EP1480628A1 - Verwendung von inhibitoren des natrium-wasserstoff-austauschers zur behandlung von thrombotischer und inflammatorischer erkrankungen - Google Patents

Verwendung von inhibitoren des natrium-wasserstoff-austauschers zur behandlung von thrombotischer und inflammatorischer erkrankungen

Info

Publication number
EP1480628A1
EP1480628A1 EP03706415A EP03706415A EP1480628A1 EP 1480628 A1 EP1480628 A1 EP 1480628A1 EP 03706415 A EP03706415 A EP 03706415A EP 03706415 A EP03706415 A EP 03706415A EP 1480628 A1 EP1480628 A1 EP 1480628A1
Authority
EP
European Patent Office
Prior art keywords
vwf
use according
inhibitors
treatment
diseases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03706415A
Other languages
English (en)
French (fr)
Inventor
Hans-Jochen Lang
Stefan Werner Schneider
Hans Oberleithner
André NIEMEYER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanofi Aventis Deutschland GmbH
Original Assignee
Aventis Pharma Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aventis Pharma Deutschland GmbH filed Critical Aventis Pharma Deutschland GmbH
Publication of EP1480628A1 publication Critical patent/EP1480628A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/255Esters, e.g. nitroglycerine, selenocyanates of sulfoxy acids or sulfur analogues thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/417Imidazole-alkylamines, e.g. histamine, phentolamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4418Non condensed pyridines; Hydrogenated derivatives thereof having a carbocyclic group directly attached to the heterocyclic ring, e.g. cyproheptadine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/454Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. pimozide, domperidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the invention relates to the use of inhibitors of the cellular sodium-hydrogen exchanger in human and veterinary medicine for the prevention and treatment of acute or chronic diseases which are caused by elevated blood levels of the von Willebrand factor.
  • the inhibitors can therefore be used to treat thrombotic and inflammatory diseases.
  • NHE sodium hydrogen exchanger
  • the important mechanism of action of the NHE inhibitors in acute ischemia is that they reduce the increased sodium ion influx which arises in acutely deficient tissue through activation of the NHE due to intracellular acidification. This will make the situation of sodium overload of the tissue . delayed. Since sodium and calcium ion transport are coupled to each other in the heart tissue, this prevents the life-threatening calcium overload of the heart cells.
  • the inhibitors of the NHE bring about protection of the central nervous system (CNS), such active substances protecting the CNS, similar to the heart, against acute ischemic conditions. These conditions are caused by an acute lack of blood circulation and thus by an Lack of supply with nutrients, oxygen or minerals. Such ischemic damage to the CNS is particularly pronounced in central infarcts, such as a stroke. With normal, healthy blood flow, therefore, as expected, no protective effects of NHE inhibitors were also possible. against these acute events, since no acute ischemic tissue damage to the heart or the CNS occurred.
  • CNS central nervous system
  • platelet aggregation inhibitors such as acetylsalicylic acid, dipyridamole and ticlopidine
  • anticoagulants such as heparins or heparinoids.
  • the blood coagulation cascade can be mechanistically divided into two paths, as shown in the following scheme, namely an intrinsic and an extrinsic course, both of which ultimately result in the activation of factor X and the resulting generation of thrombin and subsequently fibrin:
  • a disadvantage of the known therapeutic agents on the market that intervene in the coagulation process as inhibitors is therefore the high risk of bleeding complications.
  • high dose thrombolysis therapy e.g. B. as part of the therapy of acute myocardial infarction or pulmonary embolism, there is a risk of life-threatening bleeding. Therefore there is an urgent one Need for therapeutic agents that, despite overdosing, carry no risk of increased bleeding tendency.
  • vWF von Willebrand factor
  • vWF von Willebrand factor
  • factor VIII factor VIII bound by vWF
  • antithrombotic agents that antagonize the stabilizing binding of the vWF to factor VIII can also be disadvantageous because in the event of an overdose, extensive inhibition of blood coagulation and dangerous bleeding tendencies must be expected.
  • the compounds used according to the invention inhibit the release of the von Willebrand factor from the endothelial cells.
  • the compounds according to the invention inhibit the massive pH-dependent release of the vWF accumulated in ischemia.
  • the transmembrane protein P-selectin is also stored in the Weibel-Palade bodies (Wagner, DD 1993, Thromb. Haemost, 70: 105-110).
  • the P-selectin is located in the vesicle membrane and is after the vesicle fusion (exocytosis ) built into the plasma membrane of the endothelial cell. Every Weibel-Palade body exocytosis thus leads not only to an increased release of vWF, but also to an increased P-selectin expression in the endothelial cell membrane.
  • vWF secretion (quantitative measurement by means of ELISA) is shown under acidosis, as well as during a subsequent reperfusion. In parallel, these quantitative measurements are made with Immunofluorescence data from the Weibel-Palade bodies confirmed.
  • the measured vWF is not only a marker for increased (increase in WF secretion) or decreased (decrease in vWF secretion) tendency to thrombosis (via the increase in aggregation of the platelets), but also a direct marker for an increased or decreased P-selectin expression in the endothelial cell membrane.
  • P-selectin serves as an anchor for leukocytes and thus the initial inflammatory reaction (Vestweber, D., Blanks, JE 1999, Physiol. Rev., 79: 181-213; Issekutz, AC, Issekutz, TB 2002, J. Immunol., 168 : 1934 to 1939).
  • the pathophysiological significance is diverse and is evidence of ischemia / reperfusion disorders, thrombosis and arteriosclerosis (Massberg, S., et al., 1998, Blood, 92: 507-515;
  • P-selectin As an inflammation marker and initiator of inflammation, it plays an essential role in the process of cancer spreading (Varki, A., Varki, NM 2001, Braz. J. Med. Biol. Res. 34: 711-717) , as well as during different joint inflammations (arthritis) (Veihelmann, A. et al, 1999, Microcirculation, 6: 281-290; Mclnnes, LB., et al., 2001, J. Immunol., 167: 4075-4082).
  • the mode of action of the substances described here can therefore also be used as a therapeutic agent for all of the above-mentioned P-selectin-associated diseases.
  • the invention therefore relates to the use of inhibitors of sodium
  • Hydrogen exchanger for the manufacture of medicines for the prophylaxis and therapy of acute or chronic diseases caused by elevated blood levels of the von Willebrand factor.
  • the invention further relates to the use of at least one of the following compounds
  • Another object of the invention is the use of cariporides
  • the separation into the pure stereoisomers is possible either by chromatography on an optionally chiral support material or, if the racemic compounds mentioned above are capable of salt formation, by fractional crystallization the diastereomeric salts formed with an optically active base or acid as auxiliary.
  • Modified silica supports so-called Pirkle phases
  • high-molecular carbohydrates such as triacetyl cellulose are suitable as chiral stationary phases for the separation of enantiomers by thin-layer or column chromatography.
  • the optically active, usually commercially available base such as (-) - nicotine, (+) - and (-) - phenylethylamine, quinine bases, L-lysine or L- and D-arginine are used to dissolve the differently soluble diastereomeric salts formed, the less soluble component isolated as a solid, the more soluble diastereomer separated from the mother liquor, and the pure enantiomers obtained from the diastereomeric salts thus obtained.
  • racemic compounds of the formula I which contain a basic group such as an amino group
  • optically active acids such as (+) - camphor-10-suifonic acid, D- and L-tartaric acid, D- and L- Convert lactic acid and (+) and (-) - mandelic acid into the pure enantiomers.
  • chiral compounds which contain alcohol or amine functions with correspondingly activated or optionally N-protected enantiomerically pure amino acids in the corresponding esters or amides, or conversely chiral carboxylic acids with carboxy-protected enantiomerically pure amino acids in the amides or with enantiomerically pure hydroxycarboxylic acids such as lactic acid transfer the corresponding chiral ester.
  • the chirality of the amino acid or alcohol residue introduced in enantiomerically pure form can be used to separate the isomers by separating the diastereomers now present by crystallization or chromatography on suitable stationary phases and then cleaving off the chiral part of the molecule carried along using suitable methods.
  • Acidic or basic products of the above-mentioned compounds can be in the form of their salts or in free form.
  • the production of physiologically compatible salts from the abovementioned compounds capable of salt formation, including their stereoisomeric forms, is carried out in a manner known per se.
