EP1449408B2 - Schaltungsanordnung für ein led-array - Google Patents

Schaltungsanordnung für ein led-array Download PDF

Info

Publication number
EP1449408B2
EP1449408B2 EP02803750A EP02803750A EP1449408B2 EP 1449408 B2 EP1449408 B2 EP 1449408B2 EP 02803750 A EP02803750 A EP 02803750A EP 02803750 A EP02803750 A EP 02803750A EP 1449408 B2 EP1449408 B2 EP 1449408B2
Authority
EP
European Patent Office
Prior art keywords
led
current
regulating
circuit
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP02803750A
Other languages
English (en)
French (fr)
Other versions
EP1449408A1 (de
EP1449408B1 (de
Inventor
Simon BLÜMEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26010644&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1449408(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE10242365.2A external-priority patent/DE10242365B4/de
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Publication of EP1449408A1 publication Critical patent/EP1449408A1/de
Application granted granted Critical
Publication of EP1449408B1 publication Critical patent/EP1449408B1/de
Publication of EP1449408B2 publication Critical patent/EP1449408B2/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/46Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/52Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits in a parallel array of LEDs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/54Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits in a series array of LEDs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S362/00Illumination
    • Y10S362/80Light emitting diode

Definitions

  • the present invention relates to a circuit arrangement for an LED array, in particular for a light-signaling device, with two or more parallel-connected LED chains, in each of which at least one LED (light emitting diode, light emitting diode) is arranged, wherein at two or more LEDs are connected in series.
  • the anode sides of the LED chains can each be connected to the positive pole of a supply voltage, the cathode sides can be coupled to the negative pole of the supply voltage.
  • a circuit arrangement for a light-emitting diode display with 7-segment elements, in which a compensation circuit is arranged parallel to the 7-segment elements, is off DE 3030058 known. Furthermore, in US 5,939,839 a circuit with a self-regulating power supply for a lighting element described.
  • a variation of the forward voltage of LEDs can on the one hand be production-related.
  • a fine grouping of the LEDs with respect to the Duchlassbeginn is conceivable. This is associated with relatively high costs, as appropriate logistics and warehousing is required.
  • the forward voltage of a LED is temperature-dependent, whereby in turn different temperature dependencies can occur between individual LEDs. A temperature change can therefore lead to a change in the forward voltages.
  • an electrical resistance is connected in series with each LED chain. Overall, this resistance leads to a flatter UI characteristic of the relevant LED chain, so that a certain limitation of the current in the LED chain is achieved.
  • the size of this resistor and thus the voltage dropping therefrom whereby the efficiency of the overall system is deteriorated.
  • a change in the forward voltage of an LED chain can also be caused by the failure of individual LEDs, for example by shorting an LED. This results in a current setting by means of series-connected resistors to a strong redistribution of the currents in the LED chains.
  • the present invention has for its object to provide a circuit arrangement for an LED array of the type mentioned, in which a predetermined distribution of the currents to the individual LED chains as possible, even with different forward voltages or a change in the forward voltages in the individual LED chains largely upright will hold. In particular, even with a short circuit of an LED or the interruption of an LED chain, the predetermined current distribution should remain as unchanged as possible.
  • a circuit arrangement for an LED array two or more parallel LED chains, in each of which at least one LED is arranged, wherein two or more LEDs are connected in series and wherein the anode sides of the LED chains each at the positive pole a supply voltage and the cathode sides are each coupled to the negative pole of the supply voltage provided, wherein in each case a control arrangement for controlling a predetermined current distribution is connected to the individual LED chains in series with each LED chain.
  • control arrangements each comprise a current amplification device for impressing the current into the respective LED chain.
  • the control arrangements each contain a preferably bipolar transistor and an emitter resistor.
  • the current amplifying circuits each have a control input for controlling the current in the associated LED string, the control inputs being connected together, and the current in the associated LED string being adjusted by means of the emitter resistor connected in series with the current amplifier circuit.
  • the collector terminal of the transistor is in each case connected to the cathode side of the associated LED chain, and its emitter terminal can be connected via the emitter resistor to the negative pole of the supply voltage.
  • the base terminals of the transistors are connected together.
  • a drive circuit supplies the base terminals of the transistors with a predetermined current.
  • a series circuit of a diode and a resistor is provided in each case, which is arranged between the respective collector terminal and the respective base terminal of the transistor of the respective control arrangement.
  • the collector terminal of the transistor is connected in each case to the anode side of the associated LED chain and its emitter terminal can be connected via the emitter resistor to the positive pole of the supply voltage, the base terminals of the transistors being connected to one another.
  • LEDs in the invention are to be understood as light emitting diodes of any type, in particular in the form of LED components.
  • a control arrangement in each case a combination of a transistor provided with an emitter resistor, wherein the collector-emitter path or the emitter resistor is connected in series with the - respective LED chain.
  • the base terminals of the transistors which represent the above control inputs, connected to each other and are in operation at the same potential.
  • the emitter resistor is used in particular for adjusting the current distribution to the LED chains.
  • the value of the emitter resistors is in each case inversely proportional to the corresponding emitter current which approximately corresponds to the collector current or the current in the associated LED chain (with the exception of broken LED chains, as will be explained in more detail below).
  • a drive circuit applies a predetermined current to the base terminals of the transistors.
  • separate drive circuits are provided for the individual LED chains.
  • the drive circuit for supplying the base terminals of the transistors with a predetermined current is formed as a series circuit of a diode and a resistor respectively connecting collector and base terminals of the transistors.
  • the diodes ensure that the operating conditions for the transistors are fulfilled and, on the other hand, prevent a redistribution of the currents in the LED chains via the common connection of the base terminals.
  • a change in the forward voltage of an LED chain for example, by a change in temperature or by can be caused by the short circuit of an LED is intercepted by means of the drive circuit by a corresponding change in the associated collector-base voltage, so that the collector current and thus the current in the relevant LED chain does not change or only to a small extent.
  • the forward voltage of the LED chain decreases. This is compensated by means of the associated control arrangement in that the collector-base voltage increases at the associated transistor. Since only the respective base current of the transistors flows through the resistors of the drive circuit, which is typically smaller by a factor of 100 to 250 than the collector current, the resistors can each be dimensioned so that even with a small change in the current through the resistor sufficient high voltage to compensate for the different forward voltages in the individual LED chains at the resistor drops.
  • the fault situation that is opposite to a short circuit of an LED is a failure of an LED that interrupts the LED chain. This can be caused for example by an overload of the LED, so that the LED "burns through”.
  • the voltage between the collector and base of the associated transistor breaks down.
  • the base of the defective-chain transistor is still at the same potential due to the common electrical connection of the transistor base terminals.
  • the transistor of the defective LED chain is thus operated as a diode, wherein the compensation currents required for this flow over the intact LED chains and the connection of the Tranistorbasisan realise.
