EP1482072B1 - Metallic object provided with electrically insulating coating as well as process for making electrically insulating coating - Google Patents
Metallic object provided with electrically insulating coating as well as process for making electrically insulating coating Download PDFInfo
- Publication number
- EP1482072B1 EP1482072B1 EP04010882.1A EP04010882A EP1482072B1 EP 1482072 B1 EP1482072 B1 EP 1482072B1 EP 04010882 A EP04010882 A EP 04010882A EP 1482072 B1 EP1482072 B1 EP 1482072B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- zirconium
- metallic object
- coating
- magnetic
- electrically insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000576 coating method Methods 0.000 title claims description 50
- 239000011248 coating agent Substances 0.000 title claims description 41
- 238000000034 method Methods 0.000 title claims description 21
- 230000008569 process Effects 0.000 title description 3
- 230000005291 magnetic effect Effects 0.000 claims description 29
- 238000000137 annealing Methods 0.000 claims description 26
- 239000011265 semifinished product Substances 0.000 claims description 23
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 18
- 229910052726 zirconium Inorganic materials 0.000 claims description 18
- 239000002904 solvent Substances 0.000 claims description 12
- 229910001004 magnetic alloy Inorganic materials 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 239000003960 organic solvent Substances 0.000 claims description 8
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 7
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 150000001298 alcohols Chemical class 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- BSDOQSMQCZQLDV-UHFFFAOYSA-N butan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] BSDOQSMQCZQLDV-UHFFFAOYSA-N 0.000 claims description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims description 2
- 125000001931 aliphatic group Chemical group 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 150000003755 zirconium compounds Chemical class 0.000 claims description 2
- 239000000243 solution Substances 0.000 description 32
- 239000000395 magnesium oxide Substances 0.000 description 11
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 11
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 11
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- -1 organometallic magnesium compounds Chemical class 0.000 description 9
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 7
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000004080 punching Methods 0.000 description 6
- 229910000640 Fe alloy Inorganic materials 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 5
- CRGZYKWWYNQGEC-UHFFFAOYSA-N magnesium;methanolate Chemical compound [Mg+2].[O-]C.[O-]C CRGZYKWWYNQGEC-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- XPGAWFIWCWKDDL-UHFFFAOYSA-N propan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCC[O-].CCC[O-].CCC[O-].CCC[O-] XPGAWFIWCWKDDL-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- HAIMOVORXAUUQK-UHFFFAOYSA-J zirconium(iv) hydroxide Chemical class [OH-].[OH-].[OH-].[OH-].[Zr+4] HAIMOVORXAUUQK-UHFFFAOYSA-J 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010022 rotary screen printing Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
- H01F1/18—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1216—Metal oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1229—Composition of the substrate
- C23C18/1241—Metallic substrates
Definitions
- the invention relates to a metallic object, in particular a magnetic semi-finished product, which is provided with an electrically insulating coating. Furthermore, the invention relates to a method for producing an electrically insulating coating.
- Magnesium oxide coatings have been known for a long time, and were first used in the US 2,796,364 described. There, organometallic magnesium compounds are prepared, which are dissolved in solvents, in particular in organic solvents, and applied to a metallic surface. This coating is then annealed on the metallic surface so that the solvent components disappear and a thin magnesium oxide coating remains on the metallic surface. This magnesium oxide coating is formed by the calcination associated with annealing.
- a magnetic semi-finished product with an electrically insulating coating is for example from EP 0 597 284 B1 known. There, inter alia, a coating is described which consists of magnesium oxide.
- a thin layer of a solution of magnesium methylate in methanol is first applied to the metallic surface.
- the applied thicknesses are in the wavelength range of visible light, so that the applied layers are iridescent in interference colors.
- the conventional shaping methods e.g. when punching, to be processed magnetic semi-finished product due to abrasion or an abrasion-related tool impairment.
- the conversion of the layer of hydrated magnesium hydroxide adhering to the semifinished product after drying to a thin adherent magnesium oxide coating then takes place.
- a major disadvantage of this procedure is that this layer has a low temperature resistance.
- the attainment of the boiling point of magnesium leads to a pronounced layer degradation of the insulation by reduction of the magnesium oxide and subsequent vaporization of the magnesium metal formed.
- Dew point is understood here and below to mean the temperature at which the gaseous water vapor content of the annealing atmosphere condenses.
- the final magnetic anneals are carried out in hydrogen atmospheres with a poorer dew point, i. H. a dew point of more than -30 ° C, by, of course, annealing temperatures above 1000 ° C can be achieved.
- these anneals under these poor annealing atmosphere conditions are not suitable for setting optimum magnetic properties in the soft magnetic alloys.
- optimal permeabilities and suitably low coercive forces can not be set.
- the AP 0 348 288 A and DE 199 43 789 A1 and the JP 63 310 969 A each disclose a method of coating a substrate with zirconia.
- the object of the present invention is therefore to provide a novel high-temperature-resistant electrically insulating coating, in particular to provide a magnetic semi-finished product with an electrically insulating, high-temperature-resistant coating. Furthermore, it is the object of the present invention to provide a novel method by which metallic objects, in particular magnetic semi-finished products, can be provided with a high-temperature-resistant, electrically insulating coating.
- this object is achieved by a metallic object with an electrically insulating, high temperature resistant Zirconia coating dissolved.
- a metallic object a magnetic semi-finished product is provided, which has the form of bands or sheets or strips or the shape of a laminated core.
- the magnetic semi-finished product consists of a soft magnetic alloy.
- the soft magnetic alloy is magnetically final annealed at a temperature above 1000 ° C.
- Zirconium oxide (ZrO 2 ) is thermodynamically much more resistant than magnesium oxide (MgO), which can be seen in " J. Barin et al., Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin 1977 "is described.
- the magnetic semi-finished product has the form of bands, sheets or strips and is typically assembled into laminated cores.
- the coating of zirconium oxide is particularly suitable for nickel-iron alloys, which consist essentially of between 36.0 and 82.0 weight percent nickel, balance iron.
- These nickel-iron alloys usually require a magnetic annealing at temperatures above 1000 ° C.
- the coating densities of metallic zirconia p vary between 0.2 ⁇ ⁇ ⁇ 1.2 grams per m 2 metal surface. Typically, coatings are provided at a coverage of 0.4 ⁇ ⁇ ⁇ 0.6 gram per m 2 metal surface.
- the covering densities p are an indirect and manageable measure of the coating thickness d. Since there is no suitable measuring method for the coating thicknesses, one typically follows the way of quantifying the content of metallic zirconium on the treated surface.
