WO2012085407A1 - Procède de conversion de charge hydrocarbonate comprenant une huile de schiste par hydre conversion en lit bouillonnant, fractionnement par distillation atmosphérique, et hydrocraquage - Google Patents

Procède de conversion de charge hydrocarbonate comprenant une huile de schiste par hydre conversion en lit bouillonnant, fractionnement par distillation atmosphérique, et hydrocraquage Download PDF

Info

Publication number
WO2012085407A1
WO2012085407A1 PCT/FR2011/053021 FR2011053021W WO2012085407A1 WO 2012085407 A1 WO2012085407 A1 WO 2012085407A1 FR 2011053021 W FR2011053021 W FR 2011053021W WO 2012085407 A1 WO2012085407 A1 WO 2012085407A1
Authority
WO
WIPO (PCT)
Prior art keywords
fraction
section
oil
hydrogen
diesel
Prior art date
Application number
PCT/FR2011/053021
Other languages
English (en)
Other versions
WO2012085407A8 (fr
Inventor
Christophe HALAIS
Hélène Leroy
Frédéric Morel
Cécile Plain
Original Assignee
Total Raffinage Marketing
Axens
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Raffinage Marketing, Axens filed Critical Total Raffinage Marketing
Priority to RU2013134377/04A priority Critical patent/RU2592688C2/ru
Priority to BR112013015358A priority patent/BR112013015358A2/pt
Priority to US13/997,330 priority patent/US20130319908A1/en
Priority to CN201180062159.0A priority patent/CN103328613B/zh
Priority to CA2816666A priority patent/CA2816666C/fr
Priority to AU2011347042A priority patent/AU2011347042B2/en
Publication of WO2012085407A1 publication Critical patent/WO2012085407A1/fr
Priority to IL226641A priority patent/IL226641A/en
Priority to MA36030A priority patent/MA34752B1/fr
Publication of WO2012085407A8 publication Critical patent/WO2012085407A8/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/10Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/24Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles
    • C10G47/26Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles suspended in the oil, e.g. slurries
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/14Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1018Biomass of animal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1074Vacuum distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/06Gasoil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the invention relates to a process for converting hydrocarbon feedstocks comprising a shale oil into lighter products, recoverable as fuels and / or raw materials for petrochemicals. More particularly, the invention relates to a process for converting hydrocarbon feedstocks comprising a shale oil comprising a step of hydroconversion of the boiling bed feedstock, followed by a step of fractionation by atmospheric distillation into a light fraction, naphtha, gas oil and in a heavier fraction than the gas oil fraction, a dedicated hydro treatment for each of the naphtha and diesel fractions, and a hydrocracking of the heavier fraction than diesel.
  • This process makes it possible to convert shale oils into fuel base of very good quality and aims in particular at an excellent yield.
  • Oil shales are sedimentary rocks containing an insoluble organic substance called kerogen.
  • kerogen an insoluble organic substance called kerogen.
  • heat treatment in situ or ex situ in the English terminology in the absence of air at temperatures between 400 and 500 ° C, these schists release an oil, shale oil , whose general appearance is that of crude oil.
  • shale oils can be a substitute for the latter and also a source of chemical intermediates.
  • Shale oils can not be a direct substitute for crude oil applications. Indeed, although these oils in some ways resemble oil (for example by a ratio
  • H / C similar
  • they are distinguished by their chemical nature and by a content of metal impurities and / or nonmetallic impurities much more important, making the conversion of this unconventional resource much more complex than that of oil.
  • Shale oils have higher levels of oxygen and nitrogen than oil. They may also contain higher concentrations of olefins, sulfur or metal compounds (including arsenic).
  • Shale oils obtained by pyrolysis of kerogen contain many olefinic compounds resulting from cracking, which implies an additional demand for hydrogen in refining.
  • the bromine index which makes it possible to calculate the concentration by weight of olefinic hydrocarbons (by addition of bromine to the ethylenic double bond), is generally greater than 30 g / 100 g of filler for shale oils, whereas it is between 1 and 5 g / 100 g of charge for the oil residues.
  • the olefinic compounds resulting from cracking consist essentially of mono olefins and diolefins. The unsaturations present in the olefins are potential source of instability by polymerization and / or oxidation.
  • the oxygen content is generally higher than in heavy crudes and can reach up to 8% by weight of the filler.
  • Oxygen compounds are often phenols or carboxylic acids. As a result, shale oils may have marked acidity.
  • the sulfur content varies between 0.1 and 6.5% by weight, requiring severe desulfurization treatments in order to reach the specifications of the fuel bases.
  • the sulfur compounds are in the form of thiophenes, sulfides or disulfides.
  • the distribution profile of sulfur in a shale oil may be different from that obtained in conventional oil.
  • shale oils are their high nitrogen content, making them unsuitable as conventional refinery feedstock.
  • the oil generally contains about 0.2% by weight of nitrogen whereas crude shale oils generally contain from about 1 to about 3% by weight or more of nitrogen.
  • the nitrogen compounds present in petroleum are generally concentrated in the higher boiling ranges whereas the nitrogen of the compounds present in the oils of Raw shale is usually distributed throughout all the boiling ranges of the material.
  • Nitrogen compounds in petroleum are predominantly non-basic compounds, whereas typically about half of the nitrogen compounds present in crude shale oils are basic in nature. These basic nitrogen compounds are particularly undesirable in the refining feeds because these compounds often act as catalyst poisons.
  • shale oils may contain many trace metal compounds, generally present as organometallic complexes.
  • metal compounds mention may be made of conventional contaminants such as nickel, vanadium, calcium, sodium, lead or iron, but also metal arsenic compounds.
  • shale oils can contain an amount of arsenic greater than 20 ppm while the amount of arsenic in crude oil is generally in the area of ppb (parts per billion). All these metal compounds are poisons of catalysts. In particular, they irreversibly poison the hydro-treatment and hydrogenation catalysts by gradually depositing on the active surface.
  • Conventional metal compounds and some of the arsenic are found mainly in heavy cuts and are removed by settling on the catalyst.
  • products containing arsenic are able to generate volatile compounds, these can be found partly in lighter cuts and can, therefore, poison the catalysts of the subsequent transformation processes, at the same time. refining or petrochemicals.
  • shale oils generally contain sandy sediments from oil shale deposits from which shale oils are extracted. These sandy sediments can create clogging problems, especially in fixed bed reactors.
  • shale oils contain waxes which give them a pour point higher than the ambient temperature, preventing their transport in oil pipelines.
  • patent document FR2197968 describes a process for the filtration and hydrogenation of shale oils or oil sands oils containing particles, comprising the steps of (a) continuously passing said oil to the bottom of a reactor in admixture with hydrogen, (b) intermittently feeding catalyst at the reactor head and removing catalyst and entrained particles at the bottom of the reactor to effect catalyst transfer through the reactor, (c) measuring the drop pressure line between the bottom and the reactor head, and (d) adjusting the catalyst flow rate to correct the pressure drop at a preselected pressure which corresponds to a desired filtration rate in the reactor.
  • the method described in FR2197968 is particularly silent on the use of independent sections of hydro-treatment of naphtha and diesel fractions.
  • US 6153087 discloses a heavy charge conversion process including bubbling bed conversion and hydrocracking. The process is applied to various heavy feedstocks having an initial boiling point of at least 300 ° C.
  • the present invention aims to improve the known processes for converting hydrocarbon feedstocks comprising a shale oil, in particular by increasing the yield of fuel bases for a combination of steps having a specific sequence, and a treatment adapted to each fraction derived from the oils of shale.
  • the object of the present invention is to obtain products of good quality having in particular a low content of sulfur, nitrogen and arsenic, preferably respecting the specifications.
  • Another objective is to propose a simple process, that is to say with the least necessary steps, while remaining effective, to limit investment costs.
  • the present invention is defined as a hydrocarbon feed conversion process comprising at least one shale oil having a nitrogen content of at least 0.1%, often at least 1% and very often at least 2% by weight, characterized in that it comprises the following steps:
  • a hydroconversion section in the presence of hydrogen, said section comprising at least one ebullating bed reactor operating at an upward flow of liquid and gas and containing at least one supported hydroconversion catalyst,
  • step b) The effluent obtained in step a) is sent, at least in part, and often entirely, into a fractionation zone from which a fraction of a fraction is recovered by atmospheric distillation. gaseous, a naphtha fraction, a diesel fraction and a heavier fraction than diesel,
  • said naphtha fraction is treated, at least in part, and often completely in a first hydrotreating section in the presence of hydrogen, said first section comprising at least a first fixed bed reactor containing at least a first catalyst hydro treatment,
  • Said gas oil fraction is treated, at least in part, and often completely in a second hydrotreating section in the presence of hydrogen, said second section comprising at least a second fixed bed reactor containing at least a second catalyst hydro treatment, and
  • the hydroconversion section of step a) comprises from one to three, and preferably two, reactors in series, and the first and second hydro-treatment sections of steps c) and d) each independently comprise from one to three reactors in series.
  • the hydrocarbon feedstock comprising shale oil is subjected to ebullated bed hydroconversion.
  • Bubble bed technology allows, compared to fixed bed technology, to treat highly contaminated loads of metals, heteroatoms and sediments, such as shale oils, while having conversion rates generally greater than
  • the effluent obtained in the hydroconversion stage is then fractionated by atmospheric distillation, making it possible to obtain different fractions for which a treatment specific to each fraction is carried out thereafter.
  • Atmospheric distillation makes it possible, in a single step, to obtain the various desired fractions
  • the light fractions (naphtha and gas oil) contain less contaminants and can therefore be processed in a fixed bed section generally having improved hydrogenation kinetics relative to the bubbling bed.
  • the operating conditions may be milder due to the limited contaminant content. Providing a treatment for each fraction makes it possible to have a better operability according to the desired products. Depending on the operating conditions chosen (more or less severe), it is possible to obtain either a fraction that can be sent to a fuel pool, or a finished product that meets the specifications (sulfur content, smoke point, cetane, aromatic content, etc.). ) in force.
  • the fixed bed hydrotreatment sections preferably comprise, upstream of the hydro-treatment catalytic beds, specific guard beds for the arsenic and silicon compounds optionally contained in the naphtha and / or diesel fractions.
  • the arsenic compounds escaping the ebullating bed are fixed in the guard beds, avoiding poisoning the downstream catalysts, and making it possible to obtain fuel bases that are heavily depleted of arsenic.
  • Atmospheric distillation also makes it possible to concentrate the most refractory nitrogen compounds in the heavier fraction than the diesel fraction, which in step e) is hydrocracked.
  • This hydrocracking step makes it possible to recover the heavier fraction than diesel by producing lighter products and thus to minimize the problems of recovery and economic opportunities of this fraction.
  • the hydrocarbon feedstock comprises at least one shale oil or a mixture of shale oils.
  • shale oil is used here in its broadest sense and is intended to include any shale oil or a shale oil fraction, which contains nitrogenous impurities. This includes crude shale oil, whether obtained by pyrolysis, solvent extraction or other means, shale oil that has been filtered to remove solids, or that has been treated by a or more solvents, chemicals, or other treatments, and which contains nitrogenous impurities.
  • shale oil also includes shale oil fractions obtained by distillation or other fractionation technique.
  • the shale oils used in the present invention generally have a Conradson carbon content of at least 0.1% by weight and generally at least 5% by weight, an asphaltene content (IP143 / C7 standard) of at least 1%, often at least 2% by weight.
  • Their sulfur content is generally at least 0.1%, often at least 1% and very often at least 2% or even up to 4% or even 7% by weight.
  • the amount of metals they contain is generally at least 5 ppm by weight, often at least 50 ppm by weight, and typically at least 100 ppm by weight or at least 200 ppm by weight.
  • Their nitrogen content is generally at least 0.5%, often at least 1% and often at least 2% by weight.
  • Their arsenic content is generally greater than 1 ppm by weight, and up to 50 ppm by weight.
  • the process according to the present invention aims at converting shale oils.
  • the filler may also contain, in addition to shale oil, other synthetic liquid hydrocarbons, particularly those containing a significant amount of organic cyclic nitrogen.
  • hydrocarbon feeds can also supplement shale oil or shale oil blend.
  • the feeds are selected from the group consisting of coal derived oils, heavy tar oils and oil sands, vacuum distillates and straight run residues, vacuum distillates and unconverted residues from conversion processes such as, for example, those derived from distillation to coke (coking), products resulting from a hydroconversion of heavy-duty fixed bed, products resulting from ebullating bed hydroconversion processes, and oils that are desalphated with solvents
  • the fillers may also contain light cutting oil (LCO for "light cycle oil” in English) of various origins, heavy cutting oil (HCO for "heavy cycle oil” in English) of various origins, and also diesel fuel cuts from catalytic cracking generally having a distillation range of about 150 ° C to about 650 ° C.
  • the fillers may also contain aromatic extracts obtained in the context of the manufacture of lubricating oils.
  • the fillers can also be prepared and used in a mixture, in all proportions.
  • the hydrocarbons added to the shale oil or the shale oil mixture can represent from 20 to 60% by weight of the total hydrocarbon feedstock (shale oil or mixture of shale oils + added hydrocarbons), or even % to 90% by weight.
  • Hydroconversion is understood to mean hydrogenation reactions, hydro-treatment, hydrodesulfurization, hydrodenitrogenation, hydrodemetallation and hydrocracking.
  • the operation of the bubbling bed catalytic reactor including the recycle of reactor liquids upwardly through the agitated catalyst bed, is generally well known.
  • Bubbling bed technologies use supported catalysts, generally in the form of extrudates whose diameter is generally of the order of 1 mm or less than 1 mm, for example greater than or equal to 0.7 mm.
  • the catalysts remain inside the reactors and are not evacuated with the products.
  • the catalytic activity can be kept constant by the on-line replacement (addition and withdrawal) of the catalyst. It is therefore not necessary to stop the unit to change the spent catalyst, nor to increase the reaction temperatures along the cycle to compensate for the deactivation.
  • working with constant operating conditions provides consistent yields and product qualities throughout the catalyst cycle.
  • the conditions of step a) of treating the feedstock in the presence of hydrogen are usually conventional conditions of boiling bed hydroconversion of a liquid hydrocarbon fraction. It is usually carried out under a total pressure of 2 to 35 MPa, preferably 10 to 20 MPa, at a temperature of 300.degree.
  • the hourly space velocity (WH) and the hydrogen partial pressure are important factors that are chosen according to the characteristics of the product to be treated and the desired conversion. Most often, the WH is in a range of from 0.2 h -1 to 1.5 h 1 and preferably from 0.4 h 1 to 1 h 1 .
  • the amount of hydrogen mixed with the feed is usually 50 to 5000 normal cubic meters (Nm 3 ) per cubic meter (m 3 ) of load liquid, and most often from 100 to 1000 Nm 3 / m 3 , and preferably from 300 to 500 Nm 3 / m 3 ;
  • this hydroconversion step a) can be carried out under the conditions of the T-STAR® process, as described for example in the article Heavy Oil Hydroprocessing, published by Aiche,
  • the hydrogen needed for hydroconversion (and subsequent hydrotreatment) can come from steam reforming hydrocarbons (methane) or gas from oil shale during the production of shale oils.
  • the catalyst of step a) is preferably a conventional granular hydroconversion catalyst comprising on an amorphous support at least one metal or metal compound having a hydro-dehydrogenating function.
  • a catalyst is used whose porous distribution is suitable for the treatment of metal-containing fillers.
  • the hydro-dehydrogenating function may be provided by at least one Group VIII metal selected from the group consisting of nickel and / or cobalt, optionally in combination with at least one Group VIB metal selected from the group consisting of molybdenum and / or tungsten.
  • a catalyst comprising from 0.5 to 10% by weight of nickel and preferably from 1 to 5% by weight of nickel (expressed as nickel oxide NiO) and from 1 to 30% by weight of molybdenum may be used, preferably from 5 to 20% by weight of molybdenum (expressed as molybdenum oxide M0O3), on an amorphous mineral support.
  • the total content of Group VIB and VIII metal oxides is often from 5 to 40% by weight and generally from 7 to 30% by weight.
  • the weight ratio expressed as metal oxide between metal (or metals) of group VI on metal (or metals) of group VIII is, in general, from 20 to 1 and most often from 10 to 2.
  • the support of the catalyst will for example be chosen from the group formed by alumina, silica, silica-aluminas, magnesia, clays and mixtures of two or more of these minerals.
  • This support may also contain other compounds, for example oxides chosen from the group formed by boron oxide, zirconia, titanium oxide and phosphoric anhydride. Most often an alumina support is used, and very often a support of alumina doped with phosphorus and possibly boron.
  • the concentration of phosphorus pentoxide P2O5 is usually less than about 20% by weight and most often less than about 10% by weight and at least 0.001% by weight.
  • the concentration of B2O3 boron trioxide is usually from about 0 to about 10% by weight.
  • the alumina used is usually ⁇ (gamma) or ⁇ (eta) alumina.
  • This catalyst is most often in the form of extruded.
  • the catalyst of step a) is based on nickel and molybdenum, doped with phosphorus and supported on alumina.
  • the catalysts used in the process according to the present invention may be subjected to a sulphurization treatment making it possible, at least in part, to convert the metal species into sulphides before they come into contact with the feedstock. treat.
  • This activation treatment by sulfurization is well known to those skilled in the art and can be performed by any method already described in the literature either in-situ, that is to say in the reactor, or ex-situ.
  • the spent catalyst is partly replaced by fresh catalyst by withdrawal at the bottom of the reactor and introduction to the top of the fresh or new catalyst reactor at regular time interval, for example by spot addition, or almost continuously.
  • fresh catalyst can be introduced every day.
  • the replacement rate of the spent catalyst with fresh catalyst can be, for example, from about 0.05 kg to about 10 kg per m 3 of filler.
  • This withdrawal and replacement are carried out using devices allowing the continuous operation of this hydroconversion stage.
  • the unit usually comprises a recirculation pump for maintaining the bubbling bed catalyst by continuously recycling at least a portion of the liquid withdrawn at the top of the reactor and reinjected at the bottom of the reactor. It is also possible the spent catalyst withdrawn from the reactor is sent to a regeneration zone in which the carbon and sulfur contained therein are removed, and then said regenerated catalyst is returned to the hydroconversion reactor of step a).
