EP1438639B1 - Procedes et dispositifs pour nettoyer des elements de support dans des imprimantes ou des copieurs par utilisation de champs magnetiques - Google Patents

Procedes et dispositifs pour nettoyer des elements de support dans des imprimantes ou des copieurs par utilisation de champs magnetiques Download PDF

Info

Publication number
EP1438639B1
EP1438639B1 EP02781287A EP02781287A EP1438639B1 EP 1438639 B1 EP1438639 B1 EP 1438639B1 EP 02781287 A EP02781287 A EP 02781287A EP 02781287 A EP02781287 A EP 02781287A EP 1438639 B1 EP1438639 B1 EP 1438639B1
Authority
EP
European Patent Office
Prior art keywords
roller
particle mixture
toner particles
doctor blade
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02781287A
Other languages
German (de)
English (en)
Other versions
EP1438639A2 (fr
Inventor
Uwe HÖLLIG
Peter Schulmeister
Ralf Selinger
Volkhard Maess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Production Printing Germany GmbH and Co KG
Original Assignee
Oce Printing Systems GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oce Printing Systems GmbH and Co KG filed Critical Oce Printing Systems GmbH and Co KG
Publication of EP1438639A2 publication Critical patent/EP1438639A2/fr
Application granted granted Critical
Publication of EP1438639B1 publication Critical patent/EP1438639B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/0005Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge for removing solid developer or debris from the electrographic recording medium
    • G03G21/0047Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge for removing solid developer or debris from the electrographic recording medium using electrostatic or magnetic means; Details thereof, e.g. magnetic pole arrangement of magnetic devices