  • the predetermined by the dimensioning of the emitter resistors current distribution is maintained for the remaining intact LED chains, the currents in the intact LED chains are approximately equal to the respective emitter currents and in turn in each case inversely proportional to the corresponding emitter resistors.
  • the intended current distribution is kept constant even with extreme changes in the forward voltages.
  • the collector currents or the currents in the LED chains typically only fluctuate by a few mA.
  • neither an interruption of an LED chain nor a short circuit in an LED chain leads to the breakdown of the current distribution.
  • a costly grouping of the LED components according to forward voltages is not required.
  • the values of the resistors in the drive circuit in the first embodiment of the invention range between 100 ohms and 1000 ohms. This can be generated by relatively small currents sufficiently high compensation voltages to compensate for different forward voltages of the LED chains.
  • the described embodiment represents an energetically advantageous overall system, especially with longer LED chains.
  • the LED array can be flexibly designed, it being possible to set a predetermined current for each LED chain, in particular without any particular effort. In general, a uniform current distribution will be desired, which is readily feasible by the same emitter resistors.
  • circuit diagram is a plurality of LEDs 2 connected in series to LED chains. Shown are three chains LK1, LK2, LK3, each with four LEDs 2, wherein a circuit arrangement according to the invention may of course also comprise a different number of LEDs in the LED chains or a different number of LED chains. This is illustrated by the dashed lines in the supply voltage lines (see below), the connection of the transistor base connections (see below) and the LED chains. Furthermore, the number and / or the type of LEDs in the individual LED chains can vary from chain to chain.
  • a melting resistor Fu1, Fu2, Fu3 can be connected in series with the LED chains LK1, LK2, LK3.
  • the LED chains LK1, LK2, LK3 are connected on the anode side respectively to the positive pole of a supply voltage U V and on the cathode side in each case to a regulation arrangement RA1, RA2, RA3.
  • the control arrangements RA1, RA2, RA3 each include an NPN transistor T1, T2, T3, whose collector terminal C1, C2, C3 respectively with the cathode side of the associated LED chain LK1, LK2, LK3 or with the optionally interposed melt resistance Fu1, Fu2, Fu3 is connected.
  • the emitter terminal E1, E2, E3 is connected in each case via an emitter resistor R12, R22, R32 to the negative pole of a supply voltage U V.
  • the transistors T1, T2, T3 are designed in the illustrated arrangement as commercial npn transistors. Between the cathode side or the melting resistance of each LED chain and the respective base terminal B1, B2, B3 of the associated transistor T1, T2, T3 is in each case a drive circuit in the form of a series circuit of a diode D1, D2, D3 and an electrical resistor R11, R21, R31 switched.
  • the base terminals B1, B2, B3 of the transistors T1, T2, T3 are connected together.
  • the following description also applies generally to an LED array with N LED strings, where x is between 1 and N.
  • the current Ix which - apart from the respective much lower base current corresponds to the current in the respective LED chain LKx, is regulated so that at the base-emitter path of the associated transistor Tx a voltage of about 0.65 V occurs.
  • the current is adjusted via the transistors T1, T2, T3 so that the voltage dropping across the emitter resistors is approximately 0, 65 V is below the common base potential. Since the voltage between the base and emitter of 0.65V in the transistors T1, T2, T3 is (almost) the same, must to drop at the respective emitter resistors R12, R22, R32, the same voltages.
  • the currents I1, I2, I3 in the LED chains are thus controlled so that the voltages U12, U22, U32 are equal. Overall, this determines the distribution of the currents on the LED chains through the emitter resistors R12, R22, R32, the ratio of the currents being equal to the ratio of the reciprocal emitter resistance values.
  • each of the emitter current which is composed of the associated base and collector current, equated with the collector current, thus neglecting the significantly lower base current compared.
  • all emitter resistors R12, R22, R32 must have the same resistance value.
  • a different energization of the different chains can be realized without special effort by different values for the emitter resistors R12, R22, R32.
  • the energization of the LED chains can be advantageously adapted as required, without further, possibly more complex changes of the circuit are required.
  • a change in the forward voltage of an LED string LKx e.g. by shorting an LED, is intercepted by a corresponding change in the associated collector-base voltage.
  • the setting of the emitter current Ix explained above and thus of the current in the LED chain LKx remains virtually unaffected, so that the collector current or the current in the LED chain does not change or changes only slightly.
  • the power supply of the base inputs B1, B2, B3 of the transistors T1, T2, T3 is in each case by means of a drive circuit in the form of a series circuit of a Diode D1, D2, D3 and a resistor R11, R21, R31 realized.
  • the diodes D1, D2, D3 here have a dual function: On the one hand, they set the operating condition of the transistors T1, T2, T3, i. On the other hand, they suppress cross-currents between the individual LED chains LK1, LK2, LK3, on the other hand they suppress the required voltage at the respective collector-base path Cx-Bx. The latter causes that over the common electrical connection of the transistor bases B1, B2, B3 no current, for example, due to potential differences in the individual LED chains LK1, LK2, LK3, which may be caused because of different forward voltages or a short-circuited LED, from a LED chain can flow into another LED chain.
  • the diodes D1, D2, D3 are dimensioned so that a voltage drops across them, which is sufficient for a stable operating state of the transistors T1, T2, T3.
  • LEDs could also be used here, which can additionally serve as an optical indicator for different forward voltages in the individual chains.
  • resistors R11, R21, R31 Via the electrical resistors R11, R21, R31 flows the base current of the transistors T1, T2, T3, which is typically smaller by a factor of 100 to 250 than the collector current.
  • These resistors R11, R21, R31 are preferably dimensioned so that even a very small change in the base current through the resistor Rx1, for example in the range below 1 mA, causes a sufficiently large change in the voltage across the resistor Rx1, whereby different forward voltages or a change the forward voltages of the individual LED chains LK1, LK2, LK3 are compensated.
  • the resistors R11, R21, R31 preferably have values in the range of 100 ohms to 1000 ohms.
  • the compensation currents for maintaining the voltage at the emitter resistor of the interrupted LED chain also flow via the drive circuits of the remaining chains.
  • the resistors R11, R21, R31 must not necessarily have the same value in principle. For optimum reliability and symmetry of the arrangement, equal resistance values are advantageous.
  • a fuse Fux is connected in series with an LED chain LKx, which additionally prevents excessive current in an LED chain.
  • the fuse will burn and thus switch off the LED string in a defined manner. This will interrupt the LED chain.
  • the fuses Fu1, Fu2, Fu3 can be designed, for example, as a melt resistance. In this case, commercially available melt resistors can be used, which burn out from a defined power and thus permanently interrupt the flow of current.
  • Another advantage of the described embodiment of the invention or of in FIG. 1 illustrated embodiment is that at each LED chain LKx a partial flow is diverted to the scheme. This increases the reliability and stability of the system.
  • the tolerance of the base currents is 2%, so that overall a comparatively high precision of the current distribution is achieved.
  • circuit arrangement according to FIG. 1 Expandable by any number of LED chains in the manner shown.
  • circuit can be constructed in an analogous manner with pnp transistors.
  • a corresponding second embodiment of the invention is in FIG. 2 shown.
  • FIG. 3 A and B shown third embodiment of the invention shows an LED array in a size that is used for example in signaling technology.
  • Corresponding circuits can be used for example for traffic signals such as traffic lights or warning lights or for railway signals.
  • the circuit essentially corresponds FIG. 2 , In contrast, a total of 120 LEDs 2 are connected in parallel in 20 LED chains LK1, ..., LK20 with 6 LEDs each.
  • the currents in the LED chains of the LED array are additionally controlled by a monitoring circuit 4 which is not described in more detail here.
  • the described embodiment of the invention is characterized by a special stability, since in general all LED chains contribute to the current for the regulation. Furthermore, this embodiment has an advantageously high overall efficiency.