- a zirconium alkylate is provided which is dissolved in an organic solvent.
- the zirconium alkylate is preferably zirconium butoxide or zirconium propylate which is dissolved in an organic solvent which is as water-free as possible.
- Suitable organic solvents are alcohols or mixtures of alcohols. Particularly suitable are the corresponding alcohols or mixtures of alcohols corresponding to the alkylates. That is, a propanol or a butanol is particularly suitable for the solution of zirconium propylate or zirconium butoxide.
- solvents can be used, such.
- so-called low-boiling-point petrol comes into consideration.
- low-boiling point petrol is meant a besitimmte gasoline fraction with a defined Siedebreich.
- a solution having a concentration between 0.2 and 10 percent by weight of zirconium is then prepared from the abovementioned solvents or solvent mixtures and the organometallic zirconium compound.
- care is taken in the preparation of the solution and also in its subsequent processing that no contamination takes place with water.
- organometallic zirconium compounds are decomposed on contamination with water via hydrolysis over several intermediates in water-insoluble hydroxides. When these water-insoluble zirconium hydroxides are formed, they are precipitated and processing is very difficult.
- the object to be coated is drawn in a suitable (closed) system through a dilute solution and then dried by means of hot air.
- the coating thickness of the concentration of the solution used, the viscosity and the flow rate of the semifinished product to be coated depends.
- coating solutions less than 1 weight percent are used Containing zirconium, typically solutions containing 0.3% by weight zirconium propylate in n-propanol.
- the coating solution is applied to the semifinished product via a capillary-saturated distributor felt or, after the free passage of the semifinished product through the solution between two suitable squeezing rollers.
- the entrained amount of solution is limited to the desired level.
- the layer thickness is determined by the concentration of the solution, by the type of distributor felt used and by the profile of the squeezing rollers used.
- the semifinished products to be coated are likewise provided with a more highly concentrated coating solution. Subsequently, to set a defined layer thickness, the applied solution is blown off with an inert gas.
- solutions can be processed which contain about 2 percent by weight or more zirconium. Typically, solutions containing aliphatic ether alcohols as solvents are processed. The advantage of this variant is the relatively high throughput speed. A large-scale rational procedure is thereby made possible.
- the solvent consumption can be significantly reduced and thus the coating can be carried out very efficiently.
- the thus coated semi-finished products can be stored without major problems. Under normal conditions, there is no corrosion of the semifinished product through the coating. There are also no other types of reactions of the coating in the context of conventional processing. The coating does not react chemically with the punching or lubricating oils generally used in further processing.
- the coatings are completely converted to zirconia. This transformation corresponds to a calcination.
- the punch rings had an outside diameter of 14.8 mm, an inside diameter of 10.5 mm and a thickness of 0.20 mm.
- the intercept corresponds to the hysteresis losses per cycle.
- the slope B determines the eddy current losses in the case of classic eddy current losses.
- the slope B increases in such a plot.
- the hysteresis losses P h are generally smaller, the higher the annealing temperature and annealing time of the magnetic annealing and the better the dew point of the hydrogen atmosphere.
- the measurement simulates the later use of stator laminations in motors.
- There punch rings are stacked to form a punching ring package. To ensure a sufficient filling factor they are pressurized.
- the punching ring package is then infiltrated with a low-viscosity adhesive. In this type of die ring package production, sufficient isolation of the individual stator punch rings is essential to keep the eddy current losses in the stator as low as possible.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Power Engineering (AREA)
- Dispersion Chemistry (AREA)
- Ceramic Engineering (AREA)
- Soft Magnetic Materials (AREA)
- Chemical Treatment Of Metals (AREA)
Description
Metallischer Gegenstand mit elektrisch isolierender Beschichtung sowie Verfahren zur Herstellung einer elektrisch isolierenden BeschichtungMetallic article with electrically insulating coating and method for producing an electrically insulating coating
Die Erfindung betrifft einen metallischen Gegenstand, insbesondere ein magnetisches Halbzeug, das mit einer elektrisch isolierenden Beschichtung versehen ist. Des weiteren betrifft die Erfindung ein Verfahren zur Herstellung einer elektrisch isolierenden Beschichtung.The invention relates to a metallic object, in particular a magnetic semi-finished product, which is provided with an electrically insulating coating. Furthermore, the invention relates to a method for producing an electrically insulating coating.
Magnesiumoxid-Beschichtungen sind seit langer Zeit bekannt, und wurden zum ersten Mal in der
Ein magnetisches Halbzeug mit einer elektrisch isolierenden Beschichtung ist beispielsweise aus der
Ein großer Nachteil bei diesen aus dem Stand der Technik bekannten Magnesiumoxid-Beschichtungen liegt darin, dass sie eine Glühbeständigkeit von nur maximal 1000°C aufweisen.A major disadvantage of these known from the prior art magnesium oxide coatings is that they have an annealing resistance of only a maximum of 1000 ° C.
Bei den aus dem Stand der Technik bekannten Verfahren wird zunächst eine dünne Schicht aus einer Lösung von Magnesiummethylat in Methanol auf der metallischen Oberfläche aufgetragen. Typischerweise sind die aufgetragenen Dicken im Wellenlängenbereich des sichtbaren Lichts, so dass die aufgetragenen Schichten in Interferenzfarben schillern. Durch die äußerst geringen Schichtdicken gibt es damit in der Regel keinerlei Probleme bei den gängigen Formgebungsmethoden, z.B. beim Stanzen, des zu verarbeitenden magnetischen Halbzeugs aufgrund eines abrieb- oder einer abrasionsbedingten Werkzeugbeeinträchtigung. Bei der nach der Formgebung stattfindenden magnetischen Schlussglühung erfolgt dann die Umwandlung der nach der Trocknung auf dem Halbzeug haftenden Schicht aus hydratisiertem Magnesiumhydroxid in eine dünne festhaftende Magnesiumoxid-Beschichtung.In the methods known from the prior art, a thin layer of a solution of magnesium methylate in methanol is first applied to the metallic surface. Typically, the applied thicknesses are in the wavelength range of visible light, so that the applied layers are iridescent in interference colors. As a result of the extremely low layer thicknesses, there are generally no problems in the conventional shaping methods, e.g. when punching, to be processed magnetic semi-finished product due to abrasion or an abrasion-related tool impairment. In the magnetic final annealing which takes place after shaping, the conversion of the layer of hydrated magnesium hydroxide adhering to the semifinished product after drying to a thin adherent magnesium oxide coating then takes place.