Definitions

  • the invention relates to an electrophotographic printing or copying device, in which a Tonerstromrungsech attached electrically charged toner particles on the surface of a first carrier element. At least part of the deposited toner particles is transferred from the first carrier element to a second carrier element. A cleaning unit removes residual toner particles from the first support member.
  • a further aspect of the invention relates to an apparatus for cleaning a roll of toner particles in an electrophotographic printer or copier on the surface of which a particle mixture of electrically charged toner particles and ferromagnetic carrier particles is conveyed. Furthermore, methods for operating an electrophotographic printer or copier and for cleaning a roller in an electrophotographic printer or copier are given.
  • Electrophotographic printers or copiers use image development techniques that include electrostatic charge images on surfaces, e.g. Charge images on a photoconductor, develop over an air gap or in direct contact with triboelectrically charged toner, which is located on the surface of an applicator element.
  • an applicator element may e.g. be designed as a roller or as an endless belt.
  • the toner particles are triboelectrically charged prior to transfer to the applicator element.
  • a two-component mixture of toner particles and ferromagnetic carrier particles is produced. The bicomponent mixture is mixed in the printer or copier so that the toner particles rub against the carrier particles, whereby they are charged triboelectrically.
  • a magnet roll arrangement transports the two-component mixture into an area with a small distance between the magnet roller arrangement and the surface to be inked, wherein a magnetic field of a magnetic element acts on the two-component mixture.
  • a magnetic brush is formed containing carrier particles and toner particles, only the latter being transferred to the surface to be inked. The carrier particles are retained due to the magnetic field.
  • the transfer of the toner particles from the magnetic roller assembly to the applicator element occurs in other known printers or copiers via an air gap between the magnetic roller and the applicator element, which is not completely bridged by the accumulation of the two-component mixture.
  • the transfer of the toner particles onto the applicator element surface can be assisted by a transfer auxiliary voltage, ie by a potential difference between magnet roller and applicator element.
  • the toner is transferred in accordance with a charge distribution of a charge latent image from the applicator element surface via an air gap or by direct contact with the charge image bearing surface, eg, the surface of a photoconductor drum or photoconductor belt.
  • toner particles remain on the surface of the applicator element in the form of an image negative of the developed charge image.
  • the toner particles remaining on the applicator element must be removed from the applicator element.
  • the unprinted area of a printed page with text averages about 95% of the total area.
  • about 95% of the toner particle deposited on the applicator element must be removed therefrom.
  • From 0 to 100% of the toner particle quantity must be removed again from the applicator element.
  • the cleaning of the applicator element by means of known cleaning devices is insufficient. After several times depositing toner particles on the applicator element and after incomplete cleaning of the toner particles remaining on the applicator element after the staining of the latent charge image, these form an unevenly thick layer on the applicator element.
  • the varying thickness of the inhomogeneous toner layer can cause print image disturbances, e.g. the so-called memory effect.
  • memory effect is in the inked areas of the printed image, the previous print image visible due to the inhomogeneous toner layer on the applicator, which is transmitted as a print image on a medium to be crushed. For a high quality print, therefore, prior to re-depositing toner on the applicator element, complete removal of the remaining toner particles is required.
  • the wear is different in areas of the blade, which results in a worn blade uneven cleaning of the applicator. For high-performance printing systems, this blade must be replaced frequently. Due to the mechanical friction between blade and applicator also the surface of the applicator element can be damaged. Such damage may affect the overall function of the applicator element.
  • an image forming device having two identical image forming units is known.
  • a first image forming unit is disposed in a developing position and operates as a developing unit.
  • the second image forming unit is disposed in a cleaning position and operates as a cleaning unit.
  • the image forming units are alternatively and repeatedly brought into the development position and the cleaning position.
  • the particle mixture contained in an image-forming device is used for application of toner material and at another time for cleaning.
  • a magnetic brush cleaning device for a copying machine is known.
  • a magnetic brush device By means of a magnetic brush device it is achieved that a mixture of a magnetic carrier and the toner glides over the surface of a photoconductor and decreases on the photoconductor surface adhering toner residues.
  • the cleaned toner is supplied by means of a toner recovery device containing a plurality of rollers. Toner material adhering to the rolls of the toner recovery device is removed therefrom by means of doctor blades scraping on these rolls.
  • a magnetic brush cleaning device in which a cleaning roller is provided, provided in the interior of stationary magnets are that produce magnetic brushes.
  • the magnetic brush touches the surface of a photoconductor drum and cleans residual toner therefrom, which remains on the photoconductor drum after the toner image has been rewritten.
  • the cleaned toner material is transferred from the magnetic roller to a second roller.
  • a scraper which rests against the surface of the second roller, the toner material is scraped off the surface of the second roller.
  • Magnetic rollers are known, which are used for coloring a charge image of a photoconductor drum and for cleaning residual toner from the photoconductor drum.
  • Two abutting magnetic elements which are arranged opposite to the surface of the photoconductor drum, the contact of the magnetic brush is prevented with the surface of the photoconductor drum.
  • the magnets of the magnetic roller rotate with the magnetic roller.
  • a cleaning apparatus for removing developer particles from an imaging surface of a movable photoconductive belt in an electrophotographic copying machine is known. With the help of this cleaning device and the back of the tape is cleaned of any toner residues and dust deposits. With the aid of a scraper, the belt is pressed against a cleaning roller. The scraper is pressed by means of a plate of a magnetizable material arranged in the cleaning roller magnets against the cleaning roller.
  • the object of the invention is to provide electrophotographic printing or copying devices and methods for operating electrophotographic printing or copying devices, in which a high print quality is achieved, wherein a low stress of the particle mixture of ferromagnetic carrier particles and electrically charged toner particles takes place. Furthermore, devices and methods for cleaning a roller in an electrophotographic printer or copier are provided, which ensure a maintenance-free operation of the devices for cleaning.
  • toner particles deposited on the surface of a roll of an electrophotographic printer or copier are reliably removed with little effort.
  • two magnetic elements are fixedly arranged, one pole of which is directed towards the roller surface so that they act approximately in the same direction
  • the magnetic elements are arranged at a distance from one another in the direction of rotation of the roller such that the carrier particles
  • the cleaning device reliably removes the toner particles adhering to its surface and does not require any additional space in the electrophotographic printer or copier, since the magnetic elements are fixed to the magnetic elements and form raised aggregates, so-called magnetic brushes, with the carrier particles rubbing on their surface as the roller rotates are arranged inside the roller.
  • the device works wear-free and causes an additional triboelectric charging of the toner. To operate the device auxiliary power is not required. Furthermore, the device is for different sub-mixtures made of toner particles and carrier particles.
  • the cleaning is also reliable when changing the physical properties of a particle mixture used in a printing or copying device. With increasing useful life, such changes occur due to mechanical stress on the toner particles.
  • the adjacent poles of the two magnetic elements facing the particle mixture are similar, ie the magnetic fields of these poles act approximately in the same direction, so that a small field strength is present between the magnetic elements on the roll surface.
  • the field vectors of the magnetic fields have in this area on the roll surface an opposite sense of direction, so that there is no resulting field strength at approximately similar magnetic elements.
  • the mixture of particles remains on the surface of the roll and forms raised accumulations in which, during a rotational movement of the roll, a rotating cylindrical movement is generated within the particle mixture. During this movement, the particle mixture rubs off the toner particles adhering to the roll surface.
  • the magnetic elements are arranged such that at least a portion of the carrier particles is dissolved in a portion between the two magnetic elements by the magnetic fields of the magnetic elements acting on the carrier particles forces from the roll surface, wherein the particle mixture in the region of the magnetic elements in a Rotary movement of the roller is particularly well swirled. This ensures that toner particles, which are located on the roll surface, are released from this and completely abraded, wherein the mechanical stress of the particle mixture is low. The physical properties of the particle mixture remain the same.
  • the toner particles electrostatically deposited on the outer peripheral surface of the roller can be particularly effectively removed in this embodiment.
  • carrier particles are introduced into the areas on the roller surface nachge felicitt, whereby also a part of the remaining in these areas particle mixture is transported. With this particle mixture and the abraded toner particles are removed, so that an exchange of the persisting particle mixture takes place.
  • a doctor blade is arranged at a predetermined distance from the roll surface. It is advantageous to arrange the doctor in the direction of rotation of the roller after the first and second magnetic element in the vicinity of the second magnetic element. It is also advantageous to arrange the doctor blade in the lower half of the roll. The swirling of the particle mixture for abrading the toner particles from the surface of the roller and the separation of the particle mixture from the roller surface by the placement of the doctor blade effectively and with little design effort.
  • the outer peripheral surface of the roll has a roughness in the range of 1 to 5000 microns.
  • the roughness of the roll surface can be inexpensively produced by high quality flame spraying to produce a layer containing aluminum, chromium, nickel, copper, conductive plastic and / or a plastic having a conductive layer.
  • the surface of the roller can be subjected to a set potential in order, for example, to support the transfer of toner particles onto this roller or from this roller.
  • rollers and surfaces made of these materials can be produced easily and inexpensively.
  • the adjacent edges of the two magnetic elements at a distance in the range of 0.01 to 10mm, since at this distance a particularly thorough cleaning.
  • this distance range depends on the field strength of the magnetic elements used, on the circumferential speed of the roller, on the particle mixture used, especially on the carrier particles used, and on the distance between the magnetic element and the outer peripheral surface of the roller.
  • the cleaning device can be easily adapted to the operating conditions of the printer or copier by varying the distance between the magnetic elements and / or by using magnetic elements with other field strengths.
  • the roller used in this cleaning device may contain other magnetic elements for generating raised on the roller surface particle accumulations of so-called magnetic brushes.
  • the magnetic elements are permanent magnets in further advantageous embodiments. This is particularly advantageous since, in contrast to electromagnets, no auxiliary energy is required for permanent magnets.
  • a second aspect of the invention relates to an electrophotographic printing or copying device and to a method according to the invention for operating an electrophotographic printing or copying device toned with toner, said carrier element is subsequently cleaned of toner residues by means of a roller assembly of a cleaning unit.
  • the toner residues are removed from this roller assembly by means of a doctor-magnet element arrangement. This prevents toner particles from being permanently attached to the surface of the roller assembly and forming a crusted layer which hinders electrostatic effects and thus interferes with the electrophotographic process.
  • the electrophotographic printing or copying operation can be carried out in the apparatus according to the invention and in the method according to the invention in high quality and at high speed. Such an electrophotographic printing or copying device can be produced inexpensively by the simple compact design.
  • an apparatus for cleaning a roller in an electrophotographic printer or copier has a doctor blade which is arranged at a distance from the surface of a roll, on the roll surface of which a particle mixture of ferromagnetic carrier particles and electrically charged toner particles is conveyed.
  • a magnetic element is static in the area of the doctor blade, ie stationary with respect to the doctor blade, arranged in the interior of the roller such that the carrier particles in the region in the direction of rotation of the roller seen in front of the doctor form a raised on the roll surface accumulation, ie a magnetic brush.
  • the carrier particles of the collection rub on a rotating movement of the roller on the surface thereof.