Abstract

Die Erfindung betrifft eine Schaltungsanordnung für ein LED-Array mit zwei oder mehr parallel geschalteten LED-Ketten (LK1, LK2, LK3), in denen jeweils mindestens eine LED (2) angeordnet ist, wobei bei zwei oder mehr LEDs (2) diese in Serie geschaltet sind. Die Anodenseiten der LED-Ketten (LK1, LK2, LK3) sind jeweils an den Pluspol einer Versorgungsspannung (UV) und die Kathodenseiten jeweils an den Minuspol der Versorgungsspannung (UV) ankoppelbar. Zu jeder LED-Kette (LK1, LK2, LK3) ist jeweils eine Regelungsanordnung (RA1, RA2, RA3) zur Regelung einer vorgesehenen Stromaufteilung auf die einzelnen LED-Ketten (LK1, LK2, LK3) in Serie geschaltet.

Description

  • Die vorliegende Erfindung bezieht sich auf eine Schaltungsanordnung für ein LED-Array, insbesondere für eine Lichtsignaleinrichtung, mit zwei oder mehr parallel geschalteten LED-Ketten, in denen jeweils mindestens eine LED (light emitting diode, Lichtemissiondiode) angeordnet ist, wobei bei zwei oder mehr LEDs diese in Serie geschaltet sind. Die Anodenseiten der LED-Ketten sind jeweils an dem Pluspol einer Versorgungsspannung, die Kathodenseiten jeweils an dem Minuspol der Versorgungsspannung ankoppelbar.
  • Bei derartigen LED-Arrays können aufgrund der steilen U-I-Kennlinie von LEDs bereits kleine Änderungen der Durchlassspannung eine große Stromänderung bewirken und so zu einer erheblichen Abweichung der Stromstärke in den einzelnen LED-Ketten des LED-Arrays von einer vorgegebenen Sollstromstärke führen.
  • Eine Schaltungsanordnung für eine Leuchtdiodenanzeige mit 7-Segment-Elementen, bei der parallel zu den 7-Segment-Elementen eine Ausgleichsschaltung angeordnet ist, ist aus DE 3030058 bekannt. Weiterhin ist in US 5,939,839 eine Schaltung mit einer selbstregulierenden Stromversorgung für ein Beleuchtungselement beschrieben.
  • Eine Variation der Durchlassspannung von LEDs kann einerseits fertigungsbedingt sein. Zur Lösung des oben geschilderten Problems ist eine feine Gruppierung der LEDs hinsichtlich der Duchlassspannung denkbar. Dies ist mit vergleichsweise hohen Kosten verbunden, da eine entsprechende Logistik und Lagerhaltung erforderlich ist.
  • Andererseits ist die Durchlassspannung einer LED temperaturabhängig, wobei zwischen einzelnen LEDs wiederum unterschiedliche Temperaturabhängigkeiten auftreten können.
    Eine Temperaturänderung kann daher zu einer Änderung der Durchlassspannungen führen. Um einer damit verbundenen Änderung der Stromstärke in den LED-Ketten entgegenzuwirken, ist bei herkömmlichen Schaltungen beispielsweise zu jeder LED-Kette ein elektrischer Widerstand in Serie geschaltet. Dieser Widerstand führt insgesamt zu einer flacheren U-I-Kennlinie der betreffenden LED-Kette, so dass eine gewisse Limitierung des Stroms in der LED-Kette erreicht wird. Mit steigenden Genauigkeitsanforderungen bei der Einhaltung einer vorgegebenen Stromverteilung auf die einzelnen LED-Ketten wächst allerdings die Größe dieses Widerstands und damit die daran abfallende Spannung, wodurch der Wirkungsgrad des Gesamtsystems verschlechtert wird.
  • Weiterhin kann eine Veränderung der Durchlassspannung einer LED-Kette auch durch den Ausfall einzelner LEDs, beispielsweise durch Kurzschluss einer LED, hervorgerufen werden. Dies führt bei einer Stromeinstellung mittels seriell geschalteter Widerstände zu einer starken Umverteilung der Ströme in den LED-Ketten.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Schaltungsanordnung für ein LED-Array der genannten Art zu schaffen, bei der eine vorgegebene Verteilung der Ströme auf die einzelnen LED-Ketten auch bei unterschiedlichen Durchlassspannungen oder einer Veränderung der Durchlassspannungen in den einzelnen LED-Ketten möglichst weitgehend aufrechter halten wird. Insbesondere soll auch bei einem Kurzschluss einer LED oder der Unterbrechung einer LED-Kette die vorgegebene Stromverteilung möglichst unverändert bleiben.
  • Diese Aufgabe wird durch eine Schaltungsanordnung gemäß Patentanspruch 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand des abhängigen Ansprüche.
  • Erfindungsgemäß sind bei einer Schaltungsanordnung für ein LED-Array zwei oder mehr parallel geschalteten LED-Ketten, in denen jeweils mindestens eine LED angeordnet ist, wobei bei zwei oder mehr LEDs diese seriell geschaltet sind und wobei die Anodenseiten der LED-Ketten jeweils an dem Pluspol einer Versorgungsspannung und die Kathodenseiten jeweils an dem Minuspol der Versorgungsspannung ankoppelbar sind, vorgesehen, wobei zu jeder LED-Kette jeweils eine Regelungsanordnung zur Regelung einer vorgegebenen Stromverteilung auf die einzelnen LED-Ketten in Serie geschaltet ist.
  • Hierbei umfassen dabei die Regelungsanordnungen jeweils eine Stromverstärkungsachaltung zur Einprägung des Stroms in die jeweilige LED-Kette.
  • Die Regelungsanordnungen enthalten jeweils einen vorzugsweise bipolaren Transistor und einen Emitterwiderstand. Die Stromverstärkungsschaltungen weisen jeweils einen Regelungseingang zur Regelung des Stroms in der zugehörigen LED-Kette auf, wobei die Regelungseingänge miteinander verbunden sind, und der Strom in der zugehörigen LED-Kette mittels des zu der Stromverstärkerschaltung in Serie geschalteten Emitterwiderstands eingestellt wird. Der Kollektoranschluss des Transistors ist jeweils mit der Kathodenseite der zugehörigen LED-Kette verbunden, und dessen Emitteranschluss jeweils über den Emitterwiderstand mit dem Minuspol der Versorgungsspannung verbindbar. Die Basisanschlüsse der Transistoren sind miteinander verbunden. Jeweils eine Ansteuerschaltung beaufschlagt die Basisanschlüsse der Transistoren mit einem vorbestimmten Strom. Als Ansteuerschaltung ist jeweils eine Serienschaltung einer Diode und eines Widerstands vorgesehen, die zwischen dem jeweiligen Kollektoranschluss und dem jeweiligen Basisanschluss des Transistors der jeweiligen Regelungsanordnung angeordnet ist.
  • Alternativ ist der Kollektoranschluss des Transistors jeweils mit der Anodenseite der zugehörigen LED-Kette verbunden und dessen Emitteranschluss ist jeweils über den Emitterwiderstand mit dem Pluspol der Versorgungsspannung verbindbar, wobei die Basisanschlüsse der Transistoren miteinander verbunden sind.
  • Unter LEDs sind bei der Erfindung Lichtemissionadioden jeder Art, insbesondere in Form von LED-Bauelementen, zu verstehen.
  • Bei einer bevorzugten Ausgestaltung der Erfindung ist als Regelungsanordnung jeweils eine Kombination eines Transistors mit einem Emitterwiderstand vorgesehen, wobei die Kollektor-Emitter-Strecke bzw. der Emitterwiderstand in Serie zu der - jeweiligen LED-Kette geschaltet ist. Besonderes bevorzugt sind dabei die Basisanschlüsse der Transistoren, die die obengenannten Regelungseingänge darstellen, miteinander verbunden und befinden sich im Betrieb auf gleichem Potential.
  • Der Emitterwiderstand dient insbesondere zur Einstellung der stromverteilung auf die LED-Ketten. Dabei ist der Wert der Emitterwiderstände jeweils umgekehrt proportional zum entsprechenden Emitterstrom, der näherungsweise dem Kollektorstrom bzw. dem Strom in der zugehörigen LED-Kette entspricht (ausgenommen unterbrochene LED-Ketten, wie im Folgenden noch genauer erläutert wird).
  • Bei der vorliegenden Erfindung beaufschlagt eine Ansteuerschaltung die Basisanschlüsse der Transistoren mit einem vorbestimmten Strom. Bei einer Ausführungsform der Erfindung sind dabei für die einzelnen LED-Ketten jeweils gesonderte Ansteuerschaltungen vorgesehen.
  • Bei der Erfindung ist die die Basisanschlüsse der Transistoren mit einem vorbestimmten Strom beaufschlagende Ansteuerschaltung jeweils als Serienschaltung aus einer Diode und einem widerstand gebildet, die jeweils Kollektor- und Basisanschluss der Transistoren verbindet. Die Dioden stellen einerseits sicher, dass die Betriebsbedingungen für die Transistoren erfüllt sind und verhindern andererseits eine Umverteilung der Ströme in den LED-Ketten über die gemeinsame Verbindung der Basisanschlüsse.