Ein großer Nachteil bei diesem Vorgehen ist, dass diese Schicht eine niedrige Temperaturbeständigkeit aufweist. Bei Glühungen unter einer Atmosphäre von reinem Wasserstoff mit einem hinreichend niedrigen Taupunkt kommt es mit dem Erreichen des Siedepunkts von Magnesium zu einem ausgeprägtem Schichtabbau der Isolation durch Reduktion des Magnesiumoxids und anschließendes Verdampfen des gebildeten Magnesiummetalls.A major disadvantage of this procedure is that this layer has a low temperature resistance. When annealing under an atmosphere of pure hydrogen with a sufficiently low dew point, the attainment of the boiling point of magnesium leads to a pronounced layer degradation of the insulation by reduction of the magnesium oxide and subsequent vaporization of the magnesium metal formed.
Unter Taupunkt wird hier und im Folgenden die Temperatur verstanden, bei der der gasförmige Wasserdampfgehalt der Glühatmosphäre kondensiert.Dew point is understood here and below to mean the temperature at which the gaseous water vapor content of the annealing atmosphere condenses.
Damit sind im Stand der Technik Glühungen unter einer trockenen Wasserstoff-Atmosphäre mit einem Taupunkt unter -30°C lediglich unterhalb von 1000°C durchführbar.Thus, in the prior art annealing under a dry hydrogen atmosphere with a dew point below -30 ° C only below 1000 ° C feasible.
Es gibt jedoch sehr viele Legierungen bzw. Metalle, die eine wesentlich höhere Glühtemperatur erfordern. Insbesondere besteht ein Bedürfnis, weichmagnetische Nickel-Eisen-Legierungen mit einer elektrischen Isolationsschicht zu versehen, die eine Glühung oberhalb 1000°C problemlos übersteht.However, there are many alloys or metals that require a much higher annealing temperature. In particular, there is a need to provide soft magnetic nickel-iron alloys with an electrical insulation layer that easily withstands annealing above 1000 ° C.
Führt man die magnetischen Schlussglühungen in Wasserstoff-Atmosphären mit einem schlechteren Taupunkt, d. h. einem Taupunkt von mehr als -30°C, durch, lassen sich selbstverständlich Glühtemperaturen oberhalb 1000°C erreichen. Diese Glühungen unter diesen schlechten Glühatmosphärenbedingungen sind jedoch nicht geeignet, um optimale magnetische Eigenschaften in den weichmagnetischen Legierungen einzustellen. Es lassen sich insbesondere keine optimalen Permeabilitäten und keine geeignet niedrigen Koerzitivfeldstärken einstellen.If the final magnetic anneals are carried out in hydrogen atmospheres with a poorer dew point, i. H. a dew point of more than -30 ° C, by, of course, annealing temperatures above 1000 ° C can be achieved. However, these anneals under these poor annealing atmosphere conditions are not suitable for setting optimum magnetic properties in the soft magnetic alloys. In particular, optimal permeabilities and suitably low coercive forces can not be set.
Die
Aufgabe der vorliegenden Erfindung ist es daher, eine neuartige hochtemperaturfeste elektrisch isolierende Beschichtung bereitzustellen, insbesondere ein magnetisches Halbzeug mit einer elektrisch isolierenden hochtemperaturfesten Beschichtung bereitzustellen. Des Weiteren ist es Aufgabe der vorliegenden Erfindung, ein neues Verfahren bereitzustellen, mit dem metallische Gegenstände, insbesondere magnetisches Halbzeug mit einer hochtemperaturfesten, elektrisch isolierenden Beschichtung versehen werden können.The object of the present invention is therefore to provide a novel high-temperature-resistant electrically insulating coating, in particular to provide a magnetic semi-finished product with an electrically insulating, high-temperature-resistant coating. Furthermore, it is the object of the present invention to provide a novel method by which metallic objects, in particular magnetic semi-finished products, can be provided with a high-temperature-resistant, electrically insulating coating.
Erfindungsgemäß wird diese Aufgabe durch einen metallischen Gegenstand mit einer elektrisch isolierenden, hochtemperaturfesten Beschichtung aus Zirkonoxid gelöst. Als metallischer Gegenstand ist ein magnetisches Halbzeug vorgesehen, das die Form von Bändern oder Blechen oder Streifen oder die Gestalt eines Blechpakets aufweist. Das magnetische Halbzeug besteht aus einer weichmagnetischen Legierung. Die weichmagnetische Legierung ist bei einer Temperatur oberhalb 1000°C magnetisch schlussgeglüht. Zirkonoxid (ZrO2) ist thermodynamisch wesentlich beständiger als Magnesiumoxid (MgO), was beispielsweise in "
Diese Beschichtung wird bei magnetischem Halbzeug verwendet. Das magnetische Halbzeug weist dabei die Form von Bändern, Blechen oder Streifen auf und wird typischerweise zu Blechpaketen zusammengesetzt. Die Beschichtung aus Zirkonoxid ist insbesondere für Nickel-Eisen-Legierungen geeignet, die im Wesentlichen aus zwischen 36,0 und 82,0 Gewichtsprozent Nickel, Rest Eisen bestehen.This coating is used for magnetic semi-finished products. The magnetic semi-finished product has the form of bands, sheets or strips and is typically assembled into laminated cores. The coating of zirconium oxide is particularly suitable for nickel-iron alloys, which consist essentially of between 36.0 and 82.0 weight percent nickel, balance iron.
Diese Nickel-Eisen-Legierungen erfordern in der Regel eine magnetische Schlussglühung bei Temperaturen oberhalb 1000°C.These nickel-iron alloys usually require a magnetic annealing at temperatures above 1000 ° C.
Die Belegungsdichten an metallischem Zirkon p variieren dabei zwischen 0,2 ≤ ρ ≤ 1,2 Gramm pro m2 Metalloberfläche.
Typischerweise sind Beschichtungen vorgesehen mit Belegungsdichten von 0,4 ≤ ρ ≤ 0,6 Gramm pro m2 Metalloberfläche. Die Belegungsdichten p sind ein indirektes und handhabbares Maß für die Beschichtungsdicken d. Da für die Beschichtungsdicken kein geeignetes Messverfahren besteht, geht man typischerweise den Weg, das man den Gehalt an metallischem Zirkon auf der behandelten Oberfläche quantitativ bestimmt.The coating densities of metallic zirconia p vary between 0.2 ≦ ρ ≦ 1.2 grams per m 2 metal surface.
Typically, coatings are provided at a coverage of 0.4 ≤ ρ ≤ 0.6 gram per m 2 metal surface. The covering densities p are an indirect and manageable measure of the coating thickness d. Since there is no suitable measuring method for the coating thicknesses, one typically follows the way of quantifying the content of metallic zirconium on the treated surface.