  • the squeegee strips off at least part of the sub-mixture located on the roller.
  • the magnetic field of the magnetic element keeps parts of the particle mixture stiffened by the doctor blade in the area in front of the doctor blade. Due to the rotational movement of the roller and the fixedly positioned doctor blade, the particle mixture is vortexed in the area in front of the doctor blade. This ensures that even toner particles that are located directly on the roll surface, are mechanically rubbed off the surface of the roller by the turbulence of the particle mixture in the blade, especially by the turbulence of the carrier particles. The abraded toner particles are taken up by the particle mixture in the area in front of the doctor blade.
  • a layer of toner particles on the roll surface has an electrical insulation effect and limits the effect of a potential difference between the roll surface and other elements, such as the surface of the roll. other rollers and ribbons of the printer or copier, or prevents this effect.
  • potential differences are e.g. used to transfer electrically charged toner particles in printers or copiers.
  • the particle mixture on the squeegee can simply fall down.
  • the removal of the particle mixture on the doctor blade is thus easily possible.
  • the falling particle mixture may e.g. collected in a container arranged under the roller or fall directly into a so-called mixed sump of the printer or copier, in which the two-component mixture is, and then fed back to the electrophotographic printing or copying process.
  • the outer peripheral surface of the roll has a roughness in the range 1 to 5000 microns. This ensures that the particle mixture to be transported on the roll surface has sufficient adhesion for transport and that the particle mixture can be removed from the surface again by simple means.
  • the roller surface may be profiled to reduce slippage of the particulate mixture on the roller surface and to ensure continuous transport of the particulate mixture upon rotational movement of the roller.
  • the surface of the roll by means of a flame spraying process. With the aid of the flame spraying method, it is possible to produce a surface of the roll with a suitable roughness simply and inexpensively. If the roll surface and / or at least part of the rotating hollow roll made of aluminum, chromium, nickel, copper, conductive plastic and / or a plastic with a conductive layer, so the surface of the roll can be acted upon by a set potential, for example To support the transfer of toner particles on this roller or from this roller. Also can be Producing rolls from these materials easily and inexpensively.
  • doctor blade and roll surface is set in an advantageous development of the invention in the range of 0.05 to 6 mm. Such spacing ensures low blade and roller wear and reliable cleaning of the roller from toner particles set on the roller surface.
  • an inventive method for cleaning a roller in an electrophotographic printer or copier is achieved that the cleaning of the roller is done thoroughly with little effort. Additional auxiliary power is not needed.
  • a compact design of the printer or copier is also possible, wherein the method by the distance between the doctor blade and roll surface for the roller and the doctor blade is almost wear-free feasible.
  • This method of cleaning the roll can be used for various particle mixtures of toner particles and carrier particles. The cleaning effect of such an arrangement also remains if the physical properties of the particle mixture change.
  • a fourth aspect of the invention relates to an electrophotographic printing or copying apparatus in which a toner attaching unit deposits electrically charged toner particles on the surface of a first support member. At least a part of the toner particles is transferred from the first carrier element to a second carrier element.
  • a cleaning unit removes the toner particles left on the first support member after being transferred from the first support member.
  • the cleaning unit includes a roller which is arranged at a distance from the first carrier element. Inside the roller at least two magnetic elements are arranged stationary. On the surface of the roller becomes a particle mixture containing electrically charged toner particles and ferromagnetic carrier particles.
  • the particle-mixture facing adjacent poles of the two magnetic elements are similar and viewed in the direction of rotation of the roller at a distance from each other arranged so that the carrier particles on the surface of the roller to the magnetic elements at least one accumulation forms whose carrier particles in a rotational movement of the roller on the surface rub.
  • a doctor blade is arranged at a predetermined distance to the roll surface in the region of the second magnetic element or in the direction of rotation of the roll after the two magnetic elements fixed.
  • the roller-shaped movement within the particle mixture of carrier particles and toner particles in the region of the magnetic elements on the roll surface is reinforced by the doctor blade, wherein in the region in front of the doctor blade at least parts of the Toner particles that have settled on the roll surface, are abraded by this and detached.
  • a fifth aspect of the invention relates to an electrophotographic printing or copying apparatus and a method of operating such an electrophotographic printing or copying apparatus.
  • the electrophotographic printing or copying device has a toner attaching unit which transfers toner particles to a first support member by means of a particle mixture of electrically charged toner particles and ferromagnetic carrier particles.
  • the particle mixture is fed to a cleaning unit after transfer of at least a portion of the toner particles of the particle mixture to a second support member.
  • the cleaning unit absorbs the toner particles present on the first carrier element with the aid of the added particle mixture.
  • an applicator element is used as the first carrier element and a photoconductor as the second carrier element.
  • the applicator element is colored with toner particles by means of the toner adsorption unit, whereby a part of the toner particles are transferred from the applicator element to the photoconductor in accordance with the latent charge image on the photoconductor and the toner particles remaining on the applicator element are removed therefrom.
  • the combination of the applicator element and the photoconductor ensures a uniform layer thickness of the toner particles of the printed image, as a result of which high-quality homogeneous printed images having a uniform print intensity are produced.
  • the first carrier element is a photoconductor and the second carrier element is a carrier material to be printed or a transfer element.
  • the photoconductor is colored according to its latent charge image with toner particles, and the toner image is on printed substrate or transfer element umfact.
  • the toner particles remaining on the photoconductor after transfer printing are removed from the photoconductor by means of the cleaning unit. This ensures that the photoconductor is completely cleaned of toner particles after a printing or copying before another printing or copying process and memory effects are avoided in the subsequent printed image.
  • the direction of rotation of the roller is equal to the direction of rotation of the first carrier element.
  • the cleaning effect is increased, since with the aid of the roller more ferromagnetic carrier particles for receiving toner particles are passed to the first support member which touch the surface of the first support member and remove the adhesive on her toner.
  • the carrier particles which are located on the surface, rotated and thus transported by the rotational movement of the roller in the circumferential direction. A rough and / or structured roller surface favors this transport of the carrier particles.
  • the axes of the poles of the magnetic element are aligned radially to the axis of rotation of the roller. This ensures that the magnetic field of the magnetic element exerts a particularly large force on the ferromagnetic carrier particles in the region in that the peripheral surface of the roller facing pole of the magnetic element has a small distance from the roll surface.
  • the carrier particles are aligned with the field lines of the magnetic element and at least partially held temporarily in this area, so that by the concentration of the carrier particles and their orientation a raised accumulation, a so-called magnetic brush, is formed.
  • the distance between the carrier element and the roller is preferably less than or equal to the height of the magnetic brush on the roller.
  • the distance between the roller and the first carrier element is preferably set in the range between 0.1 and 7 mm.
  • the amount of ferromagnetic carrier particles carried on the surface of the roller contains a predetermined amount of toner particles, whereby a particle mixture of carrier particles and toner particles is used to clean the roller.
  • particle mixtures of carrier particles and toner particles can also be used for cleaning, which have been previously described e.g. have been used for coloring a support element.
  • the toner attaching unit transfers toner particles of a two-component mixture of electrically charged toner particles and ferromagnetic carrier particles to the first carrier member. This two-component mixture is fed to the roller of the cleaning unit after transferring at least a portion of the toner particles to the first support member.
  • the particle mixture fed to the cleaning unit absorbs the toner particles remaining on the first support element. This ensures that the particle mixture must be processed only once in the electrophotographic printing or copying device. It is used first for toner application and then for cleaning.
  • the particle mixture is transferred from the Tonstromrungsaku to the cleaning unit by means of a magnetic field of at least one magnetic element.
  • the transfer of the particle mixture from the toner attachment unit to the cleaning unit may be carried out by means of an intermediary between the toner attachment unit and the cleaning unit arranged guide element done.
  • a guide element may for example be a guide plate or a conveyor, such as a conveyor belt or a screw conveyor. This ensures that the particle mixture is transferred continuously from the toner attachment unit to the cleaning unit.
  • permanent magnets are used as magnetic elements, no supply energy is required for the magnetic elements. Furthermore, permanent magnets are inexpensive and can be produced in almost any shape.
  • the side of the magnetic elements facing the surface of the roller can thereby be e.g. be executed curved, so that the design of the roller assembly can be made even more compact.
  • a plurality of magnetic elements are arranged in the interior of the roller, whose poles are each aligned approximately radially to the axis of rotation, so a plurality of magnetic brushes with the aid of these magnetic elements can be formed on the surface of the roller. The transfer of toner and / or carrier particles can thus be done easily, inexpensively and wear-free in the printing or copying device.
  • a first potential difference and / or a second potential difference between the cleaning unit and the first carrier element are generated between the toner accumulation unit and the first carrier element. It is thereby achieved that the transfer of the toner particles from the toner attachment unit to the first carrier element or from the first carrier element to the cleaning unit takes place with simple means. With the help of the potential differences, a simple transfer of the toner particles between different elements with little design effort is cost possible. By this potential difference, the removal of the toner particles is supported by the first support member, whereby all toner particles are completely removed from the support element.
  • an array 10 for toner deposition to an applicator roller 12 is shown by means of a first magnetic roller assembly 14 wherein a particle mixture of electrically charged toner particles and ferromagnetic carrier particles, a so-called bicomponent mixture, is used to attach the toner to the applicator roller 12.
  • a particle mixture of electrically charged toner particles and ferromagnetic carrier particles a so-called bicomponent mixture
  • the toner particles are also generally referred to as toners.
  • Applicator rollers are used in particular for developing a latent charge image on a photoconductor element with toner, wherein the surface of the applicator roller is provided with a uniform toner layer. The uniform toner layer is guided past the charge latent image of the photoconductor element, wherein in the areas to be inked of the charge latent image the toner layer is transferred from the applicator roller to the photoconductor element.
  • a so-called magnetic brush is formed between the first magnetic roller assembly 14 and the applicator roller 12 from the two-component mixture.
  • a stator 26 elongated magnetic elements 28, 20, 32, 34, the outwardly directed poles seen in the circumferential direction alternate.
  • the ferromagnetic carrier particles are arranged and aligned on each magnetic element 28, 20, 32, 34 by the force of the magnetic field along the magnetic field lines, wherein on the surface of the roller 24 in the region of the outwardly facing poles of the magnetic elements 28 to 34 projecting from the roll surface 24 accumulation of Carrier particles and the toner particles adhering to them are formed.
  • Such a protruding collection of carrier particles is called a magnetic brush due to the brush-like shape.
  • the first magnetic roller assembly 14 is supplied in the region 20, a treated two-component mixture having a predetermined weight fraction of toner particles, wherein the toner particles are charged triboelectrically.
  • the weight fraction of the toner is typically in the range of 2% to 8%.
  • the feeding of the two-component mixture is e.g. by a Schaufelradanowski note not shown.
  • a metering blade 22 arranged at a predetermined distance from the first magnetic roller arrangement 14 produces a uniform layer of the two-component mixture 20 on the outer surface of the roller 24.
  • the first magnetic roller assembly 14 includes, as mentioned, the one rotating hollow roller 24, in the interior of which a magnetic roller stator 26 is arranged, which contains the magnetic elements 28, 30, 32, 34.
  • the longitudinal axes of the magnetic elements 28, 30, 32, 34 are aligned in the radial direction, with north pole N and south pole S side by side magnetic elements 28, 30, 32, 34 each seen in the circumferential direction follow each other.