  • the carboxylic acids and hydroxamic acids form with alkaline reagents such as hydroxides, carbonates, hydrogen carbonates, alcoholates and ammonia or organic bases, for example trimethyl- or triethylamine, ethanolamine or triethanolamine or also basic amino acids, such as lysine, ornithine or arginine, stable alkali metal, alkaline earth metal or, if appropriate substituted ammonium salts. If the above-mentioned compounds have basic groups, stable acid addition salts can also be prepared with strong acids.
  • alkaline reagents such as hydroxides, carbonates, hydrogen carbonates, alcoholates and ammonia or organic bases, for example trimethyl- or triethylamine, ethanolamine or triethanolamine or also basic amino acids, such as lysine, ornithine or arginine, stable alkali metal, alkaline earth metal or, if appropriate substituted ammonium salts. If the above-mentioned compounds have basic groups, stable acid addition salt
  • Both inorganic and organic acids such as hydrogen chloride, hydrogen bromide, sulfur, phosphorus, methanesulfone, benzenesulfone, p-toluenesulfone, 4-bromobenzene sulfone, cyclohexylamidosulfone, trifluoromethylsulfone, vinegar and oxal come for this -, Tartaric, succinic or trifluoroacetic acid in question.
  • Methanesulfonic acid salts of the abovementioned compounds are particularly preferred.
  • the above-mentioned compounds are suitable for the prophylaxis and therapy of acute or chronic diseases which are caused by increased blood levels of the von Willebrand factor and / or increased expression of the P-selectin.
  • thrombotic diseases that are provoked by ischemic conditions with subsequent reperfusion; such as thrombosis in acute myocardial, mesenteric or even cerebral infarction; thrombotic diseases that occur during or after surgery; pulmonary emboli; deep venous thrombotic diseases that are provoked by ischemic conditions with subsequent reperfusion; such as thrombosis in acute myocardial, mesenteric or even cerebral infarction; thrombotic diseases that occur during or after surgery; pulmonary emboli; deep venous thrombotic diseases that are provoked by ischemic conditions with subsequent reperfusion; such as thrombosis in acute myocardial, mesenteric or even cerebral infarction; thrombotic diseases that occur during or after surgery; pulmonary emboli; deep venous thrombotic diseases that occur during or after surgery; pulmonary emboli; deep venous thrombotic diseases that are provoked by ischemic conditions with subsequent reperfusion; such as thrombosis in acute myocardial, me
  • Thromboses such as those that occur after a prolonged restriction of the blood circulation, in particular of the lower extremities, for example after lying or sitting for a long time, and inflammatory diseases, such as those during ischemia and subsequent reperfusion, during vasculitis (e.g. as part of an autoimmune disease or collagenosis) , occur.
  • the medicaments according to the invention can be administered by oral, inhalative, rectal or transdermal application or by subcutaneous, intra-articular, intraperitoneal or intravenous injection. Oral application is preferred.
  • the invention also relates to a method for producing a medicament, which is characterized in that at least one of the above
  • the above-mentioned compounds are mixed with the suitable additives such as carriers, stabilizers or inert diluents and brought into suitable dosage forms by the customary methods, such as tablets, dragées, push-fit capsules, aqueous, alcoholic or oily suspensions or aqueous or oily solutions.
  • suitable additives such as carriers, stabilizers or inert diluents and brought into suitable dosage forms by the customary methods, such as tablets, dragées, push-fit capsules, aqueous, alcoholic or oily suspensions or aqueous or oily solutions.
  • inert carriers such.
  • the preparation can take place both as dry and as moist granules.
  • Vegetable or animal oils such as sunflower oil or cod liver oil, are suitable as oily carriers or solvents.
  • the active compounds are, if desired, brought into solution, suspension or emulsion with the suitable substances, such as solubilizers, emulsifiers or other auxiliaries.
  • suitable substances such as solubilizers, emulsifiers or other auxiliaries.
  • solvents such.
  • physiological saline or alcohols e.g. As ethanol, propanol, glycerin, in addition
  • Sugar solutions such as glucose or mannitol solutions, or a mixture of the various solvents mentioned.
  • customary auxiliaries such as carriers, disintegrants, binders, coatings, swelling agents, lubricants or lubricants, flavorings, sweeteners and solubilizers, are used.
  • Magnesium carbonate, titanium dioxide, lactose, mannitol and other sugars, talc, milk protein, gelatin, starch, cellulose and its derivatives, animal and vegetable oils such as cod liver oil, sunflower, peanut or sesame oil, polyethylene glycol and solvents such as sterile are common additives Water and monohydric or polyhydric alcohols such as glycerin.
  • the above-mentioned compounds are preferably prepared and administered as pharmaceutical preparations in dosage units, each unit containing as active ingredient a certain dose of the compound of the formula I.
  • the dosage can also be increased in severe cases. In many cases, however, lower doses are sufficient.
  • These figures refer to an adult weighing approximately 75 kg.
  • the above-mentioned compounds can be used alone or in combination with anticoagulant, platelet aggregation-inhibiting or fibrinolytic active substances.
  • the co-application can take place, for example, with factor Xa inhibitors, standard heparin, low molecular weight heparins such as enoxaparin, dalteparin, certroparin, parnaparin or tinzaparin, direct thrombin inhibitors such as hirudin, aspirin, fibrinogen receptor antagonists, streptokinase, urokinase and / or activator plasmin and / or activator plasmin ,
  • Example 1 the cells were cultured either on gelatinized glass plates (measurement of the intracellular proton concentration) or on cell culture plates (12-well culture plates, Falcon, New Jersey, USA; measurement of the vWF release) after the first passage.
  • Example 1 the cells were cultured either on gelatinized glass plates (measurement of the intracellular proton concentration) or on cell culture plates (12-well culture plates, Falcon, New Jersey, USA; measurement of the vWF release) after the first passage.
  • gelatinized glass plates measurement of the intracellular proton concentration
  • cell culture plates (12-well culture plates, Falcon, New Jersey, USA; measurement of the vWF release
  • HUVECs were loaded with the pH-sensitive fluorescent dye BCECF-AM (2 ', 7'-bis (carboxyethyl) - 5 (6) -carboxyfluorescein).
  • BCECF-AM 2 ', 7'-bis (carboxyethyl) - 5 (6) -carboxyfluorescein.
  • a Deltascan Spectrofluorometer (PTI, Hamburg) was used for the subsequent measurement of the fluorescence.
  • This measuring system essentially consists of a UV light source, a monochromator, a photon detector and the software packages Felix and Oscar (PTI, Hamburg) for controlling the system via a computer.
  • the ratio of the measured emissions of the BCECF was recorded and the pH value was determined after calibration.
  • the measuring chamber is constructed in such a way that the parameters of temperature and the carbon dioxide partial pressure of the system are checked with continuous perfusion. For the reperfusion simulation, the test conditions were set to 37 ° C. and a carbon dioxide partial pressure of 5% or 10% by gassing the system and perfusate.
  • Reperfusion buffer of the NHE inhibitor cariporide was added in a concentration of 10 ⁇ M.
  • Table 1 Intracellular pH during an extracellular acidosis (pHj (acidosis)) of at least 15 minutes or under control conditions (Co).
  • SEM is the standard deviation from the mean
  • Extracellular acidosis resulted in intracellular acidification that persisted throughout the duration of the acidosis.
  • the cells mentioned were first washed with acidic medium (pH 6.4 from the components: medium M199 w / Earle 's & Amino Acids, w / L-glutamine, w / o NaHCO 3 , w / o Hepes + 0.084 g NaHCO 3 / 1) or pH standard medium (pH 7.4 from the constituents: medium M199 w / Earle's & amino Acids, w / L-glutamine, w / o NaHCO3, w / o Hepes + 2,200g NaHCO 3/1) incubated for one, three or 48 hours.
  • acidic medium pH 6.4 from the components: medium M199 w / Earle 's & Amino Acids, w / L-glutamine, w / o NaHCO 3 , w / o Hepes + 0.084 g NaHCO 3 /
  • pH standard medium pH standard medium
  • vWF content of Standard Human Plasma (Behring, Marburg) is based on an international Standards (2 nd International Standard 87/718; National Institute for Biological
  • the vWF concentration under control conditions is set to 100%.
  • vWF secretion was measured during a 10 minute reperfusion period with stimulation.
  • the vWF secretion of the control cells (vWF c0 ) was set to 100%.
  • the vWF concentration during reperfusion of preacidotic cells (vWFacidosis) and the vWF concentration during reperfusion of preacidotic cells in the presence of 10 ⁇ M cariporide (VWFH O E) were given as relative values to the control values. Control cells were incubated with Cariporide