Das erfindungsgemäße Verfahren zur Herstellung solcher elektrisch isolierenden Beschichtungen aus Zirkonoxid auf einer Oberfläche eines metallischen Gegenstandes, wobei als metallischer Gegenstand ein magnetisches Halbzeug vorgesehen ist, das die Form von Bändern oder Blechen oder Streifen oder die Gestalt eines Blechpakets aufweist, wobei das magnetische Halbzeug aus einer weichmagnetischen Legierung besteht. Das Verfahren weist die folgenden Schritte auf:
- Bereitstellen einer in einem Lösungsmittel gelösten organischen Zirkonverbindung (Lösung);
- Aufbringen der Lösung auf die Oberfläche; und
- Glühen des metallischen Gegenstandes, wobei die weichmagnetische Legierung bei einer Temperatur oberhalb 1000°C magnetisch schlussgeglüht ist.
- Providing an organic zirconium compound (solution) dissolved in a solvent;
- Applying the solution to the surface; and
- Annealing of the metallic article, wherein the soft magnetic alloy is magnetically final annealed at a temperature above 1000 ° C.
Dabei wird typischerweise ein Zirkonalkylat bereitgestellt, das in einem organischen Lösungsmittel gelöst ist. Das Zirkonalkylat ist vorzugsweise Zirkonbutylat oder Zirkonpropylat, das in einem möglichst wasserfreien organischen Lösungsmittel gelöst ist.Typically, a zirconium alkylate is provided which is dissolved in an organic solvent. The zirconium alkylate is preferably zirconium butoxide or zirconium propylate which is dissolved in an organic solvent which is as water-free as possible.
Als organische Lösungsmittel kommen dabei Alkohole oder Mischungen aus Alkoholen in Betracht. Besonders geeignet sind die entsprechenden Alkohole bzw. Mischungen aus Alkoholen die den Alkylaten entsprechen. Das heißt ein Propanol bzw. ein Buthanol eignet sich besonders zur Lösung von Zirkonpropylat bzw. Zirkonbutylat.Suitable organic solvents are alcohols or mixtures of alcohols. Particularly suitable are the corresponding alcohols or mixtures of alcohols corresponding to the alkylates. That is, a propanol or a butanol is particularly suitable for the solution of zirconium propylate or zirconium butoxide.
Es können jedoch auch andere Lösungsmittel verwendet werden, so z. B. aliphatische Lösungsmittel oder Ätheralkohole oder aliphatische Ätheralkohole oder Mischungen daraus. Des weiteren kommt sogenanntes Siedegrenzenbenzin in Betracht.However, other solvents can be used, such. As aliphatic solvents or ether alcohols or aliphatic ether alcohols or mixtures thereof. Furthermore, so-called low-boiling-point petrol comes into consideration.
Unter Siedegrenzenbenzin versteht man eine besitimmte Benzinfraktion mit einem definierten Siedebreich.By low-boiling point petrol is meant a besitimmte gasoline fraction with a defined Siedebreich.
Typischerweise wird aus den genannten Lösungsmitteln bzw. Lösungsmittelgemischen und der metallorganischen Zirkonverbindung dann eine Lösung mit einer Konzentration zwischen 0,2 und 10 Gewichtsprozent Zirkon hergestellt.Typically, a solution having a concentration between 0.2 and 10 percent by weight of zirconium is then prepared from the abovementioned solvents or solvent mixtures and the organometallic zirconium compound.
In einer bevorzugten Ausführungsform wird bei der Herstellung der Lösung und auch bei deren späteren Verarbeitung darauf geachtet, dass keine Kontamination mit Wasser erfolgt.In a preferred embodiment care is taken in the preparation of the solution and also in its subsequent processing that no contamination takes place with water.
Sämtliche in Betracht kommenden metallorganischen Zirkonverbindungen werden bei Kontamination mit Wasser über eine Hydrolyse über mehrere Zwischenstufen in wasserunlösliche Hydroxide zersetzt. Wenn es zur Bildung dieser wasserunlöslichen Zirkonhydroxide kommt, werden diese ausgefällt und eine Verarbeitung ist dann nur sehr schwer möglich.All contemplated organometallic zirconium compounds are decomposed on contamination with water via hydrolysis over several intermediates in water-insoluble hydroxides. When these water-insoluble zirconium hydroxides are formed, they are precipitated and processing is very difficult.
Insbesondere bei der Verwendung von aliphatischen Ätheralkoholen als Lösungsmittel ist eine Verarbeitung von Beschichtungslösungen möglich, mit denen sehr dicke und abriebfeste Zirkonoxidbeschichtungen ermöglicht werden.In particular, when using aliphatic ether alcohols as solvents processing of coating solutions is possible with which very thick and abrasion-resistant zirconia coatings are possible.
Für das Auftragen der elektrisch isolierenden Beschichtungslösung auf die zu beschichtenden Halbzeugteile kommen sowohl ein einfaches Tauchverfahren (Vakuumimprägnierung) als auch verschiedene kontinuierliche Prozesse in Betracht.For the application of the electrically insulating coating solution to the semi-finished parts to be coated both a simple dipping process (vacuum impregnation) and various continuous processes are considered.
Zur Erzielung sehr dünner Schichten kann insbesondere mit einem einfachen Durchlaufverfahren gearbeitet werden. Die Verwendung anderer Auftragsverfahren, z. B. eines Rotationssiebdrucks oder Sprühverfahrens, ist grundsätzlich möglich. Eine Vorbehandlung der zu beschichtenden Halbzeuge oder Metallteile ist in der Regel nicht erforderlich.To achieve very thin layers can be worked in particular with a simple flow method. The use of other application methods, eg. B. a rotary screen printing or spraying, is basically possible. A pretreatment of the semi-finished or metal parts to be coated is usually not required.
In einer ersten Ausführungsform wird der zu beschichtende Gegenstand in einer geeigneten (geschlossenen) Anlage durch eine verdünnte Lösung gezogen und anschließend mittels Warmluft getrocknet. Bei dieser Verfahrensvariante ist die Beschichtungsdicke von der Konzentration der eingesetzten Lösung, deren Viskosität und der Durchlaufgeschwindigkeit des zu beschichtenden Halbzeuges abhängig. Dabei werden typischerweise Beschichtungslösungen verwendet, die weniger als 1 Gewichtsprozent Zirkon enthalten, typischerweise Lösungen mit 0,3 Gewichtsprozent Zirkonpropylat in n-Propanol.In a first embodiment, the object to be coated is drawn in a suitable (closed) system through a dilute solution and then dried by means of hot air. In this process variant, the coating thickness of the concentration of the solution used, the viscosity and the flow rate of the semifinished product to be coated depends. Typically, coating solutions less than 1 weight percent are used Containing zirconium, typically solutions containing 0.3% by weight zirconium propylate in n-propanol.