  • the magnetic elements 28, 30, 32, 34 are rod-shaped permanent magnets and extend over the entire roll width.
  • the distance between each of the permanent magnets 28, 30, 32, 34 and the inner surface of the roller 24 is set in the range of 0.2 to 1 mm, between each of the permanent magnets 28, 30, 32, 34 and the outer circumferential surface of the roller 24 gives a distance in the range of 1.2 mm to 3 mm.
  • Around Magnetic brush 18 is ideally a constant toner supply in the two-component mixture.
  • the toner particles on the carrier particles of the magnetic brush 18 deposit on the surface of the applicator roller 12 as a uniform toner layer 36.
  • An electric field generated by a potential difference between the surfaces of the applicator roller 12 and the roller 24 exerts a force on the electrically charged toner particles, by which the toner particles are released from the carrier particles and deposited on the applicator roller 12.
  • the applicator roller 12 is guided past a photoconductor, not shown.
  • areas of the toner layer 36 are transferred thereto via an air gap or in direct contact between the applicator roller 12 and the photoconductor.
  • the non-photoconductive regions 38, 40, 42 of the toner layer 36 form the image negative to the latent image and must be removed from the applicator roll 12.
  • the cleaning is effected by a second magnet roller arrangement 16.
  • This second magnet roller assembly 16 like the first magnet roller assembly 14, has a rotating hollow roller 44 and a magnet roller stator 46 that includes rod-shaped magnet members 48, 50, 52 that are permanent magnets and radially aligned.
  • the direction of rotation of the applicator roller 12 is indicated by the arrow P1, the direction of rotation of the roller 24 with the arrow P2 and the direction of rotation roller 44 with the arrow P3.
  • the bicomponent mixture is transferred in the region 54 from the surface of the roller 24 to the surface of the roller 44 by means of the magnetic field of the magnetic elements 34 and 48.
  • the ferromagnetic carrier particles become with them electrostatically adhering toner particles upon rotation of the roller 24 in the resulting magnetic Field between the south pole S of the permanent magnet 34 and the north pole N of the permanent magnet 48 transported.
  • the proportion by weight of the toner particles in the two-component mixture in the area 54 is reduced compared to the prepared two-component mixture fed in the area 20 as a result of the toner transfer to the applicator roller 12.
  • This two-component mixture with reduced toner content is transported on the surface of the roller 44 to the area 56 on.
  • the effective magnetic field of the magnetic element 50 in the region 56 generates a magnetic brush.
  • the magnetic brush in region 56 contains the two-component mixture with reduced toner content.
  • the toner residues 38, 40, 42 are due to the potential difference between the surfaces of the roller 44 and the applicator 12 and electrostatically by rubbing the magnetic brush on the surface of the applicator 12 of this dissolved and transported in the direction of the roller 44.
  • the two-component mixture of the magnetic brush 56 touches the surface of the applicator roller 12 and additionally rubs the toner particles from the surface of the applicator roller 12.
  • the two-component mixture is transported on the surface of the roller 44 and dissolved in the area 62 of the roller 44 of the second magnetic roller assembly 16 and then collected in a collecting device, not shown, and the electrophotographic process the printer or copier supplied, in which the assembly 10 is included.
  • the particle mixture falls directly into a so-called mixed sump in which the two-component mixture is recycled.
  • FIG. 2 is an arrangement 64 similar to the arrangement 10 of FIG. 1 shown. Like elements have the same reference numerals.
  • a guide element 66 is used to transfer the two-component mixture in region 54.
  • Such a guide element 66 is formed, for example, as a guide plate.
  • the axis of rotation 68 of the first magnet roller arrangement 14 is arranged above the axis of rotation 70 of the second magnet roller arrangement 16 as viewed in the vertical direction.
  • the guide member 66 is disposed obliquely so that the two-component mixture can slide or slip from the first magnet roller assembly 14 to the second magnet roller assembly 16 on an inclined plane.
  • FIG. 3 is the in FIG. 1 shown arrangement 10 with the set in the operating state electrical potentials of the roll surfaces.
  • the surface of the applicator roller 12 has a potential difference DC1 from a ground potential as a reference potential
  • the outer surface of the roller 24 has a potential difference DC2 from the ground potential
  • the outer surface of the roller 44 has a potential difference DC3 from the ground potential.
  • a negative toner system is used. Taking into account the sign in the case of a negative toner system, the potential difference DC1 is smaller than the potential difference DC2 and the potential difference DC3 is greater than the potential difference DC1.
  • a positive toner system in the in FIG. 3 used arrangement taking into account the sign is the Potential difference DC1 smaller than the potential difference DC2 and the potential difference DC3 smaller than the potential difference DC1 set.
  • the potential differences are generated by DC voltage sources 72, 74, 76.
  • negative voltages are possible with respect to the ground potential.
  • other set potentials DC1, DC2, DC3 of the surfaces of the rollers 12, 24, 44 with respect to the reference potential are possible.
  • the potentials to be set depend, above all, on the composition of the toner material, on the distances between the rollers 12, 24, 44 and on the roller materials.
  • the electrostatic processes which are achieved by the set potentials DC1, DC2, DC3 are mainly due to the potential difference (DC1-DC2) resulting from the potentials DC1, DC2, DC3 between the surfaces of the applicator roller 12 and the magnet roller arrangement 14 and of FIG the potential difference (DC1 - DC3) between the surfaces of the applicator roller 12 and the magnetic roller assembly 16 in consideration of the sign depends.
  • roller 12 to be cleaned for example an applicator roller or a photoconductor roller, is not mechanically stressed during the cleaning process or only to a very small extent. This is achieved above all by the direct absorption of the toner 38, 40, 42 into the two-component mixture.
  • the mechanical stress of the toner is due to the direct absorption of the toner particles in the two-component mixture low or absent. Also occurs in the application and / or cleaning only a very small heat generation.
  • FIGS. 1 to 3 At one in the FIGS. 1 to 3 As shown, not only does the inking of the applicator roller surface take place electrostatically with the aid of a magnet roller arrangement 14, but also its cleaning.
  • the in the description of FIG. 3 illustrated electrical potentials DC1, DC2, DC3 and the resulting therefrom between the surfaces of the applicator roller 12 and the roller 44 potential difference generates an electric field between the rollers 12, 44, whose force on the toner particles in the direction of the roller 44 and in the direction the two-component mixture acts on the roll surface.
  • the toner can be removed from the applicator roller 12 in direct contact with the two-component mixture or transferred to the two-component mixture on the surface of the magnet roller arrangement 16 via an air gap between the applicator roller 12 and the magnet roller arrangement 16.
  • FIG. 4 an arrangement for cleaning an applicator roller 78 by means of a magnetic roller system 80 with a rotating hollow roller 81 is shown.
  • This arrangement also includes a cleaning device with magnetic elements 96, 98 and a squeegee 82 for cleaning the outer surface of the roller 81.
  • the magnetic roller system 80 is disposed at a predetermined distance from the applicator roller 78 and has a Magnetwalzenstator 84, are arranged on the permanent magnets 86 to 100 equidistant from each other on a circular path about the axis of rotation 127 of the magnetic roller system 80.
  • the axis of the poles N, S of each individual permanent magnet 86 to 100 is aligned radially with respect to the rotation axis 127, ie, the north pole N or the south pole S of each permanent magnet 86 to 100 faces the surface of the roller 81 of the magnetic roller system 80.
  • the roller 81 is supplied with ferromagnetic carrier particles as pure carrier particles or with the aid of a particle mixture of carrier particles and toner particles.
  • This supply of carrier particles can be effected, for example, by a second roller system (not shown) for depositing toner onto the applicator element 78, as is already the case with the Figures 1 and 2 has been explained.
  • these carrier particles may also be supplied to the magnetic roller system 80 from a reservoir.
  • the magnetic fields of the stationary permanent magnets 88, 90, 92, 94 form on the surface of the roller 81 magnetic brushes 104, 106, 108, 110, 112 of carrier particles.
  • the permanent magnet 90 is arranged in the area with the smallest distance between applicator roller 78 and magnetic roller system 80.
  • the magnetic brush 106 formed on the surface of the roller 81 rubs on the surface of the applicator roller 78, whereby the toner particles 79 to be removed are abraded.
  • the toner particles 79 are attached to the carrier particles of the magnetic brush 106.
  • the detachment of the toner particles 79 from the surface of the applicator roller 78 and the attachment of these toner particles to the carrier particles of the magnetic brush 106 is further affected by the force of an electric field on the toner particles 79 and the particles rubbing on the surface of the applicator roller 12.
  • This electric field arises due to the potential difference DC between the surfaces of the applicator roller 78 and the roller 81, which is adjusted by means of a DC voltage source 116.
  • the directions of rotation of the applicator roller 78 and the roller 81 are the same, as indicated by the arrows P4 and P5. It is thus achieved that a large amount of ferromagnetic carrier particles is guided past the applicator roller 12 in the area of the magnetic brush 106 on the applicator roller 78, with the aid of the magnetic brush 106 also a mechanical brushing action being exerted on the surface of the applicator roller 78 by the toner particles are rubbed off the surface.
  • the peripheral speeds of the applicator roller 78 and the magnetic roller system 80 are approximately equal.
  • the peripheral speed of the magnetic roller system 80 is less than or greater than the peripheral speed of the applicator roller 78.
  • the directions of rotation of the applicator roller 78 and the magnetic roller system 80 are opposite to each other such that e.g. the direction of rotation of the magnetic roller system 80 is directed opposite to the direction of rotation according to the arrow P5. This ensures that the mechanical stress of the carrier particles and toner particles in the region of the magnetic brush 106 is further reduced.
  • the elements of the arrangement i. the region 102 and the doctor blade 82 on the line through the two axes of rotation of the applicator roll 78 and the magnetic roller system 80 to arrange mirrored.
  • the further magnetic brushes 104, 108, 110, 112 then likewise form on the permanent magnets 92, 88, 86, 100 mirrored on this straight line.
  • the toner particles removed from the applicator roller 78 in the area of the magnetic brush 106 are picked up by the carrier particles of this magnetic brush and in the direction of rotation of the magnetic roller system 80 transported away.
  • the permanent magnet 96 is arranged in the direction of rotation P5 of the magnetic roller system 80 just before the doctor blade 82.
  • the blade of the squeegee 82 is disposed at a predetermined distance from the surface of the roller 81, whereby a portion of the particle mixture of carrier particles and toner particles is stripped from the surface of the magnetic roller system 80 during rotational movement of the magnetic roller system 80.
  • the carrier particles and toner particles in the region 112 are mixed and fluidized so that the particle mixture rubs on its surface upon rotation of the roller 81, whereby toner particles adhered directly to the surface of the roller 81 are abraded therefrom become.
  • the movement processes within the grape, ie in the area 112, are related below FIG. 7 explained in more detail.
  • the particle mixture falls directly into a so-called mixed sump in which the two-component mixture is treated.
  • FIG. 5 is essentially the arrangement FIG. 4 however, which here serves to develop a latent charge image formed on the surface of a photoconductor drum 77 is located. On the surface of the photoconductor drum, a toner layer 118 is applied or deposited in the areas to be inked.
  • the construction of in FIG. 5 The arrangement shown is similar to that in FIG FIG. 4 shown arrangement for cleaning the applicator roller 78. The same elements have the same reference numerals.
  • the magnetic roller system is fed with a two-component mixture, ie a particle mixture of carrier particles and toner particles, in which the toner particles have a weight fraction in the range from 2% to 8% of the particle mixture.
  • a two-component mixture ie a particle mixture of carrier particles and toner particles, in which the toner particles have a weight fraction in the range from 2% to 8% of the particle mixture.
  • a magnetic brush is formed in the region 106 by the permanent magnet 90, a magnetic brush.
  • This magnetic brush touches the surface of the photoconductive drum 77.
  • a latent charge image is present on this surface.
  • the surfaces of the photoconductive drum 77 have a potential difference DC generated by the DC power source 122 through the charge image in the areas to be inked to the roller 81.
  • the potential of the areas of the photoconductive drum 77 to be inked is to be set positively relative to the potential of the surface of the roller 81.
  • the potential of the areas of the photoconductive drum 77 to be inked is to be set negative relative to the potential of the surface of the roller 81.
  • the potential difference between the areas of the photoconductive drum 77 and roller 81 to be inked causes electrostatic attachment of toner particles 118 on the surface of the photoconductive drum 77 in the areas to be inked.
  • FIG. 6 the magnetic roller system 80 is shown enlarged, which in the in the FIGS. 4 and 5 shown arrangements is used.
