EP1482072B1 - Object métallique pourvu d'une couche électrique isolante ainsi que le procédé de fabrication d'une couche électrique isolante - Google Patents

Object métallique pourvu d'une couche électrique isolante ainsi que le procédé de fabrication d'une couche électrique isolante Download PDF

Info

Publication number
EP1482072B1
EP1482072B1 EP04010882.1A EP04010882A EP1482072B1 EP 1482072 B1 EP1482072 B1 EP 1482072B1 EP 04010882 A EP04010882 A EP 04010882A EP 1482072 B1 EP1482072 B1 EP 1482072B1
Authority
EP
European Patent Office
Prior art keywords
zirconium
metallic object
coating
magnetic
electrically insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04010882.1A
Other languages
German (de)
English (en)
Other versions
EP1482072A2 (fr
EP1482072A3 (fr
Inventor
Johannes Dr. Tenbrink
Markus Brunner
Harald Staubach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP1482072A2 publication Critical patent/EP1482072A2/fr
Publication of EP1482072A3 publication Critical patent/EP1482072A3/fr
Application granted granted Critical
Publication of EP1482072B1 publication Critical patent/EP1482072B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates

Definitions

  • the invention relates to a metallic object, in particular a magnetic semi-finished product, which is provided with an electrically insulating coating. Furthermore, the invention relates to a method for producing an electrically insulating coating.
  • Magnesium oxide coatings have been known for a long time, and were first used in the US 2,796,364 described. There, organometallic magnesium compounds are prepared, which are dissolved in solvents, in particular in organic solvents, and applied to a metallic surface. This coating is then annealed on the metallic surface so that the solvent components disappear and a thin magnesium oxide coating remains on the metallic surface. This magnesium oxide coating is formed by the calcination associated with annealing.
  • a magnetic semi-finished product with an electrically insulating coating is for example from EP 0 597 284 B1 known. There, inter alia, a coating is described which consists of magnesium oxide.
  • a thin layer of a solution of magnesium methylate in methanol is first applied to the metallic surface.
  • the applied thicknesses are in the wavelength range of visible light, so that the applied layers are iridescent in interference colors.
  • the conventional shaping methods e.g. when punching, to be processed magnetic semi-finished product due to abrasion or an abrasion-related tool impairment.
  • the conversion of the layer of hydrated magnesium hydroxide adhering to the semifinished product after drying to a thin adherent magnesium oxide coating then takes place.
  • a major disadvantage of this procedure is that this layer has a low temperature resistance.
  • the attainment of the boiling point of magnesium leads to a pronounced layer degradation of the insulation by reduction of the magnesium oxide and subsequent vaporization of the magnesium metal formed.
  • Dew point is understood here and below to mean the temperature at which the gaseous water vapor content of the annealing atmosphere condenses.
  • the final magnetic anneals are carried out in hydrogen atmospheres with a poorer dew point, i. H. a dew point of more than -30 ° C, by, of course, annealing temperatures above 1000 ° C can be achieved.
  • these anneals under these poor annealing atmosphere conditions are not suitable for setting optimum magnetic properties in the soft magnetic alloys.
  • optimal permeabilities and suitably low coercive forces can not be set.
  • the AP 0 348 288 A and DE 199 43 789 A1 and the JP 63 310 969 A each disclose a method of coating a substrate with zirconia.
  • the object of the present invention is therefore to provide a novel high-temperature-resistant electrically insulating coating, in particular to provide a magnetic semi-finished product with an electrically insulating, high-temperature-resistant coating. Furthermore, it is the object of the present invention to provide a novel method by which metallic objects, in particular magnetic semi-finished products, can be provided with a high-temperature-resistant, electrically insulating coating.
  • this object is achieved by a metallic object with an electrically insulating, high temperature resistant Zirconia coating dissolved.
  • a metallic object a magnetic semi-finished product is provided, which has the form of bands or sheets or strips or the shape of a laminated core.
  • the magnetic semi-finished product consists of a soft magnetic alloy.
  • the soft magnetic alloy is magnetically final annealed at a temperature above 1000 ° C.
  • Zirconium oxide (ZrO 2 ) is thermodynamically much more resistant than magnesium oxide (MgO), which can be seen in " J. Barin et al., Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin 1977 "is described.
  • the magnetic semi-finished product has the form of bands, sheets or strips and is typically assembled into laminated cores.