In einer zweiten Ausführungsform, insbesondere bei der Verwendung von höher konzentrierten Beschichtungslösungen, d. h. also Beschichtungslösungen, die mehr als 1 Gewichtsprozent Zirkon in der Beschichtungslösung enthalten, wird die Beschichtungslösung über einen kapillargetränkten Verteilerfilz auf das Halbzeug aufgetragen bzw. nach dem freien Durchlauf des Halbzeugs durch die Lösung zwischen zwei geeigneten Abquetschrollen geführt. Dadurch wird die mitgeführte Lösungsmenge auf das gewünschte Maß begrenzt. Die Schichtdicke wird in diesem Fall durch die Konzentration der Lösung, durch die Art des verwendeten Verteilerfilzes sowie durch das verwendete Profil der Abquetschwalzen bestimmt.In a second embodiment, especially when using more highly concentrated coating solutions, i. H. Thus, coating solutions containing more than 1 percent by weight zirconium in the coating solution, the coating solution is applied to the semifinished product via a capillary-saturated distributor felt or, after the free passage of the semifinished product through the solution between two suitable squeezing rollers. As a result, the entrained amount of solution is limited to the desired level. In this case, the layer thickness is determined by the concentration of the solution, by the type of distributor felt used and by the profile of the squeezing rollers used.
In einer dritten Ausführungsform werden die zu beschichtenden Halbzeuge ebenfalls mit höher konzentrierter Beschichtungslösung versehen. Anschließend wird zur Einstellung einer definierten Schichtdicke die aufgetragene Lösung mit einem Inertgas abgeblasen. Dabei können Lösungen verarbeitet werden, die ungefähr 2 Gewichtsprozent oder mehr Zirkon enthalten. Typischerweise werden Lösungen verarbeitet, die als Lösungsmittel aliphatische Ätheralkohole enthalten. Der Vorteil dieser Variante ist die relativ hohe Durchlaufgeschwindigkeit. Ein großtechnisches rationales Verfahren wird dadurch ermöglicht.In a third embodiment, the semifinished products to be coated are likewise provided with a more highly concentrated coating solution. Subsequently, to set a defined layer thickness, the applied solution is blown off with an inert gas. In this case, solutions can be processed which contain about 2 percent by weight or more zirconium. Typically, solutions containing aliphatic ether alcohols as solvents are processed. The advantage of this variant is the relatively high throughput speed. A large-scale rational procedure is thereby made possible.
In den beiden letztgenannten Ausführungsformen kann der Lösungsmittelverbrauch deutlich reduziert werden und somit die Beschichtung sehr rationell durchgeführt werden.In the latter two embodiments, the solvent consumption can be significantly reduced and thus the coating can be carried out very efficiently.
Bei der in allen Ausführungsformen sich anschließenden Trocknung des Lösungsmittels kommt es in der Regel zu einer Reaktion der metallorganischen Zirkonverbindung mit der in der Trockenluft enthaltenen Restluftfeuchtigkeit. Diese chemische Reaktion führt über verschiedene Zwischenstufen von partiell hydrolisierten Zirkonalkoholaten zu hydratisierten Zirkoniumhydroxiden. Dabei wird Alkohol abgespalten. Es entsteht zum Teil auch Zirkonoxid unter Abspaltung von Wasser.In the subsequent drying of the solvent in all embodiments, there is usually a reaction of the organometallic zirconium compound with the residual air moisture contained in the dry air. This chemical reaction leads via various intermediates of partially hydrolyzed zirconium alcoholates to hydrated zirconium hydroxides. Alcohol is split off. Partly zirconium oxide is formed with elimination of water.
Die derart beschichteten Halbzeuge sind ohne größere Probleme lagerfähig. Es kommt unter normalen Bedingungen zu keiner Korrosion des Halbzeugs durch die Beschichtung. Es erfolgen auch keine anders gearteten Umsetzungen der Beschichtung im Rahmen der üblichen Weiterverarbeitung. Die Beschichtung reagiert chemisch nicht mit den bei der Weiterverarbeitung in der Regel eingesetzten Stanz- oder Schmierölen.The thus coated semi-finished products can be stored without major problems. Under normal conditions, there is no corrosion of the semifinished product through the coating. There are also no other types of reactions of the coating in the context of conventional processing. The coating does not react chemically with the punching or lubricating oils generally used in further processing.
Bei der letztendlich erfolgenden (magnetischen) Schlussglühung werden die Beschichtungen vollständig in Zirkonoxid umgewandelt. Diese Umwandlung entspricht einer Kalzinierung.In the final (magnetic) final annealing, the coatings are completely converted to zirconia. This transformation corresponds to a calcination.
Die Erfindung wird im Folgenden anhand von Ausführungs- und Vergleichsbeispielen sowie den Figuren eingehend erläutert. Dabei zeigen:
-
zeigt die Ergebnisse von Verlustmessungen an verschiedenen losen Stanzringstapeln nach der vorliegenden Erfindung im Vergleich zum Stand der Technik.Figur 1 -
Figur 2 zeigt die Ergebnisse der Verlustmessungen an verschiedenen druckbeaufschlagten Stanzringstapeln nach der vorliegenden Erfindung im Vergleich zum Stand der Technik.
-
FIG. 1 Figure 2 shows the results of loss measurements on various loose punching ring stacks according to the present invention compared to the prior art. -
FIG. 2 Figure 4 shows the results of loss measurements on various pressurized punch ring stacks of the present invention as compared to the prior art.