  • the distance between the cutting edge of the doctor blade 82 and the outer surface of the roller 81 is designated by A1.
  • This distance A1 is set in the range of 0.05 to 6 mm depending on the physical properties of the particle mixture. In the illustrated embodiment, the distance A1 is set in the range of 0.1 mm to 4 mm.
  • the longitudinal axis 123 of the permanent magnet 96 arranged on the magnet roller stator 84 is arranged in front of the cutting edge of the doctor blade 82 at a predetermined distance A2 in the direction of rotation of the roller 81.
  • This distance A2 is set depending on the physical properties of the particle mixture and the peripheral velocity in the range of 0.01 to 10 mm. A particularly effective cleaning effect could be achieved at a distance in the range of 4 mm to 6 mm.
  • the longitudinal axes 123, 124, 125, 126 of the permanent magnets 86 to 100 pass through the axis of rotation 127, ie the centers of the north pole N and the south pole S of the permanent magnets 86 to 100 are approximately on the lines 123 to 126.
  • the straight lines 123 to 126 have an angular distance of 45 ° from one another, ie the permanent magnets 86 to 100 are arranged at the same angular distance from one another on a circular path about the axis of rotation 127.
  • a distance in the range of 0.2 mm to 1.5 mm is set in each case.
  • the distance between the permanent magnets 86 to 100 and the outer surface the roller 81 results according to the material thickness of the roller 81 and is in the range of 2.3 mm and 3.5 mm.
  • Particularly favorable is a distance between the side of the permanent magnets 86 to 100 facing the roller 81 and the inner surface of the roller 81 in the range of 0.2 mm to 1 mm and the outer surface of the roller 81 in the range of 2 mm to 3 mm proved. At these intervals, not only suitable magnetic brushes are formed, but also a grape-like accumulation of the particle mixture in the region 112, as in the FIGS. 4 and 5 is shown. However, the distance between the permanent magnets 86 to 100 and the surface of the roller 81 is dependent on the field strength of the magnetic elements 86 to 100 used, the printing speed of the printing or copying device, especially the peripheral speed of the outer roller surface, of the physical properties the used toner and especially the physical properties of the carrier particles.
  • the carrier particle material e.g. Ferrite and iron
  • the magnetic saturation of the carrier particle material is significant.
  • the distance depends on the overall arrangement of the printing or copying device. Thus, it is also possible to set clearances which are outside the stated ranges, if the circumferential speed is increased, if other toner material is used, if other carrier particle materials are used and / or a modified overall arrangement of the printing or copying device is used.
  • FIG. 7 a section of the magnetic roller system 80 is shown together with the doctor blade 82, wherein the movements within the particle mixture, which result in a rotational movement of the roller 81 in the direction of the arrow P5, with the aid of arrows P6, P7, P8, P9 are shown. Also, the arrangement of the particle mixture in the area 112 opposite the representations of the FIGS. 4 and 5 shown in more detail.
  • a magnetic brush 128 is formed by its magnetic field.
  • an accumulation of the particle mixture of toner particles and carrier particles which are held in this region by the magnetic field of the permanent magnet 96, is formed in the form of a grape.
  • the particle mixture is transported on the roll surface approximately at the peripheral speed of the roll 81, as indicated by arrow P6.
  • the particle mixture in the direction of arrow P7 is further transported to the grape-like accumulation of the particle mixture in front of the doctor blade 82.
  • part of the particle mixture is held in front of the doctor blade 82 in the region 130 in the direction of rotation of the roller 81 by the field forces of the permanent magnets 96, 98. Due to the rotational movement of the hollow roller 81 and the associated feeding of further particle mixture, a rotating roller-shaped movement within the particle mixture forms in front of the doctor blade 82, which is indicated by means of the arrow P8.
  • the particle mixture is circulated in the region 130 in front of the doctor blade 82, whereby it rubs against the surface of the roller 81. It rubs especially the carrier particles, whereby toner particles are rubbed off the roll surface, which adhere directly to this.
  • the formation of an electrically insulating crust-like layer and electrically insulating regions of toner particles on the magnetic roller surface is effectively prevented by rubbing the toner particles from this surface. Electrostatic processes, such as the transfer of toner particles from or to the roller 81 are thus not affected.
  • a more or less large grape-like accumulation 130 forms in front of the doctor blade 82. This accumulation 130 is also called a standing particle mixture.
  • the forces acting on the carrier particles of the magnetic fields of the permanent magnets 96, 98 are lower than at the roll surface, so that parts 114 of the particle mixture fall in the direction of arrow P9 in a collecting container, not shown, down.
  • the distance A2 to be set between the permanent magnet 96 and the edge of the doctor blade 82 depends on the peripheral speed of the roller 81, the surface roughness of the roller 81, the toner used, the carrier particle material used, the speed of the printing or copying device, and the overall arrangement the printing or copying device.
  • the surface of the roller 81 is electrically conductive. It may contain, for example, aluminum, copper, nickel, conductive plastic or a compound of these materials, for example an alloy.
  • the poles N, S of the magnetic elements 86 to 100 may vary in shape, shape and field strength. Thus, the shape of the magnetic elements 86 to 100 may not be rod-shaped, so that only the roller surface facing pole N, S acts in the direction of the normal. Also, the magnetic elements 86 to 100 may have different field strengths.
  • the roller 81 has a roughness in the range of 1 micron to 5000 microns. It has proved to be particularly favorable to adjust the roughness in the range from 10 ⁇ m to 3000 ⁇ m. With this roughness, a safe transport of the particle mixture is ensured, and the detachment of toner particles is not hindered by the roll surface.
  • the distance A1 between the surfaces of the doctor blade 82 and the roller 81 is preferably less than the thickness of the layer of the particle mixture in front of the doctor blade 82. The thickness of the layer of the particle mixture remaining after the doctor blade 82 is limited by the distance A1 between roller surface and doctor blade can be adjusted by changing the distance A1.
  • the portion of the particle mixture blocked by the doctor blade 82 forms the standing particle mixture on the surface thereof relative to the roller 81.
  • the force with which the ferromagnetic particle mixture of toner particles and carrier particles adhere to the surface of the roller 81 is dependent on the ferromagnetic properties of the carrier particle material, the magnetic field strength of the magnetic elements 86 to 100, and above all the field strength of the permanent magnets 96, 98 and the distance between the surface of the roller 81 and the respective permanent magnet 86 to 100 dependent.
  • the standing particle mixture in the region 112 or 130 in front of the doctor blade 82 rubs on the outer surface of the roller 81 during a rotational movement of the roller 81 in the direction of arrow P5. This friction abrades the toner adhering to the surface of the roller 81 and again through the particle mixture taken, wherein the abraded toner particles adhere to the carrier particles electrostatically. This ensures that a permanent toner particle layer on the surface of the roller 81 is prevented and the electrostatic process in the printer or copier is not impaired.
  • the portions of the particle mixture passing through the squeegee 82 remain on the surface of the roller 81.
  • these can also be separated by a corresponding structural design of the magnet stator 136 of the roll surface and a collecting device, such as the mixture sump of the printer or copier, fed or transferred to an adjacent magnetic roller system.
  • the outer surface of the roller 81 with a coating that has a very low surface energy.
  • a coating may e.g. be made with the help of Teflon.
  • the entire roller 81 may be made of such a material.
  • such a coating should have no electrically insulating properties, but should be correspondingly conductive for charge transport to and from the roller 81.
  • Embodiments are also possible in which the high-surface-area low energy insulating material is applied only in the recesses of a rough surface of the roller 81.
  • the remaining conductive areas ensure the required charge flow.
  • the arrangement for cleaning requires no additional auxiliary power.
  • the toner is additionally charged triboelectrically by the friction processes.
  • the arrangement for cleaning the surface of magnetic roller systems contains no wearing parts. Due to the simple structure and a compact design of the cleaning device and the entire printing or copying device is possible. It is also suitable for different particle mixtures with different toner parameters.
  • the magnetic roller system 80 can both remove toner particles from applicator rollers 78 and photoconductors, as well as develop latent charge images on photoconductors and color applicator rollers 78.
  • Applicator tapes or transfer tapes are used.
  • other magnetic elements, such as electromagnets are used instead of the permanent magnets.
  • FIGS. 4 and 5 For example, arrangements can also be shown in an arrangement according to the FIGS. 1 and 2 be used.
  • FIG. 8 an arrangement for cleaning the surface of an applicator roller 132 is shown.
  • This arrangement serves to remove a toner layer 133 and toner debris from the surface of the applicator roller 132 and includes a magnetic roller assembly 134 having a magnetic roller stator 136 having permanent magnets 138, 140, 142, 144 and a rotating hollow roller 162 connected to a drive unit, not shown is driven in the direction of rotation P11.
  • the toner particles of the toner layer 133 adhere electrostatically to the surface of the applicator roller 132.
  • a drive unit not shown, drives the applicator roller 132 in the direction of rotation of the arrow P10.
  • a DC power source 160 generates a potential difference DC between the surfaces of the applicator roller 132 and the roller 162. The force of the electric field generated by the potential difference DC on the toner particles of the toner layer 133 is directed toward the surface of the roller 162.
  • ferromagnetic carrier particles are fed to the magnetic roller system 134 by means of a device (not shown).
  • the magnetic roller system 134 in region 146 may also be supplied with a particle mixture of electrically charged toner particles and ferromagnetic carrier particles.
  • Magnetic element 140 is disposed in the region of least distance between applicator roller 132 and roller 162.
  • the poles N, S are regarded as points, the poles N, S of the magnetic element 140 lie approximately on a line 166 shown as a dashed-dotted line, which intersects the axes of rotation 164, 165 of the magnetic roller system 134 and the applicator roller 132.
  • the longitudinal axis of the magnetic element 138 which intersects the axis of rotation 164, is rotated relative to the straight line 166 by approximately 50 ° counter to the direction of rotation P11 of the roller 162.
  • the longitudinal axis of the magnetic element 142 is about 50 ° relative to the straight line 166 and the longitudinal axis of the magnetic element 144 is rotated relative to the straight line 166 by approximately 100 ° in the direction of rotation P11 of the roller 162.
  • the longitudinal axes of the magnetic elements 142 and 144 extend through the axis of rotation 164 of the magnetic roller system 134.
  • the roller 162 On the outer surface of the roller 162 form in the areas 148, 150, 152, 154 by the magnetic fields of the magnetic elements 138 to 144 magnetic brushes.
  • the distance between the outer surfaces of the roller 162 and the applicator roller 132 is set so that the magnetic brush formed by the magnetic field of the magnetic member 140 contacts the roller surface of the applicator roller 132 in the region 150.
  • the toner particles of the layer 133 are removed from the surface of the applicator roller 132 and adhere to the ferromagnetic carrier particles of the magnetic brush 150.
  • this process is assisted by the potential difference DC between the surfaces of the applicator roller 132 and the roller 162 of the magnetic roller system 134 is generated by the DC voltage source 160.
  • the set potential difference DC is, as already in connection with FIG. 7 described, depending on the toner system used.
  • the transport of the carrier particles between the magnetic members 138 and 140 occurs on the surface of the roller 162.
  • the particle mixture of ferromagnetic carrier particles and the toner particles removed from the surface of the applicator roller 132 is rotated by the rotational movement of the roller 162 transported by the arrow P11.
  • the magnetic fields of the magnetic elements 142, 144 act in substantially the same direction, with the north poles N of the magnetic elements 142, 144 directed toward the surface of the roller 162.
  • the particle-mixture facing adjacent poles N, N of the two magnetic elements 142, 144 are characterized by the same.
  • the adjacent edges of these magnetic elements 142, 144 are arranged in the direction of rotation at a distance in the range of 0.01 to 10 mm to each other, wherein the order between the adjacent edges need not be constant.
  • the magnetic fields of the magnetic elements 142, 144 are superimposed, with the resulting magnetic field in each point of the space being the resultant vector of addition of the field vectors generated by the magnetic elements 142, 144.
  • the field vectors In the area between the magnetic elements 142, 144 on the surface of the roller 162, the field vectors have approximately the same magnitude and are directed approximately opposite, so that the resulting magnetic field strength in this area is small, at a distance from about 5 mm to the surface of the roller 162, the field vectors are the same amount, but the directions are not nearly opposite, and there is an area at 5 mm to 15 mm from the surface of the roller 162 at an axis of symmetry between the axes of the poles N, S of the magnetic elements 142, 144 high magnetic field strength and high magnetic flux density, which is also referred to as magnetic far field.
  • the ferromagnetic carrier particles are pulled in the direction of high magnetic field strengths. This means that the carrier particles correspond to the resulting magnetic field strength be pulled into the region 156 with high magnetic field strength at a distance between 5 mm and 15 mm to the surface of the roller 162.
  • carrier particles are subsequently conveyed into the region 152, then pushed into the region 156 and subsequently supplied to the magnetic brush in the region 154, wherein they have a distance to the surface of the roller 162 in the region 156 due to the resulting magnetic field.
  • the particle mixture of carrier particles and toner particles falls in the region 158 down into a collecting container, not shown, for example, in a so-called mixed sump of the printer or copier, for the reprocessing of the particle mixture.
  • a collecting container not shown, for example, in a so-called mixed sump of the printer or copier, for the reprocessing of the particle mixture.
  • toner particles adhere to the carrier particles.
  • the toner particles abraded from the roller surface also adhere to the carrier particles and are transported together with them.
  • the particle mixture remains in the region of the magnetic brush 152, whereby the mixture transport is inhibited.
  • the force with which the particle mixture of ferromagnetic carrier particles and electrically charged toner particles adhere to the surface of the roller 162 is directly dependent on the magnetic field strength of the magnetic field Magnetic elements of Magnetwalzenstators 136 dependent, especially of the magnetic element 142nd
  • the standing particle mixture adhering to the surface of the roller 162 rubs in the areas 152, 154 the toner particles adhering to the surface of the roller 162.
  • the abraded toner particles adhere to the carrier particles and fall down with them in region 158.
  • the thus cleaned surface of the roller 162 ensures that the continuous electrostatic process in the printer or copier is not affected. Due to the friction between carrier particles and toner particles, a triboelectric charging of the toner particles partially discharged by the preceding electrophotographic process continues to take place.
  • the north poles N of the magnetic elements 142, 144 can be regarded as a common north pole.
  • the particle mixture is drawn in the direction of the far field from the surface of the roller 162 in the region of high magnetic field strength, which is, however, lower than the field strength on the roll surface at the poles.
  • the particle mixture remains on the roll surface in the regions at the poles N, N of the magnetic elements 142, 144 and forms accumulations there.
  • a portion of the particulate mixture is forced away from the roll surface by post-conveyed particulate mixture.
  • the magnetic field strength decreases with the distance to the magnetic element.
  • the formation of the magnet roll stator 136 and the arrangement of the magnetic elements 138-144 on this stator 136 cause the region 158 to form the resulting magnetic field on the surface of the roll 162 so that the mixture of particles moves past falls down.
  • arrangements of the magnetic elements are provided which further transport on the roller 162 or a transfer of the particle mixture to an adjacent Magnetic roller system allow.
  • the resulting distance of the particle mixture to the surface of the roller 162 in the region 156 is mainly due to the magnetic field strength of the magnetic elements 142, 144, the distance between the north poles N of these magnetic elements 142, 144 and the outer surface of the roller 162, the thickness and the Material of the roller 162, the roughness of the roller 162 and the peripheral speed of the roller 162 dependent.
  • the falling of the particle mixture in the region 158 takes place when the centrifugal force tangential to the roller 162, which is caused by the rotation of the roller 162, outweighs the radially acting magnetic force on the particle mixture.
  • a transfer to an adjacent magnetic roller system takes place when the magnetic configuration produces a sufficiently large magnetic flux between the adjacent roller system and the magnetic roller system 134.
  • the stationary particle mixture at the north poles N of the magnetic elements 142, 144, which act in approximately the same direction, is replaced by a newly introduced particle mixture during a rotary movement of the rollers 132, 162 and thus constantly exchanged. A continuous enrichment of the stationary particle mixture with toner does not occur.
  • the roller 162 may be provided with a coating having a very low surface energy, e.g. with Teflon. However, a closed coating should not be used which is electrically insulating so as not to hinder the electrostatic process. For charge transport from and to the roller 162, its surface must be electrically conductive.
  • low surface energy, highly insulating materials may also be incorporated in the wells of a rough surface structure of the roller 162 become. The remaining conductive areas of the roller 162 then ensure the required charge flow.
  • no additional devices for removing toner residues on the roller 162 are required. Thus, a very compact structure of the overall system is possible. Additional power to clean the roller 162 is not required. The arrangement has consumables still consumables are needed. This makes it low maintenance. This arrangement can be used for different types of toners that have different toner parameters.
  • FIG. 9 An arrangement for coloring a latent image on a photoconductor drum 168 in an electrophotographic printer or copier is illustrated.
  • the arrangement is essentially the same as in FIG. 8 shown assembly for cleaning the applicator roller 132 constructed.
  • Like elements have the same reference numerals.
  • the photoconductor drum 168 is moved in the direction of arrow P10 and is spaced from a magnetic roller system 134.
  • the structure of the magnetic roller system 134 has already been described in connection with FIG. 8 described.
  • a two-component mixture ie a mixture of particles Toner particles and carrier particles, which has a high proportion by weight of toner particles in the range of 2% to 8%.
  • the magnetic field of the magnetic element 140 forms a magnetic brush of the two-component mixture which contacts the surface of the photoconductive drum 168.
  • DC potential difference DC, the toner particles are released from the surface of the roller 162 and deposited on the surface of the photoconductor drum 168.
  • a portion of the toner particles of the bicomponent mixture supplied to the array in area 172 is deposited directly on the surface of the roller 162 and forms a toner layer on the surface of the roller 162. Further, toner particles are imparted to the toner particles by the already described force effects of electric fields. eg in the background area and with incorrectly charged toner particles, deposited on the surface of the roller 162.
  • the standing particulate mixture in the regions 152, 154 rubs on the surface of the roller 162 by roller-shaped rotating motions within the particle mixture.
  • the toner particles on the surface are abraded, as already described in connection with FIG FIG. 8 described.
  • the formation of the stationary particle mixture, the transport and the falling of the particle mixture in the region 158 likewise take place as in FIG FIG. 8 illustrated arrangement. At the in FIG. 9 In particular, such embodiments are possible, already in connection with FIG. 8 have been described.
  • the so-called memory effect is reflected in an electrophotographic printer or copier with an arrangement FIG. 9 effectively avoided by
  • FIG. 10 is the magnetic roller system 134 after the FIGS. 8 and 9 shown in an enlarged view. They are the indicated between the axes 174 to 177 of the poles N, S of the magnetic elements 138 to 144 enclosed angle.
  • the axes 174 to 177 of the magnetic elements 138 to 144 each have an angular distance of about 50 ° from each other.
  • S of the same aligned magnetic elements 142, 144, the magnetic field strength of the magnetic elements 142, 144, the size of the magnetic elements 142, 144 and the absolute distance between the two magnetic elements 142, 144th may take into account.
  • the angle to be set may also have a value deviating from 50 °, for example, this angle may be in the range between 10 ° and 100 °.
  • FIG. 12 shows a section of the magnetic roller system 134 together with the particle mixture of toner particles and carrier particles during a rotational movement of the roller 162.
  • the movements of the particle mixture can be recognized by the arrows P12 to P16.
  • the particle mixture is transported from the south pole S of the magnetic element 140 to the north pole N of the magnetic element 142 in the arrow direction of the arrow P12 on the surface of the roller 162 by the rotational movement thereof.
  • the stationary particle mixture in the region of the north pole N of the magnetic element 142 on the surface of the roller 162 occurs.
  • the parts of the standing particle mixture which are in the far magnetic field in the outer region 152 of the magnetic brush by the increasing accumulation of the magnetic particle Particle mixtures are pushed and pulled, as already described, in the direction of arrow P14 in the common magnetic far field of the magnetic elements 142, 144, have in the region 156 at a distance from the surface of the roller 162, wherein the particle mixture by the continuous Nachrucn in the area 152 is transported in the direction of the arrow P14 through the area 156 toward the area 154.
  • a portion of the particle mixture is supplied to the region 154 in front of the north pole N of the magnetic element 144 at a distance from the surface of the roller 162 in the region 156 corresponding to the arrow P15.
  • the remaining part falls directly into a collecting container, not shown, e.g. into a mixed sump of the printer or copier.
  • the magnetic field of the magnetic element 144 also generates a stationary mixture of particles on the surface of the roller 162 in the area 154, wherein there is also a rotating cylindrical movement in the particle mixture through which toner particles are rubbed off the surface of the roller 162. This rotating movement within the standing particle mixture is represented by the arrow P16.
  • the north and south poles N, S of the magnetic elements 142, 144 are opposite to those in FIG FIG. 11 arranged orientation, ie, the south poles S of the magnetic elements 142, 144 act in approximately the same direction and are facing the surface of the roller 162.
  • the arrangements according to FIGS. 1 to 11 are sectional views of roller assemblies.
  • the magnetic elements shown therein are preferably arranged on the entire width of the respective magnetic roller.
  • the width of the magnetic roller is preferably greater than or equal to the possible printing width of the printer or copier.
  • the magnetic elements may be composed of a plurality of individual magnets. As the longitudinal axis of the magnetic elements, the axis is denoted by the poles N, S of the magnetic elements in the figure descriptions.
  • the counter poles N, S of the particle mixture facing poles N, S act by the structural design of the magnetic elements not in the opposite direction.
  • the shape of the raised accumulations of the particle mixture ie the magnetic brushes and the stationary particle mixtures, can be influenced.
  • the poles N, N act approximately in the radial direction.
  • the field distribution in the near-field magnetic field is shown directly on the surface of the roller 162 of the magnetic roller system 134 in a polar coordinate system.
  • the magnetic flux density is plotted on the axis of the polar coordinate system.
  • the numerical values given from 0 to 1 when multiplied by 2000 indicate the magnetic flux density in Gauss. When multiplied by 0.2, these numbers indicate the magnetic flux density in Tesla.
  • the longitudinal axis through the magnetic element 140 is in the diagram the 90 ° axis.
  • the orientation of the resulting magnetic field, which produces the magnetic flux density is characterized by the letters N and S arranged next to the curves in the diagram.
  • the flux density is directly proportional to the magnetic field strength, the magnetic flux density being the product of absolute permeability and magnetic field strength.
  • the in FIG. 11 illustrated magnetic element 142 on the surface of the roller 162 has a maximum magnetic flux density of 1800 Gauss. This also generates on the surface of the roller 162 in FIG. 11 shown magnetic element 144 has a maximum flux density of about 1780 Gauss.
  • a minimum resultant flux density of about 100 Gauss is obtained.
  • FIG. 13 the field distribution in the far-field magnetic field is shown at a distance of about 9 mm from the surface of the roller 162.
  • the scale graduation agrees with the graduation of the scale FIG. 12 shown diagram.
  • the magnetic far field in the area 156 between the magnetic elements 142, 144 at a distance of about 9 mm to the surface of the roller 162 has a relatively high magnetic flux density of up to 950 Gauss.
  • the maximum difference in magnetic flux density in region 156 between the surface and a region 9 mm apart from the surface is 850 Gauss.
  • the magnetic field is thus at a distance of 9 mm in the region 156 many times greater than at the surface of the roller 162. Due to the strong magnetic far field, as described, the detachment of the particle mixture from the surface of the roller 162 in the area 156 and the stationary Particle mixtures in the areas 152, 154.
  • FIGS. 8 and 9 described arrangement may be provided in other embodiments with a squeegee, which is arranged, for example, at a predetermined distance in the direction of rotation of the roller 162 after the magnetic element 144.
  • a squeegee which is arranged, for example, at a predetermined distance in the direction of rotation of the roller 162 after the magnetic element 144.
  • the in FIG. 8 and 9 shown arrangements with elements of the in FIGS. 4 and 5 arrangements are shown combined. All magnetic elements can be designed depending on the requirements of the field strength and the embodiment as electromagnets or permanent magnets.
  • FIGS. 4 and 5 8 and 9 are used to apply toner and to clean surfaces in arrangements similar to those shown in Figs FIGS. 1 and 2 constructed arrangements are constructed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Cleaning In Electrography (AREA)