  • the coating of zirconium oxide is particularly suitable for nickel-iron alloys, which consist essentially of between 36.0 and 82.0 weight percent nickel, balance iron.
  • These nickel-iron alloys usually require a magnetic annealing at temperatures above 1000 ° C.
  • the coating densities of metallic zirconia p vary between 0.2 ⁇ ⁇ ⁇ 1.2 grams per m 2 metal surface. Typically, coatings are provided at a coverage of 0.4 ⁇ ⁇ ⁇ 0.6 gram per m 2 metal surface.
  • the covering densities p are an indirect and manageable measure of the coating thickness d. Since there is no suitable measuring method for the coating thicknesses, one typically follows the way of quantifying the content of metallic zirconium on the treated surface.
  • a zirconium alkylate is provided which is dissolved in an organic solvent.
  • the zirconium alkylate is preferably zirconium butoxide or zirconium propylate which is dissolved in an organic solvent which is as water-free as possible.
  • Suitable organic solvents are alcohols or mixtures of alcohols. Particularly suitable are the corresponding alcohols or mixtures of alcohols corresponding to the alkylates. That is, a propanol or a butanol is particularly suitable for the solution of zirconium propylate or zirconium butoxide.
  • solvents can be used, such.
  • so-called low-boiling-point petrol comes into consideration.
  • low-boiling point petrol is meant a besitimmte gasoline fraction with a defined Siedebreich.
  • a solution having a concentration between 0.2 and 10 percent by weight of zirconium is then prepared from the abovementioned solvents or solvent mixtures and the organometallic zirconium compound.
  • care is taken in the preparation of the solution and also in its subsequent processing that no contamination takes place with water.
  • organometallic zirconium compounds are decomposed on contamination with water via hydrolysis over several intermediates in water-insoluble hydroxides. When these water-insoluble zirconium hydroxides are formed, they are precipitated and processing is very difficult.
  • the object to be coated is drawn in a suitable (closed) system through a dilute solution and then dried by means of hot air.
  • the coating thickness of the concentration of the solution used, the viscosity and the flow rate of the semifinished product to be coated depends.
  • coating solutions less than 1 weight percent are used Containing zirconium, typically solutions containing 0.3% by weight zirconium propylate in n-propanol.
  • the coating solution is applied to the semifinished product via a capillary-saturated distributor felt or, after the free passage of the semifinished product through the solution between two suitable squeezing rollers.
  • the entrained amount of solution is limited to the desired level.
  • the layer thickness is determined by the concentration of the solution, by the type of distributor felt used and by the profile of the squeezing rollers used.
  • the semifinished products to be coated are likewise provided with a more highly concentrated coating solution. Subsequently, to set a defined layer thickness, the applied solution is blown off with an inert gas.
  • solutions can be processed which contain about 2 percent by weight or more zirconium. Typically, solutions containing aliphatic ether alcohols as solvents are processed. The advantage of this variant is the relatively high throughput speed. A large-scale rational procedure is thereby made possible.
  • the solvent consumption can be significantly reduced and thus the coating can be carried out very efficiently.
  • the thus coated semi-finished products can be stored without major problems. Under normal conditions, there is no corrosion of the semifinished product through the coating. There are also no other types of reactions of the coating in the context of conventional processing. The coating does not react chemically with the punching or lubricating oils generally used in further processing.
  • the coatings are completely converted to zirconia. This transformation corresponds to a calcination.
  • the punch rings had an outside diameter of 14.8 mm, an inside diameter of 10.5 mm and a thickness of 0.20 mm.
  • the intercept corresponds to the hysteresis losses per cycle.
  • the slope B determines the eddy current losses in the case of classic eddy current losses.
  • the slope B increases in such a plot.
  • the hysteresis losses P h are generally smaller, the higher the annealing temperature and annealing time of the magnetic annealing and the better the dew point of the hydrogen atmosphere.
  • the measurement simulates the later use of stator laminations in motors.
  • There punch rings are stacked to form a punching ring package. To ensure a sufficient filling factor they are pressurized.
  • the punching ring package is then infiltrated with a low-viscosity adhesive. In this type of die ring package production, sufficient isolation of the individual stator punch rings is essential to keep the eddy current losses in the stator as low as possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Claims (12)