Es wurden elektrische Isolationsbeschichtungen auf weichmagnetischem Halbzeug aus einer Nickel-Eisen-Legierung mit der Zusammensetzung von 47,5 Gewichtsprozent Nickel 0,5 Gewichtsprozent Mangan, 0,2 Gewichtsprozent Silizium sowie Rest Eisen und erschmelzungsbedingtem und/oder zufälligen Verunreinigungen aus dem Stand der Technik mit solchen nach der vorliegenden Erfindung verglichen. Dabei werden die folgenden Versuchsreihen durchgeführt:
- A) Es wurde ein Band der
Dicke 0,20 mm mit einer Magnesiummethylat-Lösung versehen. Die dabei erzielte Magnesiumkonzentrationlag bei 0,3 g/qm. Daraus wurden Stanzringe gefertigt, die in einem Haubenofen bei einer Glühdauer von fünf Stunden bei einer Temperatur von 1030°C unter Wasserstoff-Atmosphäre mit einem Taupunkt von -20°C magnetisch schlussgeglüht wurden. - B) Es wurde ein Band der
Dicke 0,20 mm mit einer Magnesiummethylat-Lösung versehen. Die Magnesiummethylat-Beschichtung wies eineKonzentration von 0,3 g/qm an Magnesium auf. Es wurden Stanzringe hergestellt. Diese Stanzringe wurden in einem Haubenofen bei einer Temperatur von 1150°C bei einer Glühdauer von fünf Stunden unter Wasserstoff-Atmosphäre mit einem Taupunkt < -30°C magnetisch schlussgeglüht. Die erzählten Stanzringe wiesen danach keine Magnesiumoxid-Beschichtung auf. Die Stanzringe waren metallisch blank. - C) Es wurde ein Band der
Dicke 0,20 mm mit einer Magnesiummethylatlösung beschichtet. Die dabei verwendete Konzentration wies 0,3 g/qm an Magnesium auf. Daraus wurden wiederum Stanzringe gefertigt. Diese Stanzringe wurden in einem Durchlaufofen bei einer Temperatur von 1020°C schlussgeglüht. Die magnetische Schlussglühung fand unter einer Wasserstoff-Atmosphäre mit einem Taupunkt von -28°C und einerDurchlaufzeit von 0,75 Stunden statt. - D) Es wurde ein Band der
Dicke 0,20 mm mit Zirkoniumpropylat-Lösung beschichtet. Die dabei erzielte Konzentration wies 0,5 g/qm an Zirkon auf. Daraus wurden wiederum Stanzringe gefertigt. Die Stanzringe wurden in einem Haubenofen für eine Glühdauer von fünf Stunden bei einer Temperatur von 1150°C unter einer Wasserstoff-Atmosphäre mit einem Taupunkt < -30°C magnetisch schlussgeglüht. - E) Es wurde ein Band der
Dicke 0,20 mm mit Zirkonpropylat beschichtet. Die dabei verwendete Konzentration wies 0,5 g/qm an Zirkon auf. Daraus wurden wiederum Stanzringe gefertigt, die in einem Durchlaufofen bei einer Glühtemperatur von 1140°C unter einer Wasserstoff-Atmosphäre mit einem Taupunkt von < -30°C und einerDurchlaufzeit von 0,75 Stunden schlussgeglüht.
- A) A band of thickness 0.20 mm was provided with a magnesium methylate solution. The magnesium concentration achieved was 0.3 g / m². From this punch rings were produced, which were magnetically final annealed in a hood furnace at a temperature of 1030 ° C under a hydrogen atmosphere with a dew point of -20 ° C at an annealing time of five hours.
- B) A band of thickness 0.20 mm was provided with a magnesium methylate solution. The magnesium-methylate coating had a concentration of 0.3 g / m 2 of magnesium. Punch rings were made. These punch rings were magnetically final annealed in a bell-type furnace at a temperature of 1150 ° C. with an annealing time of five hours under a hydrogen atmosphere with a dew point <-30 ° C. The narrated punch rings had no magnesium oxide coating afterwards. The punch rings were metallic bright.
- C) A band of thickness 0.20 mm was coated with a magnesium methylate solution. The concentration used was 0.3 g / m 2 of magnesium. This in turn punched rings were made. These punch rings were in one Continuous furnace finally annealed at a temperature of 1020 ° C. Magnetic final annealing took place under a hydrogen atmosphere with a dew point of -28 ° C and a flow time of 0.75 hours.
- D) A band of thickness 0.20 mm was coated with zirconium propoxide solution. The concentration achieved was 0.5 g / m² zirconium. This in turn punched rings were made. The punch rings were magnetically final annealed in a hood furnace for a period of five hours at a temperature of 1150 ° C under a hydrogen atmosphere with a dew point <-30 ° C.
- E) A tape of thickness 0.20 mm was coated with zirconium propoxide. The concentration used was 0.5 g / m 2 zircon. This in turn punched rings were manufactured, which finally annealed in a continuous furnace at an annealing temperature of 1140 ° C under a hydrogen atmosphere with a dew point of <-30 ° C and a flow time of 0.75 hours.
Die Stanzringe hatten einen Aussendurchmesser von 14,8 mm, einen Innendurchmesser von 10,5 mm und eine Dicke von 0,20 mm.The punch rings had an outside diameter of 14.8 mm, an inside diameter of 10.5 mm and a thickness of 0.20 mm.
Zur physikalischen und magnetischen Charakterisierung wurden anschließend aus allen Versuchen A) bis E) mehrere Stanzringe zu einem Stanzringpaket gestapelt. Die Ummagnetisierungsverluste wurden für eine Amplitude von B = 1,0 T als Funktion der Frequenz f bestimmt. Es wurde dabei eine "sinusförmige Induktion" als Messbedingung genommen. Die Gesamtverluste PFe setzen sich aus den Hystereseverlusten Ph und den Wirbelstromverlusten PWS zusammen. Dabei gilt in erster Näherung der folgender Zusammenhang:
In einer Auftragung der Verluste pro Zyklus, d. h. also einer Darstellung der Verluste PFe pro Zyklus als Funktion der Frequenz f entspricht dem Achsenabschnitt den Hystereseverlusten pro Zyklus. Die Steigung B bestimmt die Wirbelstromverluste im Falle klassischer Wirbelstromverluste. Eine mehr oder weniger perfekte Isolation der Stanzringe führt zu einzelnen Kontakten zwischen den Stanzringen, was sich letztlich in erhöhten Wirbelstromverlusten äußert, da die effektive Stanzringdicke zunimmt.In a plot of the losses per cycle, ie a representation of the losses P Fe per cycle as a function of the frequency f, the intercept corresponds to the hysteresis losses per cycle. The slope B determines the eddy current losses in the case of classic eddy current losses. A more or less perfect insulation of the punch rings leads to individual contacts between the punch rings, which ultimately manifests itself in increased eddy current losses, since the effective punch ring thickness increases.
Im Falle einer schlechten Isolation erhöht sich also die Steigung B in einer derartigen Auftragung. Die Hystereseverluste Ph sind in der Regel umso kleiner, je höher die Glühtemperatur und die Glühdauer der magnetischen Schlussglühung und je besser der Taupunkt der Wasserstoff-Atmosphäre sind.In the case of poor insulation, therefore, the slope B increases in such a plot. The hysteresis losses P h are generally smaller, the higher the annealing temperature and annealing time of the magnetic annealing and the better the dew point of the hydrogen atmosphere.