Claims (43)

  1. Dispositif de nettoyage d'un rouleau dans une imprimante ou une photocopieuse électrographique,
    dans lequel au moins deux éléments magnétiques (142, 144) sont disposés de manière fixe à l'intérieur d'un rouleau (134),
    un mélange de particules, qui contient des particules de toner chargées électriquement et des particules porteuses ferromagnétiques, est transporté sur la surface du rouleau (134),
    et dans lequel les pôles (N, N) voisins, orientés vers le mélange de particules, des deux éléments magnétiques (142, 144) sont de même nature et, par référence au sens de rotation du rouleau (134), sont situés à une distance l'un de l'autre qui est telle que le mélange de particules forme au moins un amas en relief sur la surface du rouleau (134) au niveau des éléments magnétiques (142, 144),
    caractérisé en ce que la distance entre les éléments magnétiques (142, 144), la rugosité de la surface du rouleau (134), la distance entre les éléments magnétiques et la surface du rouleau (134), et l'intensité du champ des éléments magnétiques (142, 144) sont choisis de telle sorte que, dans une zone de l'amas, un mouvement de rotation du rouleau (134) induit des mouvements dans le mélange de particules, par lesquels les particules porteuses frottent sur la surface du rouleau (134) et, dans ce cas, au moins une partie des particules de toner, présentes sur la surface du rouleau (134), se détachent de celui-ci, et en ce qu'au moins une partie du mélange de particules est évacuée en aval des éléments magnétiques (142, 144) par référence au sens de rotation du rouleau (134).
  2. Dispositif selon la revendication 1,
    caractérisé en ce que les forces, agissant sur les particules porteuses sous l'effet du champ magnétique résultant des deux éléments magnétiques (142, 144), détachent de la surface (162) du rouleau au moins une partie du mélange de particules dans une zone partielle entre les éléments magnétiques (142, 144), et en ce que, dans le cas d'un mouvement de rotation du rouleau (134), le mélange de particules dans la zone des éléments magnétiques (142, 144) est déplacé de telle sorte que les particules porteuses frottent sur la surface du rouleau (134).
  3. Dispositif selon la revendication 2,
    caractérisé en ce que, sous l'effet du déplacement du mélange de particules, au moins une partie des particules de toner, qui se sont fixées par effet électrostatique sur la surface périphérique extérieure du rouleau (134), est éliminée par frottement sur ce dernier.
  4. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'à l'intérieur du rouleau (134) sont disposés des éléments magnétiques (138, 140) -supplémentaires, dont les pôles (N, S) sont orientés chacun radialement par rapport au rouleau.
  5. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une racle (82) est disposée à une distance (A1) de la surface (162) du rouleau qui se situe dans une plage de 0,1 à 0,4 mm.
  6. Dispositif selon la revendication 5,
    caractérisé en ce que, par référence au sens de rotation (P11) du rouleau (134), le premier et le deuxième éléments magnétiques (142, 144) sont disposés en amont de la racle (82) et à proximité de celle-ci.
  7. Dispositif selon la revendication 5 ou 6, caractérisé en ce que la racle (82) est disposée dans la moitié inférieure du rouleau.
  8. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la surface périphérique extérieure du rouleau (134) a une rugosité se situant dans une plage de 1 à 5 000 µm.
  9. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la surface (162) du rouleau contient de l'aluminium, du chrome, du nickel, du cuivre, une matière plastique conductrice et/ou une matière plastique revêtue d'une couche conductrice.
  10. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la surface du rouleau (134) a été réalisée au moyen d'un procédé de projection à la flamme.
  11. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les éléments magnétiques (138 à 144) sont des aimants permanents.
  12. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les deux éléments magnétiques (142, 144), au niveau des pôles (N, N) voisins orientés vers le mélange de particules, sont situés, par référence au sens de rotation du rouleau, à une distance l'un de l'autre par leurs bords adjacents, qui se situe dans une plage de 0,01 à 10 mm.
  13. Procédé de nettoyage d'un rouleau dans une imprimante ou une photocopieuse électrographique
    dans lequel au moins deux éléments magnétiques (142, 144) sont disposés de manière fixe à l'intérieur d'un rouleau (134),
    un mélange de particules, qui contient des particules de toner chargées électriquement et des particules porteuses ferromagnétiques, est transporté sur la surface du rouleau (134),
    et dans lequel les pôles (N, N) voisins, orientés vers le mélange de particules, des deux éléments magnétiques (142, 144) sont de même nature et, par référence au sens de rotation du rouleau (134), sont situés à une distance l'un de l'autre qui est telle qu'au moins un amas en relief, qui contient des particules porteuses, est formé sur la surface du rouleau (134) au niveau des éléments magnétiques (142, 144),
    caractérisé en ce que, par le choix du dimensionnement de la distance entre les éléments magnétiques (142, 144), de la rugosité de la surface du rouleau (134), de la distance entre les éléments magnétiques et la surface du rouleau (134), et de l'intensité du champ des éléments magnétiques (142, 144), il se produit, dans une zone de l'amas, sous l'effet d'un mouvement de rotation du rouleau (134), des mouvements dans le mélange de particules, par lesquels les particules porteuses frottent sur la surface du rouleau (134) et, dans ce cas, au moins une partie des particules de toner, présentes sur la surface du rouleau (134), est détachée de celui-ci, et en ce qu'au moins une partie du mélange de particules est évacuée en aval des éléments magnétiques (142, 144) par référence au sens de rotation du rouleau (134).
  14. Imprimante ou photocopieuse électrographique,
    dans laquelle une unité de fixation du toner (14) fixe des particules de toner chargées électriquement sur la surface d'un premier élément support (12),
    au moins une partie des particules de toner est transférée depuis le premier élément support (12) sur un deuxième élément support,
    une unité de nettoyage (16) élimine du premier élément support (12) les particules de toner subsistant sur ledit premier élément support (12) après le transfert,
    l'unité de nettoyage contient un rouleau (81), qui est disposé à une certaine distance du premier élément support (12),
    au moins un élément magnétique (96) est disposé de manière fixe à l'intérieur du rouleau (81),
    un mélange de particules, qui contient des particules de toner chargées électriquement et des particules porteuses ferromagnétiques, est transporté sur la surface du rouleau (81),
    une racle (82) est disposée à une certaine distance de la surface du rouleau,
    l'élément magnétique (96) est disposé, par référence au sens de rotation du rouleau (81), en amont de la racle (82) et à proximité de celle-ci,
    la racle (82) élimine au moins une partie du mélange de particules présent sur la surface du rouleau,
    le champ magnétique de l'élément magnétique (96) maintient dans la zone de la racle (82) des parties du mélange de particules éliminées par la racle (82), de telle sorte que le mélange de particules forme un amas en relief sur la surface du rouleau (81),
    et dans laquelle, dans la zone de la racle (82), sous l'effet d'un mouvement de rotation du rouleau (81) et sous l'effet de la racle (82) positionnée de manière fixe, des mouvements sont générés dans le mélange de particules, par lesquels les particules porteuses frottent sur la surface du rouleau (81) et, dans ce cas, au moins une partie des particules de toner, présentes sur la surface du rouleau (81), est détachée de celui-ci, et en ce qu'au moins une partie du mélange de particules est évacuée, par référence au sens de rotation du rouleau (81), en aval de l'élément magnétique (96), au niveau de la racle (82).
  15. Procédé de fonctionnement d'une imprimante ou d'une photocopieuse électrographique,
    dans lequel des particules de toner chargées électriquement sont fixées sur la surface d'un premier élément support (12) au moyen d'une unité de fixation du toner (14),
    au moins une partie des particules de toner est transférée depuis le premier élément support (12) sur un deuxième élément support,
    les particules de toner subsistant après le transfert sur le premier élément support (12) sont éliminées dudit premier élément support (12) au moyen d'une unité de nettoyage (16),
    l'unité de nettoyage (16) contient un rouleau (81), qui est disposé à une certaine distance du premier élément support (12),
    au moins un élément magnétique (96) est disposé de manière fixe à l'intérieur d'un rouleau (81),
    un mélange de particules, qui contient des particules de toner chargées électriquement et des particules porteuses ferromagnétiques, est transporté sur la surface du rouleau (81),
    une racle (82) est disposée à une certaine distance de la surface du rouleau,
    l'élément magnétique (96) est disposé, par référence au sens de rotation du rouleau (81), en amont de la racle (82) et à proximité de celle-ci,
    au moins une partie du mélange de particules présent sur la surface du rouleau est éliminée par la racle (82),
    sous l'effet du champ magnétique de l'élément magnétique (96), des parties du mélange de particules éliminé par la racle (82) sont maintenues dans la zone de la racle (82), de telle sorte qu'un amas en relief est formé sur la surface du rouleau (81) par le mélange de particules,
    et dans lequel, dans la zone de la racle (82), sous l'effet du mouvement de rotation du rouleau (81) et sous l'effet de la racle (82) positionnée de manière fixe, des mouvements sont générés dans le mélange de particules, par lesquels les particules porteuses frottent sur la surface du rouleau (81) et, dans ce cas, au moins une partie des particules de toner, présentes sur la surface du rouleau (81), est détachée de celui-ci, et en ce qu'au moins une partie du mélange de particules est évacuée, par référence au sens de rotation du rouleau (81), en aval de l'élément magnétique (96), au niveau de la racle (82).
  16. Imprimante ou photocopieuse électrographique,
    dans laquelle une unité de fixation du toner (14) fixe des particules de toner chargées électriquement sur la surface d'un premier élément support (12),
    au moins une partie des particules de toner est transférée depuis le premier élément support (12) sur un deuxième élément support,
    une unité de nettoyage (16) élimine du premier élément support (12) les particules de toner subsistant sur ledit premier élément support (12) après le transfert,
    l'unité de nettoyage (16) contient un rouleau (134), qui est disposé à une certaine distance du premier élément support (12),
    au moins deux éléments magnétiques (142, 144) sont disposés de manière fixe à l'intérieur du rouleau (134),
    un mélange de particules, qui contient des particules de toner chargées électriquement et des particules porteuses ferromagnétiques, est transporté sur la surface du rouleau (134),
    et dans laquelle, les pôles (N, N) voisins, orientés vers le mélange de particules, des deux éléments magnétiques (142, 144) sont de même nature et, par référence au sens de rotation du rouleau (134), sont situés à une distance l'un de l'autre qui est telle que le mélange de particules forme au moins un amas en relief sur la surface du rouleau (134) au niveau des éléments magnétiques (142, 144),
    caractérisée en ce que la distance entre les éléments magnétiques (142, 144), la rugosité de la surface du rouleau (134), la distance entre les éléments magnétiques et la surface du rouleau (134) et l'intensité du champ des éléments magnétiques (142, 144) sont choisis de telle sorte que, dans une zone de
    l'amas, un mouvement de rotation du rouleau (134) induit des mouvements dans le mélange de particules, par lesquels les particules porteuses frottent sur la surface du rouleau (134) et, dans ce cas, au moins une partie des particules de toner, présentes sur la surface du rouleau (134), se détachent de celui-ci, et en ce qu'au moins une partie du mélange de particules est évacuée en aval des éléments magnétiques (142, 144), par référence au sens de rotation du rouleau (134).
  17. Dispositif selon la revendication 16,
    caractérisé en ce qu'une racle (82) est disposée à une certaine distance de la surface du rouleau.
  18. Dispositif selon la revendication 17,
    caractérisé en ce que le premier et le deuxième éléments magnétiques (142, 144) sont disposés, par référence au sens de rotation du rouleau, en amont de la racle (82) et à proximité de celle-ci.
  19. Dispositif selon l'une quelconque des revendications 16 à 18, caractérisé en ce que le premier et/ou le deuxième élément support (12) est un rouleau ou une bande.
  20. Dispositif selon l'une quelconque des revendications 16 à 19, caractérisé en ce que le premier élément support (12) est un applicateur et le deuxième élément support est un photoconducteur.
  21. Dispositif selon l'une quelconque des revendications 16 à 19, caractérisé en ce que le premier élément support (12) est un photoconducteur et le deuxième élément support est un matériau support à imprimer ou un matériau de transfert.
  22. Dispositif selon l'une quelconque des revendications 16 à 21, caractérisé en ce que le sens de rotation du rouleau (134) de l'unité de nettoyage (16) est le même que le sens de rotation du premier élément support (12).
  23. Dispositif selon la revendication 22,
    caractérisé en ce qu'un élément magnétique (50) est disposé de manière fixe à l'intérieur du rouleau, à l'emplacement correspondant à la plus petite distance entre le premier élément support (12) et le rouleau (44), et en ce que l'axe des pôles (N, S) de l'élément magnétique (50) est orienté radialement par rapport au rouleau (44).
  24. Dispositif selon l'une quelconque des revendications 16 à 23, caractérisé en ce que la quantité de particules porteuses ferromagnétiques, transportée sur la surface du rouleau de l'unité de nettoyage (16), contient une part prédéfinie de particules de toner.
  25. Dispositif selon l'une quelconque des revendications 16 à 24, caractérisé en ce que le transfert du mélange de particules depuis l'unité de fixation du toner (14) vers l'unité de nettoyage (16) est effectué au moyen d'un champ magnétique d'au moins un élément magnétique (34, 48).
  26. Dispositif selon l'une quelconque des revendications 16 à 25, caractérisé en ce que le transfert du mélange de particules depuis l'unité de fixation du toner (14) vers l'unité de nettoyage (16) est effectué au moyen d'un élément de guidage (66) disposé entre l'unité de fixation du toner (14) et l'unité de nettoyage (16).
  27. Dispositif selon la revendication 26,
    caractérisé en ce que l'élément de guidage (66) est une plaque de guidage.
  28. Dispositif selon l'une quelconque des revendications 23 à 27, caractérisé en ce que plusieurs éléments magnétiques (28 à 34, 48 à 52) sont disposés à l'intérieur du rouleau (24, 44), l'axe des pôles (N, S) de chaque élément magnétique (28 à 34, 48 à 52) étant orienté radialement à l'axe de rotation.
  29. Dispositif selon l'une quelconque des revendications 23 à 27, caractérisé en ce que l'élément magnétique ou les éléments magnétiques (28 à 34, 48 à 52) sont des aimants permanents.
  30. Dispositif selon l'une quelconque des revendications 16 à 29, caractérisé en ce qu'il existe une première différence de potentiel (DC1-DC2) entre l'unité de fixation du toner (14) et le premier élément support (12), et/ou en ce qu'il existe une deuxième différence de potentiel (DC1-DC3) entre l'unité de nettoyage (16) et le premier élément support (12).
  31. Dispositif selon la revendication 30,
    caractérisé en ce que les particules de toner chargées électrostatiquement sont chargées avec une charge électrique négative, en ce que le potentiel du premier élément support (12) est positif par rapport au potentiel de l'unité de fixation du toner (24) et est négatif par rapport au potentiel de l'unité de nettoyage (44).
  32. Dispositif selon la revendication 30,
    caractérisé en ce que les particules de toner chargées électrostatiquement sont chargées avec une charge électrique positive, en ce que le potentiel du premier élément support (12) est négatif par rapport au potentiel de l'unité de fixation du toner (24) et est positif par rapport au potentiel de l'unité de nettoyage (44).
  33. Procédé de fonctionnement d'une imprimante ou d'une photocopieuse électrographique,
    dans lequel des particules de toner chargées électriquement sont fixées sur la surface d'un premier élément support (12) au moyen d'une unité de fixation du toner (14),
    au moins une partie des particules de toner est transférée depuis le premier élément support (12) sur un deuxième élément support,
    les particules de toner subsistant après le transfert sur le premier élément support (12) sont éliminées dudit premier élément support (12) au moyen d'une unité de nettoyage (16),
    l'unité de nettoyage (16) contient un rouleau (134), qui est disposé à une certaine distance du premier élément support (12),
    au moins deux éléments magnétiques (142, 144) sont disposés de manière fixe à l'intérieur du rouleau,
    un mélange de particules, qui contient des particules de toner chargées électriquement et des particules porteuses ferromagnétiques, est transporté sur la surface du rouleau (134),
    et dans lequel les pôles (N, N) voisins, orientés vers le mélange de particules, des deux éléments magnétiques (142, 144) sont de même nature et, par référence au sens de rotation du rouleau (134), sont situés à une distance l'un de l'autre qui est telle qu'au moins un amas en relief, qui contient des particules porteuses, est formé sur la surface du rouleau (134) au niveau des éléments magnétiques (142, 144),
    caractérisé en ce que la distance entre les éléments magnétiques (142, 144), la rugosité de la surface du rouleau (134), la distance entre les éléments magnétiques et la surface du rouleau (134), et l'intensité du champ des éléments magnétiques (142, 144) sont choisis de telle sorte que, dans une zone de l'amas, un mouvement de rotation du rouleau (81) induit des mouvements dans le mélange de particules, par lesquels les particules porteuses frottent sur la surface du rouleau (81) et, dans ce cas, au moins une partie des particules de toner, présentes sur la surface du rouleau (134), se détache de celui-ci, et en ce qu'au moins une partie du mélange de particules est évacuée en aval des éléments magnétiques (142, 144), par référence au sens de rotation du rouleau (134).
  34. Dispositif de nettoyage d'un rouleau dans une imprimante ou une photocopieuse électrographique,
    dans lequel au moins un élément magnétique (96) est disposé de manière fixe à l'intérieur d'un rouleau (81),
    un mélange de particules, qui contient des particules de toner à chargées électriquement et des particules porteuses ferromagnétiques, est transporté sur la surface du rouleau (81),
    une racle (82) est disposée à une certaine distance de la surface du rouleau,
    l'élément magnétique (96) est disposé, par référence au sens de rotation du rouleau (81), en amont de la racle (82) et à proximité de celle-ci,
    la racle (82) élimine au moins une partie du mélange de particules présent sur la surface du rouleau,
    le champ magnétique de l'élément magnétique (96) maintient dans la zone de la racle (82) des parties du mélange de particules éliminées par la racle (82), de telle sorte que le mélange de particules forme un amas en relief sur la surface du rouleau (81),
    et dans lequel, dans la zone de la racle (82), sous l'effet d'un mouvement de rotation du rouleau (81) et sous l'effet de la racle (82) positionnée de manière fixe, des mouvements sont générés dans le mélange de particules, par lesquels les particules porteuses frottent sur la surface du rouleau (81) et, dans ce cas, au moins une partie des particules de toner, présentes sur la surface du rouleau (81), est détachée de celui-ci, et en ce qu'au moins une partie du mélange de particules est évacuée, par référence au sens de rotation du rouleau (81), en aval de l'élément magnétique (96), au niveau de la racle (82).
  35. Dispositif selon la revendication 34,
    caractérisé en ce que les axes des pôles (N, S) de l'élément magnétique (96) sont orientés radialement par rapport à l'axe de rotation du rouleau (81).
  36. Dispositif selon la revendication 34 ou 35, caractérisé en ce que plusieurs éléments magnétiques (86 à 100) sont disposés à l'intérieur du rouleau (81), et les axes des pôles (N, S) sont orientés chacun radialement par rapport au rouleau (81), lesdits pôles (N, S) d'éléments magnétiques (86 à 100) voisins ayant des directions d'action opposées.
  37. Dispositif selon l'une quelconque des revendications 34 à 36, caractérisé en ce que la racle (82) est disposée dans la moitié inférieure du rouleau.
  38. Dispositif selon l'une quelconque des revendications 34 à 37, caractérisé en ce que la surface périphérique extérieure du rouleau (81) a une rugosité se situant dans une plage de 1 à 5 000 µm.
  39. Dispositif selon l'une quelconque des revendications 34 à 38, caractérisé en ce que la surface du rouleau contient de l'aluminium, du chrome, du nickel, du cuivre, une matière plastique conductrice et/ou une matière plastique revêtue d'une couche conductrice.
  40. Dispositif selon l'une quelconque des revendications 34 à 39, caractérisé en ce que la surface du rouleau (81) a été réalisée au moyen d'un procédé de projection à la flamme.
  41. Dispositif selon l'une quelconque des revendications 34 à 40, caractérisé en ce que l'élément magnétique (96) ou les éléments magnétiques (86 à 100) sont des aimants permanents.
  42. Dispositif selon l'une quelconque des revendications 34 à 41, caractérisé en ce qu'une distance (A1), se situant dans une plage de 0,1 à 0,4 mm, est définie entre la racle (82) et la surface du rouleau.
  43. Procédé de nettoyage d'un rouleau dans une imprimante ou une photocopieuse électrographique
    dans lequel au moins un élément magnétique (96) est disposé de manière fixe à l'intérieur d'un rouleau (81),
    un mélange de particules, qui contient des particules de toner chargées électriquement et des particules porteuses ferromagnétiques, est transporté sur la surface du rouleau (81),
    une racle (82) est disposée à une certaine distance de la surface du rouleau,
    l'élément magnétique (96) est disposé, par référence au sens de rotation du rouleau (81), en amont de la racle (82) et à proximité de celle-ci,
    la racle (82) élimine au moins une partie du mélange de particules présent sur la surface du rouleau,
    des parties du mélange de particules éliminées par la racle (82) sont maintenues dans la zone de la racle (82) sous l'effet du champ magnétique de l'élément magnétique (96),
    de telle sorte qu'un amas en relief est formé sur la surface du rouleau par le mélange de particules,
    et dans lequel, dans la zone de la racle (82), sous l'effet d'un mouvement de rotation du rouleau (81) et sous l'effet de la racle (82) positionnée de manière fixe, des mouvements sont générés dans le mélange de particules, par lesquels les particules porteuses frottent sur la surface du rouleau (81) et, dans ce cas, au moins une partie des particules de toner, présentes sur la surface du rouleau (81), est détachée de celui-ci, et en ce qu'au moins une partie du mélange de particules est évacuée, par référence au sens de rotation du rouleau (81), en aval de l'élément magnétique (96), au niveau de la racle (82).
EP02781287A 2001-10-26 2002-10-25 Procedes et dispositifs pour nettoyer des elements de support dans des imprimantes ou des copieurs par utilisation de champs magnetiques Expired - Lifetime EP1438639B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10152892A DE10152892A1 (de) 2001-10-26 2001-10-26 Verfahren und Vorrichtung zur Reinigung von Trägerelementen in Druckern oder Kopierern unter Anwendung von Magnetfeldern
DE10152892 2001-10-26
PCT/EP2002/011953 WO2003036393A2 (fr) 2001-10-26 2002-10-25 Procedes et dispositifs pour nettoyer des elements de support dans des imprimantes ou des copieurs par utilisation de champs magnetiques