  • Eine Veränderung in der Durchlassspannung einer LED-Kette, die beispielsweise durch eine Temperaturänderung oder durch den Kurzschluss einer LED hervorgerufen sein kann, wird mittels der Ansteuerschaltung durch eine entsprechende Veränderung der zugehörigen Kollektor-Basis-Spannung abgefangen, so dass sich der Kollektorstrom und damit der Strom in der betreffenden LED-Kette nicht bzw. nur in geringem Umfang ändert.
  • Fällt beispielsweise in einer LED-Kette eine LED durch Kurzschluss aus, so verringert sich die Durchlassspannung der LED-Kette. Dies wird mittels der zugehörigen Regelungsanordnung dadurch kompensiert, dass sich die Kollektor-Basis-Spannung am zugehörigen Transistor erhöht. Da über die Widerstände der Ansteuerschaltung nur der jeweilige Basisstrom der Transistoren fließt, der etwa typischerweise um einen Faktor 100 bis 250 kleiner als der Kollektorstrom ist, können die Widerstände jeweils so dimensioniert werden, dass schon bei einer geringen Änderung des Stroms durch den Widerstand eine ausreichend hohe Spannung zum Ausgleich der unterschiedlichen Durchlassspannungen in den einzelnen LED-Ketten an dem Widerstand abfällt.
  • Den zu einem Kurzschluss einer LED entgegengesetzten Fehlerfall stellt ein Ausfall einer LED dar, der die LED-Kette unterbricht. Dies kann beispielsweise durch eine Überlastung der LED verursacht sein, so dass die LED "durchbrennt".
  • In der zugehörigen LED-Kette fließt dann kein Strom mehr, die Spannung zwischen Kollektor und Basis des zugehörigen Transistors bricht zusammen. Die Basis des Transistors der defekten Kette liegt aufgrund der gemeinsamen elektrischen Verbindung der Transistorbasisanschlüsse nach wie vor auf demselben Potential. Der Transistor der defekten LED-Kette wird also als Diode betrieben, wobei die hierfür erforderlichen Ausgleichsströme über die intakten LED-Ketten und die Verbindung der Tranistorbasisanschlüsse fließen. Die durch die Dimensionierung der Emitterwiderstände vorgegebene Stromverteilung bleibt für die übrigen intakten LED-Ketten erhalten, wobei die Ströme in den intakten LED-Ketten annähernd gleich den jeweiligen Emitterströmen und wiederum jeweils umgekehrt proportional zu den entsprechenden Emitterwiderständen sind.
  • In entsprechender Weise werden auch alle weiteren Betriebs- bzw. Fehler-Zustände bezüglich der Durchlassspannungen der LED-Ketten zwischen den Extremfällen eines Kurzschlusses und einer Unterbrechung einer LED bzw. LED-Kette kompensiert, so dass die Stromverteilung in den LED-Ketten (abgesehen von einer unterbrochenen LED-Kette) weitgehend aufrechterhalten wird.
  • Insbesondere wird bei der erfindungsgemäßen Schaltungsanordnung die vorgesehene Stromverteilung auch bei extremen Änderungen der Durchlassspannungen konstant gehalten. Die Kollektorströme bzw. die Ströme in den LED-Ketten schwanken dabei typischerweise nur noch um wenige mA. Vorteilhafterweise führt weder eine Unterbrechung einer LED-Kette noch ein Kurzschluss in einer LED-Kette zum Zusammenbruch der Stromverteilung. Eine kostenträchtige Gruppierung der LED-Bauelemente nach Durchlassspannungen ist nicht erforderlich.
  • Vorzugsweise liegen die Werte der Widerstände in der Ansteuerschaltung bei der ersten Ausführungsform der Erfindung im Bereich zwischen 100 Ohm und 1000 Ohm. Damit können bereits durch relativ kleine Ströme ausreichend hohe Ausgleichsspannungen zur Kompensation unterschiedlicher Durchlassspannungen der LED-Ketten erzeugt werden.
  • Die beschriebene Ausführungsform stellt vor allem bei längeren LED-Ketten ein energetisch vorteilhaftes Gesamtsystem dar.
  • Weiterhin ist es vorteilhaft, eine seriell zu den LED-Ketten geschaltete Sicherung, zum Beispiel einen Schmelzwiderstand, vorzusehen. Auf diese Weise werden einzelne fehlerhafte LED-Ketten bei zu hohem Strom in der LED-Kette definiert abgeschaltet. Wie oben beschrieben wird auch bei der damit einhergehenden Unterbrechung einer LED-Kette die vorgegebene Stromverteilung in den verbleibenden LED-Ketten aufrechterhalten.
  • Da die Ströme in den LED-Ketten umgekehrt proportional zu den jeweiligen Emitterwiderständen sind, ist das LED-Array flexibel ausgestaltbar, wobei insbesondere ohne besonderen Aufwand für jede LED-Kette ein vorgegebener Strom eingestellt werden kann. In der Regel wird eine gleichmäßige Stromverteilung gewünscht sein, was durch gleiche Emitterwiderstände ohne weiteres realisierbar ist.
  • Weitere Vorteile, Weiterbildungen und Ausführungsformen der Erfindung, insbesondere für eine Lichtsignaleinrichtung, ergeben sich aus den im Folgenden unter Bezugnahme auf die Figuren erläuterten Ausführungsbeispielen.
  • Es zeigen:
  • Figur 1
    einen schematischen Schaltplan eines ersten Ausführungsbeispiels der Erfindung,
    Figur 2
    einen schematischen Schaltplan eines zweiten Ausführungsbeispiels der Erfindung, und
    Figuren 3 A/B
    einen schematischen Schaltplan eines dritten Ausführungsbeispiels der Erfindung.
  • Gleiche oder gleichwirkende Elemente sind in den Figuren mit denselben Bezugszeichen versehen.
  • Bei dem in Figur 1 gezeigten Schaltplan ist jeweils eine Mehrzahl von LEDs 2 seriell zu LED-Ketten geschaltet. Dargestellt sind drei Ketten LK1, LK2, LK3 mit je vier LEDs 2, wobei eine erfindungsgemäße Schaltungsanordnung selbstverständlich auch eine andere Anzahl von LEDs in den LED-Ketten oder eine andere Anzahl von LED-Ketten umfassen kann. Dies ist durch die gestrichelten Linien in den Versorgungsspannungsleitungen (s.u.), der Verbindung der Transistorbasisanschlüsse (s.u.) bzw. der LED-Ketten verdeutlicht. Weiterhin kann auch die Anzahl und/oder der Typ der LEDs in den einzelnen LED-Ketten von Kette zu Kette variieren.
  • Optional kann zu den LED-Ketten LK1, LK2, LK3 ein Schmelzwiderstand Fu1, Fu2, Fu3 in Serie geschaltet sein. Die LED-Ketten LK1, LK2, LK3 sind anodenseitig jeweils mit dem Pluspol einer Versorgungsspannung UV und kathodenseitig jeweils mit einer Regelungsanordnung RA1, RA2, RA3 verbunden.
  • Die Regelungsanordnungen RA1, RA2, RA3 umfassen jeweils einen npn-Transistor T1, T2, T3, dessen Kollektoranschluss C1, C2, C3 jeweils mit der Kathodenseite der zugehörigen LED-Kette LK1, LK2, LK3 bzw. mit dem gegebenenfalls dazwischen geschalteten Schmelzwiderstand Fu1, Fu2, Fu3 verbunden ist. Der Emitteranschluss E1, E2, E3 ist jeweils über einen Emitterwiderstand R12, R22, R32 an dem Minuspol einer Versorgungsspannung UV angeschlossen.
  • Die Transistoren T1, T2, T3 sind in der dargestellten Anordnung als handelsübliche npn-Transistoren ausgeführt. Zwischen der Kathodenseite bzw. dem Schmelzwiderstand jeder LED-Kette und dem jeweiligen Basisanschluss B1, B2, B3 des zugehörigen Transistors T1, T2, T3 ist jeweils eine Ansteuerschaltung in Form einer Serienschaltung aus einer Diode D1, D2, D3 und einem elektrischen Widerstand R11, R21, R31 geschaltet.
  • Die Basisanschlüsse B1, B2, B3 der Transistoren T1, T2, T3 sind miteinander verbunden.
  • Im Betrieb fällt an den Widerständen Rx2 bei einer Bestromung mit der Stromstärke Ix eine Spannung Ux2=Rx2*Ix ab. Der Laufindex x bezeichnet hier und im Folgenden die Nummer der LED-Kette. Im gezeigten Beispiel gilt also für die linke LED-Kette x=1, für die mittlere x=2 und für rechte LED-Kette LK3 x=3. Die folgende Beschreibung gilt auch allgemein für ein LED-Array mit N LED-Ketten, wobei dann x zwischen 1 und N liegt.
  • Der Strom Ix, der - abgesehen von dem jeweils sehr viel geringeren Basisstrom dem Strom in der jeweiligen LED-Kette LKx entspricht, wird dabei so geregelt, dass an der Basis-Emitter-Strecke des zugehörigen Transistors Tx eine Spannung von ca. 0,65 V auftritt.
  • Da die Basiseingänge B1, B2, B3 der Transistoren T1, T2, T3 untereinander elektrisch verbunden sind und auf gleichem Potential liegen, wird über die Transistoren T1, T2, T3 der Strom so eingestellt, dass die an den Emitterwiderständen abfallende Spannung ca. 0,65 V unter dem gemeinsamen Basispotential liegt. Da die Spannung zwischen Basis und Emitter von 0,65V bei den Transistoren T1, T2, T3 (nahezu) gleich ist, müssen dazu an den jeweiligen Emitterwiderständen R12, R22, R32 die gleichen Spannungen abfallen. Die Ströme I1, I2, I3 in den LED-Ketten werden damit so geregelt, dass die Spannungen U12, U22, U32 gleich sind. Insgesamt wird damit die Verteilung der Ströme auf die LED-Ketten durch die Emitterwiderstände R12, R22, R32 festgelegt, wobei das Verhältnis der Ströme gleich dem Verhältnis der reziproken Emitterwiderstandswerte ist.