Die Stanzringe wurden entweder lose gestapelt (p = 0) oder in einer Messvorrichtung mit Druck beaufschlagt. Die Messung unter Beaufschlagung mit Druck diente dabei zur Bestimmung der Isolationsqualität. Aufgrund der Magnetostriktion der untersuchten Nickel-Eisen-Legierungen, die ungefähr λS = 25 ppm beträgt, führte dies allerdings zu einer Erhöhung der Hystereseverluste während der MessungThe punched rings were either stacked loosely (p = 0) or pressurized in a measuring device. The measurement under pressure was used to determine the insulation quality. Due to the magnetostriction of the investigated nickel-iron alloys, which is approximately λ S = 25 ppm, however, this led to an increase in the hysteresis losses during the measurement
Die Messung simuliert die spätere Anwendung von Statorblechpaketen in Motoren. Dort werden Stanzringe zu einem Stanzringpaket gestapelt. Zur Gewährleistung eines ausreichenden Füllfaktors werden diese mit Druck beaufschlagt. Das Stanzringpaket wird anschließend mit einem dünnflüssigen Klebstoff infiltriert. Bei dieser Art der Stanzringpaketfertigung ist eine ausreichende Isolation der einzelnen Statorstanzringe unerlässlich, um die Wirbelstromverluste im Stator so niedrig als möglich zu halten.The measurement simulates the later use of stator laminations in motors. There punch rings are stacked to form a punching ring package. To ensure a sufficient filling factor they are pressurized. The punching ring package is then infiltrated with a low-viscosity adhesive. In this type of die ring package production, sufficient isolation of the individual stator punch rings is essential to keep the eddy current losses in the stator as low as possible.
Aus den
Im Fall B) ist trotz einer Glühung bei 1150°C ein solcher Wert nicht realisiert worden. Dies lässt sich dadurch erklären, dass zuvor eine Glühung wie bei A) durchgeführt worden ist. Infolge des schlechten Taupunkts sind Schädigungen an den Legierungsoberflächen aufgetreten, die eine Begrenzung des Kornwachstums durch die Bildung von Oxiden auf den Korngrenzen bewirkt haben. Diese Schädigungen können durch eine zweite Glühung nicht ausgeglichen werden. Die Oxide können durch eine erhöhte Glühtemperatur und einen verbesserten Taupunkt weitgehend reduziert werden. Die Triebkraft für das Kornwachstum ist jedoch nur noch gering, was zu einer deutlich erhöhten Koerzitivfeldstärke führt. Diese deutlich erhöhte Koerzitivfeldstärke macht sich selbstverständlich in den erhöhten Hystereseverlusten bemerkbar. Der Einfluss der Reduktion der Isolationsschicht im Beispiel B) ist aus der
In der beigefügten Tabelle 1 sind sämtliche Werte für die Hystereseverluste, die Gesamtverluste und die Fitparameter A und B aus der Gleichung [1] aufgeführt.In the attached Table 1, all values for the hysteresis losses, the total losses and the fit parameters A and B are given from the equation [1].
Claims (12)
- Metallic object with an electrically insulating, high temperature resistant coating of zirconium oxide, wherein a magnetic semi-finished product in the form of bands, sheets or strips or in the form of a laminated core is provided as a metallic object,
characterised in that
the magnetic semi-finished product consists of a soft-magnetic alloy and is magnetically final-annealed at a temperature above 1000°C. - Metallic object according to claim 1, wherein the coating has coverage thicknesses p of metallic zirconium between 0.2 ≤ ρ ≤ 1.2 grams per m2 metal surface.
- Metallic object according to claim 2, wherein the coating has coverage thicknesses p of metallic zirconium between 0.4 ≤ ρ ≤ 0.6 grams per m2 metal surface.
- Metallic object according to any of claims 1 to 3, wherein a nickel-iron alloy consisting substantially of nickel with a content between 36.0 and 82.0 percent by weight, rest iron, is provided as a soft-magnetic alloy.
- Metallic object according to claim 4, wherein an alloy of 47.5 percent by weight nickel, 0.5 percent by weight manganese, 0.2 percent by weight silicon, rest iron and melt-related and/or accidental impurities, is provided as a magnetic alloy.
- Method for producing an electrically insulating coating of zirconium oxide on a surface of a metallic object, wherein a magnetic semi-finished product in the form of bands, sheets or strips or in the form of a laminated core is provided as a metallic object, wherein the magnetic semi-finished product consists of a soft-magnetic alloy, the method comprising the following steps:- providing an organic zirconium compound (solution) dissolved in a solvent;- applying the solution to the surface;- annealing the metallic object- characterised in that the soft-magnetic alloy is magnetically final-annealed at a temperature above 1000°C.
- Method according to claim 6, wherein a zirconium alkylate dissolved in an organic solvent is provided.
- Method according to claim 7, wherein a zirconium alkylate from the group of zirconium butylate and zirconium propylate, which is dissolved in an anhydrous organic solvent, is provided.
- Method according to claim 8, wherein an alcohol or a mixture of alcohols is provided as an organic solvent.
- Method according to claim 9, wherein an aliphatic solvent is provided as an organic solvent.
- Method according to any of claims 6 to 10, wherein a solution containing between 0.2 and 10 percent by weight of zirconium is produced.