  1. Objet métallique doté d'un revêtement en oxyde de zirconium résistant à de haute température, électriquement isolant, un demi-produit magnétique étant prévu en tant qu'objet métallique qui présente la forme de bandes ou de tôles ou encore de rubans ou la forme d'un paquet de tôles, caractérisé en ce que le demi-produit magnétique est constitué d'un alliage magnétique doux et subit une recuisson magnétique finale à une température supérieure à 1 000 °C.
  2. Objet métallique selon la revendication 1, le revêtement présente des épaisseurs d'occupation p sur le zirconium métallique entre 0,2 ≤ ρ ≤ 1,2 gramme par m2 de surface métallique.
  3. Objet métallique selon la revendication 2, le revêtement présente des épaisseurs d'occupation p sur le zirconium métallique entre 0,4 ≤ ρ ≤ 0,6 gramme par m2 de surface métallique.
  4. Objet métallique selon l'une quelconque des revendications 1 à 3, un alliage de nickel/fer est prévu en tant qu'alliage magnétique doux, qui est essentiellement constitué à partir de nickel d'une teneur comprise entre 36,0 et 82,0 % en poids, le reste étant du fer.
  5. Objet métallique selon la revendication 4, en tant qu'alliage magnétique un alliage à partir de 47,5 % en poids de nickel, 0,5 % de manganèse, 0,2 % en poids de silicium est prévu, le reste étant du fer ainsi que des impuretés aléatoires et/ou dues au procédé de fusion.
  6. Procédé de fabrication d'un revêtement isolant électrique en zirconium sur une surface d'un objet métallique, en tant qu'objet métallique un demi-produit qui présente la forme de bandes ou de tôles ou encore de rubans ou la forme d'un paquet de tôles, étant prévu, le demi-produit magnétique étant constitué d'un alliage magnétique doux, le procédé comprenant les étapes suivantes consistant à :
    - préparer un composé de zirconium (solution) organique dissous dans un solvant ;
    - appliquer la solution sur la surface ;
    - cuire l'objet métallique caractérisé en ce que l'alliage magnétique doux subit une recuisson magnétique finale à une température supérieure à 1 000 °C.
  7. Procédé selon la revendication 6, caractérisé en ce qu'un alkylate de zirconium est produit qui est dissous dans un solvant organique.
  8. Procédé selon la revendication 7, caractérisé en ce qu'un alkylate de zirconium est préparé à partir du groupe butylate de zirconium et propylate de zirconium, qui est dissous dans un solvant organique sans eau.
  9. Procédé selon la revendication 8, caractérisé en ce qu'un alcool ou un mélange d'alcools est prévu en tant que solvant organique.
  10. Procédé selon la revendication 9, un solvant aliphatique est prévu en tant que solvant organique.
  11. Procédé selon l'un quelconque des revendications 6 à 10, une solution étant fabriquée qui contient entre 0,2 % en poids et 10 % en poids de zirconium.
  12. Procédé selon l'une quelconque des revendications 6 à 11, entre l'application de la solution sur la surface et la cuisson de l'objet métallique est réalisée un façonnage de l'objet métallique.
EP04010882.1A 2003-05-30 2004-05-06 Object métallique pourvu d'une couche électrique isolante ainsi que le procédé de fabrication d'une couche électrique isolante Expired - Lifetime EP1482072B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10324910 2003-05-30
DE2003124910 DE10324910B4 (de) 2003-05-30 2003-05-30 Metallisches Halbzeug mit elektrisch isolierender Beschichtung sowie Verfahren zur Herstellung einer elektrisch isolierenden Beschichtung