Publications (2)

Publication Number Publication Date
EP1438639A2 EP1438639A2 (fr) 2004-07-21
EP1438639B1 true EP1438639B1 (fr) 2009-12-16

Family

ID=7703811

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02781287A Expired - Lifetime EP1438639B1 (fr) 2001-10-26 2002-10-25 Procedes et dispositifs pour nettoyer des elements de support dans des imprimantes ou des copieurs par utilisation de champs magnetiques

Country Status (4)

Country Link
US (1) US7340203B2 (fr)
EP (1) EP1438639B1 (fr)
DE (2) DE10152892A1 (fr)
WO (1) WO2003036393A2 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10213499B4 (de) 2002-03-26 2005-02-03 OCé PRINTING SYSTEMS GMBH Vorrichtung zum Transport von Toner bei einer elektrofotografischen Druck- oder Kopiereinrichtung
DE10246022B3 (de) 2002-10-02 2004-07-22 OCé PRINTING SYSTEMS GMBH Vorrichtung und Verfahren zum Aufsammeln von magnetisierbaren Trägerteilchen aus einem Gemisch von Tonerteilchen und magnetisierbaren Trägerteilchen
DE10328857B3 (de) * 2003-06-26 2005-03-17 OCé PRINTING SYSTEMS GMBH Hülse zum Transport eines Tonergemischs und Verfahren zum Herstellen einer solchen Hülse
DE102004024047A1 (de) * 2004-05-14 2005-12-08 OCé PRINTING SYSTEMS GMBH Verfahren und Vorrichtung zum Einfärben eines Applikatorelements eines elektrofotografischen Druckers oder Kopierers
DE102004036159A1 (de) * 2004-07-26 2006-03-23 OCé PRINTING SYSTEMS GMBH Anordnung und Verfahren zum Einfärben eines Applikatorelementes eines elektrofotografischen Druckers oder Kopierers
DE102004059532A1 (de) 2004-12-09 2006-06-14 OCé PRINTING SYSTEMS GMBH Elektrografische Druck- oder Kopiervorrichtung sowie Verfahren zum Betreiben der Druck- oder Kopiervorrichtung
JP4860967B2 (ja) * 2005-09-07 2012-01-25 キヤノン株式会社 現像装置
DE102006031876A1 (de) 2006-07-10 2008-01-17 OCé PRINTING SYSTEMS GMBH Entwicklerstation mit Glättvorrichtung und Verfahren zum Betreiben einer Entwicklerstation
DE102007019311A1 (de) * 2007-04-24 2008-11-06 OCé PRINTING SYSTEMS GMBH Vorrichtung und Verfahren zum Reinigen einer mit Tonerteilchen versehenen Trägeroberfläche
DE102007022972A1 (de) * 2007-05-16 2008-11-20 OCé PRINTING SYSTEMS GMBH Vorrichtung zur Toner- Jump- Entwicklung von auf einem Ladungsbildträger aufgebrachten Ladungsbildern bei einer elektrografischen Druckeinrichtung
DE102007035994A1 (de) * 2007-08-01 2009-02-05 OCé PRINTING SYSTEMS GMBH Vorrichtung und Verfahren zum Beseitigen von Tonerablagerungen auf der Oberfläche eines Reinigungselements
DE102007035993A1 (de) 2007-08-01 2009-02-05 OCé PRINTING SYSTEMS GMBH Vorrichtung und Verfahren zum berührungslosen Ablösen von Tonerteilchen von der Oberfläche eines Tonerträgers
DE102007060021B4 (de) * 2007-12-13 2012-02-16 OCé PRINTING SYSTEMS GMBH Anordnung zur Entfernung von elektrisch geladenem Toner von der Oberfläche einer Toner transportierenden Tonertransportwalze bei einem elektrografischen Druck- oder Kopiergerät
DE102008005132A1 (de) * 2008-01-18 2009-07-30 OCé PRINTING SYSTEMS GMBH Anordnung zur Entfernung von elektrisch geladenem Toner von der Oberfläche einer Toner transportierenden Walze bei einem elektrografischen Druck- oder Kopiergerät
DE102008012582B4 (de) * 2008-03-05 2011-09-22 OCé PRINTING SYSTEMS GMBH Entwicklerstation für ein elektrografisches Druck- oder Kopiergerät
JP5062012B2 (ja) * 2008-04-04 2012-10-31 コニカミノルタビジネステクノロジーズ株式会社 現像装置、及び画像形成装置
DE102008018226B4 (de) * 2008-04-10 2011-11-24 OCé PRINTING SYSTEMS GMBH Verfahren zur Ermittlung der Abnutzung eines in einer Entwicklerstation zur Entwicklung von Ladungsbildern eingesetzten Entwicklergemischs bei einem elektrografischen Druckgerät
DE102008029630B4 (de) 2008-06-23 2015-02-26 Océ Printing Systems GmbH & Co. KG Entwicklerstation für ein elektrografisches Druck- oder Kopiergerät
JP5379865B2 (ja) * 2008-12-23 2013-12-25 オセ−テクノロジーズ ビーブイ 画像形成装置を動作する方法、及び、当該方法の適用のための画像形成装置
DE102009037735A1 (de) * 2009-08-17 2011-02-24 OCé PRINTING SYSTEMS GMBH Reinigungseinrichtung für eine Entwicklerwalze bei einem elektrografischen Druck- oder Kopiergerät
DE102010036840A1 (de) * 2010-08-04 2012-02-09 OCé PRINTING SYSTEMS GMBH Entwicklerstation für elektrografische Druck- oder Kopiereinrichtungen
NL2008319C2 (en) * 2012-02-20 2013-08-21 Emb Technology B V Powder purging apparatus and method.

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142165A (en) * 1976-03-25 1979-02-27 Ricoh Company, Ltd. Electrostatic copying machine comprising improved magnetic brush developing-cleaning unit
US4141165A (en) 1977-07-26 1979-02-27 Colt Industries Operating Corp. Double action revolver apparatus and method
JPS5574575A (en) * 1978-11-30 1980-06-05 Canon Inc Cleaning device
JPS5640862A (en) 1979-09-11 1981-04-17 Canon Inc Developing device
JPS56101168A (en) * 1980-01-16 1981-08-13 Canon Inc Developing device
JPS5792365A (en) * 1980-11-29 1982-06-08 Toppan Printing Co Ltd Electrophotographic cleaning device
US4501484A (en) 1981-08-19 1985-02-26 Ricoh Company, Ltd. Photoconductive element cleaning apparatus and residual toner collecting apparatus
JPS5855960A (ja) 1981-09-29 1983-04-02 Fuji Xerox Co Ltd 電子写真複写機の清掃装置
US4482244A (en) 1981-11-11 1984-11-13 Konishiroku Photo Industry Co., Ltd. Magnetic brush cleaning device
GB2114936B (en) * 1981-12-18 1985-09-04 Casio Computer Co Ltd Magnetic brush cleaning device for image forming appartus
JPS60229082A (ja) * 1984-04-27 1985-11-14 Fuji Xerox Co Ltd 電子複写機の磁気クリ−ニング装置
JPS61248074A (ja) 1985-04-26 1986-11-05 Fuji Xerox Co Ltd 複写機等のクリ−ニング装置
US4771311A (en) * 1986-09-08 1988-09-13 Xerox Corporation Development apparatus
JPS63281186A (ja) 1987-05-14 1988-11-17 Ricoh Co Ltd 磁気ブラシクリ−ニング装置
US5003354A (en) 1988-12-03 1991-03-26 Ricoh Company, Ltd. Method of removing a film from an image carrier of an image forming apparatus
JP3217074B2 (ja) * 1990-02-20 2001-10-09 株式会社リコー 画像形成装置
JPH0470890A (ja) * 1990-07-12 1992-03-05 Minolta Camera Co Ltd 磁気ブラシクリーニング方法
JP2583661B2 (ja) 1990-10-26 1997-02-19 日立金属株式会社 マグネットロール
DE4105261C2 (de) 1991-02-20 1994-03-31 Lignotock Gmbh Verfahren zum Kaschieren von räumlich verformten Trägerteilen
JPH05289523A (ja) 1992-04-07 1993-11-05 Konica Corp 現像装置
JP2000035736A (ja) 1998-07-17 2000-02-02 Mita Ind Co Ltd 画像形成機のトナー回収装置
JP3455682B2 (ja) 1998-09-28 2003-10-14 シャープ株式会社 現像装置
JP2000267397A (ja) 1999-03-18 2000-09-29 Canon Inc 画像形成装置

Also Published As

Publication number Publication date
WO2003036393A2 (fr) 2003-05-01
US20050036806A1 (en) 2005-02-17
WO2003036393A3 (fr) 2003-12-24
DE50214104D1 (de) 2010-01-28
EP1438639A2 (fr) 2004-07-21
DE10152892A1 (de) 2003-05-08
US7340203B2 (en) 2008-03-04

Similar Documents

Publication Publication Date Title
EP1438639B1 (fr) Procedes et dispositifs pour nettoyer des elements de support dans des imprimantes ou des copieurs par utilisation de champs magnetiques
DE2257030C3 (de) MagnetbUrsten-Entwicklungsstation
DE2842516C3 (de) Entwicklungseinrichtung für ein elektrophotographisches Kopiergerät
DE3319708C2 (fr)
DE3439678C2 (fr)
DE2810520C3 (de) Magnetbürsten-Entwicklervorrichtung
DE3148231C2 (fr)
DE3301796C2 (de) Vorrichtung zur Entfernung des Entwicklers von einer photoleitfähigen Fläche
DE3705469C2 (fr)
DE2901523C2 (de) Transporteinrichtung für magnetischen Toner
DE1202138B (de) Vorrichtung zum Auftragen von ferromagnetischem, einen Farbtoner enthaltendem Entwicklungspulver auf einen Schichttraeger zum Entwickeln eines elektrostatischen Ladungsbildes
DE3206815A1 (de) Verfahren zur behandlung eines elektrostatischen bilds
DE2954323C2 (de) Magnetbürsten-Entwicklervorrichtung zum Entwickeln eines elektrostatischen Ladungsbildes
DE2736078B2 (de) Einrichtung zur Entfernung des Toners von einer fotoleitfähigen Oberfläche
DE3413061A1 (de) Entwicklungsvorrichtung
DE3249322C2 (de) Abstreichvorrichtung für magnetischen Entwickler in einer Magnetbürstenentwicklungseinrichtung
DE3347214A1 (de) Entwicklungseinrichtung
DE3132252A1 (de) Elektrofotografisches kopiergeraet mit pulverbilduebertragung
DE3837527A1 (de) Bilderzeugungsvorrichtung
DE3311890A1 (de) Entwicklungeinrichtung
DE3117238C2 (de) Magnetbürstenanordnung in einer Entwicklungsvorrichtung zur Entwicklung von Ladungsbildern auf einem Ladungsbildträger
DE2724577C3 (de) Elektrophotographisches Kopiergerät mit einem mehrpolig diametral magnetisierten Zylindermagneten
DE69830698T2 (de) Entwicklungsgerät mit magnetischer Dichtung
EP2176712B1 (fr) Dispositif et procédé permettant d'éliminer des dépôts de toner à la surface d'un élément de nettoyage
DE2533684A1 (de) Vorrichtung zum uebertragen einer entwicklerkomponente, insbesondere fuer eine elektrostatographische kopiermaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040414

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MAESS, VOLKHARD

Inventor name: SCHULMEISTER, PETER

Inventor name: SELINGER, RALF

Inventor name: HOELLIG, UWE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50214104

Country of ref document: DE

Date of ref document: 20100128

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100917

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50214104

Country of ref document: DE

Representative=s name: PATENTANWAELTE SCHAUMBURG, THOENES, THURN, LAN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50214104

Country of ref document: DE

Representative=s name: PATENTANWAELTE SCHAUMBURG, THOENES, THURN, LAN, DE

Effective date: 20130819

Ref country code: DE

Ref legal event code: R081

Ref document number: 50214104

Country of ref document: DE

Owner name: OCE PRINTING SYSTEMS GMBH & CO. KG, DE

Free format text: FORMER OWNER: OCE PRINTING SYSTEMS GMBH, 85586 POING, DE

Effective date: 20130819

Ref country code: DE

Ref legal event code: R082

Ref document number: 50214104

Country of ref document: DE

Representative=s name: SCHAUMBURG & PARTNER PATENTANWAELTE GBR, DE

Effective date: 20130819

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20131025

Year of fee payment: 12

Ref country code: FR

Payment date: 20131018

Year of fee payment: 12

Ref country code: DE

Payment date: 20131219

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: OCE PRINTING SYSTEMS GMBH & CO. KG, DE

Effective date: 20140513

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20140904 AND 20140910

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50214104

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50214104

Country of ref document: DE

Representative=s name: SCHAUMBURG & PARTNER PATENTANWAELTE GBR, DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150501

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141025

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031