- Method according to any of claims 6 to 11, wherein a forming operation of the metallic object is carried out between the application of the solution on the surface of and the annealing of the metallic object.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10324910 | 2003-05-30 | ||
DE2003124910 DE10324910B4 (en) | 2003-05-30 | 2003-05-30 | Metallic semifinished product with electrically insulating coating and method for producing an electrically insulating coating |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1482072A2 EP1482072A2 (en) | 2004-12-01 |
EP1482072A3 EP1482072A3 (en) | 2008-07-30 |
EP1482072B1 true EP1482072B1 (en) | 2014-04-16 |
Family
ID=33103672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04010882.1A Expired - Lifetime EP1482072B1 (en) | 2003-05-30 | 2004-05-06 | Metallic object provided with electrically insulating coating as well as process for making electrically insulating coating |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1482072B1 (en) |
DE (1) | DE10324910B4 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11827961B2 (en) | 2020-12-18 | 2023-11-28 | Vacuumschmelze Gmbh & Co. Kg | FeCoV alloy and method for producing a strip from an FeCoV alloy |
DE102020134301A1 (en) | 2020-12-18 | 2022-06-23 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic alloy and method of making a soft magnetic alloy |
DE102020134300A1 (en) | 2020-12-18 | 2022-06-23 | Vacuumschmelze Gmbh & Co. Kg | Water-based alkaline composition for forming an insulating layer of an annealing separator, coated soft magnetic alloy and method of manufacturing a coated soft magnetic ribbon |
DE102022120602A1 (en) | 2022-08-16 | 2024-02-22 | Vacuumschmelze Gmbh & Co. Kg | Method for producing a sheet from a soft magnetic alloy for a laminated core |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56133801A (en) * | 1980-03-21 | 1981-10-20 | Res Inst Electric Magnetic Alloys | Manufacture of insulating soft magnetic plate |
US4876117A (en) * | 1988-02-04 | 1989-10-24 | Domain Technology | Method and coating transition metal oxide on thin film magnetic disks |
DE19943789A1 (en) * | 1999-09-13 | 2001-03-15 | Fraunhofer Ges Forschung | Process for the deposition of zirconium oxide layers using soluble powders |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2796364A (en) * | 1952-10-02 | 1957-06-18 | Lydia A Suchoff | Method of forming an adherent film of magnesium oxide |
JPS63310969A (en) * | 1986-05-09 | 1988-12-19 | Toray Ind Inc | Production of zirconia coated material |
JP2512402B2 (en) * | 1988-06-22 | 1996-07-03 | 日新製鋼株式会社 | Method for manufacturing zirconia film |
DE4238150A1 (en) * | 1992-11-12 | 1994-05-19 | Vacuumschmelze Gmbh | Isolation process for soft magnetic tapes |
-
2003
- 2003-05-30 DE DE2003124910 patent/DE10324910B4/en not_active Expired - Fee Related
-
2004
- 2004-05-06 EP EP04010882.1A patent/EP1482072B1/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56133801A (en) * | 1980-03-21 | 1981-10-20 | Res Inst Electric Magnetic Alloys | Manufacture of insulating soft magnetic plate |
US4876117A (en) * | 1988-02-04 | 1989-10-24 | Domain Technology | Method and coating transition metal oxide on thin film magnetic disks |
DE19943789A1 (en) * | 1999-09-13 | 2001-03-15 | Fraunhofer Ges Forschung | Process for the deposition of zirconium oxide layers using soluble powders |
Also Published As
Publication number | Publication date |
---|---|
EP1482072A3 (en) | 2008-07-30 |
DE10324910B4 (en) | 2005-05-25 |
EP1482072A2 (en) | 2004-12-01 |
DE10324910A1 (en) | 2004-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2247269C3 (en) | A method for producing an insulating layer which improves magnetostriction characteristics and iron loss on a silicon steel sheet | |
DE102010038038A1 (en) | Process for producing an insulation coating on a grain-oriented electro-steel flat product and electro-flat steel product coated with such an insulation coating | |
DE3875676T2 (en) | METHOD FOR PRODUCING CORNORIENTED STEEL SHEETS WITH METAL GLOSS AND EXCELLENT PUNCHABILITY. | |
DE102015114358B4 (en) | Method for producing a grain-oriented electrical strip and grain-oriented electrical strip | |
DE2726045C2 (en) | Method for producing an electrical steel sheet with a Goss texture | |
EP3625373A1 (en) | Non-oriented electrical steel strip for electric motors | |
EP3746574A1 (en) | Electrical steel strip that can be but doesn't have to be reannealed | |
DE4409691A1 (en) | Process for the production of electrical sheets with a glass coating | |
DE2307464A1 (en) | IRON ALLOYS AND METHOD OF MANUFACTURING THEREOF | |
DE2730172C2 (en) | Process for the production of a forsterite insulating film with good adhesion properties | |
DE60106557T2 (en) | PORCELAIN METAL STEEL PLATE WITH EXCELLENT FORMABILITY, AGING RESISTANCE AND ENAMELING PROPERTIES AND METHOD OF MANUFACTURING THEREOF | |
EP1482072B1 (en) | Metallic object provided with electrically insulating coating as well as process for making electrically insulating coating | |
DE2917235A1 (en) | PROCESS FOR THE FORMATION OF FIXED AND UNIFORM INSULATION LAYERS ON GRAIN ORIENTED SILICON STEEL SHEET | |
DE69131977T2 (en) | Process for the production of grain-oriented electrical thin sheet with improved magnetic properties and surface film properties | |
DE1954773B2 (en) | PROCESS FOR PRODUCING SIMPLE GRAIN ORIENTED SILICON STEEL SHEETS WITH HIGH MAGNETIC INDUCTION AND LOW IRON LOSS | |
DE102020202171A1 (en) | Process for the production of a surface-finished steel sheet and surface-finished steel sheet | |
DE69032021T2 (en) | Thermal straightening of semi-finished electrical steel products | |
DE1433821B2 (en) | Process for the production of double-oriented electrical steel sheets | |
EP0036558A1 (en) | Coated metal article and method of manufacturing the same | |
DE2447482B2 (en) | PROCESS FOR DEVELOPING AN ADHESIVE MGO-SIO DEEP 2 GLASS COATING ON THE SURFACES OF GRAIN-ORIENTED SI STEEL SHEET | |
DE2334739A1 (en) | PROCESS FOR MANUFACTURING GRAIN ORIENTED ELECTRICAL SHEET | |
DE2130274C3 (en) | Steel sheets or strips containing an insulating coating for electromagnetic applications and processes for their manufacture | |
DE2542173C2 (en) | ||
DE1900040C3 (en) | Magnetic sheet made of oriented or non-oriented silicon steel material with a heat-resistant and insulating coating and process for its manufacture | |
DE4036586C2 (en) | Process for treating aluminum sheet used in the construction of vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
17P | Request for examination filed |
Effective date: 20090102 |
|
AKX | Designation fees paid |
Designated state(s): CH DE FR GB LI |
|
17Q | First examination report despatched |
Effective date: 20130516 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20131217 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB LI |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004014582 Country of ref document: DE Effective date: 20140605 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: R. A. EGLI AND CO. PATENTANWAELTE, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004014582 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20150119 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004014582 Country of ref document: DE Effective date: 20150119 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502004014582 Country of ref document: DE Representative=s name: WESTPHAL, MUSSGNUG & PARTNER PATENTANWAELTE MI, DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20210526 Year of fee payment: 18 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220506 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230523 Year of fee payment: 20 Ref country code: DE Payment date: 20230530 Year of fee payment: 20 Ref country code: CH Payment date: 20230602 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 502004014582 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |