hydroconversion, et il est obtenu au moins une fraction lourde dont au moins 80% poids présente une température d’ébullition d’au moins 250°C, - dans une étape c) est réalisée une seconde hydroconversion profonde d’une partie ou de la totalité de l’effluent liquide issu de l’étape a) ou la fraction lourde issue de l’étape b), en présence d’hydrogène, dans au moins un deuxième réacteur triphasique fonctionnant en lit entraîné, sous une pression absolue comprise entre 2 et 35 MPa, à une température comprise entre 300 °C et 550 °C, avec une quantité dîydrogène comprise entre 50 et 5000 Nm3/m3, avec un deuxième catalyseur entraîné, -et la vitesse spatiale horaire globale pour les étapes a) à c) est inférieure à 0,1 h 1, la vitesse globale étant le débit de charge liquide de l’étape a) d’hydroconversion pris dans des conditions standards de température et de pression, rapporté au volume total des réacteurs des étapes a) et c), - une étape d) de séparation d’une partie ou de la totalité de l’effluent issu de ladite seconde hydroconversion en au moins une fraction légère et au moins une fraction lourde dont au moins 80% poids présente une température d’ébullition d’au moins 300°C, - une étape e) de désasphaltage de ladite fraction lourde issue de l’étape d), à une température comprise entre 60°C et 250°C avec au mdns un solvant hydrocarboné ayant de 3 à 7 atomes de carbone, et un ratio solvant/charge (volume/volume) compris entre 4/1 et 9/1, et il est obtenu une fraction désasphaltée DAO et un asphalte.
- 2- Procédé selon la revendication 1 comprenant une étape f) de conversion d’une partie ou de la totalité de ladite fraction désasphaltée DAO éventuellement distillée.
- 3- Procédé selon la revendication 2 dans lequel la DAO est distillée avant l’étape f) de conversion de façon à séparer une fraction lourde dont au moins 80% poids présente une température d’ébullition d’au moins 375°C, ou d’au moins 400°C, ou d’au moins 450°C ou d’au moins 500°C, et de manière préférée d’au moins 540°C, et ladite fraction lourde envoyée en partie ou en totalité dans l’étape f) de conversion.
- 4- Procédé selon l’une des revendications précédentes dans lequel une partie ou la totalité de la fraction DAO est envoyée, de préférence directement, dans une étape de conversion opérant avec un procédé choisi dans le groupe formé par l’hydrocraquage en lit fixe, le craquage catalytique en lit fluidisé, l’hydroconversion en lit bouillonnant, ces procédés pouvant comporter un hydrotraitement préalable.
- 5- Procédé selon la revendication 4 dans lequel une partie ou la totalité de la fraction désasphaltée DAO est soumise à un hydrocraquage en lit fixe, en présence d’hydrogène, sous une pression absolue comprise entre 5 MPa et 35 MPa, à une température comprise avantageusement entre 300 °C et 500 °C, une WH compise entre 0,1 h'1 et 5h'\ et une quantité d'hydrogène comprise entre 100 Nm3/m3 et 1000 Nm3/m3 de charge liquide, et en présence d’un catalyseur contenant au moins un élément du groupe VIII non-noble et au moins un élément du groupe VIB et comprenant un support contenant au moins une zéolite.
- 6- Procédé selon la revendication 4 dans lequel une partie ou la totalité de la fraction désasphaltée DAO est soumise à un craquage catalytique en lit fluidisé FCC en présence d’un catalyseur, de préférence dépourvu de métaux, comprenant de l’alumine, de la silice, de la silice-alumine, et de préférence comprenant au moins une zéolite.
- 7- Procédé selon la revendication 4 dans lequel une partie ou la totalité de la fraction désasphaltée DAO est soumise à une hydroconversion en lit bouillonnant, réalisée en présence d’hydrogène, sous une pression absolue comprise entre 2 MPa et 35 MPa, à une température comprise entre 300 et 550 °C, une quantté d'hydrogène comprise entre 50 Nm3/m3 et 5000 Nm3/m3 de charge liquide, une WH comprise entre 0,1 h1 et 10 h1 et en présence d’un catalyseur contenant un support et au moins un métal du groupe VIII choisi parmi le nickel et le cobalt et au moins un métal du groupe VIB choisi parmi le molybdène et le tungstène.
- 8- Procédé selon l’une des revendications précédentes dans lequel au moins une partie de ladite fraction désasphaltée DAO est recyclée à l’étape a) et/ou à l’étape c).
- 9- Procédé selon l’une des revendications précédentes dans lequel dans l’étape d) de séparation, l’effluent issu de ladite seconde hydroconversion est séparé en au moins une fraction légère et au moins une fraction lourde dont au moins 80 % poids présente une température d’ébullition d’au moins 375°C, ou d’au moins 400°C, ou d’au moins 450°C ou d’au moins 500°C, et de manière préférée d’au moins540°C.
- 10- Procédé selon l’une des revendications précédentes dans lequel - les étapes a) et c) sont réalisées sous une pression absolue comprise entre 5 MPa et 25 MPa et de manière préférée, entre 6 MPa et 20 MPa, à une température comprise entre 350°C et 500°C et d’une manière préférée comprise œitre 370 et 480°C, et d’une manière encore préférée comprise entre 380 °C et 430 °C, avecune quantité d'hydrogène comprise entre 100 Nm3/m3 et 2000 Nm3/m3 et de manière très préférée entre 200 Nm3/m3 et 1500 Nm3/m3, la vitesse spatiale horaire (WH) étant d’au moins 0,05 h"1 , de préférence comprise entre 0,05 h'1 et 0,09 h'1, - l’étape e) est réalisée avec un solvant choisi dans le groupe formé par le butane, le pentane ou l'hexane, ainsi que leurs mélanges.
- 11- Procédé selon l’une des revendications précédentes dans lequel ledit premier catalyseur entraîné de la première hydroconversion profonde a) et/ou ledit deuxième catalyseur entraîné de la deuxième hydroconversion profonde c) comporte un support et une phase active contenant au moins un métal du groupe VIB choisi parmi le molybdène et le tungstène, et de préférence le métal du groupe VIB est le molybdène, ledit métal du groupe VIB étant de préférence en association avec au moins un métal du groupe VIII non-noble choisi parmi le nickel, le cobalt, le ruthénium et le fer, et de préférence le métal du groupe VIII non-noble est le nickel.
- 12- Procédé selon l’une des revendications 1 à 11 dans lequel ledit premier catalyseur entraîné de la première hydroconversion profonde a) et/ou ledit deuxième catalyseur entraîné de la deuxième hydroconversion profonde c) est obtenu à partir d’un précurseur soluble dans une phase organique, ledit précurseur étant de préférence choisi dans le groupe de composés organométalliques constitué par les naphténates de Mo, de Co, de Fe, de Ni, et des composés multi-carbonyl de Mo, de Co, de Fe, de Ni, et de préférence ledit précurseur est du naphténate de Mo.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1762864A FR3075807B1 (fr) | 2017-12-21 | 2017-12-21 | Procede ameliore de conversion de residus integrant des etapes d’hydroconversion profonde en lit entraine et une etape de desasphaltage |
RU2018145327A RU2804466C2 (ru) | 2017-12-21 | 2018-12-20 | Усовершенствованный способ конверсии остатков, включающий в себя этапы гидроконверсии в подвижном слое и этап деасфальтизации |
CN201811592020.7A CN110003945A (zh) | 2017-12-21 | 2018-12-21 | 包括夹带床深度加氢转化阶段和脱沥青阶段的改进的残余物转化方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1762864A FR3075807B1 (fr) | 2017-12-21 | 2017-12-21 | Procede ameliore de conversion de residus integrant des etapes d’hydroconversion profonde en lit entraine et une etape de desasphaltage |
FR1762864 | 2017-12-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3075807A1 true FR3075807A1 (fr) | 2019-06-28 |
FR3075807B1 FR3075807B1 (fr) | 2020-09-11 |
Family
ID=62017413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1762864A Active FR3075807B1 (fr) | 2017-12-21 | 2017-12-21 | Procede ameliore de conversion de residus integrant des etapes d’hydroconversion profonde en lit entraine et une etape de desasphaltage |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110003945A (fr) |
FR (1) | FR3075807B1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3101082B1 (fr) * | 2019-09-24 | 2021-10-08 | Ifp Energies Now | Procédé intégré d’hydrocraquage en lit fixe et d’hydroconversion en lit bouillonnant avec une séparation gaz/liquide améliorée |
CN111575049A (zh) * | 2020-04-26 | 2020-08-25 | 洛阳瑞华新能源技术发展有限公司 | 溶剂脱沥青油在重油上流式加氢裂化过程的用法 |
FR3113062B1 (fr) * | 2020-07-30 | 2023-11-03 | Ifp Energies Now | Procédé d’hydroconversion de résidus à plusieurs étages d’hydroconversion intégrant une étape de désasphaltage |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010033487A2 (fr) * | 2008-09-18 | 2010-03-25 | Chevron U.S.A. Inc.X | Systemes et procedes de production d'un produit brut |
US20130112595A1 (en) * | 2011-11-04 | 2013-05-09 | Saudi Arabian Oil Company | Hydrocracking process with integral intermediate hydrogen separation and purification |
FR2999597B1 (fr) * | 2012-12-18 | 2015-11-13 | IFP Energies Nouvelles | Procede de desasphaltage selectif de charges lourdes |
FR3030568A1 (fr) * | 2014-12-18 | 2016-06-24 | Axens | Procede de conversion profonde de residus maximisant le rendement en gazole |
FR3033797A1 (fr) * | 2015-03-16 | 2016-09-23 | Ifp Energies Now | Procede ameliore de conversion de charges hydrocarbonees lourdes |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2966985B2 (ja) * | 1991-10-09 | 1999-10-25 | 出光興産株式会社 | 重質炭化水素油の接触水素化処理方法 |
US6547957B1 (en) * | 2000-10-17 | 2003-04-15 | Texaco, Inc. | Process for upgrading a hydrocarbon oil |
CN104109558B (zh) * | 2014-07-29 | 2015-11-18 | 北京宝塔三聚能源科技有限公司 | 一种劣质油两段式加氢炼制方法 |
CN106957681A (zh) * | 2017-03-31 | 2017-07-18 | 北京中科诚毅科技发展有限公司 | 一种提高加氢反应体系氢分压的方法及其设计方法和用途 |
-
2017
- 2017-12-21 FR FR1762864A patent/FR3075807B1/fr active Active
-
2018
- 2018-12-21 CN CN201811592020.7A patent/CN110003945A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010033487A2 (fr) * | 2008-09-18 | 2010-03-25 | Chevron U.S.A. Inc.X | Systemes et procedes de production d'un produit brut |
US20130112595A1 (en) * | 2011-11-04 | 2013-05-09 | Saudi Arabian Oil Company | Hydrocracking process with integral intermediate hydrogen separation and purification |
FR2999597B1 (fr) * | 2012-12-18 | 2015-11-13 | IFP Energies Nouvelles | Procede de desasphaltage selectif de charges lourdes |
FR3030568A1 (fr) * | 2014-12-18 | 2016-06-24 | Axens | Procede de conversion profonde de residus maximisant le rendement en gazole |
FR3033797A1 (fr) * | 2015-03-16 | 2016-09-23 | Ifp Energies Now | Procede ameliore de conversion de charges hydrocarbonees lourdes |
Also Published As
Publication number | Publication date |
---|---|
FR3075807B1 (fr) | 2020-09-11 |
RU2018145327A3 (fr) | 2021-11-30 |
CN110003945A (zh) | 2019-07-12 |
RU2018145327A (ru) | 2020-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3271441B1 (fr) | Procédé amélioré de conversion de charges hydrocarbonnées lourdes | |
EP3728518B1 (fr) | Procédé de conversion de charges lourdes d'hydrocarbures avec recyclage d'une huile désasphaltée | |
EP3728519B1 (fr) | Procede ameliore de conversion de residus integrant des etapes d'hydroconversion profonde et une etape de desasphaltage | |
EP3018188B1 (fr) | Procede de conversion de charges petrolieres comprenant une etape d'hydrotraitement en lit fixe, une etape d'hydrocraquage en lit bouillonnant, une etape de maturation et une etape de separation des sediments pour la production de fiouls a basse teneur en sediments | |
CA2248882C (fr) | Procede de conversion de fractions lourdes petrolieres comprenant une etape d'hydroconversion en lit bouillonnant et une etape d'hydrotraitement | |
EP3018189B1 (fr) | Procede de conversion de charges petrolieres comprenant une etape de viscoreduction, une etape de maturation et une etape de separation des sediments pour la production de fiouls a basse teneur en sediments | |
CA2464796C (fr) | Procede de valorisation de charges lourdes par desasphaltage et hydrocraquage en lit bouillonnant | |
WO2015091033A1 (fr) | Nouveau procede integre de traitement de charges petrolieres pour la production de fiouls a basse teneur en soufre et en sediments | |
FR3036703A1 (fr) | Procede de conversion de charges comprenant une etape d'hydrocraquage, une etape de precipitation et une etape de separation des sediments pour la production de fiouls | |
FR2753984A1 (fr) | Procede de conversion d'une fraction lourde d'hydrocarbures impliquant une hydrodemetallisation en lit bouillonnant de catalyseur | |
FR3014110A1 (fr) | Procede de conversion d'une charge hydrocarbonee lourde integrant un desasphaltage selectif en cascade avec recyclage d'une coupe desasphaltee | |
FR2803596A1 (fr) | Procede de conversion de fractions petrolieres comprenant une etape d'hydroconversion lit bouillonnant, une etape de separation, une etape d'hydrodesulfuration et une etape de craquage | |
FR2753982A1 (fr) | Procede catalytique en plusieurs etapes de conversion d'une fraction lourde d'hydrocarbures | |
FR2964386A1 (fr) | Procede de conversion de residu integrant une etape de desashphaltage et une etape d'hydroconversion | |
WO2014096591A1 (fr) | Procede de conversion d'une charge hydrocarbonee lourde integrant un desasphaltage selectif avec recycle de l'huile desasphaltee | |
FR3075807A1 (fr) | Procede ameliore de conversion de residus integrant des etapes d’hydroconversion profonde en lit entraine et une etape de desasphaltage | |
FR2753985A1 (fr) | Procede catalytique de conversion d'un residu petrolier impliquant une hydrodemetallisation en lit fixe de catalyseur | |
FR2753983A1 (fr) | Procede en plusieurs etapes de conversion d'un residu petrolier | |
CN110003948B (zh) | 包括夹带床加氢转化步骤和脱沥青油的再循环的用于转化重质烃进料的方法 | |
FR3008711A1 (fr) | Procede de raffinage d'une charge hydrocarbonee de type residu sous-vide mettant en œuvre un desasphaltage selectif, un hydrotraitement et une conversion du residu sous-vide pour la production d'essence et d'olefines legeres | |
WO2012085406A1 (fr) | Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par hydroconversion en lit bouillonnant, fractionnement par distillation atmospherique et extraction liquide/liquide de la fraction lourde. | |
WO2012085408A1 (fr) | Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par decontamination, hydroconversion en lit bouillonnant, et fractionnement par distillation atmospherique | |
FR3084371A1 (fr) | Procede de traitement d'une charge hydrocarbonee lourde comprenant un hydrotraitement en lit fixe, un desasphaltage et un hydrocraquage en lit bouillonnant de l'asphalte | |
FR3084372A1 (fr) | Procede de traitement d'une charge hydrocarbonee lourde comprenant un hydrotraitement en lit fixe, deux desasphaltages et un hydrocraquage en lit bouillonnant de l'asphalte | |
RU2804466C2 (ru) | Усовершенствованный способ конверсии остатков, включающий в себя этапы гидроконверсии в подвижном слое и этап деасфальтизации |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20190628 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |
|
PLFP | Fee payment |
Year of fee payment: 5 |
|
PLFP | Fee payment |
Year of fee payment: 6 |
|
PLFP | Fee payment |
Year of fee payment: 7 |