  • the operating conditions coupled with the catalytic activity make it possible to obtain conversion rates of the feedstock that can range from 50 to 95%, preferably from 70 to 95%.
  • the conversion rate mentioned above is defined as the mass fraction of the feed at the inlet of the reaction section minus the mass fraction of the heavy fraction having a boiling point greater than 343 ° C. at the outlet of the reaction zone. reaction section, all divided by the mass fraction of the feed at the inlet of the reaction section.
  • the bubbling bed technology makes it possible to treat highly contaminated loads of metals, sediments and heteroatoms, without encountering problems of loss of pressure or clogging known in the case of use of fixed bed.
  • Metals such as nickel, vanadium, iron and arsenic are largely removed from the charge by settling on the catalysts during the reaction. The remaining arsenic (volatile) will be eliminated during the hydro treatment stages by specific guard beds.
  • the sediments contained in the shale oils are also removed by replacing the catalyst in the bubbling bed without disturbing the hydroconversion reactions. These steps also make it possible to remove most of the nitrogen by hydrodenitrogenation, leaving only the most refractory nitrogen compounds.
  • step a) makes it possible to obtain an effluent with a very low nitrogen content relative to that of the feed, of the order of 3 times to 10 times less than in the feed.
  • the effluent obtained in step a) of hydroconversion is sent at least partly, and preferably entirely, into a fractionation zone from which a gaseous fraction, a naphtha fraction, a fraction, or a fraction are recovered by atmospheric distillation. diesel and a heavier fraction than the diesel fraction.
  • the effluent obtained in step a) is fractionated by atmospheric distillation into a gaseous fraction having a point boiling point below 50 ° C, a naphtha fraction boiling between about 50 ° C and 150 ° C, a gas oil fraction boiling between about 150 ° C and 370 ° C, and a heavier fraction than the diesel fraction boiling generally above above 340 ° C, preferably above 370 ° C.
  • the naphtha and diesel fractions are then separately sent to hydrotreatment sections.
  • the heavier fraction than the gas oil fraction is sent to the hydrocracking section of step e).
  • the gaseous fraction contains gases (3 ⁇ 4, H2S, NH3, H2O, CO2,
  • the C3 and C4 hydrocarbons may, after purification treatments used to construct LPG products (liquefied petroleum gas).
  • Incondensable gases (C 1-C2) are generally used as internal fuel for the heating furnaces of hydroconversion and / or hydrotreatment and / or hydrocracking reactors.
  • the process according to the invention comprises a hydrocracking step [step e)], in which at least a part, and preferably all of the heavier fraction obtained in step b), is sent to a hydrocracking section in the presence of hydrogen, wherein said heavier fraction than gas oil is conventionally treated under conditions well known to those skilled in the art, to produce a second gaseous fraction, a second naphtha fraction, a second diesel fraction and a second heavier fraction than diesel, called "unconverted oil" according to the English terminology.
  • the second naphtha fraction will for example be treated, at least in part, and often entirely in the hydrotreatment section of step c).
  • the second diesel fraction will be, for example, at least in part, often in full, sent to fuel tanks (pools) and / or recycled at least partially, or even completely, in step d) of hydrotreatment.
  • the second heavier fraction than diesel will be, for example, at least in part, or even in all, sent to the tank (pool) fuel oil and / or recycled at least partially, or all in the hydroconversion step a) and / or hydrocracking step e).
  • the hydrocracking effluents obtained at the end of step e), can also be separated into a gas oil fraction and less heavy than diesel, and a second fraction heavier than diesel.
  • This gas oil fraction and less heavy than diesel is a mixture of a second gas fraction, a second naphtha fraction and a second gas oil fraction.
  • the gas oil fraction and less heavy than diesel can be sent, at least in part, and often in full, in a fractionation zone of step b).
  • Ni-Mo on alumina Ni-Mo on zeolite, Ni-Mo and Ni-W on silica-alumina, Co-Mo on alumina and Co-Mo on zeolite.
  • These catalysts can also contain, depending on the desired properties, other metals chosen from transition metals and rare earths, in the form of traces or in relatively large proportions (from less than 1% by weight to 30% by weight). weight relative to the total metal load) in metallic form or in oxide form.
  • Hydrocracking is carried out in a vertical reactor, generally in downflow mode.
  • the feed is preheated in the presence of hydrogen before introduction to the reactor head.
  • a booster of hydrogen is supplied between each catalyst bed (quench gas) to reduce the temperature. This quench gas is then intimately mixed with the charge, usually in devices called “quench boxes”.
  • the choice of the catalyst and the operating conditions depend on the desired products as a function of the feedstock treated.
  • the hydrocracking units are usually operated on temperatures between 320 ° C and 450 ° C, preferably between 350 ° C and 400 ° C, with hourly mass velocities of between 0.3 and 7 h 1 , with a hydrogen / charge ratio between 300 and 1000 Nm 3 of hydrogen / m 3 of charge.
  • MHC the acronym for “Mild HydroCracking” which have service pressures usually between 8 and 15 MPa, more generally between 10 and 12 MPa
  • DHC acronym for “Distillate HydroCracking” which have service pressures usually between 12 and 20 MPa, more generally between 15 and 20 MPa.
  • Step e) of hydrocracking of the heavier fraction than gas oil operates at a temperature of between 350 ° C. and 450 ° C., preferably between 370 ° C. and 425 ° C., at a total pressure of between 10 and 20 MPa. , preferably between 15 and 18 MPa, at an hourly mass velocity of between 0.3 and 7 h 1 , preferably between 0.5 and 1.5 h 1 , and at a hydrogen / charge ratio of between 100 and 5000 Nm 3 / m 3 , preferably between 1000 and 2000 Nm 3 / m 3 .
  • an MHC in the context of the invention, will produce effluents converted to about 10 to 20%, sufficient to constitute a synthetic crude oil, after mixing with the various naphtha and diesel cuts resulting from the process. This synthetic crude can then be shipped to a conventional refinery.
  • a DHC in the context of the invention would produce effluents converted to 80 to 90%, which would direct the products rather to commercialization as bases for the manufacture of fuels.
  • the naphtha and diesel fractions are then separately subjected to a fixed bed hydrotreatment [steps c] and d]].
  • hydrotreating is meant hydrodesulfurization, hydrodenitrogenation and hydrodemetallation reactions.
  • the objective is, according to the operating conditions chosen in a more or less severe way, to bring the different cuts to the specifications (sulfur content, smoke point, cetane, aromatic content, etc.) or to produce an oil gross synthetic.
  • the fact of treating the naphtha fraction in a hydro-treatment section and the gas oil fraction in another hydro-treatment section makes it possible to have a better operability in the operating conditions, in order to be able to bring each cut to the required specifications with maximum yield in one step per cut. Thus, fractionation after hydro treatment is not necessary.
  • the difference between the two hydro treatment sections is based more on differences in operating conditions than on the choice of catalyst.
  • the fixed bed hydrotreatment sections preferably comprise, upstream of the hydrotreating catalytic beds, specific guard beds for the arsenic compounds (arsenic compounds) and silicon optionally contained in the naphtha and / or naphtha fractions. or diesel.
  • the arsenic compounds having escaped the bubbling bed (because they are generally relatively volatile) are fixed in the guard beds, thus avoiding poisoning the catalysts downstream, and making it possible to obtain fuel bases that are heavily depleted of arsenic.
  • Guard beds for removing arsenic and silicon from naphtha or diesel cuts are known to those skilled in the art. They include for example an absorbent mass comprising nickel deposited on a suitable support (silica, magnesia or alumina) as described in FR2617497, or an absorbent mass comprising copper on a support, as described in FR2762004. Mention may also be made of guard beds marketed by AXENS: ACT 979, ACT989, ACT961, ACT981.
  • each hydrotreating section is adapted to the feedstock to be treated.
  • the operating conditions for hydrotreatment of the naphtha fraction are generally milder than those of the diesel fraction.
  • step c) In the hydrotreatment step of the naphtha fraction [step c)], it is usually carried out under an absolute pressure of 4 to 15 MPa, often 10 to 13 MPa.
  • the temperature in this step c) is usually 280 ° C to 380 ° C, often 300 ° C to 350 ° C. This temperature is usually adjusted according to the desired level of hydrodesulfurization.
  • the hourly space velocity (WH) is in a range from 0.1 h 1 to 5 h 1 , and preferably from 0.5 h 1 to 1 h 1 .
  • the amount of hydrogen mixed with the charge is usually from 100 to 5000 normal cubic meters (Nm 3 ) per cubic meter (m 3 ) of liquid charge, and most often from 200 to 1000 Nm 3 / m 3 , and preferably from 300 to 500 Nm 3 / m 3 .
  • Use is advantageously carried out in the presence of hydrogen sulphide (for the sulphidation of the catalyst) and the partial pressure of the hydrogen sulphide is usually 0.002 times at 0.1 times, and preferably 0.005 times at 0.05 times the total pressure. .
  • step d) In the hydro-treatment step of the gas oil fraction [step d)], it is usually carried out under an absolute pressure of 7 to 20 MPa, often 10 to 15 MPa.
  • the temperature in this step d) is usually 320 ° C to 450 ° C, often 340 ° C to 400 ° C. This temperature is usually adjusted according to the desired level of hydrodesulfurization.
  • the hourly mass velocity is between 0, 1 and 1 h 1 .
  • the hourly space velocity (WH) is in a range from 0.2 h 1 to 1 h 1 , and preferably from 0.3 h 1 to 1 h 1
  • the amount of hydrogen mixed with the feed is usually 100 to 5000 normal cubic meters (Nm 3 ) per cubic meter (m 3 ) of liquid feed, and most often 200 to 1000 Nm 3 / m 3 , and preferably from 300 to 500 Nm 3 / m 3 .
  • Useful operation is carried out in the presence of hydrogen sulfide, and the partial pressure of hydrogen sulfide is usually 0.002 times to 0.1 times, and preferably 0.005 times to 0.05 times the total pressure.
  • the ideal catalyst In the hydrotreating sections, the ideal catalyst must have a high hydrogenating power, so as to achieve a deep refining of the products, and to obtain a significant lowering of the sulfur and nitrogen content.
  • the hydro-treatment sections operate at a relatively low temperature, which is in the sense of deep hydrogenation and coking limitation of the catalyst. It would not be departing from the scope of the present invention to use, in the hydro-treatment sections, simultaneously or successively, a single catalyst or several different catalysts.
  • the hydro treatment of steps c) and d) is carried out industrially, in one or more liquid downflow reactors.
  • step c) and d) the same type of catalyst is used, the catalysts in each section being identical or different.
  • At least one fixed bed of conventional hydrotreatment catalyst comprising on an amorphous support at least one metal or metal compound having a hydro-dehydrogenating function.
  • the hydro-dehydrogenating function may be provided by at least one Group VIII metal selected from the group consisting of nickel and / or cobalt, optionally in combination with at least one Group VIB metal selected from the group consisting of molybdenum and / or tungsten.
  • a catalyst comprising from 0.5 to 10% by weight of nickel and preferably from 1 to 5% by weight of nickel (expressed as nickel oxide NiO) and from 1 to 30% by weight of molybdenum can be used. preferably from 5 to 20% by weight of molybdenum (expressed as molybdenum oxide M0O3), on an amorphous mineral support.
  • the total metal oxide content of Groups VI and VIII is often from about 5 to about 40% by weight, and generally from about 7 to 30% by weight, and the weight ratio of metal oxide to metal (or metals) of group VIB on metal (or metals) of group VIII is generally from about 20 to about 1, and most often from about 10 to about 2.
  • the support is for example chosen from the group formed by alumina, silica, silica-aluminas, magnesia, clays and mixtures of at least two of these minerals.
  • This support may also contain other compounds, for example oxides chosen from the group formed by boron oxide, zirconia, titanium oxide and phosphoric anhydride.
  • an alumina support is used and very often a support of alumina doped with phosphorus and possibly boron.
  • the concentration of phosphorus pentoxide P2O5 is usually less than about 20% by weight and most often less than about 10% by weight, and is at least 0.001% by weight.
  • the concentration of B2O3 boron trioxide is usually from about 0 to about 10% by weight.
  • the alumina used is usually a ⁇ (gamma) or ⁇ (eta) alumina. This catalyst is most often in the form of beads or extrudates.
  • the catalysts used in the process according to the present invention are preferably subjected to a sulphurization treatment making it possible, at least in part, to transform the metallic species into sulphide before they come into contact with the charge. treat.
  • This sulphidation activation treatment is well known to those skilled in the art and can be performed by any method already described in the literature either in-situ, that is to say in the reactor, or ex-situ.
  • stage c) of the naphtha section makes it possible to obtain a section containing at most 1 ppm by weight of nitrogen, preferably at most 0.5 ppm of nitrogen and at most 5 ppm by weight of sulfur, preferably at most 0.5 ppm of sulfur.
  • stage d) of the diesel fraction makes it possible to obtain a section containing at most 100 ppm of nitrogen, preferably at most 20 ppm of nitrogen and at most 50 ppm of sulfur, preferably at most 10 ppm sulfur.
  • the invention relates to a synthetic crude obtained by a method according to one of its previous aspects.
  • the invention relates to an installation for treating a shale oil implementing a method according to one of its previous aspects.
  • Such an installation includes:
  • a hydroconversion section in the presence of hydrogen comprising at least one bubbling bed reactor operating at an upward flow of liquid and gas and containing at least one supported hydroconversion catalyst,
  • a fractionation zone by atmospheric distillation a first hydrotreating section in the presence of hydrogen, comprising at least one fixed bed reactor containing at least one hydro-treatment catalyst,
  • a second hydrotreating section in the presence of hydrogen comprising at least one fixed bed reactor containing at least one hydro-treatment catalyst,
  • the hydroconversion section is connected to the fractionation zone in order to feed it with effluents from the hydroconversion section, a first conduit (or line) connects the fractionation zone to the first hydrotreatment section, a second conduit (or line) connects the fractionation zone to the second hydrotreatment section and a third conduit connects the fractionation zone. at the hydrocracking section.
  • the plant may further comprise one or more recycle lines for returning the different fractions to the hydroconversion section, the hydrocracking section, or any of the first and second hydrotreatment sections.
  • FIG. 1 shows schematically the method according to the present invention.
  • FIG. 2 diagrammatically represents a variant of the process in which the separation of several sections takes place in the same distillation unit.
  • the feedstock comprising the shale oil (1) to be treated enters via a line (2) in a bubbling bed hydroconversion section (3), in the presence of hydrogen (4), hydrogen (4) being introduced by a line (5).
  • the effluent from the boiling bed hydroconversion section (3) is sent via a line (6) to an atmospheric distillation column (7), at the outlet of which a gaseous fraction (8), a naphtha fraction is recovered. (9), a gas oil fraction (10) and a heavier fraction than the gas oil fraction (1 1).
  • the gaseous fraction (8) and a second gaseous fraction (26) containing hydrogen can be purified (not shown) to recycle the hydrogen and reinject it (i) into the bubbling bed hydroconversion section.
  • the two hydrotreatment sections (12) and (13) are fed with hydrogen via lines (14) and (15).
  • the heavier fraction than the gas oil fraction (1 1) is sent to the hydrocracking section (20) by the line (21).
  • the hydrocracking effluents (23) are sent via a line (24) into a separation section (25) at the outlet of which the second gaseous fraction (26) is recovered, a second naphtha fraction (27), a second fraction diesel (28), and a second heavier fraction than diesel (29).
  • the second naphtha fraction (27) can be sent wholly or partly to the hydro-treatment section (12) via a line (30).
  • the second diesel fraction (28) is preferentially sent to the diesel fuel pool or can be sent wholly or partly to the hydro-treatment section (13) via a line (31).
  • the second heavier fraction than diesel (29) may be (i) withdrawn, and / or (ii) returned wholly or partly to the hydrocracking section (20) via a line (32), and / or (iii) ) returned in whole or in part to the bubbling bed hydroconversion section (3) via a line (33).
  • the charge comprising the shale oil (1) to be treated enters a line (2) in a bubbling bed hydroconversion section
  • the effluent from the boiling bed hydroconversion section (3) is sent via a line (6) to an atmospheric distillation column (7), at the outlet of which a gaseous fraction (8), a naphtha fraction is recovered. (9), a gas oil fraction (10) and a heavier fraction than the gas oil fraction (1 1).
  • the gaseous fraction (8), containing hydrogen can be purified (not shown) to recycle hydrogen and reinject it (i) into the bubbling bed hydroconversion section (3) via line (2) and / or (5), and / or (ii) in a hydro-treatment section (12) via a line (18) and / or
  • the naphtha fraction (9) is sent to the fixed bed hydro-treatment section (12) at the outlet from which a naphtha fraction (16) depleted of impurities is recovered.
  • the gas oil fraction (10) is sent to the fixed bed hydro-treatment section (13) at the outlet of which a diesel fuel fraction (17) depleted in impurities.
  • Both hydro treatment sections (12) and (13) are fed with hydrogen via lines (14) and (15).
  • the heavier fraction than the gas oil fraction (1 1) is sent to the hydrocracking section (20) via the line (21).
  • the hydrocracking effluents (23) are sent via a line (24) into a separation section (34) at the outlet of which a mixture (35) comprising a second gaseous fraction, a second naphtha fraction, is recovered at the head. and a second gas oil fraction (28), and, at the bottom, a second heavier fraction than diesel (29).
  • the mixture (35) is sent via a line (36) to the distillation column (7).
  • the second heavier fraction than diesel (29) may be (i) withdrawn, and / or (ii) returned wholly or partly to the hydrocracking section (20) via a line (32), and / or (iii) ) returned in whole or in part to the bubbling bed hydroconversion section (3) via a line (33).
  • a shale oil is processed, the characteristics of which are presented in Table 1.
  • the shale oil is treated in a bubbling bed reactor containing the HOC 458 commercial catalyst from Axens.
  • the operating conditions for implementation are as follows:
  • WH global 0.3 h 1
  • the liquid products from the reactor are fractionated by atmospheric distillation into a naphtha fraction (C5 + - 150 ° C), a gas oil fraction (150-370 ° C) and a residual fraction 370 ° C + which constitutes a heavier fraction than gas oil.
  • the naphtha fraction is subjected to a fixed bed hydrotreatment using a NiMo catalyst on alumina.
  • the operating conditions are as follows:
  • WH global 1 h 1
  • the gas oil fraction is subjected to a hydrotreatment in fixed bed using a NiMo catalyst on alumina.
  • the operating conditions are as follows:
  • the heavier fraction than gas oil is then subjected to hydrocracking using catalysts containing NiMo on alumina, NiW on silica alumina and NiMo on zeolite.
  • This charge preheated in the presence of hydrogen is introduced at the top of a vertical reactor containing 5 catalyst beds.
  • the operating pressure is 16 MPa absolute
  • the temperature is 380 ° C
  • the hydrogen / charge ratio is 1200 Nm 3 / m 3
  • the WH is ⁇ , ⁇ 1 .
  • a booster of hydrogen is supplied between each catalyst bed (quench gas) to reduce the temperature. This quench gas is intimately mixed with the charge in devices called "quench boxes".
  • the hydrocracked hydrocarbons are drawn off at the bottom of the reactor and are cooled. They are directed to a fractionation unit from which the gases are isolated at the top, at least one naphtha cut, at least one diesel fuel cut, and at least one cut heavier than diesel bottom.
  • Table 2 gives the properties of the different loads of each step as well as the yields obtained in the different units and the overall yield. It is then observed that starting from 100% by weight of shale oil, we obtain 93.9% by weight of products (LPG, naphtha, middle distillates) to commercial specifications