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Diabetes (AREA)
  • Pulmonology (AREA)
  • Emergency Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pyrrole Compounds (AREA)
  • Indole Compounds (AREA)
  • Quinoline Compounds (AREA)
  • Other In-Based Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

Inhibitoren des zellulären Natrium-Wasserstoff-Austauschers zeigen eine inhibierende Wirkung auf die Sekretion des von-Willebrand-Faktors und/oder erhöhte Expression des P-Selektins. Diese Inhibitoren können daher zur Behandlung von thrombotischen und inflammatorischer Erkrankungen eingesetzt werden.

Description

Verwendung von Inhibitoren des Natrium-Wasserstoff-Austauschers zur Behandlung von thrombotischer und inflammatorischer Erkrankungen
Die Erfindung betrifft die Verwendung von Inhibitoren des zellulären Natrium- Wasserstoff-Austauschers in der Human- und Veterinärmedizin für die Verhinderung und Behandlung von akuten oder chronischen Krankheiten, die durch erhöhte Blutspiegel des von Willebrand-Faktors verursacht werden. Die Inhibitoren können daher zur Behandlung von thrombotischen und entzündlichen Erkrankungen eingesetzt werden.
Inhibitoren des Natrium Wasserstoff-Austauschers (NHE) sind in den letzten Jahren in zahlreichen präklinischen Studien als Substanzen charakterisiert worden, die bei Minderdurchblutung des Herzens in überlegener Weise geeignet sind, das durch das akut einsetzende Ischämie-Ereignis gefährdete Herzgewebe vor dem Untergang zu schützen. Der Schutz des Herzgewebes durch NHE Inhibitoren umfasst alle
Ausprägungen der durch die Mangeldurchblutung hervorgerufenen Schädigungen, angefangen bei Herzrhythmusstörungen über Hyperkontraktur des Herzmuskels und vorübergehenden Funktionsverlust bis hin zum Absterben des Herzgewebes und damit verbundenen dauerhaften Schäden.
Der im akuten Ischämiegeschehen wichtige Wirkmechanismus der NHE-Inhibitoren besteht darin, dass sie den verstärkten Natrium-Ioneneinstrom, der in akut mangeldurchblutetem Gewebe durch eine Aktivierung des NHE, infolge intrazellulärer Ansäuerung entsteht, vermindern. Dadurch wird die Situation einer Natriumüberladung des Gewebes. hinausgezögert. Da im Herzgewebe Natrium- und Calcium- lonentransport miteinander gekoppelt sind, wird damit die Leben bedrohende Calciumüberladung der Herzzellen verhindert.
Ferner ist bekannt, dass die Inhibitoren des NHE eine Protektion des Zentralnervensystems (ZNS) bewirken, wobei derartige Wirkstoffe das ZNS, ähnlich wie das Herz, gegen akute ischämische Zustände schützten. Diese Zustände werden verursacht durch eine akute Mangeldurchblutung und somit durch eine Mangelversorgung mit Nährstoffen, Sauerstoff oder Mineralien. Besonders ausgeprägt sind derartige ischämische Schädigungen des ZNS bei zentralen Infarkten, wie dem Gehirnschlag (Stroke). Bei normaler gesunder Durchblutung konnten deshalb erwartetermaßen auch keine protektiven Effekte von NHE-Inhibitoren. gegen diese akuten Ereignisse beobachtet werden, da keine akut einsetzenden ischämischen Gewebsschädigungen des Herzens oder des ZNS auftraten.
Im Stand der Technik werden zahlreiche Substanzklassen beschrieben, die in das Zusammenspiel der Gerinnungsfaktoren eingreifen und damit den Ablauf der Gerinnungskaskade zum Stillstand bringen. Ebenfalls wurden zahlreiche
Wirkprinzipien entwickelt, die nicht die Thrombenbildung unterdrücken, sondern die Auflösung (Lyse) bereits gebildeter Thromben verursachen. Einige dieser Wirkpinzipien, die an unterschiedlichsten Schaltstellen der genannten Kaskade eingreifen, wurden in die Therapie zur Verhinderung der Thrombogenese eingeführt, wie Derivate der Vitamin K-Gruppe (Phyllochinone), Faktor VIII und Faktor-IX
Präparate, Thrombozytenaggregationshemmer wie Acetylsalizylsäure, Dipyridamol und Ticlopidin, Antikoagulantien wie Heparine oder Heparinoide.
Die Blutgerinnungskaskade kann mechanistisch in zwei Pfade eingeteilt werden, wie in nachfolgendem Schema dargestellt wird, nämlich in einen intrinsichen und einen extrinsischen Verlauf, die beide schließlich in die Aktivierung de Faktor X und die resultierende Erzeugung von Thrombin und nachfolgend von Fibrin münden:
Intrinsic Extrinsic
Aggregation
Fibrinogen Fibrin
Schema 1 : Blutgerinnungs-Kaskade
Bei der therapeutischen Anwendung derartiger Blutgerinnungsinhibitoren ist es wichtig, dass keine zu starke oder vollständige Gerinnungshemmung erzielt wird, die die lebensnotwendige Bildung von Mikrothromben und Mikrokoagulationen inhibieren würden, welche an den sich kontinuierlich ereignenden MikroVerletzungen stattfinden müssen. Der Grad der Gerinnungshemmung lässt sich infolge unterschiedlicher Ansprechbarkeit des jeweiligen Individuums zum jeweiligen Zeitpunkt nur ungenau einstellen und muss, soweit dies möglich ist, genau überwacht werden. Im Falle einer Inhibierung dieser vielen kleinen, permanent stattfindenden Gerinnungsvorgänge besteht das hohe Risiko von massiven Blutungen (Hämophilie).
Nachteil der bekannten am Markt befindlichen Therapeutika, die als Inhibitoren in das Gerinnungsgeschehen eingreifen, ist daher das hohe Risiko von Blutungskomplikationen. Insbesondere während einer hochdosierten Thrombolysetherapie, z. B. im Rahmen der Therapie des akuten Myokardinfarktes oder Lungenembolie, besteht die Gefahr der lebensbedrohlichen Blutung. Deshalb besteht ein dringender Bedarf an therapeutischen Wirkstoffen, die trotz Überdosierung keine Gefahr einer erhöhten Blutungsneigung in sich tragen.
Viele der bekannten gerinnungshemmenden Stoffe wirken dadurch, dass sie an den Blutplättchen, den Thrombozyten, angreifen und deren Funktion hemmen oder deren Aktivierung inhibieren. Auch das Endothel spielt offensichtlich eine zentrale Rolle im Gerinnungsgeschehen. So wird beispielsweise der für die Gerinnung notwendige von- Willebrand-Faktor (vWF) zum größten Teil in den Endothelzellen gebildet und von dort permanent (konstitutiv) in das zirkulierende Blut sezerniert, um die notwendigen Gerinnungsprozesse im Blut zu gewährleisten. Ein beachtlicher Teil, des gebildeten vWF wird in zytoplasmatischen Granula, den sogenannten Weibel-Palade-Körperchen, gespeichert und bei Bedarf durch Stimulation der Endothelzellen freigesetzt. Sind Endothelzellen nicht in der Lage, den vWF zu bilden und an das Blut abzugeben, so kommt es zur bekannten erblichen vWF-abhängigen von Willebrand-Jürgens-Syndrom Erkrankung, die sich durch ihre kau m-still baren Blutungen auszeichnet. Erst seit wenigen Jahren sind Erkrankungen bekannt, die durch erhöhte Konzentrationen an vWF im Blut verursacht werden, und dadurch beispielsweise eine verstärkte Blutgerinnungsneigung und Entzündungsvorgänge ausgelöst werden. So weisen Kamphuisen et al. in ihrer Publikation „Elevated factor VIII levels and the risk of thrombosis" [Arterioscler. Thromb. Vase. Biol. 21 (5):731 -738 (2001 )] anhand zahlreicher Studien nach, dass ein signifikanter Zusammenhang zwischen erhöhten Blutspiegeln an vWF und einer erhöhten Thromboseerkrankungsrate besteht. Dabei bildet der Faktor VIII mit vWF einen Komplex als notwendige Voraussetzung der Blutgerinnung. Es konnte herausgearbeitet werden, dass hohe Blutspiegel an von Willebrand-Faktor (vWF) und an durch vWF-gebundenen Faktor VIII einen klaren Risikofaktor für eine Thrombose darstellen. Allerdings können antithrombotische Wirkstoffe, die die stabilisierende Bindung des vWF an Faktor VIII antagonisieren, auch nachteilig sein, weil im Falle einer Überdosierung mit einer weitgehenden Inhibition der Blutgerinnung und mit gefährlichen Blutungsneigungen gerechnet werden muss. In dem Bestreben, wirksame Verbindungen zur Behandlung von akuten oder chronischen Krankheiten, die durch erhöhte Blutspiegel des von Willebrand-Faktors verursacht werden, zu finden, wurde nun gefunden, dass die erfindungsgemäß eingesetzten Verbindungen die Freisetzung des von Willebrand-Faktors aus den Endothelzellen inhibieren. Die erfindungsgemäßen Verbindungen hemmen die massive pH-abhängige Freisetzung des in der Ischämie akkumulierten vWF.
Während die Sezemierung bei dem normalen Blut-pH bekanntermaßen um 7,4 regulär, konstitutiv erfolgt und ein Teil des vWF in Weibel-Palade-Körperchen gespeichert wird, konnte nun gefunden werden, dass die Freisetzung des vWF mit sinkendem pH verzögert und vermindert erfolgt. Die Exocytose der Weibel-Palade- Körperchen, in denen der vWF verpackt ist, wird bei absinkendem pH zunehmend gehemmt. So kommt es unter acidotischen Bedingungen zur signifikanten Zunahme der Weibel-Palade-Körperchen und damit zur massiven Akkumulation des VWF in der Endothelzelle und zu einer verminderten konstitutiven und stimulierten vWF-Sekretion. Diese kann durch Anfärbungsmaßnahmen sichtbar gemacht und durch quantitative vWF-Messungen im Überstand bewiesen werden. Derartige acidotische Zustände mit signifikanten pH-Absenkungen unter 7 treten beispielsweise in Fällen von Gewebsischämien auf. Im Moment der Realkalinisierung und Endothelzellstimulation, die dem Zustand der Reperfusion entspricht, kommt es innerhalb von Sekunden zur Exocytose und damit zur Entleerung der Weibel-Palade-Körperchen (WPK) und führt so zu einer massiven Freisetzung des prothrombotischen Risikofaktors.
Neben dem vWF wird in den Weibel-Palade-Körperchen auch das transmembranäre Protein P-Selektin gespeichert (Wagner, D.D. 1993, Thromb. Haemost, 70:105-110) Das P-Selektin sitzt in der Vesikelmembran und wird nach der Vesikelfusion (Exozytose) in die Plasmamembran der Endothelzelle eingebaut. Damit führt jede Weibel-Palade-Körperchen Exozytose nicht nur zu einer vermehrten vWF-Freisetzung, sondern auch zu einer gesteigerten P-Selektin Expression in der Endothelzellmembran. In den Beispielen wird die vWF-Sekretion (quantitative Messung mittels ELISA) unter Azidose, wie auch während einer anschließenden Reperfusion gezeigt. Parallel werden diese quantitativen Messungen mit Immunfluoreszenzdaten der Weibel-Palade-Körperchen belegt. Damit ist der gemessene vWF nicht nur ein Marker für gesteigerte (Zunahme der WF Sekretion) oder verringerte (Abnahme der vWF-Sekretion) Thromboseneigung (über die Aggregationszunahme der Thrombozyten), sondern auch ein direkter Marker für eine gesteigerte oder verringerte P-Selektin Expression in der Endothelzellmembran. P- Selektin dient als Anker für Leukozyten und damit der initialen Entzündungsreaktion (Vestweber, D., Blanks, J.E. 1999, Physiol. Rev., 79:181-213; Issekutz, A.C., Issekutz, T.B. 2002, J. Immunol., 168:1934-1939). Die pathophysiologische Bedeutung ist vielfältig und belegt für Ischämie/Reperfusionserkrankungen, Thrombosen und Arteriosklerose (Massberg, S., et al., 1998, Blood, 92:507-515;
Kita, T., et al., 2001 , Ann. N. Y. Acad. Sei., 947:199-205). Neben der Bedeutung des P-Selektins als Entzündungsmarker und Initiator einer Entzündung, spielt es eine wesentliche Rolle im Prozeß der Krebsverbreitung (Varki, A., Varki, N.M. 2001 , Braz. J. Med. Biol. Res. 34:711-717), als auch während unterschiedlicher Gelenksentzündungen (Arthritis) (Veihelmann, A. et al, 1999, Microcirculation, 6: 281- 290; Mclnnes, LB., et al., 2001 , J. Immunol., 167:4075-4082). Damit kann die hier dargestellte Wirkungsweise der Substanzen, auch Einsatz als Therapeutikum für alle oben erwähnten P-Selektin assoziierten Erkrankungen finden.
Die Erfindung betrifft daher die Verwendung von Inhibitoren des Natrium-
Wasserstoffaustauschers zur Herstellung von Arzneimitteln zur Prophylaxe und Therapie von akuten oder chronischen Krankheiten, die durch erhöhte Blutspiegel des von Willebrand-Faktors verursacht werden.
Die Erfindung betrifft ferner die Verwendung von mindestens einer der folgenden Verbindungen
H
und/oder alle stereoisomeren Formen der obengenannten Verbindungen und/oder Gemische diese Formen in jedem Verhältnis, und/oder der physiologisch verträglichen Salze der obengenannten Verbindungen zur Herstellung eines Arzneimittels zur Prophylaxe und Therapie von akuten oder chronischen Krankheiten, die durch erhöhte Blutspiegel des von Willebrand-Faktors und/oder erhöhte Expression des P-Selektins verursacht werden.
Ein weiterer Gegenstand der Erfindung ist die Verwendung von Cariporide
zur Herstellung eines Arzneimittels zur Prophylaxe und Therapie von akuten oder chronischen Krankheiten, die durch erhöhte Blutspiegel des von Willebrand-Faktors und/oder erhöhte Expression des P-Selektins verursacht werden.