  • Bei dieser Betrachtung wurde jeweils der Emitterstrom, der sich aus dem zugehörigen Basis- und Kollektorstrom zusammensetzt, mit dem Kollektorstrom gleichgesetzt, also der im Vergleich wesentlich geringere Basisstrom vernachlässigt.
  • Soll ein Gesamtstrom gleichmäßig auf alle LED-Ketten LK1, LK2, LK3 aufgeteilt werden, so müssen alle Emitterwiderstände R12, R22, R32 denselben Widerstandswert aufweisen. Eine unterschiedlichen Bestromung der verschiedenen Ketten kann ohne besonderen Aufwand durch unterschiedliche Werte für die Emitterwiderstände R12, R22, R32 realisiert werden. Damit kann vorteilhafterweise die Bestromung der LED-Ketten je nach Anforderung angepaßt werden, ohne dass weitere, gegebenenfalls aufwändigere Änderungen der Schaltung erforderlich sind.
  • Eine Veränderung der Durchlassspannung einer LED-Kette LKx, z.B. durch Kurzschluss einer LED, wird durch eine entsprechende Veränderung der zugehörigen Kollektor-Basis-Spannung abgefangen. Die oben erläuterte Einstellung des Emitterstroms Ix und damit des Stroms in der LED-Kette LKx bleibt hiervon nahezu unberührt, so dass dass sich der Kollektorstrom bzw. der Strom in der LED-Kette nicht oder nur geringfügig ändert.
  • Wird im Extremfall einer Unterbrechung einer LED-Kette LKx der Strom in der LED-Kette bzw. der Kollektorstrom auf Null reduziert, so wird die Spannung Ux2 am zugehörigen Emitterwiderstand Rx1 durch eine entsprechende Änderung des Basisstroms aufrechterhalten. Dies wird über die gemeinsame elektrische Verbindung der Transistorbasisanschlüsse ermöglicht. Die Näherung, dass der Basisstrom gegenüber dem Kollektorstrom vernachlässigt werden kann, gilt in diesem Ausnahmefall nicht mehr.
  • Die Stromversorgung der Basiseingänge B1, B2, B3 der Transistoren T1, T2, T3 ist jeweils mittels einer Ansteuerschaltung in Form einer Serienschaltung einer Diode D1, D2, D3 und eines Widerstands R11, R21, R31 realisiert.
  • Den Dioden D1, D2, D3 kommt hierbei eine Doppelfunktion zu: Einerseits stellen sie die Betriebsbedingung der Transistoren T1, T2, T3, d.h. die erforderliche Spannung an der jeweiligen Kollektor-Basis-Strecke Cx-Bx sicher, andererseits unterdrücken sie Querströme zwischen den einzelnen LED-Ketten LK1, LK2, LK3. Letzteres bewirkt, dass über die gemeinsame elektrische Verbindung der Transistorbasen B1, B2, B3 kein Strom, beispielsweise aufgrund von Potentialunterschieden in den einzelnen LED-Ketten LK1, LK2, LK3, die etwa wegen unterschiedlicher Durchlassspannungen oder einer kurzgeschlossener LED verursacht sein können, von einer LED-Kette in eine andere LED-Kette fließen kann.
  • Die Dioden D1, D2, D3 sind so dimensioniert, dass an ihnen eine Spannung abfällt, die für einen stabilen Betriebszustand der Transistoren T1, T2, T3 ausreicht. Beispielsweise könnten hier auch LEDs zum Einsatz kommen, die zusätzlich als optischer Indikator für unterschiedliche Durchlassspannungen in den einzelnen Ketten dienen können.
  • Über die elektrischen Widerstände R11, R21, R31 fließt der Basisstrom der Transistoren T1, T2, T3, der typischerweise um einem Faktor 100 bis 250 kleiner als der Kollektorstrom ist. Diese Widerstände R11, R21, R31 sind vorzugsweise so dimensioniert, dass bereits eine sehr kleine Veränderung des Basisstroms durch den Widerstand Rx1, beispielsweise im Bereich unter 1 mA, eine ausreichend große Änderung der Spannung an dem Widerstand Rx1 bewirkt, wodurch unterschiedliche Durchlassspannungen oder eine Änderung der Durchlassspannungen bei den einzelnen LED-Ketten LK1, LK2, LK3 ausgeglichen werden. Die Widerstände R11, R21, R31 weisen dazu vorzugsweise Werte im Bereich von 100 Ohm bis 1000 Ohm auf.
  • Bei der Unterbrechung einer LED-Kette fließen über die Ansteuerschaltungen der verbleibenden Ketten auch die Ausgleichströme zur Aufrechterhaltung der Spannung am Emitterwiderstand der unterbrochenen LED-Kette.
  • Die Widerstände R11, R21, R31 müssen prinzipiell nicht zwangsläufig denselben Wert aufweisen. Für eine optimale Zuverlässigkeit und die Symmetrie der Anordnung sind gleiche Widerstandswerte vorteilhaft.
  • Bei der gezeigten Schaltung ist, insbesondere durch die Emitterwiderstände R12, R22, R32, eine ausreichende Stabilität der Schaltung gegenüber fertigungsbedingten Schwankungen der Stromverstärkungsfaktoren, d.h. dem Verhältnis von Kollektorstrom zu Basisstrom, der Transistoren T1, T2, T3 gewährleistet.
  • In einer weiteren Variante, die insbesondere bei erhöhten Sicherheitsanforderungen vorteilhaft ist, ist vorzugsweise jeweils eine Sicherung Fux in Serie zu eine LED-Kette LKx geschaltet, welcher zusätzlich einen zu großen Strom in einer LED-Kette unterbindet. Im Fehlerfall, wenn beispielsweise in einer LED-Kette LKx der doppelte Sollstrom fließt, brennt die Sicherung durch und schaltet so die LED-Kette definiert ab. Damit wird die LED-Kette unterbrochen. Wie bereits beschrieben ist es hierbei von Vorteil, dass bei einer solchen Unterbrechung die Stromverteilung in den noch intakten LED-Ketten aufrechterhalten bleibt. Die Sicherungen Fu1, Fu2, Fu3 können zum Beispiel als Schmelzwiderstand ausgeführt sein. Dabei können handelsübliche Schmelzwiderstände eingesetzt werden, die ab einer definierten Leistung durchbrennen und so dauerhaft den Stromfluss unterbrechen.
  • Ein weiterer Vorteil der beschriebenen Ausführungsform der Erfindung bzw. des in Figur 1 dargestellten Ausführungsbeispiels besteht darin, dass bei jeder LED-Kette LKx ein Teilstrom zur Regelung abgezweigt wird. Dadurch wird die Zuverlässigkeit und Stabilität des Systems erhöht. Bei Verwendung von Emitterwiderständen R12, R22, R32 mit 1% Toleranz beträgt die Toleranz der Basisströme 2%, so dass insgesamt eine vergleichsweise hohe Präzision der Stromverteilung erzielt wird.
  • Wie bereits erläutert ist die Schaltungsanordnung gemäß Figur 1 um eine beliebige Anzahl an LED-Ketten in der dargestellten Weise erweiterbar.
  • Die in Figur 1 gezeigte Schaltung kann in analoger Weise auch mit pnp-Transistoren aufgebaut werden. Ein entsprechendes zweites Ausführungsbeispiel der Erfindung ist in Figur 2 dargestellt. Hierbei sind die Regelungsanordnungen RA1, RA2, RA3 mit den Transistoren T1, T2, T3, den Emitterwiderständen R12, R22, R32 und den Ansteuerschaltungen aus den Widerständen R11, R21, R31 und den Dioden D1, D2, D3 zwischen den Anodenseiten der LED-Ketten LK1, LK2, LK3 und dem Pluspol der Versorgungsspannung UV angeordnet.
  • Das in den Figuren 3 A und B gezeigte dritte Ausführungsbeispiel der Erfindung zeigt ein LED-Array in einer Größe, die beispielsweise in der Signaltechnik eingesetzt wird. Entsprechende Schaltungen können zum Beispiel für Verkehrssignale wie Ampeln oder Warnleuchten oder für Bahnsignale verwendet werden.
  • Die Schaltung entspricht im wesentlichen Figur 2. Im Unterschied dazu sind insgesamt 120 LEDs 2 in 20 LED-Ketten LK1,...,LK20 mit je 6 LEDs parallel geschaltet. Die Ströme in den LED-Ketten des LED-Arrays werden zusätzlich durch eine hier nicht näher beschriebene Überwachungsschaltung 4 kontrolliert.
  • Bei Arrays dieser Größe ist es von besonderer Bedeutung, einen möglichst hohen Wirkungsgrad zu erzielen. Die eingangs beschriebene Möglichkeit nach dem Stand der Technik, unterschiedliche Durchlassspannungen der LED-Ketten des Arrays mittels rein ohmscher Serienwiderstände zu kompensieren, würde hier zu einer sehr hohen Verlustleistung und in der Folge zu aufwändigen Kühlmaßnahmen führen.
  • Die beschriebene Ausführungsform der Erfindung zeichnet sich durch eine besondere Stabilität aus, da in der Regel alle LED-Ketten zum Strom für die Regelung beitragen. Weiterhin besitzt-diese Ausführungsform einen vorteilhaft hohen Gesamtwirkungsgrad.

Claims (5)

  1. Schaltungsanordnung für ein LED-Array mit zwei oder mehr parallel geschalteten LED-Ketten (LK1, LK2, LK3), in denen jeweils mindestens eine LED (2) angeordnet ist, wobei bei zwei oder mehr LEDs (2) diese in Serie geschaltet sind, bei der jeweils die Anodenseiten der LED-Ketten (LK1, LK2, LK3) an dem Pluspol einer Versorgungsspannung (Uv) und die Kathodenseiten an dem Minuspol der Versorgungsspannung (Uv) ankoppelbar sind,
    wobei zu jeder LED-Kette (LK1, LK2, LK3) jeweils eine Regelungsanordnung (RA1, RA2, RA3) zur Regelung einer vorgegebenen Stromverteilung auf die einzelnen LED-Ketten (LK1, LK2, LK3) in Serie geschaltet ist, wobei
    die Regelungsanordnungen (RA1, RA2, RA3) jeweils eine Stromverstärkungsschaltung zur Einprägung eines Stroms in die LED-Ketten (LK1, LK2, LK3) gemäß der vorgegebenen Stromverteilung umfassen, wobei die die Regelungsanordnungen (RA1, RA2, RA3) jeweils einen vorzugsweise bipolaren Transistor (T1, T2, T3) und einen Emitterwiderstand (R12, R22, R32) enthalten, und die Stromverstärkungsschaltungen jeweils einen Regelungseingang zur Regelung des Stroms in der zugehörigen LED-Kette aufweisen, wobei die Regelungseingänge miteinander verbunden sind, und der Strom in der zugehörigen LED-Kette mittels des zu der Stromverstärkerschaltung in Serie geschalteten Emitterwiderstands (R12, R22, R32) eingestellt wird,
    dadurch gekennzeichnet, dass
    der Kollektoranschluss (C1, C2, C3) des Transistors (T1, T2, T3) jeweils mit der Kathodenseite der zugehörigen LED-Kette (LK1, LK2, LK3) verbunden ist, und dessen Emitteranschluss (E1, E2, E3) jeweils über den Emitterwiderstand (R12, R22, R32) mit dem Minuspol der Versorgungsspannung (Uv) verbindbar ist, wobei die Basisanschlüsse (B1, B2, B3) der Transistoren (T1, T2, T3) miteinander verbunden sind; und wobei eine Ansteuerschaltung die Basisanschlüsse (B1, B2, B3) der Transistoren (T1, T2, T3) mit einem vorbestimmten Strom beaufschlagt, und als Ansteuerschaltung jeweils eine Serienschaltung einer Diode (D1, D2, D3) und eines Widerstands (R11, R21, R31) vorgesehen ist, die zwischen dem jeweiligen Kollektoranschluss (C1, C2, C3) und dem jeweiligen Basisanschluss (B1, B2, B3) des Transistors (T1, T2, T3) der jeweiligen Regelungsanordnung (RA1, RA2, RA3) angeordnet ist.
  2. Schaltungsanordnung für ein LED-Array mit zwei oder mehr parallel geschalteten LED-Ketten (LK1, LK2, LK3), in denen jeweils mindestens eine LED (2) angeordnet ist, wobei bei zwei oder mehr LEDs (2) diese in Serie geschaltet sind, bei der jeweils die Anodenseiten der LED-Ketten (LK1, LK2, LK3) an dem Pluspol einer Versorgungsspannung (Uv) und die Kathodenseiten an dem Minuspol der Versorgungsspannung (Uv) ankoppelbar sind,
    wobei zu jeder LED-Kette (LK1, LK2, LK3) jeweils eine Regelungsanordnung (RA1, RA2, RA3) zur Regelung einer vorgegebenen Stromverteilung auf die einzelnen LED-Ketten (LK1, LK2, LK3) in Serie geschaltet ist, wobei
    die Regelungsanordnungen (RA1, RA2, RA3) jeweils eine Stromverstärkungsschaltung zur Einprägung eines Stroms in die LED-Ketten (LK1, LK2, LK3) gemäß der vorgegebenen Stromverteilung umfassen, wobei die die Regelungsanordnungen (RA1, RA2, RA3) jeweils einen vorzugsweise bipolaren Transistor (T1, T2, T3) und einen Emitterwiderstand (R12, R22, R32) enthalten, und die Stromverstärkungsschaltungen jeweils einen Regelungseingang zur Regelung des Stroms in der zugehörigen LED-Kette aufweisen, wobei die Regelungseingänge miteinander verbunden sind, und der Strom in der zugehörigen LED-Kette mittels des zu der Stromverstärkerschaltung in Serie geschalteten Emitterwiderstands (R12, R22, R32) eingestellt wird,
    dadurch gekennzeichnet, dass
    der Kollektoranschluss (C1, C2, C3) des Transistors (T1, T2, T3) jeweils mit der Anodenseite der zugehörigen LED-Kette (LK1, LK2, LK3) verbunden ist und dessen Emitteranschluss (E1, E2, E3) jeweils über den Emitterwiderstand (R12, R22, R32) mit dem Pluspol der Versorgungsspannung (Uv) verbindbar ist, wobei die Basisanschlüsse (B1, B2, B3) der Transistoren (T1, T2, T3) miteinander verbunden sind, und wobei eine Ansteuerschaltung die Basisanschlüsse (B1, B2, B3) der Transistoren (T1, T2, T3) mit einem vorbestimmter Strom beaufschlagt und als Ansteuerschaltung jeweils eine Serienschaltung einer Diode (D1, D2, D3) und eines Widerstands (R11, R21, R31) vorgesehen ist, die zwischen dem jeweiligen Kollektoranschluss (C1, C2, C3) und dem jeweiligen Basisanschluss (B1, B2, B3) des Transistors (T1, T2, T3) der jeweiligen Regelungsanordnung (RA1, RA2, RA3) angeordnet ist.
  3. Schaltungsanordnung für ein LED-Array nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    die Werte der Emitterwiderstände (R12, R22, R32) zwischen 1 Ohm und 100 Ohm liegen und vorzugsweise etwa 10 Ohm betragen.
  4. Schaltungsanordnung für ein LED-Array nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass seriell zu den LED-Ketten (LK1, LK2, LK3) jeweils eine Sicherung (Fu1, Fu2, Fu3), vorzugsweise ein Schmelzwiderstand, geschaltet ist.
  5. Schaltungsanordnung für ein LED-Array nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass
    das LED-Array eine Lichtsignaleinrichtung ist.
EP02803750A 2001-11-26 2002-11-26 Schaltungsanordnung für ein led-array Expired - Fee Related EP1449408B2 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10157645 2001-11-26
DE10157645 2001-11-26
DE10242365 2002-09-12
DE10242365.2A DE10242365B4 (de) 2001-11-26 2002-09-12 Schaltungsanordnung für ein LED-Array
PCT/DE2002/004329 WO2003047314A1 (de) 2001-11-26 2002-11-26 Schaltungsanordnung für ein led-array

Publications (3)

Publication Number Publication Date
EP1449408A1 EP1449408A1 (de) 2004-08-25
EP1449408B1 EP1449408B1 (de) 2007-08-15
EP1449408B2 true EP1449408B2 (de) 2011-08-31

Family

ID=26010644

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02803750A Expired - Fee Related EP1449408B2 (de) 2001-11-26 2002-11-26 Schaltungsanordnung für ein led-array

Country Status (7)

Country Link
US (1) US7317287B2 (de)
EP (1) EP1449408B2 (de)
JP (1) JP4488489B2 (de)
CN (1) CN1596560B (de)
DE (1) DE50210722D1 (de)
TW (1) TWI235349B (de)
WO (1) WO2003047314A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012000605A1 (de) 2011-10-27 2013-05-02 Diehl Aerospace Gmbh Beleuchtungsvorrichtung für eine Wechselspannungsversorgung