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Procédé et dispositif de conversion de charge hydrocarbonée comprenant une huile de schiste, comportant une étape d'hydroconversion en lit bouillonnant, un fractionnement en fractions légère, naphta, gazole et plus lourd que gazole, les fractions naphta et gazole étant hydrotraitées, la fraction plus lourde que gazole étant hydrocraquée, les produits de l'hydrocraquage étant renvoyés à l'étape d'hydrotraitement. Le procédé vise à maximiser le rendement en bases carburants.

Description

PROCEDE DE CONVERSION DE CHARGE HYDROCARBONEE COMPRENANT UNE HUILE DE SCHISTE PAR HYDROCONVERSION EN LIT BOUILLONNANT, FRACTIONNEMENT PAR DISTILLATION
ATMOSPHERIQUE, ET HYDROCRAQUAGE
L'invention concerne un procédé de conversion de charges hydrocarbonées comprenant une huile de schiste en produits plus légers, valorisables comme carburants et/ou matières premières pour la pétrochimie. Plus particulièrement, l'invention concerne un procédé de conversion de charges hydrocarbonées comprenant une huile de schiste comportant une étape d 'hydroconversion de la charge en lit bouillonnant, suivie d'une étape de fractionnement par distillation atmosphérique en fraction légère, naphta, gazole et en une fraction plus lourde que la fraction gazole, un hydro traitement dédié à chacune des fractions naphta et gazole, et un hydrocraquage de la fraction plus lourde que gazole. Ce procédé permet de convertir les huiles de schiste en base carburants de très bonne qualité et vise en particulier un excellent rendement.
Face à une forte volatilité du prix du baril et une diminution des découvertes de champs classiques de pétrole, les groupes pétroliers se tournent vers des sources non-conventionnelles. Aux côtés des sables pétrolifères et de l'offshore profond, les schistes bitumineux, bien que relativement peu connus, sont de plus en plus convoités.
Les schistes bitumineux sont des roches sédimentaires contenant une substance organique insoluble appelée kérogène. Par traitement thermique in- situ ou ex- situ (« retorting » selon la terminologie anglo-saxonne) en l'absence d'air à des températures comprises entre 400 et 500°C, ces schistes libèrent une huile, l'huile de schiste, dont l'aspect général est celui du pétrole brut.
Bien que de composition différente du pétrole brut, les huiles de schiste peuvent constituer un substitut de ce dernier et aussi une source d'intermédiaires chimiques.
Les huiles de schiste ne peuvent pas se substituer directement aux applications du pétrole brut. En effet, bien que ces huiles ressemblent sous certains aspects au pétrole (par exemple par un ratio
H/C similaire), elles se distinguent par leur nature chimique et par une teneur en impuretés métalliques et/ ou non-métalliques beaucoup plus importante, ce qui rend la conversion de cette ressource non conventionnelle bien plus complexe que celle du pétrole. Les huiles de schiste présentent notamment des teneurs en oxygène et en azote plus élevées que le pétrole. Elles peuvent également contenir des concentrations plus élevées en oléfines, en soufre ou en composés métalliques (contenant notamment de l'arsenic).
Les huiles de schiste obtenues par pyrolyse du kérogène contiennent beaucoup de composés oléfiniques résultant du craquage, ce qui implique une demande en hydrogène supplémentaire dans le raffinage. Ainsi, l'indice de brome, permettant de calculer la concentration en poids des hydrocarbures oléfiniques (par addition de brome sur la double liaison éthylénique), est généralement supérieur à 30g/ 100g de charge pour les huiles de schiste, alors qu'il est entre 1 et 5 g/ 100g de charge pour les résidus du pétrole. Les composés oléfiniques résultant du craquage sont essentiellement constitués de mono oléfines et de dioléfines. Les insaturations présentes dans les oléfines sont source potentielle d'instabilité par polymérisation et/ou oxydation.
La teneur en oxygène est généralement plus élevée que dans les bruts lourds et peut atteindre jusqu'à 8% en poids de la charge. Les composés oxygénés sont souvent des phénols ou des acides carboxyliques. De ce fait, les huiles de schiste peuvent présenter une acidité marquée.
La teneur en soufre varie entre 0.1 et 6.5% en poids, nécessitant des traitements sévères de désulfuration afin d'atteindre les spécifications des bases carburants. Les composés soufrés sont sous forme de thiophènes, de sulfures ou de disulfures. De plus, le profil de distribution du soufre au sein d'une huile de schiste peut être différent de celui obtenu dans un pétrole conventionnel.
La caractéristique la plus distinctive des huiles de schiste est néanmoins leur forte teneur en azote, ce qui les rend inappropriées comme charge conventionnelle de la raffinerie. Le pétrole contient en règle générale autour de 0.2% en poids d'azote alors que des huiles de schiste brutes contiennent généralement de l'ordre de 1 à environ 3% en poids ou plus d'azote. En outre, les composés azotés présents dans le pétrole sont généralement concentrés dans les gammes d'ébullition plus élevées alors que l'azote des composés présents dans les huiles de schiste brutes est généralement distribué à travers toutes les gammes d'ébullition de la matière. Les composés azotés dans le pétrole sont des composés majoritairement non-basiques, alors que généralement la moitié environ des composés azotés présents dans les huiles de schiste brutes est de nature basique. Ces composés azotés basiques sont particulièrement indésirables dans les charges de raffinage car ces composés agissent souvent comme des poisons de catalyseur. En plus, la stabilité des produits est un problème qui est commun à de nombreux produits dérivés de l'huile de schiste. Une telle instabilité, y compris la photosensibilité, semble résulter essentiellement de la présence de composés azotés. Par conséquent, les huiles de schiste brutes doivent généralement être soumises à un traitement de raffinage sévère (pression totale élevée) afin d'obtenir un pétrole brut synthétique ou des produits bases carburants respectant les spécifications en vigueur.
De même, il est connu que les huiles de schiste peuvent contenir de nombreux composés métalliques à l'état de traces, généralement présents sous forme de complexes organométalliques. Parmi les composés métalliques, on peut citer les contaminants classiques tels que le nickel, le vanadium, le calcium, le sodium, le plomb ou le fer, mais aussi des composés métalliques d'arsenic. En effet, les huiles de schiste peuvent contenir une quantité d'arsenic supérieure à 20 ppm alors que la quantité d'arsenic dans le pétrole brut est généralement dans le domaine du ppb (partie par milliard). Tous ces composés métalliques sont des poisons des catalyseurs. En particulier, ils empoisonnent de façon irréversible les catalyseurs d'hydro traitement et d'hydrogénation en se déposant progressivement sur la surface active. Les composés métalliques classiques et une partie de l'arsenic se trouvent principalement dans les coupes lourdes et sont éliminés en se déposant sur le catalyseur. En revanche, lorsque les produits contenant de l'arsenic sont aptes à générer des composés volatils, ceux-ci peuvent se retrouver en partie dans les coupes plus légères et peuvent, de ce fait, empoisonner les catalyseurs des procédés de transformation subséquents, lors du raffinage ou en pétrochimie.
De plus, les huiles de schiste contiennent généralement des sédiments sableux provenant de gisements de schistes bitumineux dont sont extraites les huiles de schiste. Ces sédiments sableux peuvent créer des problèmes de colmatage, notamment dans des réacteurs à lit fixe.
Enfin, les huiles de schiste contiennent des cires qui leur confèrent un point d'écoulement supérieur à la température ambiante, empêchant leur transport dans des oléoducs.
En raison de ressources considérables, et de leur évaluation comme étant une source de pétrole prometteuse, il existe un réel besoin de conversion d'huiles de schiste en produits plus légers, valorisables comme carburants et/ ou matières premières pour la pétrochimie. Des procédés de conversion d'huiles de schiste sont connus. Classiquement, la conversion se fait soit par cokéfaction, soit par hydroviscoréduction (craquage thermique en présence d'hydrogène), soit par hydroconversion (hydrogénation catalytique) . On connaît également des procédés d'extraction liquide /liquide.
Ainsi, le document brevet FR2197968 décrit un procédé de filtration et d'hydrogénation d'huiles de schiste ou d'huiles de sables bitumineux contenant des particules, comprenant les étapes consistant à (a) passer en continu ladite huile au pied d'un réacteur en mélange avec de l'hydrogène, (b) envoyer de manière intermittente du catalyseur en tête de réacteur et éliminer du catalyseur et des particules entraînées en fond de réacteur pour réaliser un transfert de catalyseur à travers le réacteur, (c) mesurer la chute de pression entre le fond et la tête du réacteur, et (d) ajuster le débit de catalyseur pour corriger la chute de pression à une pression présélectionnée qui correspond à une vitesse de filtration désirée dans le réacteur. Le procédé décrit dans FR2197968 est notamment muet sur l'utilisation de sections indépendantes d'hydro traitement de fractions naphta et gazole.
Le document brevet US6153087 décrit un procédé de conversion de charges lourdes comprenant une conversion sur lit bouillonnant et un hydrocraquage. Le procédé est appliqué à différentes charges lourdes ayant un point d'ébullition initial d'au moins 300°C.
L'application à des huiles de schiste n'est ni mentionnée ni suggérée.
L'utilisation de sections indépendantes d'hydro traitement de fractions naphta et gazole n'est pas envisagée. Objet de l'invention
La spécificité des huiles de schiste étant d'avoir un certain nombre d'impuretés métalliques et/ou non-métalliques rend la conversion de cette ressource non conventionnelle bien plus complexe que celle du pétrole. L'enjeu pour le développement industriel des procédés de conversion d'huiles de schiste est donc la nécessité de développer des procédés adaptés à la charge, permettant de maximiser le rendement en bases carburants de bonne qualité. Les traitements classiques de raffinage connus du pétrole doivent donc être adaptés à la composition spécifique des huiles de schiste.
La présente invention vise à améliorer les procédés connus de conversion de charges hydrocarbonées comprenant une huile de schiste, en augmentant notamment le rendement en bases carburants pour une combinaison d'étapes ayant un enchaînement spécifique, et un traitement adapté à chaque fraction issue des huiles de schiste. De même, la présente invention a pour objet l'obtention de produits de bonne qualité ayant en particulier une faible teneur en soufre, en azote et en arsenic respectant de préférence les spécifications. Un autre objectif est de proposer un procédé simple, c'est-à-dire avec le moins d'étapes nécessaires, tout en restant efficace, permettant de limiter les coûts d'investissement.
Dans sa forme la plus large, et selon un premier aspect, la présente invention se définit comme un procédé de conversion de charge hydrocarbonée comprenant au moins une huile de schiste ayant une teneur en azote d'au moins 0.1%, souvent d'au moins 1% et très souvent d'au moins 2% en poids, caractérisé en ce qu'il comprend les étapes suivantes :
a) La charge est envoyée dans une section d 'hydroconversion en présence d'hydrogène, ladite section comprenant au moins un réacteur à lit bouillonnant fonctionnant à courant ascendant de liquide et de gaz et contenant au moins un catalyseur d 'hydroconversion supporté,
b) L'effluent obtenu à l'étape a) est envoyé, au moins en partie, et souvent en totalité, dans une zone de fractionnement à partir de laquelle on récupère par distillation atmosphérique une fraction gazeuse, une fraction naphta, une fraction gazole et une fraction plus lourde que gazole,
c) Ladite fraction naphta est traitée, au moins en partie, et souvent en totalité dans une première section d'hydro traitement en présence d'hydrogène, ladite première section comprenant au moins un premier réacteur à lit fixe contenant au moins un premier catalyseur d'hydro traitement,
d) Ladite fraction gazole est traitée, au moins en partie, et souvent en totalité dans une seconde section d'hydro traitement en présence d'hydrogène, ladite seconde section comprenant au moins un deuxième réacteur à lit fixe contenant au moins un deuxième catalyseur d'hydro traitement, et
e) Ladite fraction plus lourde que gazole est traitée, au moins en partie, et souvent en totalité dans une section d'hydrocraquage en présence d'hydrogène.
Habituellement, la section d 'hydroconversion de l'étape a) comprend de un à trois, et de préférence deux réacteurs en série, et les première et seconde sections d'hydro traitement des étapes c) et d) comprennent chacune indépendamment de un à trois réacteurs en série.
Les travaux de recherche effectués par les demandeurs sur la conversion d'huiles de schiste ont conduit à découvrir qu'une amélioration des procédés existants en termes de rendement en base carburants et en pureté des produits est possible par une combinaison de différentes étapes, enchaînées d'une façon spécifique. Chaque fraction obtenue par le procédé selon l'invention est ensuite envoyée dans une section de traitement.
Dans un premier temps, la charge hydrocarbonée comprenant l'huile de schiste est soumise à une hydroconversion en lit bouillonnant. La technologie du lit bouillonnant permet, par rapport à la technologie du lit fixe, de traiter des charges fortement contaminées en métaux, hétéroatomes et sédiments, telles que les huiles de schiste, tout en présentant des taux de conversion généralement supérieurs à
50%. En effet, dans cette première étape, l'huile de schiste est transformée en molécules permettant de générer de futures bases carburants. La plus grande partie des composés métalliques, des sédiments ainsi que des composés hétérocycliques est éliminée. L'effluent sortant du lit bouillonnant contient ainsi les composés azotés et sulfurés les plus réfractaires, et éventuellement des composés de l'arsenic volatils se trouvant dans des composants plus légers.
L'effluent obtenu dans l'étape d 'hydroconversion est ensuite fractionné par distillation atmosphérique, permettant d'obtenir différentes fractions pour lesquelles un traitement spécifique à chaque fraction est effectué par la suite. La distillation atmosphérique permet, en une seule étape, d'obtenir les différentes fractions souhaitées
(naphta, gazole), facilitant ainsi un hydro traitement en aval adapté à chaque fraction et, par conséquent, l'obtention directe de produits bases carburants naphta ou gazole respectant les différentes spécifications. Le fractionnement après hydrotraitement n'est donc pas nécessaire.
Grâce à la forte réduction de contaminants dans le lit bouillonnant, les fractions légères (naphta et gazole) contiennent moins de contaminants et peuvent donc être traitées dans une section à lit fixe présentant généralement une cinétique d'hydrogénation améliorée par rapport au lit bouillonnant. De même, les conditions opératoires peuvent être plus douces grâce à la teneur en contaminants limitée. Le fait de prévoir un traitement pour chaque fraction permet d'avoir une meilleure opérabilité selon les produits recherchés. Selon les conditions opératoires choisies (plus ou moins sévères), on peut obtenir soit une fraction pouvant être envoyée à un pool carburants, soit un produit fini respectant les spécifications (teneur en soufre, point de fumée, cétane, teneur en aromatiques, etc.) en vigueur.
Les sections d 'hydro traitement en lit fixe comprennent de préférence en amont des lits catalytiques d 'hydro traitement des lits de garde spécifiques aux composés d'arsenic et de silicium éventuellement contenus dans les fractions naphta et/ou diesel. Les composés de l'arsenic ayant échappé au lit bouillonnant (car généralement relativement volatils) sont fixés dans les lits de garde, évitant d'empoisonner les catalyseurs en aval, et permettant d'obtenir des bases carburants fortement appauvries en arsenic.
La distillation atmosphérique permet également de concentrer les composés azotés les plus réfractaires dans la fraction plus lourde que la fraction gazole, qui, lors de l'étape e), est hydrocraquée. Cette étape d'hydrocraquage permet de valoriser la fraction plus lourde que gazole en produisant des produits plus légers et donc de minimiser les problèmes de valorisation et de débouchés économiques de cette fraction.
Description détaillée
Charge hydrocarbonée
La charge hydrocarbonée comprend au moins une huile de schiste ou un mélange d'huiles de schiste. Le terme « huile de schiste » est utilisé ici dans son sens le plus large et vise à inclure toute huile de schiste ou une fraction d'huile de schiste, qui contient des impuretés azotées. Cela inclut de l'huile de schiste brute, qu'elle soit obtenue par pyrolyse, extraction par solvant ou par d'autres moyens, l'huile de schiste qui a été filtrée pour éliminer les matières solides, ou qui a été traitée par un ou plusieurs solvants, produits chimiques, ou d'autres traitements, et qui contient des impuretés azotées. Le terme « huile de schiste » comprend également les fractions d'huile de schiste obtenues par distillation ou par une autre technique de fractionnement.
Les huiles de schiste utilisées dans la présente invention présentent généralement une teneur en carbone Conradson d'au moins 0, 1% en poids et généralement d'au moins 5% en poids, une teneur en asphaltènes (norme IP143/au C7) d'au moins 1%, souvent d'au moins 2% en poids. Leur teneur en soufre est généralement d'au moins 0.1%, souvent d'au moins 1% et très souvent d'au moins 2%, voire jusqu'à 4% ou même 7% en poids. La quantité de métaux qu'elles contiennent est généralement d'au moins 5 ppm en poids, souvent d'au moins 50 ppm en poids, et typiquement d'au moins 100 ppm poids ou d'au moins 200 ppm en poids. Leur teneur en azote est généralement d'au moins 0.5%, souvent d'au moins 1% et très souvent d'au moins 2% en poids. Leur teneur en arsenic est généralement supérieure à 1 ppm en poids, et jusqu'à 50 ppm en poids.
Le procédé selon la présente invention vise à convertir des huiles de schiste. Cependant, la charge peut également contenir, en plus de l'huile de schiste, d'autres hydrocarbures liquides synthétiques, en particulier ceux qui contiennent une quantité importante de composés azotés cycliques organiques. Cela inclut des huiles dérivées du charbon, des huiles obtenues à partir de goudrons lourds, des sables bitumineux, des huiles de pyrolyse de résidus ligneux tels que des résidus de bois, des bruts issus de biomasse (« biocrudes »), des huiles végétales et des graisses animales.
D'autres charges hydrocarbonées peuvent également compléter l'huile de schiste ou le mélange d'huiles de schiste. Les charges sont choisies dans le groupe formé par des huiles dérivées du charbon, des huiles obtenues à partir de goudrons lourds et les sables bitumineux , des distillais sous vide et des résidus de distillation directe, des distillais sous vide et des résidus non convertis issus de procédés de conversion tels que, par exemple, ceux provenant de la distillation jusqu'au coke (cokéfaction), des produits issus d'une hydroconversion des lourds en lit fixe, des produits issus de procédés d'hydroconversion des lourds en lit bouillonnant, et des huiles désalphatées aux solvants
(par exemple les huiles désasphaltées au propane, au butane et au pentane qui proviennent du désasphaltage de résidus sous vide de distillation directe ou de résidus sous vide issus des procédés d'hydroconversion). Les charges peuvent également contenir de l'huile de coupe légère (LCO pour « light cycle oil » en anglais) de diverses origines, de l'huile de coupe lourde (HCO pour « heavy cycle oil » en anglais) de diverses origines, et également des coupes gazoles provenant du craquage catalytique ayant en général un intervalle de distillation d'environ 150°C à environ 650°C. Les charges peuvent aussi contenir des extraits aromatiques obtenus dans le cadre de la fabrication d'huiles lubrifiantes. Les charges peuvent aussi être préparées et utilisées en mélange, en toutes proportions.
Les hydrocarbures ajoutés à l'huile de schiste ou au mélange d'huiles de schiste peuvent représenter de 20 à 60 % en poids de la charge hydrocarbonée totale (huile de schiste ou mélange d'huiles de schiste + hydrocarbures ajoutés), voire de 10% à 90% en poids.
Hydroconversion
La charge contenant une huile de schiste est soumise à une étape d'hydroconversion [étape a)] en lit bouillonnant. Par hydroconversion, on entend des réactions d'hydrogénation, d'hydro traitement, d'hydrodésulfuration, d'hydrodéazotation, d'hydrodémétallation et d'hydrocraquage.
Le fonctionnement du réacteur catalytique à lit bouillonnant, y compris le recyclage des liquides du réacteur vers le haut au travers du lit de catalyseur agité, est généralement bien connu. Les technologies à lits bouillonnants utilisent des catalyseurs supportés, généralement sous forme d'extrudés dont le diamètre est généralement de l'ordre de 1mm ou inférieur à 1mm, par exemple supérieur ou égal à 0.7 mm. Les catalyseurs restent à l'intérieur des réacteurs et ne sont pas évacués avec les produits. L'activité catalytique peut être maintenue constante grâce au remplacement (ajout et soutirage) en ligne du catalyseur. Il n'est donc pas nécessaire d'arrêter l'unité pour changer le catalyseur usagé, ni d'augmenter les températures de réaction le long du cycle pour compenser la désactivation. De plus, le fait de travailler avec des conditions opératoires constantes permet d'obtenir des rendements et des qualités de produits constants tout au long du cycle du catalyseur. Puisque le catalyseur est maintenu en agitation par un recyclage important de liquide, la perte de charge sur le réacteur reste faible et constante, et la chaleur de réaction est rapidement moyennée sur le lit catalytique, qui est donc presque isotherme et ne nécessite pas de refroidissement via l'injection de quenches. La mise en œuvre de l 'hydroconversion en lit bouillonnant permet de s'affranchir des problèmes de contamination du catalyseur liés aux dépôts d'impuretés présentes naturellement dans les huiles de schiste.
Les conditions de l'étape a) de traitement de la charge en présence d'hydrogène sont habituellement des conditions classiques d 'hydroconversion en lit bouillonnant d'une fraction hydrocarbonée liquide. On opère habituellement sous une pression totale de 2 à 35 MPa, de préférence de 10 à 20 MPa, à une température de 300°C à
550°C et souvent de 400°C à 450°C. La vitesse spatiale horaire (WH) et la pression partielle d'hydrogène sont des facteurs importants que l'on choisit en fonction des caractéristiques du produit à traiter et de la conversion souhaitée. Le plus souvent, la WH se situe dans une gamme allant de 0,2 h- 1 à 1 ,5 h 1 et de préférence de 0,4 h 1 à 1 h 1. La quantité d'hydrogène mélangé à la charge est habituellement de 50 à 5000 normaux mètres cubes (Nm3) par mètre cube (m3) de charge liquide, et le plus souvent de 100 à 1000 Nm3/m3, et de préférence de 300 à 500 Nm3/m3 ;
Le plus souvent, cette étape a) d 'hydroconversion peut être mise en œuvre dans les conditions du procédé T-STAR®, tel que décrit par exemple dans l'article Heavy Oil Hydroprocessing, publié par l'Aiche,
March 19-23, 1995, HOUSTON, Texas, paper number 42d. Elle peut également être mise en œuvre dans les conditions du procédé H-OIL®, tel que décrit par exemple dans l'article publié par la NPRA, Annual Meeting, March 16- 18, 1997, J.J. Colyar et L.I. Wisdom sous le titre THE H-OIL®PROCESS, A WORLDWIDE LEADER IN VACUUM
RESIDUE HYDROPROCESSING.
L'hydrogène nécessaire à l 'hydroconversion (et aux hydrotraitements ultérieurs) peut provenir du vaporéformage d'hydrocarbures (méthane) ou encore du gaz issu de schistes bitumineux lors de la production d'huiles de schiste.
Le catalyseur de l'étape a) est, de préférence, un catalyseur granulaire classique d'hydroconversion, comprenant sur un support amorphe au moins un métal ou composé de métal ayant une fonction hydro-déshydrogénante. En général, on utilise un catalyseur dont la répartition poreuse est adaptée au traitement des charges contenant des métaux.
La fonction hydro-déshydrogénante peut être assurée par au moins un métal du groupe VIII choisi dans le groupe formé par le nickel et/ ou le cobalt, optionnellement en association avec au moins un métal du groupe VIB choisi dans le groupe formé par le molybdène et/ ou le tungstène. On peut par exemple employer un catalyseur comprenant de 0,5 à 10% en poids de nickel et de préférence de 1 à 5% en poids de nickel (exprimé en oxyde de nickel NiO) et de 1 à 30% en poids de molybdène, de préférence de 5 à 20% en poids de molybdène (exprimé en oxyde de molybdène M0O3), sur un support minéral amorphe. La teneur totale en oxydes de métaux des groupes VIB et VIII est souvent de 5 à 40% en poids et en général de 7 à 30% en poids. Le rapport pondéral exprimé en oxyde métallique entre métal (ou métaux) du groupe VI sur métal (ou métaux) du groupe VIII est, en général, de 20 à 1 et le plus souvent de 10 à 2.
Le support du catalyseur sera par exemple choisi dans le groupe formé par l'alumine, la silice, les silices-alumines, la magnésie, les argiles et les mélanges d'au moins deux de ces minéraux. Ce support peut également renfermer d'autres composés, par exemple des oxydes choisis dans le groupe formé par l'oxyde de bore, la zircone, l'oxyde de titane, l'anhydride phosphorique. On utilise le plus souvent un support d'alumine, et très souvent un support d'alumine dopée avec du phosphore et éventuellement du bore. Dans ce cas, la concentration en anhydride phosphorique P2O5 est habituellement inférieure à environ 20% en poids et le plus souvent inférieure à environ 10% en poids et d'au moins 0,001% en poids. La concentration en trioxyde de bore B2O3 est habituellement d'environ 0 à environ 10% en poids. L'alumine utilisée est habituellement une alumine γ (gamma) ou η (êta). Ce catalyseur est le plus souvent sous forme d'extrudé. De préférence, le catalyseur de l'étape a) est à base de nickel et de molybdène, dopé avec du phosphore et supporté sur de l'alumine. On peut par exemple utiliser un catalyseur du type HTS 458 commercialisé par la société
AXENS.
Préalablement à l'injection de la charge, les catalyseurs utilisés dans le procédé selon la présente invention peuvent être soumis à un traitement de sulfuration permettant de transformer, au moins en partie, les espèces métalliques en sulfures avant leur mise en contact avec la charge à traiter. Ce traitement d'activation par sulfuration est bien connu de l'homme du métier et peut être effectué par toute méthode déjà décrite dans la littérature soit in-situ, c'est-à-dire dans le réacteur, soit ex- situ.
Le catalyseur usagé est en partie remplacé par du catalyseur frais par soutirage en bas du réacteur et introduction en haut du réacteur de catalyseur frais ou neuf à intervalle de temps régulier, par exemple par addition ponctuelle, ou de façon quasi continue. On peut par exemple introduire du catalyseur frais tous les jours. Le taux de remplacement du catalyseur usé par du catalyseur frais peut être par exemple d'environ 0,05 kg à environ 10 kg par m3 de charge. Ce soutirage et ce remplacement sont effectués à l'aide de dispositifs permettant le fonctionnement continu de cette étape d 'hydroconversion. L'unité comporte habituellement une pompe de recirculation permettant le maintien du catalyseur en lit bouillonnant par recyclage continu d'au moins une partie du liquide soutiré en tête du réacteur et réinjecté en bas du réacteur. Il est également possible d'envoyer le catalyseur usé soutiré du réacteur dans une zone de régénération dans laquelle on élimine le carbone et le soufre qu'il renferme, puis de renvoyer ce catalyseur régénéré dans le réacteur d 'hydroconversion de l'étape a).