Die obengenannten Verbindungen sind bekannt und lassen sich beispielsweise wie in
EP 0 416 499, EP 0 556 673, EP 0 589 336, EP 0 622 356, EP 0 699 666,
EP 0 708 088, EP 0 719 766, EP 0 726 254, EP 0 787 728, EP 0 972 767,
DE 19529612, DE 19601303, WO 99 00379; oder T.Kawamoto, et al., Potent and selective Inhibition of the human Na+/H+ exchanger isoformNHEI by a novel aminoguanidine derivative T-162559, Eur.J.Pharmacol. 420 (2001), 1 - 8, beschrieben herstellen.
Sofern die obengenannten Verbindungen diastereoisomere oder enantiomere Formen zulassen und bei der gewählten Synthese als deren Gemische anfallen, gelingt die Trennung in die reinen Stereoisomeren entweder durch Chromatographie an einem gegebenenfalls chiralen Trägermaterial, oder, sofern die racemischen obengenannten Verbindungen zur Salzbildung befähigt sind, durch fraktionierte Kristallisation der mit einer optisch aktiven Base oder Säure als Hilfsstoff gebildeten diastereomeren Salze. Als chirale Stationärphasen für die dünnschicht- oder säulenchromatographische Trennung von Enantiomeren eignen sich zum Beispiel modifizierte Kieselgelträger (sogenannte Pirkle-Phasen) sowie hochmolekulare Kohlenhydrate wie Triacetylcellulose. Für analytische Zwecke sind nach entsprechender, dem Fachmann bekannter Derivatisierung, auch gaschromatographische Methoden an chiralen Stationärphasen anwendbar. Zur Enantiomerentrennung der racemischen Carbonsäuren werden mit einer optisch aktiven, in der Regel kommerziell erhältlichen Base wie (-)-Nicotin, (+)- und (-)-Phenylethylamin, Chininbasen, L-Lysin oder L- und D- Arginin die unterschiedlich löslichen diastereomeren Salze gebildet, die schwerer lösliche Komponente als Feststoff isoliert, das leichter lösliche Diastereomer aus der Mutterlauge abgeschieden, und aus den so gewonnenen diastereomeren Salzen die reinen Enantiomeren gewonnen. Auf prinzipiell gleiche Weise kann man die racemischen Verbindungen der Formel I, die eine basische Gruppe wie eine Aminogruppe enthalten, mit optisch aktiven Säuren, wie (+)-Campher-10-suIfonsäure, D- und L- Weinsäure, D- und L- Milchsäure sowie (+) und (-)-Mandelsäure in die reinen Enantiomeren überführen. Auch kann man chirale Verbindungen, die Alkohol- oder Aminfunktionen enthalten, mit entsprechend aktivierten oder gegebenenfalls N- geschützten enantiomerenreinen Aminosäuren in die entsprechenden Ester oder Amide, oder umgekehrt chirale Carbonsäuren mit carboxygeschützten enantiomerenreinen Aminosäuren in die Amide oder mit enantiomerenreinen Hydroxycarbonsäuren wie Milchsäure, in die entsprechenden chiralen Ester überführen. Sodann kann die Chiralität des in enantiomerenreiner Form eingebrachten Aminosäure- oder Alkoholrestes zur Trennung der Isomeren genutzt werden, indem man eine Trennung der nunmehr vorliegenden Diastereomeren durch Kristallisation oder Chromatographie an geeigneten Stationärphasen vornimmt und danach den mitgeführten chiralen Molekülteil mittels geeigneter Methoden wieder abspaltet.
Saure oder basische Produkte der obengenannten Verbindungen können in Form ihrer Salze oder in freier Form vorliegen. Bevorzugt sind pharmakologisch verträgliche Salze, z. B. Alkali- oder Erdalkalimetallsalze bzw. Hydrochloride, Hydrobromide, Sulfate, Hemisulfate, alle möglichen Phosphate sowie Salze der Aminosäuren, natürlicher Basen oder Carbonsäuren. Die Herstellung physiologisch verträglicher Salze aus den zur Salzbildung befähigten obengenannten Verbindungen, einschließlich deren stereoisomeren Formen, erfolgt in an sich bekannter Weise. Die Carbonsäuren und Hydroxamsäuren bilden mit basischen Reagenzien wie Hydroxiden, Carbonaten, Hydrogencarbonaten, Alkoholaten sowie Ammoniak oder organischen Basen, beispielsweise Trimethyl- oder Triethylamin, Ethanolamin oder Triethanolamin oder auch basischen Aminosäuren, etwa Lysin, Ornithin oder Arginin, stabile Alkali-, Erdalkali oder gegebenenfalls substituierte Ammoniumsalze. Sofern die obengenannten Verbindungen basische Gruppen aufweisen, lassen sich mit starken Säuren auch stabile Säureadditionssalze herstellen. Hierfür kommen sowohl anorganische als auch organische Säuren, wie Chlorwasserstoff-, Bromwasserstoff-, Schwefel-, Phosphor-, Methansulfon-, Benzolsulfon-, p-Toluolsulfon-, 4-Brombenzol-sulfon-, Cyclohexylamidosulfon-, Trifluormethylsulfon-, Essig-, Oxal-, Wein-, Bernstein- oder Trifluoressigsäure in Frage. Insbesondere bevorzugt sind Methansulfonsäuresalze der obengenannten Verbindungen.
Aufgrund der pharmakologischen Eigenschaften eignen sich die obengenannten Verbindungen zur Prophylaxe und Therapie von akuten oder chronischen Krankheiten, die durch erhöhte Blutspiegel des von Willebrand-Faktors und/oder erhöhte Expression des P-Selektins verursacht werden.
Dazu gehören thrombotische Erkrankungen, die durch ischämische Zustände mit nachfolgender Reperfusion provoziert werden; wie Thrombosen im akuten Myokard-, Mesenterial- oder auch Hirninfarkt; thrombotische Erkrankungen, die während oder nach chirurgischen Eingriffen auftreten; pulmonare Embolien; tiefe venöse
Thrombosen, wie sie nach längerer Einschränkung des Blutkreislaufs insbesondere der unteren Extremitäten beispielweise nach längerem Liegen oder Sitzen vermehrt auftreten, sowie entzündliche Erkrankungen, wie sie während der Ischämie und anschliessenden Reperfusion, während einer Vaskulitis (z. B. im Rahmen einer Autoimmunerkrankung oder Kollagenose), auftreten.
Ferner gehören dazu Erkrankungen, die durch eine erhöhte Expression des P- Selektins verursacht werden wie beginnende Entzündungsreaktionen; aber auch Prophylaxe und Behandlung von Arteriosklerose; sowie Prophylaxe und Behandlung von Krebs; als auch Gelenksentzündungen und arthritische Erkrankungen wie rheumatoide Arthritis.
Die Applikation der erfindungsgemäßen Arzneimittel kann durch orale, inhalative, rektale oder transdermale Applikation oder durch subkutane, intraartikuläre, intraperitoneale oder intravenöse Injektion erfolgen. Bevorzugt ist die orale Applikation.
Die Erfindung betrifft auch ein Verfahren zur Herstellung eines Arzneimittels, das dadurch gekennzeichnet, dass man mindestens eine der obengenannten