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040141329A1 (en) * 2003-01-20 2004-07-22 Walter Fleischmann Lighting system for aircraft cabins
JP2005257790A (ja) * 2004-03-09 2005-09-22 Olympus Corp 照明装置及びそれを用いた画像投影装置
JP4241487B2 (ja) * 2004-04-20 2009-03-18 ソニー株式会社 Led駆動装置、バックライト光源装置及びカラー液晶表示装置
EP2299782B1 (de) * 2004-09-13 2016-11-23 Semiconductor Energy Laboratory Co, Ltd. Vorrichtung mit lichtemittierender Schicht
JP4438599B2 (ja) * 2004-10-26 2010-03-24 住友電気工業株式会社 光送信器
JP2007005014A (ja) * 2005-06-21 2007-01-11 Toshiba Matsushita Display Technology Co Ltd 照明装置及び液晶表示装置
CN101672436B (zh) * 2005-06-28 2013-06-12 首尔Opto仪器股份有限公司 用于交流电力操作的发光装置
JP4585398B2 (ja) * 2005-07-25 2010-11-24 サンクス株式会社 表示装置及び当該装置を有する検出センサ
US7872430B2 (en) 2005-11-18 2011-01-18 Cree, Inc. Solid state lighting panels with variable voltage boost current sources
DE102005056255A1 (de) * 2005-11-25 2007-06-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsvorrichtung mit obenliegendem Buck-Transistor
US7738229B2 (en) * 2006-01-10 2010-06-15 Bayco Products, Ltd. Microprocessor-controlled multifunctioning light with intrinsically safe energy limiting
KR100678774B1 (ko) 2006-01-13 2007-02-02 한국 고덴시 주식회사 발광 다이오드 어레이 모듈의 구동장치 및 구동방법
US7852009B2 (en) * 2006-01-25 2010-12-14 Cree, Inc. Lighting device circuit with series-connected solid state light emitters and current regulator
US20070290629A1 (en) * 2006-06-16 2007-12-20 Koren Pinhas P Modular illumination system
US20080007885A1 (en) * 2006-07-05 2008-01-10 Texas Instruments Incorporated System for improving LED illumination reliability in projection display systems
US20090201669A1 (en) * 2006-07-24 2009-08-13 Sharp Kabushiki Kaisha Backlight device, and display apparatus using the same
RU2462002C2 (ru) * 2006-10-31 2012-09-20 Конинклейке Филипс Электроникс Н.В. Источник света, содержащий светоизлучающие кластеры
CN100562200C (zh) * 2006-12-15 2009-11-18 鸿富锦精密工业(深圳)有限公司 太阳能路灯控制电路
CN101652861B (zh) * 2007-01-22 2013-01-23 科锐公司 容错发光体、包含容错发光体的系统以及制造容错发光体的方法
TWI440210B (zh) 2007-01-22 2014-06-01 Cree Inc 使用發光裝置外部互連陣列之照明裝置及其製造方法
EP1965609A3 (de) * 2007-02-27 2011-06-15 Lumination, LLC Erkennung von Kettendefekten mittels LED
US8703492B2 (en) * 2007-04-06 2014-04-22 Qiagen Gaithersburg, Inc. Open platform hybrid manual-automated sample processing system
US8049709B2 (en) 2007-05-08 2011-11-01 Cree, Inc. Systems and methods for controlling a solid state lighting panel
KR100930818B1 (ko) 2007-08-31 2009-12-09 엘지이노텍 주식회사 전원 공급 장치
US9079022B2 (en) * 2007-09-27 2015-07-14 Led Intellectual Properties, Llc LED based phototherapy device for photo-rejuvenation of cells
TWI369777B (en) 2007-10-04 2012-08-01 Young Lighting Technology Corp Surface light source of backlight module in a flat panel display
US8004216B2 (en) * 2008-05-02 2011-08-23 The United States Of America As Represented By The Secretary Of The Navy Variable intensity LED illumination system
DE102008039526B4 (de) 2008-08-23 2016-07-14 Hella Kgaa Hueck & Co. Verfahren zur Stromversorgung eines LED-Arrays sowie Schaltungsanordnung zur Durchführung des Verfahrens sowie eine Beleuchtungseinheit
US10210750B2 (en) 2011-09-13 2019-02-19 Lutron Electronics Co., Inc. System and method of extending the communication range in a visible light communication system
US9276766B2 (en) 2008-09-05 2016-03-01 Ketra, Inc. Display calibration systems and related methods
US9509525B2 (en) 2008-09-05 2016-11-29 Ketra, Inc. Intelligent illumination device
US8773336B2 (en) 2008-09-05 2014-07-08 Ketra, Inc. Illumination devices and related systems and methods
US7977887B2 (en) * 2008-09-09 2011-07-12 Delphi Technologies, Inc. Low leakage current LED drive apparatus with fault protection and diagnostics
CN201282580Y (zh) * 2008-09-28 2009-07-29 张荣民 大功率led驱动电路
TWI401990B (zh) * 2008-12-31 2013-07-11 Genesis Photonics Inc Electronic device, constant current unit and stable current method
FR2948440B1 (fr) * 2009-07-21 2011-08-26 Thales Sa Boite a lumiere a diodes electroluminescentes securisee
CN101695207B (zh) * 2009-08-31 2014-07-23 裘麒龙 一种led灯管电路
US8344632B2 (en) * 2009-12-15 2013-01-01 Silicon Touch Technology Inc. Light emitting device
EP2543234A1 (de) 2010-03-01 2013-01-09 Hella KGaA Hueck & Co. Verfahren zur stromversorgung eines led-arrays sowie schaltungsanordnung zur durchführung des verfahrens
TWM390632U (en) * 2010-06-07 2010-10-11 Unity Opto Technology Co Ltd Light-emitting diode protection structure
NL2005418C2 (en) * 2010-09-29 2012-04-02 Europ Intelligence B V Intrinsically safe led display.
USRE49454E1 (en) 2010-09-30 2023-03-07 Lutron Technology Company Llc Lighting control system
US9386668B2 (en) 2010-09-30 2016-07-05 Ketra, Inc. Lighting control system
CN102022655A (zh) * 2010-12-24 2011-04-20 鸿富锦精密工业(深圳)有限公司 Led串-并联电路及led照明装置
WO2012086662A1 (en) 2010-12-24 2012-06-28 Semiconductor Energy Laboratory Co., Ltd. Lighting device
US8552440B2 (en) 2010-12-24 2013-10-08 Semiconductor Energy Laboratory Co., Ltd. Lighting device
CN103262656B (zh) 2010-12-28 2016-08-24 株式会社半导体能源研究所 发光单元、发光装置以及照明装置
US9516713B2 (en) 2011-01-25 2016-12-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JP5925511B2 (ja) 2011-02-11 2016-05-25 株式会社半導体エネルギー研究所 発光ユニット、発光装置、照明装置
US8772795B2 (en) 2011-02-14 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and lighting device
US8735874B2 (en) 2011-02-14 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, and method for manufacturing the same
EP2716134B1 (de) 2011-06-03 2017-10-04 OSRAM GmbH Verfahren zur ansteuerung von led-lichtquellen und zugehörige vorrichtung
US9232587B2 (en) 2011-09-30 2016-01-05 Advanced Analogic Technologies, Inc. Low cost LED driver with integral dimming capability
US8779696B2 (en) 2011-10-24 2014-07-15 Advanced Analogic Technologies, Inc. Low cost LED driver with improved serial bus
RU2474920C1 (ru) * 2011-11-14 2013-02-10 Вячеслав Николаевич Козубов Способ формирования светоизлучающих матриц
JP5845108B2 (ja) 2012-02-23 2016-01-20 ルネサスエレクトロニクス株式会社 パワーデバイス
DE102012206888A1 (de) * 2012-04-26 2013-10-31 Zumtobel Lighting Gmbh LED-Anordnung
JP5522643B2 (ja) * 2012-07-13 2014-06-18 シャープ株式会社 発光装置
JP6155703B2 (ja) * 2013-03-04 2017-07-05 セイコーエプソン株式会社 光源装置及びプロジェクター
US9769899B2 (en) 2014-06-25 2017-09-19 Ketra, Inc. Illumination device and age compensation method
USRE48955E1 (en) 2013-08-20 2022-03-01 Lutron Technology Company Llc Interference-resistant compensation for illumination devices having multiple emitter modules
US9247605B1 (en) 2013-08-20 2016-01-26 Ketra, Inc. Interference-resistant compensation for illumination devices
US9360174B2 (en) 2013-12-05 2016-06-07 Ketra, Inc. Linear LED illumination device with improved color mixing
US9332598B1 (en) 2013-08-20 2016-05-03 Ketra, Inc. Interference-resistant compensation for illumination devices having multiple emitter modules
US9237620B1 (en) * 2013-08-20 2016-01-12 Ketra, Inc. Illumination device and temperature compensation method
US9578724B1 (en) 2013-08-20 2017-02-21 Ketra, Inc. Illumination device and method for avoiding flicker
USRE48956E1 (en) 2013-08-20 2022-03-01 Lutron Technology Company Llc Interference-resistant compensation for illumination devices using multiple series of measurement intervals
US9345097B1 (en) 2013-08-20 2016-05-17 Ketra, Inc. Interference-resistant compensation for illumination devices using multiple series of measurement intervals
US9651632B1 (en) 2013-08-20 2017-05-16 Ketra, Inc. Illumination device and temperature calibration method
US9736895B1 (en) 2013-10-03 2017-08-15 Ketra, Inc. Color mixing optics for LED illumination device
US9557214B2 (en) 2014-06-25 2017-01-31 Ketra, Inc. Illumination device and method for calibrating an illumination device over changes in temperature, drive current, and time
US10161786B2 (en) 2014-06-25 2018-12-25 Lutron Ketra, Llc Emitter module for an LED illumination device
US9736903B2 (en) 2014-06-25 2017-08-15 Ketra, Inc. Illumination device and method for calibrating and controlling an illumination device comprising a phosphor converted LED
US9392663B2 (en) 2014-06-25 2016-07-12 Ketra, Inc. Illumination device and method for controlling an illumination device over changes in drive current and temperature
JP6355046B2 (ja) * 2014-07-29 2018-07-11 パナソニックIpマネジメント株式会社 照明装置及び照明器具
EP2979954B1 (de) * 2014-07-29 2020-12-23 Pintsch GmbH Led-einheit für lichtsignalgeber, lichtsignalgeber mit einer solchen einheit und verfahren zur überwachung eines led-strangs einer led-einheit
US9510416B2 (en) 2014-08-28 2016-11-29 Ketra, Inc. LED illumination device and method for accurately controlling the intensity and color point of the illumination device over time
US9392660B2 (en) 2014-08-28 2016-07-12 Ketra, Inc. LED illumination device and calibration method for accurately characterizing the emission LEDs and photodetector(s) included within the LED illumination device
US9485813B1 (en) 2015-01-26 2016-11-01 Ketra, Inc. Illumination device and method for avoiding an over-power or over-current condition in a power converter
US9237623B1 (en) 2015-01-26 2016-01-12 Ketra, Inc. Illumination device and method for determining a maximum lumens that can be safely produced by the illumination device to achieve a target chromaticity
US9237612B1 (en) 2015-01-26 2016-01-12 Ketra, Inc. Illumination device and method for determining a target lumens that can be safely produced by an illumination device at a present temperature
US9930747B2 (en) 2016-04-11 2018-03-27 Cooper Technologies Company Fail-safe LED system
US20180031190A1 (en) * 2016-07-28 2018-02-01 Richard Nicolai Scalable direct line voltage led luminaire tape
CN106704888A (zh) * 2017-03-17 2017-05-24 南京养元素电子科技有限公司 一种高可靠性的led照明装置
US10440786B1 (en) 2018-05-09 2019-10-08 Infineon Technologies Ag Control circuit and techniques for controlling a LED array
US11272599B1 (en) 2018-06-22 2022-03-08 Lutron Technology Company Llc Calibration procedure for a light-emitting diode light source
CN109058799A (zh) * 2018-10-25 2018-12-21 深圳市虹晟源光电科技有限公司 一种led灯条
WO2020210159A1 (en) * 2019-04-08 2020-10-15 Agrify Corporation Device for limiting current