Les conditions opératoires couplées à l'activité catalytique permettent d'obtenir des taux de conversion de la charge pouvant aller de 50 à 95%, préférentiellement de 70 à 95%. Le taux de conversion mentionné ci-dessus est défini comme étant la fraction massique de la charge à l'entrée de la section réactionnelle moins la fraction massique de la fraction lourde ayant un point d'ébullition supérieur à 343°C à la sortie de la section réactionnelle, le tout divisé par la fraction massique de la charge à l'entrée de la section réactionnelle.
La technologie du lit bouillonnant permet de traiter des charges fortement contaminées en métaux, sédiments et hétéroatomes, sans rencontrer des problèmes de perte de charge ou de colmatage connus dans le cas d'utilisation de lit fixe. Les métaux tels que le nickel, le vanadium, le fer et l'arsenic sont en grande partie éliminés de la charge en se déposant sur les catalyseurs pendant la réaction. L'arsenic restant (volatil) sera éliminé lors des étapes d'hydro traitement par des lits de garde spécifiques. Les sédiments contenus dans les huiles de schiste sont également éliminés via le remplacement du catalyseur dans le lit bouillonnant sans perturber les réactions d 'hydroconversion. Ces étapes permettent également d'éliminer par hydrodéazotation la plus grande partie de l'azote, laissant uniquement les composés azotés les plus réfractaires.
L'hydroconversion de l'étape a) permet d'obtenir un effluent à teneur en azote très réduite par rapport à celle de la charge, de l'ordre de 3 fois à 10 fois moins que dans la charge. Fractionnement par distillation atmosphérique
L'effluent obtenu à l'étape a) d 'hydroconversion est envoyé au moins en partie, et de préférence en totalité, dans une zone de fractionnement à partir de laquelle on récupère par distillation atmosphérique une fraction gazeuse, une fraction naphta, une fraction gazole et une fraction plus lourde que la fraction gazole.
De préférence, l'effluent obtenu à l'étape a) est fractionné par distillation atmosphérique en une fraction gazeuse ayant un point d'ébullition inférieur à 50°C, une fraction naphta bouillant entre environ 50°C et 150°C, une fraction gazole bouillant entre environ 150°C et 370°C, et une fraction plus lourde que la fraction gazole bouillant généralement au-dessus de 340°C, de préférence au-dessus de 370°C.
Les fractions naphta et diesel sont ensuite envoyées séparément dans des sections d'hydrotraitement. La fraction plus lourde que la fraction gazole est envoyée vers la section d'hydrocraquage de l'étape e).
La fraction gazeuse contient des gaz (¾, H2S, NH3, H2O, CO2,
CO, hydrocarbures C1-C4, . . .) . Elle peut avantageusement subir un traitement de purification pour récupérer l'hydrogène et le recycler dans la section d 'hydroconversion de l'étape a) ou dans les sections d'hydrotraitement des étapes c) et d). Les hydrocarbures C3- et C4 peuvent, après des traitements d'épuration, servir à constituer des produits GPL (gaz de pétrole liquéfiés). Les gaz incondensables (C 1-C2) sont généralement utilisés comme combustible interne pour les fours de chauffe des réacteurs d 'hydroconversion et/ ou d'hydrotraitement et/ ou d'hydrocraquage.
Hydrocraquage
Le procédé selon l'invention comprend une étape de d'hydrocraquage [étape e)], dans laquelle au moins une partie, et de préférence la totalité de la fraction plus lourde que gazole obtenue à l'étape b), est envoyée dans une section d'hydrocraquage en présence d'hydrogène, dans laquelle ladite fraction plus lourde que gazole est traitée de manière classique dans des conditions bien connues de l'homme de l'art, pour produire une deuxième fraction gazeuse, une deuxième fraction naphta, une deuxième fraction gazole et une deuxième fraction plus lourde que gazole, appelée « unconverted oil » selon la terminologie anglo-saxonne. La deuxième fraction naphta sera par exemple traitée, au moins en partie, et souvent en totalité dans la section d'hydrotraitement de l'étape c). La deuxième fraction gazole sera, par exemple, au moins en partie, souvent en totalité, envoyée aux réservoirs (pools) carburants et/ou recyclée au moins en partie, voire en totalité, à l'étape d) d'hydrotraitement. La deuxième fraction plus lourde que gazole sera, par exemple, au moins en partie, voire en totalité, envoyée au réservoir (pool) fuel lourd et/ou recyclée au moins en partie, voire en totalité, à l'étape a) d 'hydroconversion et/ou à l'étape e) d'hydrocraquage.
Les effluents d'hydrocraquage, obtenus à l'issue de l'étape e), peuvent aussi être séparés en une fraction gazole et moins lourde que gazole, et une deuxième fraction plus lourde que gazole. Cette fraction gazole et moins lourde que gazole est un mélange d'une seconde fraction gazeuse, d'une seconde fraction naphta et d'une seconde fraction gazole.
La fraction gazole et moins lourde que gazole peut être envoyée, au moins en partie, et souvent en totalité, dans une zone de fractionnement de l'étape b).
On trouvera par exemple une description sommaire de l'hydrocraquage dans ULLMANS ENCYCLOPEDIA OF INDUSTRIAL CHEMISTRY VOLUME Al 8, 1991 , page 71. On utilise habituellement un catalyseur classique ou un assemblage de catalyseurs classiques disposés sur des lits fixes distincts. Les catalyseurs utilisés comprennent des associations de métaux supportés sur alumines ou zéolithes. Des exemples de catalyseurs utilisés dans le cadre de l'exploitation industrielle d'un hydrocraqueur incluent les catalyseurs
Ni-Mo sur alumine, Ni-Mo sur zéolithe, Ni-Mo et Ni-W sur silice- alumine, Co-Mo sur alumine et Co-Mo sur zéolithe. Ces catalyseurs peuvent également contenir, en fonction des propriétés désirées, d'autres métaux choisis parmi les métaux de transition et les terres rares, à l'état de traces ou en proportions relativement importantes (de moins de 1% en poids à 30% en poids par rapport à la charge totale en métaux) sous forme métallique ou sous forme d'oxyde.
On effectue l'hydrocraquage dans un réacteur vertical, généralement en mode descendant. La charge est préchauffée en présence d'hydrogène avant introduction en tête de réacteur. Un appoint d'hydrogène est apporté entre chaque lit de catalyseur (gaz de quench) afin de diminuer la température. Ce gaz de quench est alors intimement mélangé à la charge, habituellement dans des dispositifs appelés « boites de quench ».
Le choix du catalyseur et des conditions opératoires sont fonction des produits recherchés en fonction de la charge traitée. Les unités d'hydrocraquage sont habituellement opérées à des températures comprises entre 320°C et 450°C, de préférence entre 350°C et 400°C, avec des vitesses massiques horaires comprises entre 0,3 et 7 h 1, avec un rapport hydrogène/ charge compris entre 300 et 1000 Nm3 d'hydrogène/ m3 de charge. On distingue deux types d'hydrocraqueur en fonction de leur pression de service : (1) Les MHC, acronyme anglais pour « Mild HydroCracking » (hydrocraquage doux), qui ont des pressions de service comprises habituellement entre 8 et 15 MPa, plus généralement entre 10 et 12 MPa, et (2) les DHC, acronyme anglais pour « Distillate HydroCracking », qui ont des pressions de service comprises habituellement entre 12 et 20 MPa, plus généralement entre 15 et 20 MPa.
L'étape e) d 'hydrocraquage de la fraction plus lourde que gazole opère à une température comprise entre 350°C et 450°C, de préférence entre 370°C et 425°C, à une pression totale comprise entre 10 et 20 MPa, de préférence comprise entre 15 et 18 MPa, à une vitesse massique horaire comprise entre 0,3 et 7 h 1, de préférence entre 0.5 et 1.5 h 1, et à un rapport hydrogène/ charge compris entre 100 et 5000 Nm3/m3, de préférence entre 1000 et 2000 Nm3/m3.
L'utilisation d'un MHC, dans le cadre de l'invention, produira des effluents convertis à environ 10 à 20%, suffisants pour constituer un pétrole brut synthétique, après mélange avec les différentes coupes naphta et gazole issues du procédé. Ce brut synthétique pourra ensuite être expédié vers une raffinerie conventionnelle. De manière alternative, l'utilisation d'un DHC dans le cadre de l'invention produirait des effluents convertis à 80 à 90%, ce qui permettrait d'orienter les produits plutôt vers une commercialisation en tant que bases pour la fabrication de carburants.
Hydrotraitement de la fraction naphta et de la fraction gazole
Les fractions naphta et gazole sont ensuite soumises séparément à un hydrotraitement en lit fixe [étapes c] et d]]. Par hydrotraitement on entend des réactions d'hydrodésulfuration, d'hydrodéazotation et d'hydrodémétallation. L'objectif est, selon les conditions opératoires choisies d'une manière plus ou moins sévère, d'amener les différentes coupes aux spécifications (teneur en soufre, point de fumée, cétane, teneur en aromatiques, etc.) ou de produire un pétrole brut synthétique. Le fait de traiter la fraction naphta dans une section d 'hydro traitement et la fraction gazole dans une autre section d 'hydro traitement permet d'avoir une meilleure opérabilité au niveau des conditions opératoires, afin de pouvoir amener chaque coupe aux spécifications requises avec un rendement maximal et ceci en une seule étape par coupe. Ainsi, le fractionnement après hydro traitement n'est pas nécessaire. La différence entre les deux sections d 'hydro traitement se base plus sur des différences de conditions opératoires que sur le choix du catalyseur.
Les sections d 'hydro traitement en lit fixe comprennent, de préférence, en amont des lits catalytiques d 'hydro traitement, des lits de garde spécifiques aux composés de l'arsenic (composés arséniés) et du silicium éventuellement contenus dans les fractions naphta et/ ou diesel. Les composés arséniés ayant échappé au lit bouillonnant (car généralement relativement volatils) sont fixés dans les lits de garde, évitant ainsi d'empoisonner les catalyseurs en aval, et permettant d'obtenir des bases carburants fortement appauvries en arsenic.
Les lits de garde permettant d'éliminer l'arsenic et le silicium de coupes naphta ou gazole sont connus de l'homme du métier. Ils comprennent par exemple une masse absorbante comprenant du nickel déposé sur un support approprié (silice, magnésie ou alumine) tel que décrit dans FR2617497, ou encore une masse absorbante comprenant du cuivre sur un support, tel que décrit dans FR2762004. On peut également citer les lits de garde commercialisés par la société AXENS : ACT 979, ACT989, ACT961 , ACT981.
Les conditions opératoires de chaque section d 'hydro traitement sont adaptées à la charge à traiter. Les conditions opératoires d 'hydrotraitement de la fraction naphta sont généralement plus douces que celles de la fraction gazole.
Dans l'étape d'hydrotraitement de la fraction naphta [étape c)] on opère habituellement sous une pression absolue de 4 à 15 MPa, souvent de 10 à 13 MPa. La température lors de cette étape c) est habituellement de 280°C à 380°C, souvent de 300°C à 350°C. Cette température est habituellement ajustée en fonction du niveau souhaité d'hydrodésulfuration. Le plus souvent, la vitesse spatiale horaire (WH) se situe dans une gamme allant de 0, 1 h 1 à 5 h 1, et de préférence de 0,5 h 1 à 1 h 1. La quantité d'hydrogène mélangé à la charge est habituellement de 100 à 5000 normaux mètres cube (Nm3) par mètre cube (m3) de charge liquide, et le plus souvent de 200 à 1000 Nm3/m3, et de préférence de 300 à 500 Nm3/m3. On opère utilement en présence d'hydrogène sulfuré (pour la sulfuration du catalyseur) et la pression partielle de l'hydrogène sulfuré est habituellement de 0,002 fois à 0, 1 fois, et de préférence de 0,005 fois à 0,05 fois la pression totale.
Dans l'étape d'hydro traitement de la fraction gazole [étape d)] on opère habituellement sous une pression absolue de 7 à 20 MPa, souvent de 10 à 15 MPa. La température lors de cette étape d) est habituellement de 320°C à 450°C, souvent de 340°C à 400°C. Cette température est habituellement ajustée en fonction du niveau souhaité d'hydrodésulfuration. La vitesse massique horaire est comprise entre 0, 1 et 1 h 1. Le plus souvent, la vitesse spatiale horaire (WH) se situe dans une gamme allant de 0,2 h 1 à 1 h 1, et de préférence de 0,3 h 1 à
0,8 h 1. La quantité d'hydrogène mélangé à la charge est habituellement de 100 à 5000 normaux mètres cube (Nm3) par mètre cube (m3) de charge liquide, et le plus souvent de 200 à 1000 Nm3/m3, et de préférence de 300 à 500 Nm3/m3. On opère utilement en présence d'hydrogène sulfuré, et la pression partielle de l'hydrogène sulfuré est habituellement de 0,002 fois à 0, 1 fois, et de préférence de 0,005 fois à 0,05 fois la pression totale.
Dans les sections d'hydro traitement, le catalyseur idéal doit avoir un fort pouvoir hydrogénant, de façon à réaliser un raffinage profond des produits, et à obtenir un abaissement important de la teneur en soufre et en azote. Dans le mode préféré de réalisation, les sections d'hydro traitement opèrent à température relativement basse, ce qui va dans le sens d'une hydrogénation profonde et d'une limitation du cokage du catalyseur. On ne sortirait pas du cadre de la présente invention en utilisant, dans les sections d'hydro traitement, de manière simultanée ou de manière successive, un seul catalyseur ou plusieurs catalyseurs différents. Habituellement, l'hydro traitement des étapes c) et d) est effectué industriellement, dans un ou plusieurs réacteurs à courant descendant de liquide.