Verbindungen mit einem pharmazeutisch geeigneten und physiologisch verträglichen Träger und gegebenenfalls weiteren geeigneten Wirk-, Zusatz- oder Hilfsstoffen in eine geeignete Darreichungsform bringt.
Die obengenannten Verbindungen werden mit den dafür geeigneten Zusatzstoffen wie Trägerstoffen, Stabilisatoren oder inerten Verdünnungsmitteln vermischt und durch die üblichen Methoden in geeignete Darreichungsformen gebracht, wie Tabletten, Dragees, Steckkapseln, wässrige, alkoholische oder ölige Suspensionen oder wässrige oder ölige Lösungen. Als inerte Trägerstoffe können z. B. Gummi arabicum, Magnesia, Magnesiumcarbonat, Kaliumphosphat, Milchzucker, Glukose oder Stärke, insbesondere Maisstärke, verwendet werden. Dabei kann die Zubereitung sowohl als Trocken- als auch als Feuchtgranulat erfolgen. Als ölige Trägerstoffe oder Lösemittel kommen beispielsweise pflanzliche oder tierische Öle in Betracht, wie Sonnenblumenöl oder Lebertran.
Zur subkutanen, intraperitonealen oder intravenösen Applikation werden die aktiven Verbindungen gewünschtenfalls mit den dafür geeigneten Substanzen wie Lösungsvermittler, Emulgatoren oder weiteren Hilfsstoffen in Lösung, Suspension oder Emulsion gebracht. Als Lösungsmittel kommen z. B. in Frage physiologische Kochsalzlösung oder Alkohole, z. B. Ethanol, Propanol, Glycerin, daneben auch
Zuckerlösungen wie Glukose- oder Mannitlösungen, oder auch eine Mischung aus den verschiedenen genannten Lösungsmitteln. Ferner finden übliche Hilfsmittel, wie Trägerstoffe, Spreng-, Binde-, Überzugs-, Quellungs-, Gleit- oder Schmiermittel, Geschmacksstoffe, Süßungsmittel und Lösungsvermittler, Verwendung. Als häufig verwendete Hilfsstoffe seien Magnesiumcarbonat, Titandioxid, Laktose, Mannit und andere Zucker, Talkum, Milcheiweiß, Gelatine, Stärke, Cellulose und ihre Derivate, tierische und pflanzliche Öle wie Lebertran, Sonnenblumen-, Erdnuss- oder Sesamöl, Polyethylenglykol und Lösungsmittel wie etwa steriles Wasser und ein- oder mehrwertige Alkohole wie Glycerin, genannt.
Die obengenannten Verbindungen werden bevorzugt als pharmazeutische Präparate in Dosierungseinheiten hergestellt und verabreicht, wobei jede Einheit als aktiven Bestandteil eine bestimmte Dosis der Verbindung der Formel I enthält. Sie können zu diesem Zweck oral in Dosen von 0,01 mg/kg/Tag bis 25,0 mg/kg/Tag, vorzugsweise 0,01 mg/kg/Tag bis 5,0 mg/kg/Tag oder parenteral in Dosen von 0,001 mg/kg/Tag bis 5 mg/kg/Tag, vorzugsweise 0,001 mg/kg/Tag bis 2,5 mg/kg/Tag, appliziert werden. Die Dosierung kann in schweren Fällen auch erhöht werden. In vielen Fällen genügen jedoch auch geringere Dosen. Diese Angaben beziehen sich auf einen Erwachsenen von etwa 75 kg Gewicht.
Die obengenannten Verbindungen können allein oder in Kombination mit blutgerinnungshemmenden, plättchenaggregationshemmenden oder fibrinolytischen Wirkstoffen eingesetzt werden. Die Koapplikation kann beispielsweise mit Faktor Xa- Inhibitoren, Standardheparin, niedermolekularen Heparinen wie Enoxaparin, Dalteparin, Certroparin, Parnaparin oder Tinzaparin, direkten Thrombin Inhibitoren wie Hirudin, Aspirin, Fibrinogen Rezeptor Antagonisten, Streptokinase, Urokinase und/oder Tissue Plasminogen Aktivator (tPA) erfolgen.
Es ist bekannt, dass die Inhibitoren des Natrium-Wasserstoff-Austauschers auf die Aggregation der Thrombocyten wirken und eine adhäsionshemmende Wirkung aufweisen (siehe Rosskopf, Dieter, J. Thromb. Thrombolysis (1999), 8(1 ), 15-23.; oder Nieuwland, Rienk; Akkerman, Jan-Willem Nicolaas. Adv. Mol. Cell Biol. (1997), 18(Platelet), 353-366). Im Gegensatz zu den bereits beschriebenen Wirkungen auf die Blutplättchen- aggregation zeigen die obengenannten Verbindungen auch eine Inhibition der überschießenden Freisetzung des von-Willebrand-Faktors. Dieses neuartige antithrombotische Wirkprinzip unterscheidet sich von den bislang bekannten antithrombotischen Wirkprinzipien in entscheidender und vorteilhafter Weise dadurch, dass
a) es nur im ischämischen Gewebe in der nachfolgenden Reperfusionsphase wirkt, während andere nicht von der Ischämie betroffene (prä-ischämische) Zellen völlig unbeeinflusst bleiben, und b) keine der gefährlichen Blutungskomplikationen während der Lyse-Therapie befürchtet werden müssen.
Nachfolgend ist die Erfindung an Hand von Beispielen näher erläutert.
In den nachfolgenden Beispielen wurden die Auswirkungen einer extrazellulären Azidose (pHex = 6,4), sowie die Wirkungen der obengenannten erfindungsgemäßen Verbindungen auf den intrazellulären pH (pHi) und die Freisetzung des von- Willebrand-Faktors (vWF) dargestellt. Sämtliche Beispiele wurden mit humanen umbilikalvenösen Endothelzellen (HUVEC) durchgeführt. Hierbei handelte es sich um primäre Zellkulturen, die aus der Vene der Nabelschnur isoliert wurden.
Für die folgenden Beispiele wurden die Zellen entweder auf gelatinierte Glasplättchen (Messung der intrazellulären Protonenkonzentration) oder auf Zellkulturplatten (12-well culture plates, Falcon, New Jersey, USA; Messung der vWF-Freisetzung) nach der ersten Passage kultiviert. Beispiel 1 :
Messung des intrazellulären pH-Wertes
Zur Messung der intrazellulären Protonenkonzentration (pHj) wurden HUVECs mit dem pH-sensitiven Fluoreszenzfarbstoff BCECF-AM (2',7'-bis(carboxyethyl)- 5(6)-carboxyfluoreszein) beladen. Zur anschließenden Messung der Fluoreszenz wurde ein Deltascan Spectrofluorometer (PTI, Hamburg) eingesetzt. Im wesentlichen besteht dieses Meßsystem aus einer UV-Lichtquelle, einem Monochromator, einem Photonendetektor sowie den Softwarepaketen Felix und Oscar (PTI, Hamburg) für die Steuerung des Systems über einen Computer. Nach alternierender Anregung mit den Wellenlängen 439,5 nm (pH-unabhängig) und 490 nm (pH-sensitiv) wurde das Verhältnis der gemessenen Emissionen des BCECF (Ratio) aufgezeichnet und der pH-Wert nach einer Kalibrierung ermittelt. Die Messkammer ist derart aufgebaut, dass die Parameter Temperatur sowie Kohlenstoffdioxidpartialdruck des Systems bei kontinuierlicher Perfusion kontrolliert werden. Für die Reperfusionssimulation wurden die Versuchsbedingungen auf 37 °C und einen Kohlenstoffdioxidpartialdruck von 5% oder 10% durch System- und Perfusatbegasung eingestellt.