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278432A (en) 1992-08-27 1994-01-11 Quantam Devices, Inc. Apparatus for providing radiant energy
US5598068A (en) 1994-03-18 1997-01-28 Sony/Tektronix Corporation Light emitting apparatus comprising multiple groups of LEDs each containing multiple LEDs
DE19749333A1 (de) 1997-09-19 1999-03-25 Garufo Gmbh Leuchtsignal
DE19804891A1 (de) 1998-02-07 1999-09-02 Mannesmann Vdo Ag Schaltungsanordnung zur Beleuchtung einer Anzeigevorrichtung in einem Kraftfahrzeug mit Leuchtdioden
US6161910A (en) 1999-12-14 2000-12-19 Aerospace Lighting Corporation LED reading light
DE10017878A1 (de) 2000-04-11 2001-10-25 Hella Kg Hueck & Co Ansteuerungsvorrichtung für eine mit einer Anzahl von Leuchtdioden versehene Leuchte eines Kraftfahrzeuges

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3030058A1 (de) * 1980-08-08 1982-03-11 Vdo Adolf Schindling Ag, 6000 Frankfurt Schaltungsanordnung einer leuchtdiodenanzeige
US5149190A (en) * 1989-05-24 1992-09-22 Bay Industrial And Mine Tech Inc. Portable safety device
US5144117A (en) * 1990-02-27 1992-09-01 Alps Electric Co., Ltd. Illumination type optical recorded information reading device
DE19618010C1 (de) 1996-05-04 1997-07-03 Hella Kg Hueck & Co Blinklichtsignalanlage für Kraftfahrzeuge
US6150771A (en) * 1997-06-11 2000-11-21 Precision Solar Controls Inc. Circuit for interfacing between a conventional traffic signal conflict monitor and light emitting diodes replacing a conventional incandescent bulb in the signal
DE19728763B4 (de) * 1997-07-07 2007-10-31 Reitter & Schefenacker Gmbh & Co. Kg Schaltungseinrichtung zum Schutz von strombetriebenen Leuchtmitteln, insbesondere von LEDs, zu Signal- oder Beleuchtungszwecken
US7038398B1 (en) * 1997-08-26 2006-05-02 Color Kinetics, Incorporated Kinetic illumination system and methods
JP3461272B2 (ja) * 1997-09-22 2003-10-27 キヤノン株式会社 画像読取方法及び装置
US6461019B1 (en) * 1998-08-28 2002-10-08 Fiber Optic Designs, Inc. Preferred embodiment to LED light string
DE60030516T2 (de) * 1999-08-19 2007-06-06 Schott Ag Vorrichtung zur Beleuchtungssteuerung
US6351079B1 (en) * 1999-08-19 2002-02-26 Schott Fibre Optics (Uk) Limited Lighting control device
DE19950135A1 (de) * 1999-10-18 2001-04-19 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Ansteuerschaltung für LED und zugehöriges Betriebsverfahren
US6762563B2 (en) * 1999-11-19 2004-07-13 Gelcore Llc Module for powering and monitoring light-emitting diodes
US6480399B2 (en) * 2000-03-02 2002-11-12 Power Integrations, Inc. Switched mode power supply responsive to current derived from voltage across energy transfer element input
US6628252B2 (en) * 2000-05-12 2003-09-30 Rohm Co., Ltd. LED drive circuit
US6621235B2 (en) * 2001-08-03 2003-09-16 Koninklijke Philips Electronics N.V. Integrated LED driving device with current sharing for multiple LED strings

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278432A (en) 1992-08-27 1994-01-11 Quantam Devices, Inc. Apparatus for providing radiant energy
US5598068A (en) 1994-03-18 1997-01-28 Sony/Tektronix Corporation Light emitting apparatus comprising multiple groups of LEDs each containing multiple LEDs
DE19749333A1 (de) 1997-09-19 1999-03-25 Garufo Gmbh Leuchtsignal
DE19804891A1 (de) 1998-02-07 1999-09-02 Mannesmann Vdo Ag Schaltungsanordnung zur Beleuchtung einer Anzeigevorrichtung in einem Kraftfahrzeug mit Leuchtdioden
US6161910A (en) 1999-12-14 2000-12-19 Aerospace Lighting Corporation LED reading light
DE10017878A1 (de) 2000-04-11 2001-10-25 Hella Kg Hueck & Co Ansteuerungsvorrichtung für eine mit einer Anzahl von Leuchtdioden versehene Leuchte eines Kraftfahrzeuges

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012000605A1 (de) 2011-10-27 2013-05-02 Diehl Aerospace Gmbh Beleuchtungsvorrichtung für eine Wechselspannungsversorgung

Also Published As

Publication number Publication date
US7317287B2 (en) 2008-01-08
JP4488489B2 (ja) 2010-06-23
CN1596560A (zh) 2005-03-16
TW200300545A (en) 2003-06-01
EP1449408A1 (de) 2004-08-25
CN1596560B (zh) 2011-04-06
WO2003047314A1 (de) 2003-06-05
DE50210722D1 (de) 2007-09-27
US20050077838A1 (en) 2005-04-14
TWI235349B (en) 2005-07-01
EP1449408B1 (de) 2007-08-15
JP2005510891A (ja) 2005-04-21

Similar Documents

Publication Publication Date Title
EP1449408B2 (de) Schaltungsanordnung für ein led-array
DE60109796T2 (de) Verbesserte einstellungsauflösung einer spannungs- und helligkeitsgeregelten led ansteuerschaltung
DE10323437B4 (de) Fahrzeugbeleuchtungseinrichtung
DE602004011177T2 (de) Elektrische Stromversorgungseinrichtung für Leuchtdioden und Scheinwerfer, der eine solche Stromversorgungseinrichtung enthält
DE10341022A1 (de) Schaltung für eine Beleuchtungseinrichtung
WO2013079251A1 (de) Parallel geschaltete leuchtketten
DE102009018428A1 (de) Schaltung für eine Leuchtdiodenanordnung und Leuchtdiodenmodul
DE102018201228A1 (de) Steuern von wenigstens zwei in reihe geschalteten leuchtdioden einer leuchteinrichtung
EP1145904B1 (de) Ansteuervorrichtung für eine mit einer Anzahl von Leuchtioden versehene Leuchte eines Kraftfahrzeuges
DE102008037551B4 (de) Vorrichtung zum Betreiben von Leuchtdiodenketten
EP1233654A1 (de) Schaltungsanordnung und Verfahren zur Kennlinienanpassung einer Leuchtdiode
DE112018006777B4 (de) Vielfach-abgabe-last-treibereinrichtung
EP1185147B1 (de) Spannungsversorgung von LED's für Beleuchtungszwecke
DE10329367B4 (de) LED-Array, LED-Modul sowie Verwendung des LED-Moduls in einer Signalanlage
EP3527043B1 (de) Led-beleuchtungsvorrichtung, insbesondere für fahrzeuge
DE102010015908A1 (de) Vorrichtung zur Ansteuerung einer elektrischen Last
DE102007001716B4 (de) Leuchtdioden-Schaltungsanordnung sowie Verfahren zum Betreiben einer Leuchtdioden-Schaltungsanordnung
EP2842388B1 (de) Led-anordnung
DE102006056712A1 (de) Schaltungsanordnung und Verfahren zur Ausfallsicherung einer LED-oder OLED-Kette
DE10242365B4 (de) Schaltungsanordnung für ein LED-Array
DE2758551A1 (de) Schaltungsanordnung zur steuerung von lichtemittierenden dioden (led)
EP1341402A2 (de) Beleuchtungsanordnung mit einem LED-Modul
EP1395091B1 (de) Leuchte mit einer Schaltungsanordnung zum Ansteuern von Leuchtdioden und Verfahren zum Abgleichen einer solchen Schaltungsanordnung
DE102011016802A1 (de) Steuerungsvorrichtung für LED-Beleuchtungseinrichtungen
DE19910142A1 (de) Schaltung zum Betreiben eines LED-Lichtzeichens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040508

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20051031

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50210722

Country of ref document: DE

Date of ref document: 20070927

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071121

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAZ Examination of admissibility of opposition: despatch of communication + time limit

Free format text: ORIGINAL CODE: EPIDOSNOPE2

26 Opposition filed

Opponent name: TRIDONICATCO GMBH & CO.KG

Effective date: 20080515

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBA Examination of admissibility of opposition: reply received

Free format text: ORIGINAL CODE: EPIDOSNOPE4

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20110831

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 50210722

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 50210722

Country of ref document: DE

Effective date: 20110831

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50210722

Country of ref document: DE

Representative=s name: EPPING HERMANN FISCHER, PATENTANWALTSGESELLSCH, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50210722

Country of ref document: DE

Representative=s name: EPPING HERMANN FISCHER PATENTANWALTSGESELLSCHA, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20171121

Year of fee payment: 16

Ref country code: DE

Payment date: 20171121

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171123

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50210722

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181126