Dans les deux sections d'hydro traitements [étapes c) et d)] on utilise le même type de catalyseur, les catalyseurs dans chaque section pouvant être identiques ou différents. On utilise au moins un lit fixe de catalyseur classique d'hydro traitement, comprenant sur un support amorphe au moins un métal ou composé de métal ayant une fonction hydro-déshydrogénante.
La fonction hydro-déshydrogénante peut être assurée par au moins un métal du groupe VIII choisi dans le groupe formé par le nickel et/ ou le cobalt, optionnellement en association avec au moins un métal du groupe VIB choisi dans le groupe formé par le molybdène et/ ou le tungstène. On peut par exemple employer un catalyseur comprenant de 0.5 à 10% en poids de nickel, et de préférence de 1 à 5% en poids de nickel (exprimé en oxyde de nickel NiO), et de 1 à 30% en poids de molybdène, de préférence de 5 à 20% en poids de molybdène (exprimé en oxyde de molybdène M0O3), sur un support minéral amorphe. La teneur totale en oxyde de métaux des groupes VI et VIII est souvent d'environ 5 à environ 40% en poids, et en général d'environ 7 à 30% en poids, et le rapport pondéral exprimé en oxyde métallique entre métal (ou métaux) du groupe VIB sur métal (ou métaux) du groupe VIII est en général d'environ 20 à environ 1 , et le plus souvent d'environ 10 à environ 2.
Le support est par exemple choisi dans le groupe formé par l'alumine, la silice, les silices-alumines, la magnésie, les argiles et les mélanges d'au moins deux de ces minéraux. Ce support peut également renfermer d'autres composés, par exemple des oxydes choisis dans le groupe formé par l'oxyde de bore, la zircone, l'oxyde de titane, l'anhydride phosphorique. On utilise le plus souvent un support d'alumine et très souvent un support d'alumine dopée avec du phosphore et éventuellement du bore. Dans ce cas, la concentration en anhydride phosphorique P2O5 est habituellement inférieure à environ 20% en poids et le plus souvent inférieure à environ 10% en poids, et est d'au moins 0,001% en poids. La concentration en trioxyde de bore B2O3 est habituellement d'environ 0 à environ 10% en poids. L'alumine utilisée est habituellement une alumine γ (gamma) ou η (eta). Ce catalyseur est le plus souvent sous forme de billes ou d'extrudés.
Préalablement à l'injection de la charge, les catalyseurs utilisés dans le procédé selon la présente invention sont de préférence soumis à un traitement de sulfuration permettant de transformer, au moins en partie, les espèces métalliques en sulfure avant leur mise en contact avec la charge à traiter. Ce traitement d'activation par sulfuration est bien connu de l'homme du métier et peut être effectué par toute méthode déjà décrite dans la littérature soit in-situ, c'est-à-dire dans le réacteur, soit ex- situ.
L'hydro traitement de l'étape c) de la coupe naphta permet d'obtenir une coupe contenant au plus 1 ppm en poids d'azote, de préférence au plus 0.5 ppm d'azote et au plus 5 ppm en poids de soufre, de préférence au plus 0.5 ppm de soufre.
L'hydro traitement de l'étape d) de la coupe gazole permet d'obtenir une coupe contenant au plus 100 ppm d'azote, de préférence au plus 20 ppm d'azote et au plus 50 ppm de soufre, de préférence au plus 10 ppm de soufre.
Selon un pénultième aspect, l'invention concerne un brut synthétique obtenu par un procédé selon l'un de ses aspects précédents.
Selon un ultime aspect, l'invention concerne une installation destinée à traiter une huile de schiste mettant en œuvre un procédé selon l'un de ses aspects précédents.
Une telle installation comprend :
- une section d 'hydroconversion en présence d'hydrogène comprenant au moins un réacteur à lit bouillonnant fonctionnant à courant ascendant de liquide et de gaz et contenant au moins un catalyseur d 'hydroconversion supporté,
une zone de fractionnement par distillation atmosphérique, - une première section d'hydro traitement en présence d'hydrogène, comprenant au moins un réacteur à lit fixe contenant au moins un catalyseur d'hydro traitement,
une deuxième section d'hydro traitement en présence d'hydrogène, ladite section comprenant au moins un réacteur à lit fixe contenant au moins un catalyseur d'hydro traitement,
une section d'hydrocraquage en présence d'hydrogène.
Ces éléments sont agencés pour la mise en œuvre du procédé selon l'invention.
A cet effet, par exemple :
- la section d 'hydroconversion est reliée à la zone de fractionnement afin d'alimenter celle-ci en effluents issus de la section d'hydroconversion, une première conduite (ou ligne) relie la zone de fractionnement à la première section d'hydro traitement, une deuxième conduite (ou ligne) relie la zone de fractionnement à la deuxième section d'hydro traitement et une troisième conduite relie la zone de fractionnement à la section d'hydrocraquage.
L'installation pourra en outre comprendre une ou plusieurs lignes de recycle pour renvoyer les différentes fractions vers la section d'hydroconversion, la section d'hydrocraquage ou l'une quelconque des première et deuxième sections d'hydrotraitement.
La figure 1 représente schématiquement le procédé selon la présente invention. La figure 2 représente schématiquement une variante du procédé dans laquelle la séparation de plusieurs coupes s'effectue dans la même unité de distillation.
Selon la figure 1 , la charge comprenant l'huile de schiste (1) à traiter entre par une ligne (2) dans une section d'hydroconversion en lit bouillonnant (3), en présence d'hydrogène (4), l'hydrogène (4) étant introduit par une ligne (5). L'effluent de la section d'hydroconversion en lit bouillonnant (3) est envoyé par une ligne (6) dans une colonne de distillation atmosphérique (7), à la sortie de laquelle on récupère une fraction gazeuse (8), une fraction naphta (9), une fraction gazole (10) et une fraction plus lourde que la fraction gazole (1 1). La fraction gazeuse (8), ainsi qu'une deuxième fraction gazeuse (26) contenant de l'hydrogène, peuvent être purifiées (non représenté) pour recycler l'hydrogène et le réinjecter (i) dans la section d'hydroconversion en lit bouillonnant (3) via la ligne (2) et/ou (5), et/ou (ii) dans une section d'hydrotraitement (12) via une ligne (18) et/ou (14), et/ou (iii) dans une section d'hydrotraitement (13) via une ligne (19) et/ou (15), et/ou (iv) dans une section d'hydrocraquage (20) via une ligne (21) et/ou (22). La fraction naphta (9) est envoyée dans la section d'hydrotraitement en lit fixe (12) à la sortie de laquelle on récupère une fraction naphta (16) appauvrie en impuretés. La fraction gazole (10) est envoyée dans la section d'hydrotraitement en lit fixe (13) à la sortie de laquelle on récupère une fraction gazole (17) appauvrie en impuretés. Les deux sections d'hydrotraitement (12) et (13) sont alimentées par de l'hydrogène via les lignes (14) et (15). La fraction plus lourde que la fraction gazole (1 1) est envoyée dans la section d'hydrocraquage (20) par la ligne (21). Les effluents d'hydrocraquage (23) sont envoyés via une ligne (24) dans une section de séparation (25) à la sortie de laquelle on récupère la deuxième fraction gazeuse (26), une deuxième fraction naphta (27), une deuxième fraction gazole (28), et une deuxième fraction plus lourde que gazole (29). La deuxième fraction naphta (27) peut être envoyée en totalité ou en partie vers la section d'hydro traitement (12) via une ligne (30). La deuxième fraction gazole (28) est envoyée préférentiellement au pool gasoil ou peut être envoyée en totalité ou en partie vers la section d'hydro traitement (13) via une ligne (31). La deuxième fraction plus lourde que gazole (29) peut être (i) soutirée, et/ ou (ii) renvoyée en totalité ou en partie vers la section d'hydrocraquage (20) via une ligne (32), et/ou (iii) renvoyée en totalité ou en partie vers la section d 'hydroconversion en lit bouillonnant (3) via une ligne (33).
Dans la figure 2, les étapes (et signes de référence) d'hydroconversion, de séparation et d'hydro traitements sont identiques à la figure 1 jusqu'à l'étape d'hydrocraquage, qui présente quelques différences.
La charge comprenant l'huile de schiste (1) à traiter entre par une ligne (2) dans une section d'hydroconversion en lit bouillonnant
(3), en présence d'hydrogène (4), l'hydrogène (4) étant introduit par une ligne (5). L'effluent de la section d'hydroconversion en lit bouillonnant (3) est envoyé par une ligne (6) dans une colonne de distillation atmosphérique (7), à la sortie de laquelle on récupère une fraction gazeuse (8), une fraction naphta (9), une fraction gazole (10) et une fraction plus lourde que la fraction gazole (1 1). La fraction gazeuse (8), contenant de l'hydrogène, peut être purifiée (non représenté) pour recycler l'hydrogène et le réinjecter (i) dans la section d'hydroconversion en lit bouillonnant (3) via la ligne (2) et/ou (5), et/ou (ii) dans une section d'hydro traitement (12) via une ligne (18) et/ou
(14), et/ou (iii) dans une section d'hydro traitement (13) via une ligne (19) et/ou (15), et/ou (iv) dans une section d'hydrocraquage (20) via une ligne (21) et/ou (22). La fraction naphta (9) est envoyée dans la section d'hydro traitement en lit fixe (12) à la sortie de laquelle on récupère une fraction naphta (16) appauvrie en impuretés. La fraction gazole (10) est envoyée dans la section d'hydro traitement en lit fixe (13) à la sortie de laquelle on récupère une fraction gazole ( 17) appauvrie en impuretés. Les deux sections d'hydro traitement (12) et (13) sont alimentées par de l'hydrogène via les lignes (14) et (15). La fraction plus lourde que la fraction gazole (1 1) est envoyée dans la section d 'hydrocraquage (20) par la ligne (21). Les effluents d 'hydrocraquage (23) sont envoyés via une ligne (24) dans une section de séparation (34) à la sortie de laquelle on récupère, en tête, un mélange (35) comprenant une deuxième fraction gazeuse, une deuxième fraction naphta et une deuxième fraction gazole (28), et, en pied, une deuxième fraction plus lourde que gazole (29). Le mélange (35) est envoyé par une ligne (36) vers la colonne de distillation (7). La deuxième fraction plus lourde que gazole (29) peut être (i) soutirée, et/ou (ii) renvoyée en totalité ou en partie vers la section d 'hydrocraquage (20) via une ligne (32), et/ou (iii) renvoyée en totalité ou en partie vers la section d 'hydroconversion en lit bouillonnant (3) via une ligne (33).
Exemple
On traite une huile de schiste dont les caractéristiques sont présentées dans le tableau 1.
Tableau 1 : Caractéristiques de la charge huile de schiste
Figure imgf000024_0001
L'huile de schiste est traitée dans un réacteur à lit bouillonnant contenant le catalyseur commercial HOC 458 de la société Axens. Les conditions opératoires de mise en œuvre sont les suivantes :
Température dans le réacteur : 435 °C
Pression : 195 bar (19,5 MPa)
Ratio hydrogène/ charge : 600 Nm3/m3
WH globale : 0.3 h 1 Les produits liquides issus du réacteur sont fractionnés par distillation atmosphérique en une fraction naphta (C5+ - 150°C), une fraction gazole (150-370°C) et une fraction résiduelle 370°C+ qui constitue une fraction plus lourde que gazole.
La fraction naphta est soumise à un hydrotraitement en lit fixe utilisant un catalyseur NiMo sur alumine. Les conditions opératoires sont les suivantes :
- Température dans le réacteur : 320°C
Pression : 50 bar (5 MPa)
Rapport hydrogène/ charge : 400 Nm3/m3
WH globale : 1 h 1 La fraction gazole est soumise à un hydrotraitement en lit fixe utilisant un catalyseur NiMo sur alumine. Les conditions opératoires sont les suivantes :
Température dans le réacteur : 350°C
Pression : 120 bar (12 MPa)
- Rapport hydrogène/ charge : 400Nm3/ m3
WH globale : 0,6 h 1
La fraction plus lourde que gazole est ensuite soumise à un hydrocraquage utilisant des catalyseurs contenant NiMo sur alumine, NiW sur silice alumine et NiMo sur zéolite. Cette charge préchauffée en présence d'hydrogène est introduite en haut d'un réacteur vertical contenant 5 lits de catalyseurs. La pression opératoire est de 16 MPa absolu, la température est de 380°C, le ratio hydrogène/ charge est de 1200 Nm3/m3, et la WH est de Ο,δΐι 1. Un appoint d'hydrogène est apporté entre chaque lit de catalyseur (gaz de quench) afin de diminuer la température. Ce gaz de quench est intimement mélangé à la charge dans des dispositifs appelés « boites de quench ».
Les hydrocarbures hydrocraqués sont soutirés en pied de réacteur et sont refroidis. Ils sont dirigés vers une unité de fractionnement d'où sont isolés en tête les gaz, au moins une coupe naphta, au moins une coupe gazole, et au moins une coupe plus lourde que gazole en fond. Le tableau 2 donne les propriétés des différentes charges de chaque étape ainsi que les rendements obtenus dans les différentes unités et le rendement global. On observe alors qu'en partant de 100 % en poids d'huile de schiste, on obtient 93.9% en poids de produits (GPL, naphta, distillais moyens) aux spécifications commerciales
Euro V.
Tab eau 2
Unité de raffinage H-OilDc Hydrocraqueur
Huile de schiste
Charge C5+ Fond ex H-OilDc
Produit Fond ex H-OilRc
Rendement en produit sur charge
huile de schiste % en poids 16.0
Propriétés des produits
densité (d15/4) 0.852
soufre % en poids 0.05
Azote Total % en poids 0.25
Rendement sur chaque unité
GPL % en poids 2.2 2.5
Naphta % en poids 27.1 23.5
Distillât moyen % en poids 50.7 61.0
Fond % en poids 16.0 15.0
% en poids
Rendement sur huile de % en poids
schiste
GPL % en poids 2.2 0.4
Naphta % en poids 27.1 3.8
Distillât moyen % en poids 50.7 9.8
Fond % en poids 16.0 2.4
Total (GPL+naphta+Distillat
moyen)/Charge huile de schiste 80.0 13.9
Total (GPL+naphta+Distillat
moyen)/Charge huile de schiste 93.9

Claims

REVENDICATIONS
1. Procédé de conversion d'une huile de schiste ou d'un mélange d'huiles de schiste comprenant au moins une huile de schiste ayant une teneur en azote d'au moins 0, 1%, souvent d'au moins 1% et très souvent d'au moins 2% en poids, caractérisé en ce qu'il comprend les étapes suivantes : a) La charge est envoyée dans une section d 'hydroconversion en présence d'hydrogène, ladite section comprenant au moins un réacteur à lit bouillonnant fonctionnant à courant ascendant de liquide et de gaz et contenant au moins un catalyseur d 'hydroconversion supporté, b) L'effluent obtenu à l'étape a) est envoyé, au moins en partie, et souvent en totalité, dans une zone de fractionnement à partir de laquelle on récupère par distillation atmosphérique une fraction gazeuse, une fraction naphta, une fraction gazole et une fraction plus lourde que gazole, c) Ladite fraction naphta est traitée, au moins en partie, et souvent en totalité dans une première section d'hydro traitement en présence d'hydrogène, ladite section comprenant au moins un réacteur à lit fixe contenant au moins un catalyseur d'hydro traitement, d) Ladite fraction gazole est traitée, au moins en partie, et souvent en totalité dans une seconde section d'hydro traitement en présence d'hydrogène, ladite section comprenant au moins un réacteur à lit fixe contenant au moins un catalyseur d'hydro traitement, et e) Ladite fraction plus lourde que gazole est traitée, au moins en partie, et souvent en totalité dans une section d'hydrocraquage en présence d'hydrogène.
2. Procédé selon la revendication 1 , caractérisé en ce que les effluents d'hydrocraquage, obtenus à l'issue de l'étape e), sont séparés en une deuxième fraction gazeuse, une deuxième fraction naphta, une deuxième fraction gazole, et une deuxième fraction plus lourde que gazole.
3. Procédé selon la revendication 2, dans lequel la deuxième fraction naphta est traitée, au moins en partie, et souvent en totalité dans la section d'hydro traitement de l'étape c).
4. Procédé selon la revendication 2, dans lequel la deuxième fraction gazole est traitée, au moins en partie, et souvent en totalité dans la section d'hydro traitement de l'étape d).
5. Procédé selon la revendication 2, dans lequel la deuxième fraction plus lourde que gazole est traitée, au moins en partie, et souvent en totalité dans la section d 'hydroconversion de l'étape a).
6. Procédé selon la revendication 1 , caractérisé en ce que les effluents d 'hydrocraquage, obtenus à l'issue de l'étape e), sont séparés en une fraction gazole et moins lourde que gazole, et une deuxième fraction plus lourde que gazole.
7. Procédé selon la revendication 6, dans lequel la deuxième fraction plus lourde que gazole est traitée, au moins en partie, et souvent en totalité dans la section d 'hydroconversion de l'étape a).
8. Procédé selon la revendication 6, dans lequel la fraction gazole et moins lourde que gazole est envoyée, au moins en partie, et souvent en totalité, dans une zone de fractionnement de l'étape b).
9. Procédé selon l'une quelconque des revendications 2 à 8, dans lequel la deuxième fraction plus lourde que gazole est traitée, au moins en partie, et souvent en totalité dans la section d 'hydrocraquage de l'étape e).
10. Procédé selon l'une des revendications précédentes, dans lequel l'effluent obtenu à l'étape a) est fractionné par distillation atmosphérique en une fraction gazeuse ayant un point d'ébullition inférieur à 50°C, une fraction naphta bouillant entre environ 50°C et 150°C, une fraction gazole bouillant entre environ 150°C et 370°C, et une fraction plus lourde que la fraction de type gazole, bouillant généralement au-dessus de 340°C, de préférence au-dessus de 370°C
1 1. Procédé selon l'une des revendications précédentes, dans lequel la section d'hydro traitement en lit fixe de l'étape c) et/ ou d) comprend, en amont des lits catalytiques d'hydro traitement, au moins un lit de garde spécifique aux composés de l'arsenic et du silicium.
12. Procédé selon l'une des revendications précédentes, dans lequel l'étape a) d 'hydroconversion opère à une température comprise entre 300°C et 550°C, de préférence entre 400°C et 450°C, à une pression totale comprise entre 2 et 35 MPa, de préférence comprise entre 10 et 20 MPa, à une vitesse massique horaire ((t de charge/ h) /t de catalyseur) comprise entre 0,2 et 1 ,5 h 1, et à un rapport hydrogène/ charge compris entre 50 et 5000 Nm3/m3, de préférence entre 100 et 1000 Nm3/m3.
13. Procédé selon l'une des revendications précédentes, dans lequel l'étape c) d'hydro traitement de la fraction naphta opère à une température comprise entre 280°C et 380°C, de préférence entre 300°C et 350°C, à une pression totale comprise entre 4 et 15 MPa, de préférence comprise entre 10 et 13 MPa, à une vitesse massique horaire comprise entre 0, 1 et 5 h 1, de préférence entre 0,5 et 1 h 1, et à un rapport hydrogène/ charge compris entre 100 et 5000 Nm3/m3, de préférence entre 100 et 1000 Nm3/m3.
14. Procédé selon l'une des revendications précédentes, dans lequel l'étape d) d'hydro traitement de la fraction gazole opère à une température comprise entre 320°C et 450°C, de préférence entre 340°C et 400°C, à une pression totale comprise entre 7 et 20 MPa, de préférence comprise entre 10 et 15 MPa, à une vitesse massique horaire comprise entre 0, 1 et 1 h 1, de préférence entre 0,3 et 0,8 h 1, et à un rapport hydrogène/ charge compris entre 100 et 5000 Nm3/m3, de préférence entre 200 et 1000 Nm3/m3.
15. Procédé selon l'une des revendications précédentes, dans lequel l'étape e) d'hydrocraquage de la fraction plus lourde que gazole opère à une température comprise entre 350°C et 450°C, de préférence entre 370°C et 425°C, à une pression totale comprise entre 10 et 20 MPa, de préférence comprise entre 15 et 18 MPa, à une vitesse massique horaire comprise entre 0,3 et 7 h 1, de préférence entre 0.5 et 1.5 h 1, et à un rapport hydrogène/ charge compris entre 100 et 5000 Nm3/m3, de préférence entre 1000 et 2000 Nm3/m3.
16. Procédé selon l'une des revendications précédentes, dans lequel les catalyseurs des étapes a) d 'hydroconversion et c) et d) d'hydro traitement et e) d'hydrocraquage sont indépendamment sélectionnés dans le groupe de catalyseurs comprenant un métal du groupe VIII choisi dans le groupe formé par Ni et/ ou Co, optionnellement un métal du groupe VIB choisi dans le groupe formé par Mo et/ ou W, sur un support amorphe choisi dans le groupe formé par l'alumine, la silice, les silices-alumines, la magnésie, les argiles et leurs mélanges, ou sur un support comprenant au moins en partie un matériau zéolitique.
17. Procédé selon l'une des revendications précédentes, dans lequel l'huile de schiste ou le mélange d'huiles de schiste est complété par une charge hydrocarbonée choisie dans le groupe formé par des huiles dérivées du charbon, des huiles obtenues à partir de goudrons lourds et les sables bitumineux, des distillais sous vide, et des résidus de distillation directe, des distillais sous vide et des résidus non convertis issus de procédé de conversion de résidus, des huiles désasphaltées aux solvants, des huiles de coupe légère, des huiles de coupe lourde, des coupes gazole provenant du craquage catalytique ayant en général un intervalle de distillation d'environ 150°C à environ
650°C, des extraits aromatiques obtenus dans le cadre de la fabrication d'huiles lubrifiantes, des huiles de pyrolyse de résidus ligneux tels que des résidus de bois, des bruts issus de biomasse (« biocrudes »), des huiles végétales et des graisses animales, ou des mélanges de telles charges.
18. Brut synthétique, obtenu par un procédé selon l'une des revendications précédentes.
19. Installation, destinée à traiter une huile de schiste comprenant :
une section d 'hydroconversion en présence d'hydrogène comprenant au moins un réacteur à lit bouillonnant fonctionnant à courant ascendant de liquide et de gaz et contenant au moins un catalyseur d 'hydroconversion supporté,
une zone de fractionnement par distillation atmosphérique, une première section d'hydro traitement en présence d'hydrogène, comprenant au moins un réacteur à lit fixe contenant au moins un catalyseur d'hydro traitement,
une deuxième section d'hydrotraitement en présence d'hydrogène, ladite section comprenant au moins un réacteur à lit fixe contenant au moins un catalyseur d'hydrotraitement,
une section d'hydrocraquage en présence d'hydrogène,
ces éléments étant agencés pour la mise, mettant en œuvre un procédé selon l'une des revendications 1 à 17.
PCT/FR2011/053021 2010-12-24 2011-12-16 Procède de conversion de charge hydrocarbonate comprenant une huile de schiste par hydre conversion en lit bouillonnant, fractionnement par distillation atmosphérique, et hydrocraquage WO2012085407A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
RU2013134377/04A RU2592688C2 (ru) 2010-12-24 2011-12-16 Способ конверсии углеводородного сырья, содержащего сланцевое масло, путем гидроконверсии в кипящем слое, фракционирования с помощью атмосферной дистилляции и гидрокрекинга
BR112013015358A BR112013015358A2 (pt) 2010-12-24 2011-12-16 processo de conversão carga hidrocarbonato, compreendendo um óleo de xisto por hidroconversão em camada fervente, fracionado por destilação atmosférica e hidrocraqueamento
US13/997,330 US20130319908A1 (en) 2010-12-24 2011-12-16 Method for converting hydrocarbon feedstock comprising a shale oil by hydroconversion in an ebullating bed, fractionation by atmospheric distillation and hydrocracking
CN201180062159.0A CN103328613B (zh) 2010-12-24 2011-12-16 通过在沸腾床中加氢转化、通过常压蒸馏分馏和加氢裂化转化包含页岩油的烃原料的方法
CA2816666A CA2816666C (fr) 2010-12-24 2011-12-16 Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par hydroconversion en lit bouillonnant, fractionnement par distillation atmospherique, et hydrocraquage
AU2011347042A AU2011347042B2 (en) 2010-12-24 2011-12-16 Method for converting hydrocarbon feedstock comprising a shale oil by hydroconversion in an ebullating bed, fractionation by atmospheric distillation and hydrocracking
IL226641A IL226641A (en) 2010-12-24 2013-05-29 A method for converting hydrocarbon raw materials containing shale oil through hydroconversion into a floating substrate, separating into components through atmospheric distillation and hydrocarbon breaking
MA36030A MA34752B1 (fr) 2010-12-24 2013-06-20 Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par hydroconversion en lit bouillonnant, fractionnement par distillation atmosphérique, et hydrocraquage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1061246 2010-12-24
FR1061246A FR2969648B1 (fr) 2010-12-24 2010-12-24 Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par hydroconversion en lit bouillonnant, fractionnement par distillation atmospherique, et hydrocraquage