Publications (3)

Publication Number Publication Date
EP1482072A2 EP1482072A2 (fr) 2004-12-01
EP1482072A3 EP1482072A3 (fr) 2008-07-30
EP1482072B1 true EP1482072B1 (fr) 2014-04-16

Family

ID=33103672

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04010882.1A Expired - Lifetime EP1482072B1 (fr) 2003-05-30 2004-05-06 Object métallique pourvu d'une couche électrique isolante ainsi que le procédé de fabrication d'une couche électrique isolante

Country Status (2)

Country Link
EP (1) EP1482072B1 (fr)
DE (1) DE10324910B4 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020134300A1 (de) 2020-12-18 2022-06-23 Vacuumschmelze Gmbh & Co. Kg Wasserbasierte alkalische Zusammensetzung zum Bilden einer Isolationsschicht eines Glühseparators, beschichtete weichmagnetische Legierung und Verfahren zum Herstellen eines beschichteten weichmagnetischen Bandes
US11827961B2 (en) 2020-12-18 2023-11-28 Vacuumschmelze Gmbh & Co. Kg FeCoV alloy and method for producing a strip from an FeCoV alloy
DE102022120602A1 (de) 2022-08-16 2024-02-22 Vacuumschmelze Gmbh & Co. Kg Verfahren zum Herstellen eines Blechs aus einer weichmagnetischen Legierung für ein Blechpaket

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133801A (en) * 1980-03-21 1981-10-20 Res Inst Electric Magnetic Alloys Manufacture of insulating soft magnetic plate
US4876117A (en) * 1988-02-04 1989-10-24 Domain Technology Method and coating transition metal oxide on thin film magnetic disks
DE19943789A1 (de) * 1999-09-13 2001-03-15 Fraunhofer Ges Forschung Verfahren zur Abscheidung von Zirkonoxid-Schichten unter Verwendung von löslichen Pulvern

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2796364A (en) * 1952-10-02 1957-06-18 Lydia A Suchoff Method of forming an adherent film of magnesium oxide
JPS63310969A (ja) * 1986-05-09 1988-12-19 Toray Ind Inc ジルコニア被覆材料の製造方法
JP2512402B2 (ja) * 1988-06-22 1996-07-03 日新製鋼株式会社 ジルコニア膜の製造方法
DE4238150A1 (de) * 1992-11-12 1994-05-19 Vacuumschmelze Gmbh Isolationsverfahren für weichmagnetische Bänder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133801A (en) * 1980-03-21 1981-10-20 Res Inst Electric Magnetic Alloys Manufacture of insulating soft magnetic plate
US4876117A (en) * 1988-02-04 1989-10-24 Domain Technology Method and coating transition metal oxide on thin film magnetic disks
DE19943789A1 (de) * 1999-09-13 2001-03-15 Fraunhofer Ges Forschung Verfahren zur Abscheidung von Zirkonoxid-Schichten unter Verwendung von löslichen Pulvern

Also Published As

Publication number Publication date
DE10324910B4 (de) 2005-05-25
DE10324910A1 (de) 2004-12-23
EP1482072A2 (fr) 2004-12-01
EP1482072A3 (fr) 2008-07-30