Im Versuch wurde zunächst 60 Minuten mit Natrium-Bicarbonat-Puffer pHex 6,4 vorinkubiert, um eine respiratorisch-metabolische Azidose zu simulieren. Dann erfolgte ein Wechsel der eingeleiteten Perfusion auf Natrium-Bicarbonat-Puffer pH 7,4 mit 10 μM Histamin als Reperfusionssimulation.
Im Vergleich zu diesen Kontrollexperimenten wurde im Versuch dem
Reperfusionspuffer der NHE-Inhibitor Cariporide in einer Konzentration von 10 μM zugesetzt.
Die Ergebnisse mehrerer Versuche wurden in Tabellen 1 und 2 zusammengefasst. Tabelle 1 : Intrazellulärer pH Wert während einer extrazellulären Azidose (pHj (Azidose)) von mindestens 15 Minuten bzw. unter Kontrollbedingungen (Co).
Tabelle 1 :
SEM ist die Standardabweichung vom Mittelwert
Eine extrazelluläre Azidose führte zu einer intrazellulären Azidifizierung, die während der Dauer der Azidose bestehen blieb. Der intrazelluläre, azidotische pH-Wert ist dem extrazellulären pH nahezu identisch (angelegte extrazelluläre Azidose pHex = 6,4).
Tabelle 2: Reperfusion mit Versuchspuffer, enthaltend Cariporide (HOE) und Kontroll puffer (Co). Die initiale Anstiegsgeschwindigkeiten der pH-Werte wurde nach 60 Minuten Azidose aus den Messwerten innerhalb der ersten 30 Sekunden nach Reperfusion ermittelt.
Tabelle 2: pH-Anstiegsgeschwindigkeit [Δ pH / min]
Bei einer Änderung des extrazellulären pH-Wertes von 6,4 auf 7,4 war die Anstiegsgeschwindigkeit des intrazellulären pH-Wertes im Vergleich zur Kontrolle um den Faktor 3,6 vermindert. Somit ließ sich durch den Einsatz von Cariporide während der Reperfusion die Realkalinisierungsgeschwindigkeit signifikant vermindern.
Beispiel 2
Messung der vWF-Freisetzung nach Reperfusion
Die Messungen wurden durchgeführt in einem Inkubator Heraeus Heracell. Dadurch war es möglich die umbilikalvenösen Endothelzellen, unter kontrollierten physiologischen Bedingungen (Temperatur 37 °C, relative Luftfeuchtigkeit 100%, pCO2 konstant 5%) zu kultivieren, und einen raschen Wechsel verschiedener Zellkulturmedien zu gewährleisten.
Die genannten Zellen wurden zunächst mit azidotischem Medium (pH 6,4 aus den Bestandteilen: Medium M199 w/Earle's & Amino Acids, w/L-Glutamin, w/o NaHCO3, w/o Hepes + 0,084g NaHCθ3 / 1) oder pH-Standardmedium (pH 7,4 aus den Bestandteilen: Medium M199 w/Earle's & Amino Acids, w/L-Glutamin, w/o NaHCO3, w/o Hepes + 2,200g NaHCO3 / 1) für eine, drei oder 48 Stunden inkubiert. Vor Beginn der Reperfusion wurden Überstandsproben zur Bestimmung der vWF Konzentration unter azidotischen Bedingungen (vWFa2idose) und Kontrollbedingungen (vWFC0) entnommen. Zur Simulation der Reperfusion wurde auf ein Medium mit einem pH-Wert von 7,4 gewechselt (Bestandteile: Medium M199 w/Earle's & Amino Acids, w/L- Glutamin, w/o NaHCO3, w/o Hepes + 2,200 g NaHCO3 / 1 + 10μM Histamin), welchem der NHE-lnhibitor Cariporide in einer Konzentration von 10μM zugesetzt wurde. Als Kontrolle diente der Wechsel auf das gleiche Medium ohne entsprechenden Inhibitorzusatz.
Die dem Überstand entnommenen Proben wurden zur Bestimmung der vWF- Konzentration verwendet. Hierzu diente ein ELISA-Verfaren (enzyme-linked immuno sorbent assay) unter Verwendung spezifischer Antikörper. Der vWF-Gehalt von Standard Human Plasma (Behring,. Marburg) wird anhand eines internationalen Standards (2nd International Standard 87/718; National Institute for Biological
Standards and Control, London) umgerechnet.
Tabelle 3: vWF-Konzentration im Zeilüberstand unter azidotischen (vWFazidose) und unter Kontrollbedingungen (vWFC0) gemessen nach einer 15 minütigen Inkubationsdauer. Die vWF-Konzentration unter Kontrollbedingungen wird auf 100% gesetzt.
Tabelle 3:
Die Azidose führte zu einer deutlichen Abnahme der vWF-Sekretion, sowohl der konstitutiven Sekretion als auch der stimulierten Weibel-Palade Körperchen Sekretion. Die vWF Sekretion war während einer Azidose (pHex = 6,4) um einen Faktor 2 im Vergleich zu Kontrollzellen reduziert.
Tabelle 4: vWF-Sekretion wurde während einer 10 minütigen Reperfusionsdauer unter Stimulation gemessen. Die vWF-Sekretion der Kontrollzellen (vWFc0) wurde auf 100 % gesetzt. Die vWF-Konzentration während der Reperfusion preazidotischer Zellen (vWFazidose) und die vWF-Konzentration während der Reperfusion preazidotischer Zellen in Anwesenheit von 10 μM Cariporide (VWFHOE) wurden als relative Werte zu den Kontrollwerten angegeben. Kontrollzellen wurden mit Cariporide inkubiert
(vWFCo+HOE) Tabelle 4:
Während der Reperfusion kam es zu einer massiven Steigerung der vWF Sekretion um den Faktor 2. Eine Blockade des NHE mit Cariporide vermindert die vWF- Mehrsekretion um nahezu 60% und nähert sich somit den Kontrollwerten. Kontrollzellen inkubiert mit Cariporide (10 μM) zeigten keinen Mehr- oder Mindersekretion des vWF.
In den Beispielen wurde gezeigt, dass eine extrazelluläre Azidose, wie sie beispielsweise während einer Ischämie vorlag, zu einer intrazellulären Azidose führte mit der Folge einer verminderten (konstitutiven und stimulierten) vWF-Sekretion und einer verminderten P-Selektinexpression. Die anschließende Reperfusion und Stimulation der Endothelzellen bewirkte eine schnelle intrazelluläre Realkalinisierung. Simultan kam es zu einer massiv gesteigerten vWF-Mehrsekretion und vermehrten P- Selektinexpression. Eine Verzögerung der Realkalinisierung mit Cariporide verringerte die vWF-Mehrsekretion und P-Selektinexposition und damit die mögliche Thrombosierung und Entzündungsreaktionen. Die Beispiele zeigten, dass der intrazelluläre pH-Wert vom extrazellulären pH-Wert determiniert wird. Die Sekretionsleistung der Endothelzellen wiederum wird vom intrazellulären pH-Wert bestimmt. Damit lässt sich die in der Reperfusionsphase bekannte
Endothelzellaktivierung und die damit verbundene gefürchtete Rethrombosierung (vWF-Sekretion) und Entzündung durch Hemmung der Realkalinisierung stark reduzieren. Die Inkubation gesunder, nicht azidotischer Kontrollzellen mit Cariporide zeigte keine Wirkung. Dies indiziert ein geringes Nebenwirkungspotential und verhindert eine überschießende Blutungsneigung. Der Wirkstoff wirkt nur dort, wo eine Ischämie vorliegt.

Claims

Patentansprüche
1. Verwendung von Inhibitoren des Natrium-Wasserstoffaustauschers zur Herstellung von Arzneimitteln zur Prophylaxe und.Therapie von akuten oder chronischen Krankheiten, die durch erhöhte Blutspiegel des von Willebrand-Faktors und/oder erhöhte Expression des P-Selektins verursacht werden.
2. Verwendung gemäß Anspruch 1 , dadurch gekennzeichnet, dass mindestens eine der folgenden Verbindungen als Inhibitor des Natrium-Wasserstoffaustauschers
und/oder eine stereoisomere Form der obengenannten Verbindungen und/oder Gemische diese Formen in jedem Verhältnis, und/oder die physiologisch verträglichen Salze der obengenannten Verbindungen, eingesetzt wird.
3. Verwendung gemäß der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass Cariporide als Inhibitor des Natrium-Wasserstoffaustauschers eingesetzt wird.
4. Verwendung gemäß einem oder meheren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Erkrankung eine thrombotische Erkrankung ist, die durch ischämische Zustände mit nachfolgender Reperfusion provoziert wird; wie Thrombosen im akuten Myokard-, Mesenterial- oder auch Hirninfarkt; thrombotische Erkrankungen, die während oder nach chirurgischen Eingriffen auftreten; pulmonare Embolien; tiefe venöse Thrombosen, wie sie nach längerer Einschränkung des Blutkreislaufs insbesondere der unteren Extremitäten beispielweise nach längerem Liegen oder Sitzen vermehrt auftreten, sowie entzündliche Erkrankungen, wie sie während der Ischämie und anschliessenden Reperfusion auftreten, während einer Vaskulitis wie im Rahmen einer Autoimmunerkrankung oder Kollagenose, oder eine beginnende Entzündungsreaktion, Prophylaxe und Behandlung von Arteriosklerose, Prophylaxe und Behandlung von Krebs oder Behandlung von Gelenksentzündungen und arthritische Erkrankungen wie rheumatoide Arthritis, ist.
5. Verwendung gemäß einem oder meheren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die in den Ansprüchen 1 bis 3 genannten Verbindungen in Kombination mit blutgerinnungshemmenden, plättchenaggregationshemmenden oder fibrinolytischen Wirkstoffen eingesetzt werden.
6. Verwendung gemäß Anspruch 5, dadurch gekennzeichnet, dass die zusätzlichen Wirkstoffe ausgewählt sind aus der Gruppe der Faktor Xa-Inhibitoren, Standardheparin, niedermolekularen Heparinen wie Enoxaparin, Dalteparin, Certroparin, Parnapärin oder Tinzaparin, direkten Thrombin Inhibitoren wie Hirudin, Aspirin, Fibrinogen Rezeptor Antagonisten, Streptokinase, Urokinase und/oder Tissue Plasminogen Aktivator.
7. Verwendung gemäß einem oder meheren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Applikation der Wirkstoffe durch orale, inhalative, rektale oder transdermale Gabe oder durch subkutane, intraartikuläre, intraperitoneale oder intravenöse Injektion erfolgt.
EP03706415A 2002-02-14 2003-02-03 Verwendung von inhibitoren des natrium-wasserstoff-austauschers zur behandlung von thrombotischer und inflammatorischer erkrankungen Withdrawn EP1480628A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10206358A DE10206358A1 (de) 2002-02-14 2002-02-14 Verwendung von Inhibitoren des Natrium-Wasserstoff-Austauschers zur Behandlung von thrombotischer und inflammatorischer Erkrankungen
DE10206358 2002-02-14
PCT/EP2003/001020 WO2003068212A1 (de) 2002-02-14 2003-02-03 Verwendung von inhibitoren des natrium-wasserstoff-austauschers zur behandlung von thrombotischer und inflammatorischer erkrankungen

Publications (1)

Publication Number Publication Date
EP1480628A1 true EP1480628A1 (de) 2004-12-01

Family

ID=27634998

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03706415A Withdrawn EP1480628A1 (de) 2002-02-14 2003-02-03 Verwendung von inhibitoren des natrium-wasserstoff-austauschers zur behandlung von thrombotischer und inflammatorischer erkrankungen

Country Status (10)

Country Link
EP (1) EP1480628A1 (de)
JP (1) JP2005525336A (de)
AR (1) AR038502A1 (de)
AU (1) AU2003208368A1 (de)
BR (1) BR0307618A (de)
CA (1) CA2476446A1 (de)
DE (1) DE10206358A1 (de)
MX (1) MXPA04007387A (de)
TW (1) TW200403988A (de)
WO (1) WO2003068212A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10305070A1 (de) * 2003-02-07 2004-08-26 Merck Patent Gmbh Verwendung von N-(4,5-Methansulfonyl-2-methyl-benzoyl)-guanidin
AU2009243749B2 (en) * 2008-05-09 2013-11-21 Merck Patent Gmbh Pharmaceutical composition comprising rimeporide for treating diseases associated with insulin resistance and beta-cell dysfunction

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627193A (en) * 1995-02-09 1997-05-06 Mitsui Toatsu Chemicals, Inc. Quinoline-4-carbonylguanidine derivatives, process for producing the same and pharmaceutical preparations containing the compounds
DE19734693A1 (de) * 1997-08-11 1998-01-22 Hoechst Marion Roussel De Gmbh Verwendung von Cariporide als Inhibitor des zellulären NA+/H+-Exchangers (NHE) zur Herstellung eines Medikaments zur Behandlung von cardialen und nichtcardialen Krankheiten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03068212A1 *

Also Published As

Publication number Publication date
CA2476446A1 (en) 2003-08-21
AU2003208368A1 (en) 2003-09-04
DE10206358A1 (de) 2003-08-28
TW200403988A (en) 2004-03-16
AR038502A1 (es) 2005-01-19
BR0307618A (pt) 2004-12-21
JP2005525336A (ja) 2005-08-25
WO2003068212A1 (de) 2003-08-21
MXPA04007387A (es) 2004-10-11

Similar Documents

Publication Publication Date Title
DE69926750T2 (de) Vorbeugung des hirninfarkts durch kombinierte verabreichung von adp-rezeptor antiblutplättchen und antihypertensiven medikamenten
DE3606892A1 (de) Pharmazeutische formulierungen und verfahren zur behandlung von gedaechtnisstoerungen
DD211351A5 (de) Verfahren zur herstellung von neuen thieno-(3,2-c)pyridin-derivaten
DE60032905T2 (de) Selektive iglur5 rezeptorantagonisten zur behandlung der migräne
DE102006056766A1 (de) Verwendung von kompatiblen Soluten
DE19842415A1 (de) Pharmazeutische Zubereitung
DE10201550A1 (de) Phenoxy-Piperidine
EP1067965B1 (de) Pharmazeutische zusammensetzung zur behandlung von schlaganfall und schädel-hirn-trauma
US5023244A (en) Anti-dementia agents
DE69911633T2 (de) Pharmazeutische zusammenstellungen die tetrahydroisoquinoleinverbindungen enthalten
DE19634313A1 (de) Methode zur Stabilisierung von Plättchen
DE2846251A1 (de) Guanidinbenzoesaeureverbindungen, verfahren zu deren herstellung und arzneimittel, welche diese enthalten
DE69736130T2 (de) Pharmazeutische produkte zur heilung und vorbeugung von krankheiten, die aus der beschädigung der vaskulären endothelzellen hervorgehen
DE60316297T2 (de) Verbindungen, die zur behandlung von erkrankungen, die auf antiangiogene therapie ansprechen, nützlich sind
EP0312913B2 (de) Verwendung von paf-Acether-Antagonisten zur Herstellung eines Arzneimittels und Verfahren zu deren Wirksamkeitsbestimmung
FI105025B (fi) Menetelmä valmistaa (S)-alfa-fenyyli-2-pyridiinietaaniamiinia
EP2190430A1 (de) Verwendung von von cycloheximid abgeleiteten verbindungen zur behandlung oder vorbeugung von insbesondere ischämien und herzerkrankungen
EP1480628A1 (de) Verwendung von inhibitoren des natrium-wasserstoff-austauschers zur behandlung von thrombotischer und inflammatorischer erkrankungen
US20040192699A1 (en) Optic nerve protecting agents containing alpha1 receptor blocker as active ingredient
WO2003068224A2 (de) Verwendung von inhibitoren des natrium-abhängigen chlorid-bicarbonat-austauschers zur behandlung von thrombotischen und inflammatorischer erkrankungen
US20030220383A1 (en) Use of inhibitors of the sodium-dependent chloride/bicarbonate exchanger for the treatment of thrombotic and inflammatory disorders
EP0206297B1 (de) 4-Amino-2-(imidazolidin-2-on-l-yl)-pyrimidin-5-carbonsäure-(N-(3-trifluormethyl-phenyl)-amide) zur antithrombotischen Prophylaxe und Behandlung sowie ihre Verwendung zur Herstellung von antithrombotisch wirksamen Arzneimitteln
DE2328896A1 (de) Quaternaere phenylcycloalkylammoniumverbindungen und daraus hergestellte arzneipraeparate
WO2000032199A1 (de) Verwendung von galanthamin und galanthaminderivaten bei akuten funktionellen hirnschäden
US20040097583A1 (en) Use of inhibitors of the sodium/hydrogen exchanger for the treatment of thrombotic and inflammatory disorders

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040914

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SANOFI-AVENTIS DEUTSCHLAND GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20060622