Publications (2)

Publication Number Publication Date
WO2012085407A1 true WO2012085407A1 (fr) 2012-06-28
WO2012085407A8 WO2012085407A8 (fr) 2013-07-11

Family

ID=45581917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/053021 WO2012085407A1 (fr) 2010-12-24 2011-12-16 Procède de conversion de charge hydrocarbonate comprenant une huile de schiste par hydre conversion en lit bouillonnant, fractionnement par distillation atmosphérique, et hydrocraquage

Country Status (11)

Country Link
US (1) US20130319908A1 (fr)
CN (1) CN103328613B (fr)
AU (1) AU2011347042B2 (fr)
BR (1) BR112013015358A2 (fr)
CA (1) CA2816666C (fr)
EE (1) EE05782B1 (fr)
FR (1) FR2969648B1 (fr)
IL (1) IL226641A (fr)
MA (1) MA34752B1 (fr)
RU (1) RU2592688C2 (fr)
WO (1) WO2012085407A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004722A1 (fr) * 2013-04-23 2014-10-24 IFP Energies Nouvelles Procede de conversion de charges d'origines renouvelables en bases carburants comprenant une etape d'hydrotraitement en lit bouillonnant et une etape d'hydroisomerisation en lit fixe
FR3030568A1 (fr) * 2014-12-18 2016-06-24 Axens Procede de conversion profonde de residus maximisant le rendement en gazole

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9080113B2 (en) 2013-02-01 2015-07-14 Lummus Technology Inc. Upgrading raw shale-derived crude oils to hydrocarbon distillate fuels
CN104560173B (zh) * 2013-10-29 2016-11-16 中国石油化工股份有限公司 一种重油加氢转化方法
FR3015514B1 (fr) 2013-12-23 2016-10-28 Total Marketing Services Procede ameliore de desaromatisation de coupes petrolieres
US10527546B2 (en) * 2015-06-10 2020-01-07 Saudi Arabian Oil Company Characterizing crude oil using laser induced ultraviolet fluorescence spectroscopy
US9803505B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated aromatics and naphtha block facilities
US9803513B2 (en) * 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated aromatics, crude distillation, and naphtha block facilities
TWI736611B (zh) * 2016-04-25 2021-08-21 荷蘭商蜆殼國際研究所 用於在低沈降物量下高度轉化重烴之沸騰床方法
CN108079911B (zh) * 2016-11-21 2020-02-07 北京华石联合能源科技发展有限公司 一种上流差速控制裂化加氢的反应系统及其应用
US10457878B2 (en) * 2017-09-20 2019-10-29 Uop Llc Process for recovering hydrocracked effluent
EP3870679A1 (fr) * 2018-10-24 2021-09-01 Haldor Topsøe A/S Procédé de production de carburant pour l'aviation
FR3101082B1 (fr) * 2019-09-24 2021-10-08 Ifp Energies Now Procédé intégré d’hydrocraquage en lit fixe et d’hydroconversion en lit bouillonnant avec une séparation gaz/liquide améliorée
US11034895B1 (en) * 2020-01-22 2021-06-15 Axens SA Process for production of on specification group III/III+ base oils while preserving base oil yield

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3306845A (en) * 1964-08-04 1967-02-28 Union Oil Co Multistage hydrofining process
FR2197968A1 (fr) 1972-08-29 1974-03-29 Universal Oil Prod Co
US3905892A (en) * 1972-03-01 1975-09-16 Cities Service Res & Dev Co Process for reduction of high sulfur residue
US3954603A (en) * 1975-02-10 1976-05-04 Atlantic Richfield Company Method of removing contaminant from hydrocarbonaceous fluid
US4133745A (en) * 1977-08-18 1979-01-09 Atlantic Richfield Company Processing shale oil cuts by hydrotreating and removal of arsenic and/or selenium
US4548702A (en) * 1984-02-24 1985-10-22 Standard Oil Company Shale oil stabilization with a hydroprocessor
FR2617497A1 (fr) 1987-07-02 1989-01-06 Inst Francais Du Petrole Procede pour l'elimination de composes de l'arsenic dans les hydrocarbures liquides
FR2762004A1 (fr) 1997-04-10 1998-10-16 Inst Francais Du Petrole Procede pour l'elimination d'arsenic dans les charges hydrocarbonees liquides
US6153087A (en) 1997-06-24 2000-11-28 Institut Francais Du Petrole Process for converting heavy crude oil fractions, comprising an ebullating bed conversion step and a hydrocracking step
FR2854163A1 (fr) * 2003-04-25 2004-10-29 Inst Francais Du Petrole Procede de valorisation de charges lourdes par desasphaltage et hydrocraquage en lit bouillonnant
WO2008151792A1 (fr) * 2007-06-14 2008-12-18 Eni S.P.A. Procédé amélioré pour l'hydroconversion d'huiles lourdes par des systèmes à lit bouillonnant
FR2933708A1 (fr) * 2008-07-10 2010-01-15 Inst Francais Du Petrole Procede de conversion comprenant une hydroconversion de la charge puis une viscoreduction et un fractionnement

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3472759A (en) * 1967-04-25 1969-10-14 Atlantic Richfield Co Process for removal of sulfur and metals from petroleum materials
US4344840A (en) * 1981-02-09 1982-08-17 Hydrocarbon Research, Inc. Hydrocracking and hydrotreating shale oil in multiple catalytic reactors
US4592827A (en) * 1983-01-28 1986-06-03 Intevep, S.A. Hydroconversion of heavy crudes with high metal and asphaltene content in the presence of soluble metallic compounds and water
US4764266A (en) * 1987-02-26 1988-08-16 Mobil Oil Corporation Integrated hydroprocessing scheme for production of premium quality distillates and lubricants
US5164070A (en) * 1991-03-06 1992-11-17 Uop Hydrocracking product recovery process
FR2753984B1 (fr) * 1996-10-02 1999-05-28 Inst Francais Du Petrole Procede de conversion d'une fraction lourde d'hydrocarbures impliquant une hydrodemetallisation en lit bouillonnant de catalyseur
DE10047861A1 (de) * 2000-09-27 2002-04-25 Basell Polyolefine Gmbh Polyethylen Formmasse geeignet als Rohrwerkstoff mit herausragenden Verarbeitungseigenschaften
US20030089638A1 (en) * 2001-11-12 2003-05-15 Institut Francais Du Petrole Process for converting heavy petroleum fractions including an ebulliated bed for producing middle distillates with a low sulfur content
US8151515B2 (en) * 2009-07-27 2012-04-10 Charles Eric Crouse Device for the removal of arachnids, and method for removal of small arachnids and insects

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3306845A (en) * 1964-08-04 1967-02-28 Union Oil Co Multistage hydrofining process
US3905892A (en) * 1972-03-01 1975-09-16 Cities Service Res & Dev Co Process for reduction of high sulfur residue
FR2197968A1 (fr) 1972-08-29 1974-03-29 Universal Oil Prod Co
US3954603A (en) * 1975-02-10 1976-05-04 Atlantic Richfield Company Method of removing contaminant from hydrocarbonaceous fluid
US4133745A (en) * 1977-08-18 1979-01-09 Atlantic Richfield Company Processing shale oil cuts by hydrotreating and removal of arsenic and/or selenium
US4548702A (en) * 1984-02-24 1985-10-22 Standard Oil Company Shale oil stabilization with a hydroprocessor
FR2617497A1 (fr) 1987-07-02 1989-01-06 Inst Francais Du Petrole Procede pour l'elimination de composes de l'arsenic dans les hydrocarbures liquides
FR2762004A1 (fr) 1997-04-10 1998-10-16 Inst Francais Du Petrole Procede pour l'elimination d'arsenic dans les charges hydrocarbonees liquides
US6153087A (en) 1997-06-24 2000-11-28 Institut Francais Du Petrole Process for converting heavy crude oil fractions, comprising an ebullating bed conversion step and a hydrocracking step
FR2854163A1 (fr) * 2003-04-25 2004-10-29 Inst Francais Du Petrole Procede de valorisation de charges lourdes par desasphaltage et hydrocraquage en lit bouillonnant
WO2008151792A1 (fr) * 2007-06-14 2008-12-18 Eni S.P.A. Procédé amélioré pour l'hydroconversion d'huiles lourdes par des systèmes à lit bouillonnant
FR2933708A1 (fr) * 2008-07-10 2010-01-15 Inst Francais Du Petrole Procede de conversion comprenant une hydroconversion de la charge puis une viscoreduction et un fractionnement

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Heavy Oil Hydroprocessing", 19 March 1995, AICHE
"THE H-OIL®PROCESS, A WORLDWIDE LEADER IN VACUUM RESIDUE HYDROPROCESSING", 16 March 1997, NPRA
"ULLMANS ENCYCLOPEDIA OF INDUSTRIAL CHEMISTRY", vol. A18, 1991, pages: 71
COTTINGHAM P L: "Distribution of nitrogen in hydrocracked in situ shale oil", INDUSTRIAL AND ENGINEERING CHEMISTRY PRODUCT RESEARCH AND DEVELOPMENT, AMERICAN CHEMICAL SOCIETY, EASTON, PA, US, vol. 15, no. 3, 1 January 1976 (1976-01-01), pages 197 - 201, XP002512421, ISSN: 0536-1079, DOI: DOI:10.1021/I360059A012 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004722A1 (fr) * 2013-04-23 2014-10-24 IFP Energies Nouvelles Procede de conversion de charges d'origines renouvelables en bases carburants comprenant une etape d'hydrotraitement en lit bouillonnant et une etape d'hydroisomerisation en lit fixe
FR3030568A1 (fr) * 2014-12-18 2016-06-24 Axens Procede de conversion profonde de residus maximisant le rendement en gazole
US10501695B2 (en) 2014-12-18 2019-12-10 Axens Process for the intense conversion of residues, maximizing the gas oil yield

Also Published As

Publication number Publication date
FR2969648A1 (fr) 2012-06-29
US20130319908A1 (en) 2013-12-05
IL226641A (en) 2017-05-29
EE05782B1 (et) 2016-11-15
EE201300024A (et) 2013-10-15
CA2816666A1 (fr) 2012-06-28
RU2592688C2 (ru) 2016-07-27
CA2816666C (fr) 2018-10-23
RU2013134377A (ru) 2015-01-27
AU2011347042B2 (en) 2015-11-19
AU2011347042A1 (en) 2013-05-09
BR112013015358A2 (pt) 2017-07-18
CN103328613B (zh) 2016-03-23
FR2969648B1 (fr) 2014-04-11
WO2012085407A8 (fr) 2013-07-11
CN103328613A (zh) 2013-09-25
MA34752B1 (fr) 2013-12-03

Similar Documents

Publication Publication Date Title
EP3026097B1 (fr) Procede de production de combustibles de type fuel lourd a partir d'une charge hydrocarbonee lourde utilisant une separation entre l'etape d'hydrotraitement et l'etape d'hydrocraquage
EP3018187B1 (fr) Procede de conversion de charges petrolieres comprenant une etape d'hydrocraquage en lit bouillonnant, une etape de maturation et une etape de separation des sediments pour la production de fiouls a basse teneur en sediments
EP3303523B1 (fr) Procede de conversion de charges comprenant une etape d'hydrotraitement, une etape d'hydrocraquage, une etape de precipitation et une etape de separation des sediments pour la production de fiouls
WO2012085407A1 (fr) Procède de conversion de charge hydrocarbonate comprenant une huile de schiste par hydre conversion en lit bouillonnant, fractionnement par distillation atmosphérique, et hydrocraquage
EP3303522B1 (fr) Procede de conversion de charges comprenant une etape d'hydrocraquage, une etape de precipitation et une etape de separation des sediments pour la production de fiouls
EP3018188B1 (fr) Procede de conversion de charges petrolieres comprenant une etape d'hydrotraitement en lit fixe, une etape d'hydrocraquage en lit bouillonnant, une etape de maturation et une etape de separation des sediments pour la production de fiouls a basse teneur en sediments
CA3021600C (fr) Procede de conversion comprenant des lits de garde permutables d'hydrodemetallation, une etape d'hydrotraitement en lit fixe et une etape d'hydrocraquage en reacteurs permutables
EP2788458B1 (fr) Procede d'hydroconversion de charges petrolieres en lits fixes pour la production de fiouls a basse teneur en soufre
EP3018189B1 (fr) Procede de conversion de charges petrolieres comprenant une etape de viscoreduction, une etape de maturation et une etape de separation des sediments pour la production de fiouls a basse teneur en sediments
WO2015091033A1 (fr) Nouveau procede integre de traitement de charges petrolieres pour la production de fiouls a basse teneur en soufre et en sediments
FR3000098A1 (fr) Procede avec separation de traitement de charges petrolieres pour la production de fiouls a basse teneur en soufre
WO2014096703A1 (fr) Procédé integré de traitement de charges petrolieres pour la production de fiouls a basse teneur en soufre
WO2013057389A1 (fr) Procédé de conversion de charges petrolieres comprenant une etape d'hydroconversion en lit bouillonnant et une etape d'hydrotraitement en lit fixe pour la production de fiouls a basse teneur en soufre
FR3027909A1 (fr) Procede integre de production de combustibles de type fuel lourd a partir d'une charge hydrocarbonee lourde sans separation intermediaire entre l'etape d'hydrotraitement et l'etape d'hydrocraquage
WO2012085406A1 (fr) Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par hydroconversion en lit bouillonnant, fractionnement par distillation atmospherique et extraction liquide/liquide de la fraction lourde.
WO2012085408A1 (fr) Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par decontamination, hydroconversion en lit bouillonnant, et fractionnement par distillation atmospherique
FR3084372A1 (fr) Procede de traitement d'une charge hydrocarbonee lourde comprenant un hydrotraitement en lit fixe, deux desasphaltages et un hydrocraquage en lit bouillonnant de l'asphalte
FR3084371A1 (fr) Procede de traitement d'une charge hydrocarbonee lourde comprenant un hydrotraitement en lit fixe, un desasphaltage et un hydrocraquage en lit bouillonnant de l'asphalte
CA2774169A1 (fr) Procede d'hydroconversion de charges hydrocarbonees via une technologie en slurry permettant la recuperation des metaux du catalyseur et de la charge mettant en oeuvre une etape de gazeification
FR2970478A1 (fr) Procede d'hydroconversion en lit fixe d'un petrole brut, etete ou non, un fractionnement, puis un desasphaltage de la fraction lourde pour la production d'un brut synthetique preraffine
WO2016192893A1 (fr) Procédé de conversion de charges comprenant une étape de viscoréduction, une étape de précipitation et une étape de séparation des sédiments pour la production de fiouls

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180062159.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817366

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2816666

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2011347042

Country of ref document: AU

Date of ref document: 20111216

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 226641

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013134377

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13997330

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11817366

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013015358

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112013015358

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013015358

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130618