Similar Documents

Publication Publication Date Title
DE2247269C3 (de) Verfahren zur Herstellung einer isolierenden sowie die Magnetostriktions-Charakteristika und den Eisenverlust verbessernden Schicht auf einem Silicimstahlblech
DE19681215C2 (de) Verfahren zur Herstellung einer Oberfläche mit überragender Haftfähigkeit einer isolierenden Überzugsschicht auf einem nicht orientierten Elektrostahlblech
DE102010038038A1 (de) Verfahren zum Erzeugen einer Isolationsbeschichtung auf einem kornorientierten Elektro-Stahlflachprodukt und mit einer solchen Isolationsbeschichtung beschichtetes Elektro-Stahlflachprodukt
EP3341500B1 (fr) Procédé de fabrication d'une tôle magnétique à grains orientés et tôle magnétique à grains orientés
DE2450850B2 (de) Verfahren zum herstellen von isolierenden ueberzuegen auf orientiertem si-stahlblech zur verringerung der magnetostriktion
DE102017208146B4 (de) NO-Elektroband für E-Motoren
DE2726045C2 (de) Verfahren zum Herstellen eines Elektrobleches mit Goss-Textur
DE2545578A1 (de) Ueberzugsloesung fuer die direkte bildung von isolierueberzuegen auf elektrostahl
EP3746574A1 (fr) Feuillard magnétique apte à être repassé au recuit, mais non tenu d'être repassé au recuit
DE2816880A1 (de) Kornorientiertes magnetisches stahlblech
DE2307464A1 (de) Eisenlegierungen und verfahren zu deren herstellung
DE60106557T2 (de) Stahlblech zur porzelanemailleierung mit ausgezeichneter formbarkeit, alterungsbeständigkeit und emailleierungseigenschaften und herstellungsverfahren dafür
WO1995025820A1 (fr) Procede de production de toles electromagnetiques a enrobage verre
DE2917235A1 (de) Verfahren zum ausbilden von festhaftenden und gleichfoermigen isolationsschichten auf kornorientiertem siliciumstahlblech
EP1482072B1 (fr) Object métallique pourvu d'une couche électrique isolante ainsi que le procédé de fabrication d'une couche électrique isolante
DE69032021T2 (de) Thermisches Richten von Elektrostahlhalbzeugen
DE102018201618A1 (de) Nachglühfähiges, aber nicht nachglühpflichtiges Elektroband
DE1433821B2 (de) Verfahren zur Herstellung von doppelt orientierten Elektrostahllechen
EP0036558A1 (fr) Objet métallique enduit et procédé pour sa fabrication
DE2447482B2 (de) Verfahren zum ausbilden eines haftstarken mgo-sio tief 2 - glasueberzuges auf den oberflaechen eines kornorientierten si-stahlbleches
DE2130274C3 (de) Einen Isolierüberzug enthaltende Stahlbleche oder -streifen für elektromagnetische Anwendungen und Verfahren zu ihrer Herstellung
DE2542173C2 (fr)
DE1900040C3 (de) Magnetblech aus orientiertem oder nicht-orientiertem Siliciumstahlmaterial mit einem wärmebeständigen und isolierenden Überzug und Verfahren zu seiner Herstellung
DE4036586C2 (de) Verfahren zur Behandlung von beim Bau von Fahrzeugen zum Einsatz kommenden Aluminiumblech
DE1173196B (de) Verfahren zur Herstellung eines weich-magnetischen Sinterkoerpers mit grosser Permeabilitaet und kleinen Wirbelstromverlusten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20090102

AKX Designation fees paid

Designated state(s): CH DE FR GB LI

17Q First examination report despatched

Effective date: 20130516

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131217

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004014582

Country of ref document: DE

Effective date: 20140605

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: R. A. EGLI AND CO. PATENTANWAELTE, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004014582

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150119

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004014582

Country of ref document: DE

Effective date: 20150119

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004014582

Country of ref document: DE

Representative=s name: WESTPHAL, MUSSGNUG & PARTNER PATENTANWAELTE MI, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210526

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230523

Year of fee payment: 20

Ref country code: DE

Payment date: 20230530

Year of fee payment: 20

Ref country code: CH

Payment date: 20230602

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 502004014582

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL