EP1379381A1 - Wärmeabsorbierendes schichtsystem - Google Patents

Wärmeabsorbierendes schichtsystem

Info

Publication number
EP1379381A1
EP1379381A1 EP02722277A EP02722277A EP1379381A1 EP 1379381 A1 EP1379381 A1 EP 1379381A1 EP 02722277 A EP02722277 A EP 02722277A EP 02722277 A EP02722277 A EP 02722277A EP 1379381 A1 EP1379381 A1 EP 1379381A1
Authority
EP
European Patent Office
Prior art keywords
layer
layer system
absorber
layers
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02722277A
Other languages
English (en)
French (fr)
Inventor
Martin Döbler
Peter Bier
Rüdiger Gorny
Monika Stihler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP1379381A1 publication Critical patent/EP1379381A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2369/00Polycarbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • Y10S428/924Composite
    • Y10S428/926Thickness of individual layer specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the invention relates to a heat-absorbing layer system which contains at least a first layer (A) and a second layer (B), as well as to its production, use and products made therefrom.
  • compositions containing transparent thermoplastic polymers such as polycarbonate, offer many northern parts for the automotive sector and for buildings compared to conventional glass discs such as. B. increased
  • thermoplastic polymers and compositions containing transparent thermoplastic polymers allow for a much greater freedom of design due to their easier formability.
  • NIR near infrared
  • Inorganic ⁇ IR absorbers usually show high light stability, but have the disadvantage that they are not soluble in thermoplastics and therefore form cloudy to opaque molding compounds.
  • organic NIR absorbers soluble in thermoplastics are known, but they show less light stability.
  • JP 10-077360 A describes thin, film-like heat-absorbing layer systems which simultaneously contain (A) a phthalocyanine infrared absorber and (B) an ultraviolet absorber. This is intended to improve the weather resistance of the heat protection layer.
  • a film-like coating layer with a thickness of 0.13 mm is proposed, which contains both phthalocyanine infrared absorber and ultraviolet absorber.
  • Such a coating layer has an acceptable weather resistance in 48-hour rapid weathering tests. For practical applications, however, weathering tests of more than 500 hours are required.
  • the thin film-like coating described in this publication layer inadequate optical properties and are therefore unsuitable for use in automotive glazing.
  • JP 10-077360 A also proposes a thin, film-like, heat-absorbing coating of 3 layers with a gradual decrease in phthalocyanine infrared absorber.
  • This contains an ultraviolet absorber in the upper layer facing the light radiation, a mixture of ultraviolet and phthalocyanine infrared absorbers in the middle layer and further phthalocyanine infrared absorbers in the lower layer facing away from the light radiation.
  • a disadvantage of such a layer system is the costly three-layer structure and the poor optical properties of the layer system produced by lamination.
  • thermoplastics can be protected by using UV-absorbing lacquers and / or coextruded layers with a high content of UV absorber.
  • UV absorber it is known from EP 0 110 221 A to improve the weather resistance of polycarbonate plastic sheets by coating them with a layer containing 3 to 15% by weight of a UV absorber.
  • the multilayer systems described in this publication do not contain an infrared absorber.
  • EP 0 774 551 A describes heat filters based on inorganic pigments which have a UV-absorbing protective layer.
  • the disadvantage of inorganic pigments is that they do not dissolve in thermoplastics, so that there are no transparent moldings with low turbidity in the visible area.
  • the object of the invention is to provide heat-absorbing coating systems which are as simple and inexpensive as possible to produce excellent long-term weather resistance as well as excellent optical properties such as transparency and gloss and can be used for the thermal insulation of transparent plastic glazing elements.
  • this task is achieved by a transparent heat absorbing
  • the heat-absorbing layer systems according to the invention are distinguished by the fact that organic infrared absorber and ultraviolet absorber are introduced together into one layer (layer A, “NIR / UV layer”). Because the two additives are present together in the same layer, a large part of the sensitive organic infrared absorber is protected against UV radiation. In addition, the organic infrared absorber is protected from decomposition by UV radiation by means of a further layer containing ultraviolet absorber (layer B, “UV layer”). It is also special that layer (A) is the only layer in the layer system according to the invention which contains organic IR absorbers. If appropriate, further layers contained in the layer system, such as clear layers, do not contain any organic infrared absorber. Since the UV layer (layer B) u. a. to protect NIR dye in layer (A) from UV rays, it is advantageous to arrange layer (B) in the direction of the incident light above layer (A). Starting with the side facing the light, the following is therefore
  • Layer structure advantageous: layer (B) - layer (A), in particular with the proviso that layer (A) serves simultaneously as a substrate (e.g. plastic car window). It is also possible to arrange one or more further layers (B) below layer (A), which leads, for example, to the following layer structure: layer (B) - layer (A) - layer (B). In this embodiment too, it is advantageous if Layer (A) also serves as a substrate (e.g. plastic car window).
  • An example of this is a sheet of thermoplastic coextruded on both sides, containing organic infrared absorber and UV absorber [layer (A)] with two thin UV absorber layers on both sides [layer (B)].
  • the layer system according to the invention is distinguished from the single-layer thermal protection coating described in JP 10-077360 A by a significantly improved long-term weather behavior. Compared to the 3-layer thermal protection coating described in JP 10-077360 A, the layer system according to the invention is distinguished by considerably better transparency and gloss values and by a simpler and less expensive production. Contrary to the teaching of JP 10-077360, it was surprisingly found according to the invention that introducing NIR absorber into several layers for the purpose of achieving a gradual decrease in NIR absorber in the layer system is not necessary for an improvement in the Long-term weather resistance. By saving an additional NIR layer with the layer system according to the invention, the transparency and gloss behavior of the heat-absorbing layer system is also significantly improved.
  • the first layer (A) accordingly has a thickness of 2 to 8 mm, in particular 3 to 5 mm.
  • the second layer (B) has a thickness of 1 to 100 microns.
  • the second layer is designed as a polymer film with a thickness of 30 to 80 ⁇ m, in particular 40 to 60 ⁇ m. It is also possible to design the second layer as a lacquer with a thickness of 1 to 30 ⁇ m, in particular 4 to 10 ⁇ m.
  • the NIR / UV layer (layer A) is not, as described in JP 10-077360 A, but as a thin, film-like coating layer in a thickness of 0.8 to 15 mm. This was surprising because thin layers generally have a better opacity than thick ones.
  • a layer system in which a relatively thick NIR / UV layer (layer A) from 0.8 to 15 mm is coated with a relatively thin UV protective layer (layer B) from 1 to 100 ⁇ m has proven to be particularly advantageous.
  • the coating can take place, for example, as a lacquer or as a thin polymer film.
  • Such a layer system exhibits excellent transparency and clouding behavior with excellent long-term weather resistance. It has proven to be particularly advantageous if NIR / UV layer, both in terms of production technology and property-specific for use in automotive glazing
  • Layer A and UV layer (Layer B) and optionally further layers of the layer system are formed as coextruded polymer layers in the corresponding thicknesses.
  • the layer system according to the invention contains, in addition to layers (A) and (B), at least one further transparent layer (C) which contains neither an organic infrared absorber nor an ultraviolet absorber.
  • Layer (C) is also referred to as "clear layer” and serves to improve the scratch resistance or to increase the mechanical rigidity.
  • the clear layers can be arranged anywhere in the layer system, ie above, below and / or between layers (A) and (B). However, a layer system with the following layer structure (starting with the one facing the light irradiation) is particularly advantageous
  • layers made of transparent thermoplastics come into consideration as polymer layers.
  • Particularly suitable transparent thermoplastics are polycarbonates or copolycarbonates or PMMA or PETG.
  • layers (A) and / or (B) are, for example, layers based on polycarbonate
  • layer (C) is also a layer based on polycarbonate or PMMA or PETG.
  • Literature-known infrared absorbers such as those used for. B. in M. Matsuoka, Infrared Absorbing Dyes, Plenum Press, New York, 1990 are described in terms of substance classes. Infrared absorbers from the classes of phthalocyanines, naphthalocyanines, metal complexes, azo dyes, anthraquinones, squaric acid derivatives, immonium dyes, perylenes, quaterylenes and polymethines are particularly suitable.
  • phthalocyanines and naphthalocyanines are particularly suitable. Due to the improved solubility in thermoplastics, phthalocyanines and naphthalocyanines with bulky side groups are preferred. There are no particular restrictions with regard to the amount of organic infrared absorber contained in layer (A), as long as the desired absorption of heat radiation and sufficient transparency of the layer system is ensured. It has proven to be particularly advantageous if layer (A) contains organic infrared absorbers in an amount of 0.001 to 10 g / m 2 , in particular 0.1 to 1 g / m 2 .
  • the infrared absorbers are preferably used in concentrations between 1 and 10,000 ppm, preferably between 10 and 1,000 ppm and very particularly preferably between 20 and 400 ppm. Mixtures of infrared absorbers are also particularly suitable. The person skilled in the art can achieve an optimization of the absorption in the near infrared range with dyes of different wavelengths of the absorption maxima.
  • Ultraviolet absorbers suitable for use in the layer system according to the invention are compounds which have the lowest possible transmission below 400 nm and the highest possible transmission above 400 nm. Such compounds and their preparation are known from the literature and are described, for example, in EP 0 839 623 A, WO 96/15102 and EP 0 500496 A. Ultraviolet absorbers which are particularly suitable for use in the layer system according to the invention are benzotriazoles, triazines, benzophenones and / or arylated cyanoacrylates.
  • Particularly useful ultraviolet absorbers are hydroxy-benzotriazoles, such as 2- (3 ', 5'-bis (l, l-dimethylbenzyl) -2'-hydroxyphenyl) benzotriazole (Tinuvin ® 234, Ciba Specialty Chemicals, Basel) 2- (2'-Hydroxy-5 '- (tert-octyl) phenyl) benzotriazole (Tinuvin ® 329, Ciba Specialty Chemicals, Basel), 2- (2 , -hydroxy-3' - (2-butyl ) -5 '- (tert-butyl) phenyl) benzotriazole (Tinuvin ® 350, Ciba Specialty Chemicals, Basel), bis- (3- (2H-benzotriazolyl) -2-hydroxy-5-tert-octyl ) methane, (Tinuvin ® 360, Ciba Specialty Chemicals, Basel), 2- (hydroxy-2-hydroxyphen
  • nanoscale inorganic UV absorbers with or without organic UV absorbers can also be used.
  • TiO 2 , ZnO, CeO 2 are preferred.
  • the size of these particles is smaller than 100 nm. The production is known.
  • layer (A) contains ultraviolet absorbers in an amount of 0.1 to 10%, in particular 0.2 to 1%. It has also proven to be advantageous if layer (B) contains ultraviolet absorbers in an amount of 0.1 to 40%, in particular 1 to 10%.
  • the base material for layers (A) and (B) there are no special restrictions with regard to the base material for layers (A) and (B) as long as the material has a high level of transparency and weather resistance and is therefore suitable for use in automotive glazing.
  • the individual layers of the layer system are layers based on polymers or lacquers. This means that the organic infrared absorbers and / or ultraviolet absorbers, insofar as they are contained in the individual layers, are incorporated in a polymer or lacquer layer.
  • Transparent thermoplastic polymers are preferably used.
  • Transparent thermoplastic polymers in the sense of the invention are e.g. B. polymers of ethylenically unsaturated monomers and / or polycondensates of bifunctional reactive compounds.
  • transparent thermoplastic Polymers are e.g. B. polycarbonates or copolycarbonates based on diphenols, poly- or copolyacrylates and poly- or copolymethacrylate such as.
  • B. poly- or copolymethyl methacrylates and copolymers with styrene such as.
  • PSAN transparent polystyrene-acrylonitrile
  • Polymers based on cyclic olefins eg TOPAS ® , a commercial product from Ticona
  • poly- or copolycondensates of terephthalic acid such as, for. B.
  • PET or CoPET Poly- or copolyethylene terephthalates (PET or CoPET) or PETG can be mixed.
  • Polycarbonates or copolycarbonates are preferred.
  • Particularly preferred polycarbonates are the homopolycarbonate based on bisphenol A, the homopolycarbonate based on 1,3-bis (4-hydroxypheny ⁇ ) -3,3,5-trimethylcyclohexane and the copolycarbonates based on the two monomers bisphenol A and 1.1 bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane.
  • Polycarbonates in the sense of the present invention are both homopolycarbonates and copolycarbonates; the polycarbonates can be linear or branched in a known manner.
  • the polycarbonates are prepared in a known manner from diphenols, carbonic acid derivatives, optionally chain terminators and branching agents.
  • Diphenols suitable for the preparation of the polycarbonates are, for example, hydroquinone, resorcinol, dihydroxydiphenyls, bis (hydroxyphenyl) alkanes, bis (hydroxyphenyl) cycloalkanes, bis (hydroxyphenyl) sulfides, bis (hydroxyphenyl) ethers,
  • Bis (hydroxyphenyl) ketones bis (hydroxyphenyl) sulfones, bis (hydroxyphenyl) sulfoxides, ⁇ - ⁇ '-bis (hydroxyphenyl) diisopropylbenzenes, and their core alkylated and nuclear halogenated compounds.
  • Preferred diphenols are 4,4'-dihydroxydiphenyl, 2,3-bis (4-hydroxyphenyi) propane, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 1,1-bis (4th -hydroxyphenyl) -p-diisopropylbenzene, 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3-chloro-4-hydroxyphenyl) propane, bis- (3,5-dimethyl-4-hydroxyphenyl) methane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, bis (3,5-dimethyl-4-hydroxyphenyl) sulfone, 2,4-bis (3,5-dimethyl-4-hydroxyphenyl) -2-methylbutane, 1,1-bis (3,5-dimethyl-4-hydroxyphenyl) -p-diisopropylbenzene, 2,2- Bis (3,5-dichloro-4-hydroxyphenyl) propane, 2,2-bis (3,
  • diphenols are 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis
  • Suitable carbonic acid derivatives are, for example, phosgene or diphenyl carbonate.
  • Suitable chain terminators that can be used in the production of the polycarbonates are both monophenols and monocarboxylic acids.
  • Monophenols are phenol itself, alkylphenols such as cresols, p-tert-butylphenol, p-n-octylphenol, p-iso-octylphenol, pn-nonylphenol and p-iso-nonylphenol, halophenols such as p-chlorophenol, 2,4-dichlorophenol, p-bromophenol and 2,4,6-tribromophenol, 2,4,6-triiodophenol, p-iodophenol, and mixtures thereof.
  • alkylphenols such as cresols, p-tert-butylphenol, p-n-octylphenol, p-iso-octylphenol, pn-nonylphenol and p-iso-nonylphenol
  • halophenols such as p-chlorophenol, 2,4-dichlorophenol, p-bromophenol and 2,4,6-trib
  • Particularly preferred chain terminators are p-tert-butylphenol and phenol.
  • Suitable monocarboxylic acids are also benzoic acid, alkylbenzoic acids and halobenzoic acids.
  • Preferred chain terminators are also the phenols of the formula (I)
  • R is hydrogen or a C ⁇ to C 30 -alkyl radical, is linear or branched, is preferably tert-butyl or is a branched or unbranched C 8 and / or C -alkyl radical.
  • the amount of chain terminator to be used is preferably 0.1 to 5 mol%, based on moles of diphenols used in each case.
  • the chain terminators can be added before, during or after phosgenation.
  • Suitable branching agents are the tri- or more than trifunctional compounds known in polycarbonate chemistry, in particular those with three or more than three phenolic OH groups.
  • Suitable branching agents are, for example, phloroglucin, 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) -hepten-2, 4,6-dimethyl-2,4,6-tri (4-hydroxyphenyl) -heptane , 1,3,5-
  • the amount of branching agents which may be used is preferably 0.05 to 2 mol%, based in turn on moles of diphenols used in each case.
  • the branching agents can either be introduced with the diphenols and the chain terminators in the aqueous alkaline phase, or in an organic solvent. Solvent added before the phosgenation. In the case of the conversion process, the branching devices are used together with the diphenols.
  • compositions according to the invention may also contain conventional polymer additives, such as. B. those in EP-A 0 839 623, WO 96/15102 and EP-A 0 500
  • antioxidants and mold release agents but also flame retardants, glass fibers, fillers, foaming agents, pigments, optical brighteners or dyes known in the literature, in the amounts customary for the respective thermoplastics.
  • thermoplastic polycarbonates as an impurity are preferably less than 10 ppm, particularly preferably less than 5 ppm.
  • thermoplastic polycarbonates are familiar to the person skilled in the art.
  • thermoplastic materials can be different or the same.
  • Suitable moldings / protective layer combinations are listed, for example, in EP 0 320 632 A. Similar plastics are preferably suitable.
  • Lacquer systems suitable for use in the layer system according to the invention are those whose crosslinking components have acrylate, allyl, epoxy, siloxane, isocyanate, anhydride and / or melamine formaldehyde functions.
  • Comprehensive descriptions of such paint systems can be found in: “Textbook of paints and layers ", publisher: Dr. Hans Kittel, publishing house Hirzel, Stuttgart, 1998; in” Lackeckharze “by Hans Wagner, Hans Friedrich Sarx, Carl Hanser publishing house Kunststoff, 1971; especially for epoxy resins in "Epoxy Resins, Chemistry and Technology” edited by Clayton A. May and Yoshio Tanaka with Marcel Dekker, Inc. New York, 1973, Chapter 7, page 451 ff.
  • Siloxane paints such as, for. B. described in DE 4 020 316 A.
  • the thickness of the lacquer layers is 1 to 200 ⁇ m, preferably 2 to 50 ⁇ m and very particularly preferably 2 to 10 ⁇ m.
  • the viscosity of the lacquer is preferably 5 to
  • the polymers or lacquers used in layers (A), (B) and / or (C) may contain further additives, such as. B. the antioxidants, flame retardants, fillers described in EP 0 839 623 AI and EP 0 500 496 AI,
  • Foaming agents conventional dyes and pigments, optical brighteners and nucleating agents or the like, preferably in amounts of up to 5% by weight, preferably 0.01 to 5% by weight, based on the mixture as a whole, particularly preferably 0.01 to 1 wt .-%, based on the amount of plastic. Mixtures of these additives are also suitable.
  • thermoplastics can also contain conventional thermal stabilizers.
  • thermal stabilizers according to the invention are particularly suitable: hindered phenols such as octadecyl 3- (3 ', 5 t -di-tert-butyl-4'-hydroxyphenyl) propionate (Irganox ® 1076, Ciba Specialty Chemicals, Basel, Switzerland).
  • thermal stabilizers according to the invention particularly suitable phosphites, especially tris (2,4-di-tert-butyl-phenyl) phosphite (Irgafos ® 168, Ciba Specialty Chemicals, Basel, Switzerland) or phosphines such.
  • thermoplastics of the layer system according to the invention can also contain conventional mold release agents.
  • Particularly suitable mold release agents are pentaerythritol tetrastearate (PETS) or glycerol monostearate (GMS).
  • organic infrared absorbers, ultraviolet absorbers and other additives can be introduced into the individual layers of the layer system according to the invention by known methods such as compounding, mixing in solution, coextrusion, kneading, mixing in by injection molding or as a master batch.
  • the layer system according to the invention can by known methods such as painting,
  • Coextrusion, dipping, pressing, laminating, laminating, multi-component injection molding, application from solution, back injection or the like can be produced in one or more optionally different steps.
  • the application of the individual layers to each other can be done simultaneously or immediately after the shape of the grand body, z. B. by coextrusion or multi-component injection molding.
  • the application can also be done on the molded base, z. b. by lamination with a film or by coating with a solution.
  • the layer structure according to the invention can optionally also subsequently be thermoplastic deformed, for example by deep drawing.
  • the layer system according to the invention can be produced, for example, by the following process steps:
  • composition for layer (A) by mixing organic infrared absorber and ultraviolet absorber with a transparent polymeric base material or coating system
  • composition for layer (B) by mixing ultraviolet absorber with a transparent polymeric base material or coating system
  • the mixing of the ultraviolet and / or infrared absorber with the polymeric base material is preferably carried out by compounding.
  • layer (A) is produced by injection molding, layer (B) by painting and optionally further layers by injection molding or painting.
  • the individual layers are preferably produced by coextrusion.
  • multi-wall sheets double-wall sheets, three-wall sheets, etc.
  • corrugated sheets can also be produced from the layer systems according to the invention. It is also used for injection molded parts such as food containers, components of electrical appliances and in glasses, e.g. B. also possible for goggles such as welding goggles.
  • the layer systems according to the invention can be used universally where heat permeability is undesirable.
  • the application in automotive components such as. B. glazing elements, car roof windows, plastic lenses and architectural applications such as building glazing, greenhouse components, skylights, bus stops or similar applications.
  • the layer system according to the invention is suitable for the production of moldings, in particular for the production of transparent plastic glazing elements such as, for example, plastic glazing elements based on polycarbonate and / or copolycarbonate.
  • the invention therefore also relates to moldings produced using the layer system according to the invention.
  • the polycarbonates (Makrolon 2808 or Makrolon ® DP 1265 from Bayer AG, Leverkusen) with an average molecular weight of approx. 28,000 or 20,000 (M w according to GPC) were used at 300 ° C on a twin-screw extruder with the The amount of additive stated in Table 1 was compounded and then granulated. Color sample plates are then sprayed from this granulate (60 mm x 40 mm x 2 mm). Compositions V5 and 6 were sprayed directly at 250 ° C.
  • IR absorber (A) vanadyl-5,14,23,32-tetraphenyl-2,3-naphthalocyanine (Aldrich, Steinheim, Germany),
  • the color sample plates are then coated with a 100 ⁇ m thick polycarbonate film consisting of 5% UV absorber (B) in Makrolon ® 3108 by pressing on at 155 ° C. and 100 kN for 60 s.
  • the transmission spectra of the color sample platelets from the compositions 2, 4 and 6 and the comparative compositions 1, 3 and 5 were measured with a "lamda 9" UV-VIS-NIR spectrometer from Perkin Elmer. The samples are then measured with Xe-WOM below 0 , 35 W / m 2 (102: 18) weathered and again the
  • the transmission was measured at the absorption maximum in the NIR.
  • the transmissions were measured at a secondary maximum in order to obtain a better comparison of the stabilizing effect of the layer system according to the invention.
  • compositions 2, 4 and 6 As can be seen from Table 2, the transmission at the absorption maxima or secondary maxima of the compositions 2, 4 and 6 according to the invention increases less than in the comparison compositions 1, 3 and 5. This means that the NIR dyes with the aid of The layer system according to the invention (compositions 2, 4 and 6) fades less during weathering than by protection only with a conventional UV protective layer (non-uniform compositions 1, 3 and 5).
  • compositions 2, 4 and 6 fades less during weathering than by protection only with a conventional UV protective layer (non-uniform compositions 1, 3 and 5).
  • the turbidity of weathered and unweathered samples was determined in accordance with ASTM D 1003 using the Haze-Gard device from BYK-Gardner
  • the gloss of weathered and unweathered samples was determined in accordance with DIN standard 67530.
  • the measured values in Table 4 show that the layer system according to the invention (composition 2 with protective film), with 119% and 138%, exhibits a higher gloss after 5,000 h of Xe-WOM than comparison samples, which were in some cases weathered for less time.
  • test results show that the layer systems according to the invention with simple construction have excellent long-term weather stability with Xe-WOM weathering, even after 5,000 hours, excellent transparency behavior and excellent gloss values.

Abstract

Die Erfindung betrifft ein transparentes wärmeabsorbierendes Schichtsystem, enthaltend eine erste Schicht (A) und eine zweite Schicht (B), wobei die erste Schicht (A) mindestens einen organischen Infrarot-Absorber und mindestens einen Ultraviolett-Absorber und die zweite Schicht (B) mindestens einen Ultraviolett-Absorber enthält und die erste Schicht (A) als einzige Schicht im Schichtsystem einen organischen Infrarot-Absorber enthält sowie dessen Herstellung, Verwendung und daraus hergestellte Erzeugnisse.

Description

Wärmeabsorbierendes Schichtsystem
Die Erfindung betrifft ein wärmeabsorbierendes Schichtsystem, das mindestens eine erste Schicht (A) und eine zweite Schicht (B) enthält sowie dessen Herstellung, Verwendung und daraus hergestellte Erzeugnisse.
Nerscheibungen aus Zusammensetzungen, enthaltend transparente thermoplastische Polymere wie z. B. Polycarbonat, bieten für den Automobilbereich und für Gebäude viele Norteile gegenüber herkömmlichen Nerscheibungen aus Glas wie z. B. erhöhte
Bruchsicherheit oder Gewichtsersparnis. Im Fall von Automobilverscheibungen erreicht man dadurch eine höhere Insassensicherheit bei Verkehrsunfällen und durch die Gewichtsersparnis einen niedrigeren Kraftstoffverbrauch. Schließlich lassen transparente thermoplastische Polymere und Zusammensetzungen, die transparente thermoplastische Polymere enthalten, aufgrund der einfacheren Formbarkeit eine wesentlich größere Designfreiheit zu.
Allerdings führt die hohe Wärmedurchlässigkeit (d. h. Durchlässigkeit für IR-Strah- lung) von transparenten thermoplastischen Polymeren bei Sonneneinwirkung zu einer unerwünschten Erwärmung im Inneren. Wie bei Parry Moon, Journal of the Franklin
Institute 230, Seiten 583-618 (1940) beschrieben ist, entfällt der größte Teil der solaren Energie neben dem sichtbaren Bereich des Lichts zwischen 400 und 750 um auf den Bereich des nahen Infrarots (ΝIR) zwischen 650 und 1100 nm. Eindringende Sonnenstrahlung wird z. B. im Inneren eines Automobils absorbiert und als langwellige Wärmestrahlung von 5 bis 15 μm emittiert. Da in diesem Bereich übliche Nerscheibungsmaterialien und insbesondere transparente thermoplastische Polymere nicht transparent sind, kann die Wärmestrahlung nicht nach außen abstrahlen. Man erhält einen Treibhauseffekt. Um den Effekt möglichst klein zu halten, sollte die Transmission der Verscheibungen im ΝIR möglichst minimiert werden. Übliche transparente thermoplastische Polymere wie z. B. Polycarbonat sind jedoch sowohl im sichtbaren Bereich, als auch im NIR transparent. Es werden daher z. B. Zusätze benötigt, welche im NIR eine möglichst geringe Transparenz aufweisen bei weiterhin möglichst hoher Transparenz im sichtbaren Bereich des Spektrums.
In der Literatur sind für diesen Zweck Infrarotabsorber beschrieben, welche diese
Erwärmung einschränken (z. B. J. Fabian, H. Nakazumi, H. Matsuoka, Chem. Rev. 92, 1197 (1992), US 5 712 332, JP 06240146 A).
Für derartige Anwendungen sind Farbstoffe mit Absorptionsmaxima im nahen Infra- rot (NIR) bekannt. Für Außenanwendungen wird jedoch zusätzlich zu den geforderten spektralen Eigenschaften eine hohe Langzeitlichtbeständigkeit gegen Nerfärbung und Ausbleichen benötigt.
Man unterscheidet zwischen organischen und anorganischen ΝIR-Absorbern. Anor- ganische ΝIR- Absorber zeigen üblicherweise eine hohe Lichtstabilität, haben aber den Nachteil, dass sie in Thermoplasten nicht löslich sind und daher trübe bis opake Formmassen bilden. Dagegen sind in Thermoplasten lösliche organische NIR-Absor- ber bekannt, sie zeigen aber eine geringere Lichtstabilität.
In der JP 10-077360 A werden dünne, filmartige wärmeabsorbierende Schichtsysteme beschrieben, die gleichzeitig (A) einen Phtalocyanin-Infrarot-Absorber und (B) einen Ultraviolett-Absorber enthalten. Hierdurch soll die Witterungsbeständigkeit der Wärmeschutzschicht verbessert werden. Gemäß eines Ausführungsbeispiels wird eine filmartige Beschichtungsschicht mit einer Dicke von 0,13 mm vorgeschla- gen, die sowohl Phtalocyanin-Infrarot-Absorber, als auch Ultraviolett-Absorber enthält. Eine derartige Beschichtungsschicht weist in 48-Stunden Schnellbewitterungs- tests zwar eine akzeptable Witterungsbeständigkeit auf. Für praktische Anwendungen sind jedoch Bewitterungstests von mehr als 500 Stunden erforderlich. Ferner weisen die in dieser Veröffentlichung beschriebenen dünnen filmartigen Beschichtungs- schichten unzureichende optische Eigenschaften auf und sind daher für die Anwendung in der Automobilverglasung ungeeignet.
Zur Verbesserung der Witterungsbeständigkeit von wärmeabsorbierenden Schicht- Systemen wird in der JP 10-077360 A ferner eine dünne, filmartige, wärmeabsorbierende Beschichtung aus 3 Schichten mit einer graduellen Abnahme an Phtalocyanin- Infrarot-Absorber vorgeschlagen. Diese enthält in der oberen, der Lichteinstrahlung zugewandten Schicht, einen Ultraviolett-Absorber, in der mittleren Schicht eine Mischung aus Ultraviolett- und Phtalocyanin-Infrarot-Absorber und in der unteren, der Lichteinstrahlung abgewandten Schicht, weiteren Phtalocyanin-Infrarot-Absorber. Nachteilig an einem derartigen Schichtsystem ist der kostenaufwendige dreischichtige Aufbau sowie die schlechten optischen Eigenschaften des durch Laminie- ren hergestellten Schichtsystems.
Es ist ferner allgemein bekannt, dass bestimmte Thermoplaste durch Verwendung von UV-absorbierenden Lacken und/oder coextrudierten Schichten mit hohem Gehalt an UV- Absorber geschützt werden können. So ist etwa aus der EP 0 110 221 A bekannt, die Wetterfestigkeit von Polycarbonat-Kunststofftafeln durch Beschichtung mit einer Schicht, enthaltend 3 bis 15 Gew.-% eines UV- Absorber, zu verbessern. Die in dieser Druckschrift beschriebenen Mehrschichtsysteme enthalten keinen Infrarot-Absorber.
Schließlich werden in der EP 0 774 551 A Wärmefilter auf der Basis von anorganischen Pigmenten beschrieben, welche eine UV-absorbierende Schutzschicht auf- weisen. Anorganische Pigmente haben den Nachteil, dass sie sich in Thermoplasten nicht lösen, so dass keine im sichtbaren Bereich transparente Formkörper mit geringer Trübung resultieren.
Der Erfindung liegt die Aufgabe zugrunde, wärmeabsorbierende Beschichtungssys- teme bereitzustellen, die bei möglichst einfacher und preiswerter Herstellungsweise eine hervorragende Langzeit- Witterungsbeständigkeit sowie ausgezeichnete optische Eigenschaften wie Transparenz und Glanz aufweisen und zur Wärmeisolierung von transparenten Kunststoffverscheibungselementen eingesetzt werden können.
Diese Aufgabe wird erfϊndungsgemäß durch ein transparentes wärmeabsorbierendes
Schichtsystem, enthaltend eine erste Schicht (A) und eine zweite Schicht (B), gelöst, wobei die erste Schicht (A) mindestens einen organischen Infrarot-Absorber und mindestens einen Ultraviolett-Absorber und die zweite Schicht (B) mindestens einen Ultraviolett-Absorber und die erste Schicht (A) die einzige Schicht im Schichtsystem ist, die einen organischen Infrarot- Absorber enthält.
Die erfindungsgemäßen wärmeabsorbierenden Schichtsysteme zeichnen sich dadurch aus, dass organischer Infrarot- Absorber und Ultraviolett-Absorber gemeinsam in eine Schicht (Schicht A, "NIR/UV-Schicht") eingebracht werden. Durch das gemeinsame Vorliegen der beiden Additive in derselben Schicht wird ein Großteil des empfindlichen organischen Infrarot-Absorbers vor UV-Strahlung geschützt. Zusätzlich wird der organische Infrarot-Absorber durch eine weitere Schicht, enthaltend Ultraviolett- Absorber (Schicht B, "UV-Schicht"), vor Zersetzung durch UV-Strahlung geschützt. Besonders ist ferner, dass Schicht (A) die einzige Schicht im erfindungsgemäßen Schichtsystem ist, die organischen IR-Absorber enthält. Auch gegebenenfalls weitere im Schichtsystem enthaltene Schichten wie Klarschichten enthalten keinen organischen Infrarot-Absorber. Da die UV-Schicht (Schicht B) u. a. dem Schutz von NIR- Farbstoff in Schicht (A) vor UV-Strahlen dienen soll, ist es vorteilhaft, Schicht (B) in Richtung der einfallenden Lichteinstrahlung oberhalb von Schicht (A) anzuordnen. Beginnend mit der der Lichteinstrahlung zugewandten Seite ist daher folgender
Schichtaufbau vorteilhaft: Schicht (B) - Schicht (A), insbesondere mit der Maßgabe, dass Schicht (A) gleichzeitig als Substrat (z. B. Kunststoffautoscheibe) dient. Es ist auch möglich, unterhalb von Schicht (A) eine oder mehrere weitere Schichten (B) anzuordnen, was beispielsweise zu folgendem Schichtaufbau führt: Schicht (B) - Schicht (A) - Schicht (B). Auch bei dieser Ausführungsform ist es vorteilhaft, wenn Schicht (A) gleichzeitig als Substrat (z. B. Kunststoffautoscheibe) dient. Beispielhaft sei hier eine beidseitig coextrudierte Platte aus einem Thermoplasten, enthaltend organischen Infrarotabsorber und UV-Absorber [Schicht (A)] mit zwei dünnen UV- Absorberschichten auf beiden Seiten [Schicht (B)], genannt. Ebenso möglich ist eine doppelt lackierte Platte oder ein Spritzgussteil aus einem Thermoplasten, enthaltend organischen Infrarotabsorber und UV-Absorber [Schicht (A)] mit UV-Absorber in beiden Lackschichten [Schicht (B)].
Überraschend wurde festgestellt, dass durch Anordnen einer einzigen UV-Schutz- schicht oberhalb der NTR/UV-Schicht eine ausreichende Verbesserung der Langzeit-
Witterungsbeständigkeit sowie ausgezeichnete Glanz- und Transparenzwerte des wärmeabsorbierenden Schichtsystems erhalten werden. Das erfmdungsgemäße Schichtsystem zeichnet sich gegenüber der in der JP 10-077360 A beschriebenen einschichtigen Wärmeschutzbeschichtung durch ein erheblich verbessertes Lang- zeitwetterverhalten aus. Gegenüber der in der JP 10-077360 A beschriebenen 3- schichtigen Wärmeschutzbeschichtung zeichnet sich das erfindungsgemäße Schichtsystem durch erheblich bessere Transparenz- und Glanzwerte sowie durch eine einfachere und kostengünstigere Herstellung aus. Entgegen der Lehre der JP 10-077360 wurde erfmdungsgemäß überraschend festgestellt, dass ein Einbringen von NIR-Ab- sorber in mehrere Schichten zu dem Zweck, eine graduelle Abnahme von NIR-Ab- sorber im Schichtsystem zu erreichen, nicht erforderlich ist für eine Verbesserung der Langzeit- Witterungsbeständigkeit. Durch das mit dem erfindungsgemäßen Schichtsystem erreichte Einsparen einer zusätzlichen NIR-Schicht wird zudem das Transparenz- und Glanzverhalten des wärmeabsorbierenden Schichtsystems maßgeblich ver- bessert.
Ferner wurde gefunden, dass es vorteilhaft ist, wenn die einzelnen Schichten des erfindungsgemäßen Schichtsystems in einer bestimmten Dicke ausgestaltet sind. Gemäß einer bevorzugten Ausführungsform der Erfindung weist demgemäß die erste Schicht (A) eine Dicke von 2 bis 8 mm, insbesondere 3 bis 5 mm auf. Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung weist die zweite Schicht (B) eine Dicke von 1 bis 100 μm auf. Insbesondere ist es vorteilhaft, wenn die zweite Schicht als Polymerfilm in einer Dicke von 30 bis 80 μm, insbesondere 40 bis 60 μm ausgebildet ist. Ebenso ist es möglich, die zweite Schicht als Lack in einer Dicke von 1 bis 30 μm, insbesondere 4 bis 10 μm auszubilden.
Überraschend wurde gefunden, dass es für die optischen Eigenschaften sowie für die Langzeit-Witterungsbeständigkeit der erfindungsgemäßen wärmeabsorbierenden Schichtsysteme vorteilhaft ist, die NIR/UV-Schicht (Schicht A) nicht wie in der JP 10-077360 A beschrieben als dünne, filmartige Beschichtungsschicht, sondern in einer Dicke von 0,8 bis 15 mm auszubilden. Dies war deshalb überraschend, weil dünne Schichten in der Regel ein besseres Trübungsverhalten aufweisen, als dicke. Als besonders vorteilhaft hat sich ein Schichtsystem erwiesen, in dem eine relativ dicke NIR/UV-Schicht (Schicht A) von 0,8 bis 15 mm mit einer relativ dünnen UV- Schutzschicht (Schicht B) von 1 bis 100 μm überzogen wird. Der Überzug kann beispielsweise als Lack oder als dünner Polymerfilm erfolgen. Ein derartiges Schichtsystem weist ein ausgezeichnetes Transparenz- und Trübungsverhalten bei gleichzeitig hervorragender Langzeit- Witterungsbeständigkeit auf. Sowohl herstellungstechnisch, als auch eigenschaftsspezifisch für die Anwendung in der Automobilvergla- sung hat es sich als besonders vorteilhaft herausgestellt, wenn NIR/UV-Schicht
(Schicht A) und UV-Schicht (Schicht B) sowie gegebenenfalls weitere Schichten des Schichtsystems als coextrudierte Polymerschichten in den entsprechenden Dicken ausgebildet sind.
Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung enthält das erfindungsgemäße Schichtsystem neben den Schichten (A) und (B) noch mindestens eine weitere transparente Schicht (C), welche weder einen organischen Infrarot-, noch einen Ultraviolett-Absorber enthält. Schicht (C) wird auch als "Klarschicht" bezeichnet und dient der Verbesserung der Kratzfestigkeit oder der Erhöhung der me- chanischen Steifigkeit. Im erfindungsgemäßen Schichtsystem können eine oder eh- rere Klarschichten vorhanden sein. Vorzugsweise werden 1 bis 3 Klarschichten, besonders bevorzugt 1 Klarschicht eingesetzt. Die Klarschichten können an beliebiger Stelle im Schichtsystem, d. h. ober-, unterhalb und/oder zwischen den Schichten (A) und (B), angeordnet werden. Besonders vorteilhaft ist jedoch ein Schichtsystem mit folgendem Schichtaufbau (beginnend mit der der Lichteinstrahlung zugewandten
Seite): Schicht (B) - Schicht (A) - Schicht (C) oder Schicht (C) - Schicht (B) - Schicht (A). Hinsichtlich des Materials der Klarschicht (C) liegen keine besonderen Einschränkungen vor; in der Regel ist es jedoch vorteilhaft, die Klarschicht als Polymer- oder Glasschicht auszubilden. Als Polymerschichten kommen insbesondere Schichten aus transparenten Thermoplasten in Frage. Besonders geeignete transparente Thermoplasten sind Polycarbonate oder Copolycarbonate oder PMMA oder PETG. Für die optischen Eigenschaften des Schichtsystems ist es vorteilhaft, wenn in Schicht (C) dasselbe Polymer wie in den übrigen Schichten eingesetzt wird. Bei einem erfindungsgemäßen Schichtsystem, bei dem die Schichten (A) und/oder (B) beispielsweise Schichten auf Basis von Polycarbonat sind, ist es vorteilhaft, wenn auch Schicht (C) eine Schicht auf Basis von Polycarbonat oder PMMA oder PETG ist.
Organische Infrarotabsorber, die zum Einsatz im erfindungsgemäßen Schichtsystem geeignet sind, sind Verbindungen, welche zwischen 700 und 1500 nm (Nahes Infrarot = NIR) eine möglichst hohe Absorption aufweisen. Geeignet sind literaturbekannte Infrarot- Absorber, wie sie z. B. in M. Matsuoka, Infrared Absorbing Dyes, Plenum Press, New York, 1990 stoffklassenmäßig beschrieben sind. Besonders geeignet sind Infrarot-Absorber aus den Stoffklassen der Phthalocyanine, der Naph- thalocyanine, der Metallkomplexe, der Azofarbstoffe, der Anthraquinone, der Quadratsäurederivate, der Immoniumfarbstoffe, der Perylene, der Quaterylene sowie der Polymethine. Davon sind ganz besonders Phthalocyanine und Naphthalocyanine geeignet. Aufgrund der verbesserten Löslichkeit in Thermoplasten sind Phthalocyanine und Naphthalocyanine mit sperrigen Seitengruppen vorzuziehen. Hinsichtlich der Menge des in Schicht (A) enthaltenen organischen Infrarot-Absorbers liegen keine besonderen Beschränkungen vor, solange die gewünschte Absorption von Wärmestrahlung und eine ausreichende Transparenz des Schichtsystems gewährleistet ist. Als besonders vorteilhaft hat es sich erwiesen, wenn Schicht (A) organischen Infrarot- Absorber in einer Menge von 0,001 bis 10 g/m2, insbesondere von 0,1 bis 1 g/m2 enthält. Je nach Extinktionskoeffizient und Schichtdicke der NIR/UV-Schicht (Schicht A) werden die Infrarot-Absorber vorzugsweise in Konzentrationen zwischen 1 und 10.000 ppm eingesetzt, bevorzugt zwischen 10 und 1.000 ppm und ganz besonders bevorzugt zwischen 20 und 400 ppm. Besonders ge- eignet sind auch Mischungen von Infrarot- Absorbern. Der Fachmann kann mit Farbstoffen unterschiedlicher Wellenlängen der Absorptionsmaxima eine Optimierung der Absorption im nahen Infrarotbereich erreichen.
Zum Einsatz im erfindungsgemäßen Schichtsystem geeignete Ultraviolett-Absorber sind Verbindungen, die eine möglichst geringe Transmission unterhalb 400 nm und eine möglichst hohe Transmission oberhalb von 400 nm besitzen. Derartige Verbindungen und deren Herstellung sind literaturbekannt und sind beispielsweise in den EP 0 839 623 A, WO 96/15102 und EP 0 500496 A beschrieben. Für den Einsatz im erfindungsgemäßen Schichtsystem besonders geeignete Ultraviolett-Absorber sind Benzotriazole, Triazine, Benzophenone und/oder arylierte Cyanoacrylate.
Besonders geeignete Ultraviolett-Absorber sind Hydroxy-Benzotriazole, wie 2-(3',5'- Bis-(l,l-dimethylbenzyl)-2'-hydroxy-phenyl)-benzotriazol (Tinuvin® 234, Ciba Spezialitätenchemie, Basel), 2-(2'-Hydroxy-5'-(tert.-octyl)-phenyl)-benzotriazol (Tinu- vin® 329, Ciba Spezialitätenchemie, Basel), 2-(2,-Hydroxy-3'-(2-butyl)-5'-(tert.-bu- tyl)-phenyl)-benzotriazol (Tinuvin® 350, Ciba Spezialitätenchemie, Basel), Bis-(3- (2H-benztriazolyl)-2-hydroxy-5-tert.-octyl)methan, (Tinuvin® 360, Ciba Spezialitätenchemie, Basel), 2-(Hydroxy-2-hydroxyphenyl)-4,6-diphenyl-l,3,5-triazin (Tinuvin® 1577, Ciba Spezialitätenchemie, Basel), sowie das Benzophenon 2,4-Dihy- droxy-benzophenon (Chimasorb22®, Ciba Spezialitätenchemie, Basel), 2-Propenoic acid, 2-cyano-3,3-diphenyl-, 2,2-bis[[(2-cyano-l-oxo-3,3-diphenyl-2-propenyι)oxy]- methyl]-l,3-propanediyl ester (9CI) (Uvinul® 3030, BASF AG Ludwigshafen). Es können auch Mischungen dieser Ultraviolett-Absorber eingesetzt werden.
Ferner können auch nanoskalige anorganische UV-Absorber mit oder ohne organische UV-Absorber verwendet werden. Bevorzugt sind TiO2, ZnO, CeO2. Die Größe dieser Partikel ist kleiner als 100 nm die Herstellung ist bekannt.
Hinsichtlich der Menge des im Schichtsystem enthaltenen Ultraviolett-Absorbers liegen keine besonderen Beschränkungen vor, solange die gewünschte Absorption von UV-Strahlung sowie eine ausreichende Transparenz des Schichtsystems gewährleistet sind. Gemäß einer bevorzugten Ausführungsform der Erfindung enthält Schicht (A) Ultraviolett-Absorber in einer Menge von 0,1 bis 10 %, insbesondere von 0,2 bis 1 %. Als vorteilhaft hat sich ferner erwiesen, wenn Schicht (B) Ultra- violett- Absorber in einer Menge von 0,1 bis 40 %, insbesondere 1 bis 10 % enthält.
Hinsichtlich des Basismaterials für die Schichten (A) und (B) liegen keine besonde- ren Beschränkungen vor, solange das Material eine hohe Transparenz und Witterungsbeständigkeit aufweist und somit für den Einsatz in der Automobilverglasung geeignet ist. Als besonderes vorteilhaft hat sich jedoch herausgestellt, wenn die einzelnen Schichten des Schichtsystems Schichten auf Basis von Polymeren oder Lacken sind. Dies bedeutet, dass die organischen Infrarot-Absorber und/oder Ultraviolett-Absorber, soweit in den einzelnen Schichten enthalten, in eine Polymer- oder Lackschicht eingebracht sind.
Vorzugsweise werden transparente thermoplastische Polymere eingesetzt.
Transparente thermoplastische Polymere im Sinne der Erfindung sind z. B. Polymerisate von ethylenisch ungesättigten Monomeren und/oder Polykondensate von bifunktionellen reaktiven Verbindungen. Beispiele für transparente thermoplastische Polymere sind z. B. Polycarbonate oder Copolycarbonate auf Basis von Diphenolen, Poly- oder Copolyacrylate und Poly- oder Copolymethacrylat wie z. B. Poly- oder Copolymethylmethacrylate sowie Copolymere mit Styrol wie z. B. transparentes Polystyrol-acrylnitril (PSAN) oder Polymere auf der Basis von Ethylen und/oder Propylen sowie aromatische Polyester wie PET, PEN oder PETG und transparente thermoplastische Polyurethane. Ferner können auch Polymere auf Basis von zyklischen Olefinen (z. B. TOPAS®, ein Handelsprodukt der Firma Ticona), Poly- oder Copolykondensate der Terephthalsäure wie z. B. Poly- oder Copolyethylen- terephthalate (PET oder CoPET) oder PETG eingemischt werden.
Auch Mischungen von mehreren transparenten thermoplastischen Polymeren sind möglich.
Bevorzugt sind Polycarbonate oder Copolycarbonate.
Besonders bevorzugte Polycarbonate sind das Homopolycarbonat auf Basis von Bisphenol A, das Homopolycarbonat auf Basis von l,3-Bis-(4-hydroxyphenyι)-3,3,5- trimethylcyclohexan und die Copolycarbonate auf Basis der beiden Monomere Bisphenol A und l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan.
Polycarbonate im Sinn der vorliegenden Erfindung sind sowohl Homopolycarbonate als auch Copolycarbonate; die Polycarbonate können in bekannter Weise linear oder verzweigt sein.
Die Herstellung der Polycarbonate erfolgt in bekannter Weise aus Diphenolen, Kohlensäurederivaten, gegebenenfalls Kettenabbrechern und Verzweigern.
Einzelheiten der Herstellung von Polycarbonaten sind in vielen Patentschriften seit etwa 40 Jahren niedergelegt. Beispielhaft sei hier nur auf Schnell, „Chemistry and Physics of Polycarbonates", Polymer Reviews, Volume 9, Interscience Publishers, New York, London, Sydney 1964, auf D. Freitag, U. Grigo, P.R. Müller, H. Nou- vertne', BAYER AG, „Polycarbonates" in Encyclopedia of Polymer Science and Engineering, Volume 11, Second Edition, 1988, Seiten 648-718 und schließlich auf Dres. U. Grigo, K. Kirchner und P.R. Müller „Polycarbonate" in Becker/Braun, Kunststoff-Handbuch, Band 3/1, Polycarbonate, Polyacetale, Polyester, Cellulose- ester, Carl Hanser Verlag München, Wien 1992, Seiten 117-299 verwiesen.
Für die Herstellung der Polycarbonate geeignete Diphenole sind beispielsweise Hydrochinon, Resorcin, Dihydroxydiphenyle, Bis-(hydroxyphenyl)-alkane, Bis(hy- droxyphenyl)-cycloalkane, Bis-(hydroxyphenyl)-sulfide, Bis-(hydroxyphenyl)-ether,
Bis-(hydroxyphenyl)-ketone, Bis-(hydroxyphenyl)-sulfone, Bis-(hydroxyphenyl)- sulfoxide, α-α'-Bis-(hydroxyphenyl)-diisopropylbenzole, sowie deren kemalkylierte und kernhalogenierte Verbindungen.
Bevorzugte Diphenole sind 4,4'-Dihydroxydiphenyl, 2,3-Bis-(4-hydrOxyphenyi)-pro- pan, 2,4-Bis-(4-hydroxyphenyl)-2-methylbutan, 1 , 1 -Bis-(4-hdydroxyphenyl)-p-diiso- propylbenzol, 2,2-Bis-(3 -methyl-4-hydroxyphenyl)-propan, 2,2-Bis-(3 -chlor-4-hy- droxyphenyl)-propan, Bis-(3,5-dimethyl-4-hydroxyphenyl)-methan, 2,2-Bis-(3,5- dimethyl-4-hydroxyphenyl)-propan, Bis-(3,5-dimethyl-4-hydroxyphenyl)-sulfon, 2,4- Bis-(3 ,5-dimethyl-4-hydroxyphenyl)-2-methylbutan, 1 , 1 -Bis-(3 ,5-dimethyl-4-hy- droxyphenyl)-p-diisopropylbenzol, 2,2-Bis-(3,5-dichlor-4-hydroxyphenyl)-propan, 2,2-Bis-(3 ,5-dibrom-4-hydroxyphenyl)-propan und 1 , 1 -Bis-(4-hydroxyphenyl)-3 ,3 ,5- trimethylcyclohexan.
Besonders bevorzugte Diphenole sind 2,2-Bis-(4-hydroxyphenyl)-propan, 2,2-Bis-
(3 ,5 -dimethyl-4-hydroxyphenyi)-propan, 2,2-Bis-(3 , 5 -dichlor-4-hydroxyphenyl)-pro- pan, 2,2-Bis-(3 ,5-dibrom-4-hydroxyphenyl)-propan, 1 , 1 -Bis-(4-hydroxyphenyl)-cyc- lohexan und l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan. Diese und weitere geeignete Diphenole sind z. B. in US-A 3 028 635, US-A 2 999 825, US-A 3 148 172, US-A 2 991 273, US-A 3 271 367, US-A 4 982 014 und US-A 2 999 846, in DE-A 1 570 703, DE-A 2063 050, DE-A 2 036 052, DE-A 2 211 956 und DE-A 3 832 396, in FR-A 1 561 518, in der Monographie „H. Schnell, Chemistry and Physics of Polycarbonates, Interscience
Publishers, New York 1964" sowie in JP-A 62039/1986, JP-A 62040/1986 und JP-A 105550/1986 beschrieben.
Im Fall der Homopolycarbonate ist nur ein Diphenol eingesetzt, im Fall der Copoly- carbonate sind mehrere Diphenole eingesetzt.
Geeignete Kohlensäurederivate sind beispielsweise Phosgen oder Diphenylcarbonat.
Geeignete Kettenabbrecher, die bei der Herstellung der Polycarbonate eingesetzt werden können, sind sowohl Monophenole als auch Monocarbonsäuren. Geeignete
Monophenole sind Phenol selbst, Alkylphenole wie Kresole, p-tert.-Butylphenol, p- n-Octylphenol, p-iso-Octylphenol, p-n-Nonylphenol und p-iso-Nonylphenol, Halogenphenole wie p-Chlorphenol, 2,4-Dichlorphenol, p-Bromphenol und 2,4,6- Tribromphenol, 2,4,6-Trijodphenol, p- Jodphenol, sowie deren Mischungen.
Besonders bevorzugte Kettenabbrecher sind p-tert.-Butylphenol und Phenol.
Geeignete Monocarbonsäuren sind weiterhin Benzoesäure, Alkylbenzoesäuren und Halogenbenzoesäuren.
Bevorzugte Kettenabbrecher sind femer die Phenole der Formel (I)
worin R Wasserstoff oder ein C\ bis C30-Aιkylrest, linear oder verzweigt ist, bevorzugt tert.-Butyl ist oder ein verzweigter oder unverzweigter C8 und/oder C -Alkyl- rest ist.
Die Menge an einzusetzendem Kettenabbrecher beträgt bevorzugt 0,1 bis 5 mol-%, bezogen auf Mole an jeweils eingesetzten Diphenolen. Die Zugabe der Kettenabbrecher kann vor, während oder nach der Phosgenierung erfolgen.
Geeignete Verzweiger sind die in der Polycarbonatchemie bekannten tri- oder mehr als trifunktionellen Verbindungen, insbesondere solche mit drei oder mehr als drei phenolischen OH-Gruppen.
Geeignete Verzweiger sind beispielsweise Phloroglucin, 4,6-Dimethyl-2,4,6-tri-(4- hydroxyphenyl)-hepten-2, 4,6-Dimethyl-2,4,6-tri(4-hydroxyphenyl)-heptan, 1,3,5-
Tri(4-hydroxyphenyl)-benzol, 1,1,1 -Tri-(4-hydroxyphenyl)-ethan, Tri-(4-hydroxy- phenyl)-phenylmethan, 2,2-Bis-[4,4-bis-(4-hydroxyphenyl)-cyclohexyl]-proρan, 2,4-
Bis-(4-hydroxyphenylisopropyl)-phenol, 2,6-Bis-(2-hydroxy-5'-methyl-benzyl)-4-me- thylphenol, 2-(4-hydroxyphenyl)-2-(2,4-dihydroxyphenyl)-propan, Hexa-(4(4- hydroxyphenylisopropyl)-phenyI)-orthoterephthaIsäureester, Tetra-(4-hydroxyphe- nyl)-methan, Tetra-(4-(4-hydroxyphenylisopropyl)-phenoxy)-methan und 1,4-Bis-
(4',4"-dihydroxytripehnyl)-methyl)-benzol sowie 2,4-Dihydroxybenzoesäure, Trime- sinsäure, Cyanurchlorid und 3,3-Bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydro- indol.
Die Menge der gegebenenfalls einzusetzenden Verzweiger beträgt bevorzugt 0,05 bis 2 mol-%, bezogen wiederum auf Mole an jeweils eingesetzten Diphenolen.
Die Verzweiger können entweder mit den Diphenolen und den Kettenabbrechem in der wässrig alkalischen Phase vorgelegt werden, oder in einem organischen Lö- sungsmittel gelöst vor der Phosgenierung zugegeben werden. Im Fall des Umeste- rungsverfahrens werden die Verzweiger zusammen mit den Diphenolen eingesetzt.
Die erfindungsgemäßen Zusammensetzungen können femer noch übliche Polymer- additive enthalten, wie z. B. die in EP-A 0 839 623, WO 96/15102 und EP-A 0 500
496 beschriebenen Antioxidantien und Entformungsmittel, aber auch literaturbekannte Flammschutzmittel, Glasfasern, Füllstoffe, Schaummittel, Pigmente, optische Aufheller oder Farbstoffe, in den für die jeweiligen Thermoplasten üblichen Mengen. Bevorzugt sind Mengen von jeweils bis zu 5 Gew.-%, bevorzugt 0,01 bis 5 Gew.-%, bezogen auf die Menge der Zusammensetzungen, besonders bevorzugt 0,01 bis 1
Gew.-%, bezogen auf die Menge der Zusammensetzungen. Auch Mischungen mehrerer Zusatzstoffe sind geeignet.
Vorzugsweise betragen die als Verunreinigung vorhandenen Ionengehalte in den thermoplastischen Polycarbonaten weniger als 10 ppm, besonders bevorzugt weniger als 5 ppm.
Die Maßnahmen zur Herstellung der thermoplastischen Polycarbonate sind dem Fachmann geläufig.
Im Fall von mehreren thermoplastischen Schichten können die thermoplastischen Kunststoffe verschiedenartig oder gleichartig sein.
Geeignete Formkörper/Schutzschichtkombinationen sind beispielsweise in der EP 0 320 632 A aufgeführt. Vorzugsweise sind gleichartige Kunststoffe geeignet.
Zum Einsatz im erfindungsgemäßen Schichtsystem geeignete Lacksysteme sind solche, deren vernetzende Komponenten Acrylat-, Allyl-, Epoxy-, Siloxan-, Isocyanat-, Anhydrid-, und/oder Melaminformaldehydfunktionen aufweisen. Umfassende Be- Schreibungen solcher Lacksysteme finden sich in: „Lehrbuch der Lacke und Be- schichtungen", Herausgeber: Dr. Hans Kittel, Verlag Hirzel, Stuttgart, 1998; in „Lackkunstharze" von Hans Wagner, Hans Friedrich Sarx, Carl Hanser Verlag München, 1971; speziell für Epoxy-Harze in „Epoxy Resins, Chemistry and Technology" herausgegeben von Clayton A. May and Yoshio Tanaka bei Marcel Dekker, Inc. New York, 1973, Kapitel 7, Seite 451 ff.
Besonders bevorzugt sind Siloxanlacke wie z. B. in DE 4 020 316 A beschrieben.
Die Dicke der Lackschichten ist 1 bis 200 μm, bevorzugt 2 bis 50 μm und ganz be- sonders bevorzugt 2 bis lOμm. Die Viskosität des Lackes beträgt vorzugsweise 5 bis
10.000 mPa s.
Optional können die in den Schichten (A), (B) und/oder (C) eingesetzten Polymere oder Lacke weitere Additive enthalten, wie z. B. die in EP 0 839 623 AI und EP 0 500 496 AI beschriebenen Antioxidantien, Flammschutzmittel, Füllmittel,
Schaummittel, herkömmliche Farbstoffe und Pigmente, optische Aufheller und Nukleierungsmittel oder ähnliche, bevorzugt in Mengen von jeweils bis zu 5 Gew.-%, bevorzugt 0,01 bis 5 Gew.-%, bezogen auf die gesamte Mischung, besonders bevorzugt 0,01 bis 1 Gew.-%, bezogen auf die Menge Kunststoff. Auch Mi- schungen dieser Zusatzstoffe sind geeignet.
Darüber hinaus können die Thermoplaste noch übliche Thermostabilisatoren enthalten. Als Thermostabilisatoren sind erfindungsgemäß besonders geeignet: gehinderte Phenole, beispielsweise Octadecyl-3-(3',5t-di-tert.-butyl-4'-hydroxyphenyl)-propionat (Irganox® 1076, Ciba Specialty Chemicals, Basel, Schweiz). Weiterhin sind erfindungsgemäß besonders geeignete Thermostabilisatoren Phosphite, insbesondere Tris(2,4-di-tert.-butyl-phenyl)-phosphit (Irgafos® 168, Ciba Specialty Chemicals, Basel, Schweiz) oder Phosphine wie z. B. Triphenylphosphin. Die Thermoplaste des erfindungsgemäßen Schichtsystems können femer übliche Entformungsmittel enthalten. Besonders geeignete Entformungsmittel sind Penta- erythrittetrastearat (PETS) oder Glycerinmonostearat (GMS).
Die organischen Infrarot-Absorber, Ultraviolett-Absorber und sonstige Additive können in die einzelnen Schichten des erfindungsgemäßen Schichtsystems durch bekannte Methoden wie Compoundierung, Einmischen in Lösung, Coextrusion, Kneten, Einmischen beim Spritzguss oder als Masterbatch eingebracht werden.
Das erfindungsgemäße Schichtsystem kann durch bekannte Verfahren wie Lackieren,
Coextrudieren, Tauchen, Aufpressen, Kaschieren, Laminieren, Mehrkomponenten- spritzguss, Auftragen aus Lösung, Hinterspritzen oder ähnliches in einem oder mehreren auch optional verschiedenen Schritten hergestellt werden.
Das Aufbringen der einzelnen Schichten aufeinander kann zugleich oder unmittelbar nach der Formgebung des Grandkörpers geschehen, z. B. durch Coextrusion oder Mehrkomponentenspritzguss. Das Aufbringen kann aber auch auf den fertig geformten Grundkörper geschehen, z. b. durch Lamination mit einem Film oder durch Beschichtung mit einer Lösung.
Der erfindungsgemäße Schichtaufbau kann gegebenenfalls auch anschließend noch thermoplastisch verformt werden, wie beispielsweise durch Tiefziehen.
Das erfindungsgemäße Schichtsystem kann beispielsweise durch folgende Verfah- rensschritte hergestellt werden:
(a) Herstellen einer Zusammensetzung für Schicht (A) durch Vermischen von organischen Infrarot-Absorber und Ultraviolett-Absorber mit einem transparenten polymeren Basismaterial oder Lacksystem, (b) Herstellen einer Zusammensetzung für Schicht (B) durch Vermischen von Ultraviolett-Absorber mit einem transparenten polymeren Basismaterial oder Lacksystem und
(c) Herstellen eines Schichtsystems durch Coextrusion, Spritzgießen oder Aufsprühen der Schichten (A) und (B) sowie gegebenenfalls weiterer Schichten.
Das Vermischen des Ultraviolett- und/oder Infrarotabsorbers mit dem polymeren Basismaterial erfolgt dabei vorzugsweise durch Compoundieren.
Gemäß einer bevorzugten Ausführungsform der Erfindung wird Schicht (A) durch Spritzgießen, Schicht (B) durch Lackieren und gegebenenfalls weitere Schichten durch Spritzgießen oder Lackieren hergestellt.
Vorzugsweise werden die einzelnen Schichten durch Coextrusion hergestellt.
Neben Massivplatten können auch Stegplatten (Doppelstegplatten, Dreistegplatten usw.) oder Wellplatten aus den erfindungsgemäßen Schichtsystemen hergestellt wer- den. Femer ist die Anwendung bei Spritzgussteilen wie Lebensmittelbehältern, Bestandteilen von Elektrogeräten und in Brillengläsern, z. B. auch für Schutzbrillen wie Schweißerschutzbrillen, möglich.
Die erfindungsgemäßen Schichtsysteme sind universell einsetzbar, wo Wärme- durchlässigkeit unerwünscht ist. Besonders geeignet ist die Anwendung bei Automobilkomponenten, wie z. B. Verscheibungselemente, Autodachfenster, Kunststoffstreuscheiben und architektonischen Anwendungen wie Gebäudeverglasung, Gewächshauskomponenten, Lichtkuppeln, Bushaltestellen oder ähnliche Anwendungen. Das erfindungsgemäße Schichtsystem eignet sich zur Herstellung von Formkörpem, insbesondere zur Herstellung von transparenten Kunststoffverscheibungselementen wie z.B. Kunststoffverscheibungselementen auf Basis von Polycarbonat und/oder Copolycarbonat. Gegenstand der Erfindung sind daher auch mit dem erfindungsge- mäßen Schichtsystem hergestellte Formkörper.
Beispiele
Im folgenden wird die Erfindung anhand von Ausführungsbeispielen näher beschrieben.
Beispiel 1
Zur Herstellung der Probekörper wurden die Polycarbonate (Makrolon 2808 bzw. Makrolon® DP 1265 der Bayer AG, Leverkusen) mit einem mittleren Molekularge- wicht von ca. 28.000 bzw. 20.000 (Mw nach GPC) bei 300°C auf einem Zweiwellenextruder mit der in Tabelle 1 angegebenen Menge Additiv compoundiert und anschließend granuliert. Aus diesem Granulat werden anschließend Farbmusterplatten abgespritzt (60 mm x 40 mm x 2 mm). Die Zusammensetzungen V5 und 6 wurden direkt bei 250°C verspritzt.
Als IR- Absorber wurden folgende Verbindungen eingesetzt:
IR-Absorber (A): Vanadyl-5,14,23,32-tetraphenyl-2,3-naphthalocyanin (Aldrich, Steinheim, Deutschland),
IR-Absorber (B): Kupfer(II)- 1,4,8,1 l,15,18,22,25-octabutoxy-29H,3 lH-phthalo- cyanin (Aldrich, Steinheim, Deutschland) und
IR-Absorber (C): KU3-2052 (kommerzieller Zweikomponenten NIR-Farbstoff der Bayer AG, Leverkusen, Deutschland mit den Komponenten
A und B). Als UN- Absorber wurden folgende Verbindungen eingesetzt:
UV-Absorber (A): 2-(2'-Hydroxy-3,-(2-butyl)-5,(tert.-butyl)-ρhenyl)-benzotriazol (Tinuvin® 350 der Ciba Spezialitätenchemie, Basel, Schweiz) und
UN- Absorber (B): Bis-(3-(2H-benztriazolyl)-2-hydroxy-5-tert.-oxtyl)methan
(Tinuvin® 360 der Ciba Spezialitätenchemie, Basel, Schweiz).
Tabelle 1
Zusammensetzung der Proben
Die Farbmusterplättchen werden anschließend mit einer 100 μm dicken Polycarbo- natfolie, bestehend aus 5 % UV- Absorber (B) in Makrolon® 3108 durch Aufpressen bei 155°C und 100 kN für 60 s beschichtet.
Beispiel 2
Die Transmissionsspektren der Farbmusterplättchen aus den Zusammensetzungen 2, 4 und 6 und den Vergleichszusammensetzungen 1, 3 und 5 wurden mit einem UV- VIS-NIR-Spektrometer „lamda 9" der Firma Perkin Eimer gemessen. Danach werden die Proben mit Xe-WOM unter 0,35 W/m2 (102:18) bewittert und wieder die
Transmissionsspektren vermessen.
Es wurde die Transmission bei dem Absorptionsmaximum im NIR gemessen. Zusätzlich sind bei den Zusammensetzungen 2 und 4 sowie Vergleichszusammenset- zungen 1 und 3 noch die Transmissionen bei einem Nebenmaximum gemessen worden, um einen besseren Vergleich der stabilisierenden Wirkung des erfindungsgemäßen Schichtsystems zu erhalten.
Tabelle 2
Transmissionseigenschaften der Zusammensetzungen 2, 4 und 6, sowie der Vergleichszusammensetzungen 1, 3 und 5 nach 5.000 h Xe-WOM (Δ bedeutet T (5000)-T (0 h)
Wie aus Tabelle 2 ersichtlich wird, steigt die Transmission an den Absorptions- maxima bzw. -nebenmaxima der erfindungsgemäßen Zusammensetzungen 2, 4 und 6 weniger stark als bei den Vergleichszusammensetzungen 1, 3 und 5. Das bedeutet, dass die NIR-Farbstoffe mit Hilfe des erfindungsgemäßen Schichtsystems (Zusammensetzungen 2, 4 und 6) bei der Bewitterung weniger stark ausbleichen, als durch Schutz lediglich mit einer herkömmlichen UV-Schutzschicht (Nergleichszusammen- setzungen 1, 3 und 5). Beispiel 3
Es wurde von bewitterten und unbewitterten Proben die Trübung gemäß nach der Vorschrift ASTM D 1003 mit dem Gerät Haze-Gard plus der Firma BYK-Gardner
GmbH, D-82538 Geretsried bestimmt.
Tabelle 3
Trübungsuntersuchungen sowie Differenz Δ der Trübung vor und nach der Bewitterung von 3.000 h Xe-WOM
Δ = Differenz zur unbewitterten Probe
Die Messwerte in Tabelle 3 zeigen, dass die erfindungsgemäße UV-Schutzschicht (Zusammensetzung 6 mit Schutzfolie) nur 3,7 % Zunahme an Trübung erleidet, anstelle von 4,9 % oder sogar 21,3 % bzw. 27,4 % bei den Vergleichszusammensetzungen. Auch die absolute Trübung ist nach der Bewitterung geringer bei der erfindungsgemäßen Schutzschicht. Beispiel 4
Es wurde von bewitterten und unbewitterten Proben der Glanz gemäß DIN-Norm 67530 bestimmt.
Tabelle 4
Glanzuntersuchungen
Die Messwerte in Tabelle 4 zeigen, dass das erfindungsgemäße Schichtsystem (Zusammensetzung 2 mit Schutzfolie) mit 119 % bzw. 138 % einen höheren Glanz nach 5.000 h Xe-WOM zeigt, als Vergleichsproben, welche zum Teil weniger lang bewittert wurden.
Die Versuchsergebnisse zeigen, dass die erfindungsgemäßen Schichtsysteme bei einfachem Aufbau eine hervorragende Langzeit- Wetterstabilität bei Xe-WOM Bewitterung selbst nach 5.000 h ein ausgezeichnetes Transparenzverhalten sowie hervorragende Glanzwerte aufweisen.

Claims

Patentansprüche
1. Transparentes wärmeabsorbierendes Schichtsystem, enthaltend eine erste Schicht (A) und eine zweite Schicht (B), wobei die erste Schicht (A) mindes- tens einen organischen Infrarot-Absorber und mindestens einen Ultraviolett-
Absorber und die zweite Schicht (B) mindestens einen Ultraviolett-Absorber enthält und die erste Schicht (A) als einzige Schicht im Schichtsystem einen organischen Infrarot- Absorber enthält.
2. Schichtsystem nach Anspruch 1, dadurch gekennzeichnet, dass die erste
Schicht (A) eine Dicke von 0,8 bis 15 mm, insbesondere von 3 bis 6 mm aufweist.
3. Schichtsystem nach einem der vorangegangenen Ansprüche, dadurch gekenn- zeichnet, dass die zweite Schicht (B) eine Dicke von 1 bis 100 μm aufweist.
4. Schichtsystem nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die zweite Schicht (B) als Polymerfilm in einer Dicke von 30 bis 80 μm, insbesondere 40 bis 60 μm ausgebildet ist.
5. Schichtsystem nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die zweite Schicht (B) als Lack in einer Dicke von 1 bis 10 μm, insbesondere 4 bis 6 μm ausgebildet ist.
6. Schichtsystem nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass neben den Schichten (A) und (B) noch mindestens eine weitere transparente Schicht (C) im Schichtsystem vorhanden ist, welche weder Infrarot-, noch Ultraviolett-Absorber enthält.
7. Schichtsystem nach Anspruch 6, dadurch gekennzeichnet, dass die transparente Schicht (C) ein Polymer und/oder ein Glas enthält.
8. Schichtsystem nach einem der vorangegangenen Ansprüche, dadurch gekenn- zeichnet, dass die erste Schicht (A) organischen Infrarot-Absorber in einer
Menge von 0,001 bis 10 g/m2, insbesondere von 0,1 bis 1 g/m2 enthält.
9. Schichtsystem nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die erste Schicht (A) Ultraviolett-Absorber in einer Menge von 0,1 bis 10 %, insbesondere von 0,2 bis 1 % enthält.
10. Schichtsystem nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die zweite Schicht (B) Ultraviolett-Absorber in einer Menge von 0,1 bis 40 %, insbesondere 1 bis 10 % enthält.
11. Schichtsystem nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Infrarot-Absorber ausgewählt ist aus der Gruppe der Phthalocyanine und Naphthalocyanine.
12. Schichtsystem nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Ultraviolett-Absorber ausgewählt ist aus der Gruppe der Benzotriazole, Triazine, Benzophenone und arylierten Cyanoacrylate.
13. Schichtsystem nach einem der vorangegangenen Ansprüche, dadurch gekenn- zeichnet, dass die Schichten (A) und (B) Schichten auf Polymer- und/oder
Lackbasis sind.
14. Schichtsystem nach Anspruch 13, dadurch gekennzeichnet, dass als Polymer ein transparenter Thermoplast, insbesondere ein Polycarbonat oder ein Co- polycarbonat, eingesetzt wird.
15. Schichtsystem nach Anspruch 13, dadurch gekennzeichnet, dass der Lack ausgewählt ist aus der Gruppe der acrylat-, allyl-, epoxy-, siloxan-, isocyanat-, anhydrid-, und melaminformaldehydvemetzten Lacke.
16. Schichtsystem nach Anspruch 15, dadurch gekennzeichnet, dass der Lack ein Siloxanlack ist.
17. Verfahren zur Herstellung eines Schichtsystems gemäß Ansprach 1 bis 16, gekennzeichnet durch folgende Schritte:
(a) Herstellen einer Zusammensetzung für Schicht (A) durch Vermischen von organischen Infrarot-Absorber und Ultraviolett-Absorber mit einem transparenten polymeren Basismaterial oder Lacksystem,
(b) Herstellen einer Zusammensetzung für Schicht (B) durch Vermischen von Ultraviolett-Absorber mit einem transparenten polymeren Basismaterial oder Lacksystem
(c) Herstellen eines Schichtsystems durch Coextrusion, Spritzgießen oder
Aufsprühen der Schichten (A) und (B) sowie gegebenenfalls einer oder mehrerer Klarschichten (C).
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass das Vermischen durch Compoundieren erfolgt.
19. Verfahren nach Ansprach 17 oder 18, dadurch gekennzeichnet, dass Schicht (A) durch Spritzgießen, Schicht (B) durch Lackieren und Schicht (C) durch Spritzgießen oder Lackieren hergestellt wird.
20. Verfahren nach einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, dass die Schichten (A) und (B) sowie gegebenenfalls (C) durch Coextrusion hergestellt werden.
21. Formkörper, enthaltend ein Schichtsystem gemäß einem der Ansprüche 1 bis
16.
22. Formkörper nach Ansprach 21, dadurch gekennzeichnet, dass der Formkörper ein transparentes Kunststoffverscheibungselement, insbesondere ein transpa- rentes Kunststoffverscheibungselement auf Basis von Polycarbonat und/oder
Copolycarbonat ist.
23. Verwendung eines Schichtsystems gemäß einem der Ansprüche 1 bis 16 zur Wärmestrahlungsabschirmung von Kunststoffverscheibungselementen.
EP02722277A 2001-04-10 2002-03-28 Wärmeabsorbierendes schichtsystem Withdrawn EP1379381A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10117785 2001-04-10
DE10117785A DE10117785A1 (de) 2001-04-10 2001-04-10 Wärmeabsorbierendes Schichtsystem
PCT/EP2002/003479 WO2002083412A1 (de) 2001-04-10 2002-03-28 Wärmeabsorbierendes schichtsystem

Publications (1)

Publication Number Publication Date
EP1379381A1 true EP1379381A1 (de) 2004-01-14

Family

ID=7681023

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02722277A Withdrawn EP1379381A1 (de) 2001-04-10 2002-03-28 Wärmeabsorbierendes schichtsystem

Country Status (12)

Country Link
US (1) US6893689B2 (de)
EP (1) EP1379381A1 (de)
JP (1) JP2004529007A (de)
KR (1) KR20030090722A (de)
CN (1) CN100374293C (de)
BR (1) BR0208740A (de)
CA (1) CA2443706A1 (de)
DE (1) DE10117785A1 (de)
IL (1) IL158253A0 (de)
MX (1) MXPA03009192A (de)
WO (1) WO2002083412A1 (de)
ZA (1) ZA200307815B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104387880A (zh) * 2014-11-19 2015-03-04 中山市泰莱涂料化工有限公司 一种水性太阳能吸热涂料

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50206934D1 (de) * 2001-12-10 2006-06-29 Bayer Materialscience Ag Mehrschichtige witterungsbeständige gefärbte platte
US6811841B1 (en) * 2003-04-15 2004-11-02 3M Innovative Properties Company Light-stable structures
US20060083940A1 (en) * 2004-04-30 2006-04-20 Solomon Bekele Ultraviolet light absorbing composition
US20050277709A1 (en) * 2004-05-28 2005-12-15 Fisher William K Polymer layers having infrared absorbing particles
DE102004042095A1 (de) * 2004-08-30 2006-03-02 Röhm GmbH & Co. KG Schwer entflammbare Plattenmaterialien mit Metallic-Effekt
KR100565475B1 (ko) * 2005-08-22 2006-03-30 씨엠에스테크놀로지(주) 근적외선 흡수 조성물
JP4653028B2 (ja) * 2006-06-30 2011-03-16 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物及び赤外線レーザー用フィルター
JP4653027B2 (ja) * 2006-06-30 2011-03-16 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物及び赤外線レーザー用フィルター
JP4999095B2 (ja) * 2006-12-27 2012-08-15 日東電工株式会社 偏光子保護フィルム、偏光板、および画像表示装置
JP2008181078A (ja) * 2006-12-27 2008-08-07 Nitto Denko Corp 偏光子保護フィルム、偏光板、および画像表示装置
CN103171176B (zh) * 2011-12-26 2016-04-20 辽宁辽杰科技有限公司 一种热塑性树脂复合材料及其制备方法
JP2013067811A (ja) * 2012-12-06 2013-04-18 Adeka Corp 遮光フィルム
CN104553215B (zh) 2013-10-16 2017-05-24 北京化工大学 透明阻燃隔热防紫外高分子复合贴膜及其制备方法和用途
JP7254167B2 (ja) * 2019-04-26 2023-04-07 三井化学株式会社 光学材料、光学材料用重合性組成物、プラスチックレンズ、アイウェア、赤外線センサー及び赤外線カメラ

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0044911B1 (de) * 1980-07-14 1986-06-25 American Cyanamid Company Linse zum Augenschutz aus Infrarot absorbierendem Polycarbonat
DE8233007U1 (de) 1982-11-25 1983-03-24 Röhm GmbH, 6100 Darmstadt Polycarbonat-kunststofftafel
JPS59129847U (ja) * 1983-02-17 1984-08-31 帝人株式会社 層成構造体
JPS6017329U (ja) * 1983-07-14 1985-02-05 帝人株式会社 積層透明体
US4767571A (en) * 1984-06-27 1988-08-30 Fuji Photo Film Co., Ltd. Infrared absorbent
CN1028373C (zh) * 1988-08-25 1995-05-10 无锡市化工研究设计院 一种光固化抗蚀印料
DE3837588A1 (de) * 1988-11-05 1990-05-10 Roehm Gmbh Schlagzaehe, uv-absorber-haltige methacrylatschutzschicht fuer polycarbonat
US5045854A (en) 1990-03-01 1991-09-03 Hewlett-Packard Company Integrated high speed synchronous counter with asynchronous read-out
JPH05295967A (ja) * 1992-04-15 1993-11-09 Japan Carlit Co Ltd:The 光線選択透過性ブラインド
DE4216103A1 (de) * 1992-05-15 1993-11-18 Roehm Gmbh Folie-geschützter Polycarbonatkunststoffkörper
US5712332A (en) 1993-01-13 1998-01-27 Nippon Shokubai Co. Method for absorbing heat radiation
JPH06240146A (ja) 1993-02-22 1994-08-30 Nippon Shokubai Co Ltd 熱線遮蔽材
JPH07188620A (ja) * 1993-12-27 1995-07-25 Mitsubishi Chem Mkv Co 表面保護フィルム
JP3361180B2 (ja) * 1994-04-28 2003-01-07 セントラル硝子株式会社 撥水性紫外線赤外線吸収ガラス及びその製法
JPH0827371A (ja) * 1994-05-09 1996-01-30 Japan Carlit Co Ltd:The 紫外線及び赤外線吸収樹脂組成物
JPH08165146A (ja) * 1994-12-12 1996-06-25 Central Glass Co Ltd 紫外線赤外線吸収ガラス
IL116039A0 (en) 1995-11-16 1996-01-31 Polygal Plastic panel
US5804102A (en) * 1995-12-22 1998-09-08 Mitsui Chemicals, Inc. Plasma display filter
JP3701406B2 (ja) * 1996-08-30 2005-09-28 株式会社日本触媒 熱線遮蔽材
KR100663677B1 (ko) * 1997-11-25 2007-06-04 산젠 가꼬 가부시키가이샤 흐림방지성다층필름
US6069244A (en) * 1998-02-03 2000-05-30 Nippon Shokubai Co., Ltd. Phthalocyanine compound, method for production thereof, and use thereof
US6096852A (en) * 1998-05-12 2000-08-01 General Electric Company UV-stabilized and other modified polycarbonates and method of making same
JP2001039741A (ja) * 1999-07-27 2001-02-13 Sekisui Chem Co Ltd 合わせガラス用中間膜及び合わせガラス並びに合わせガラス構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02083412A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104387880A (zh) * 2014-11-19 2015-03-04 中山市泰莱涂料化工有限公司 一种水性太阳能吸热涂料

Also Published As

Publication number Publication date
US20030039821A1 (en) 2003-02-27
KR20030090722A (ko) 2003-11-28
JP2004529007A (ja) 2004-09-24
US6893689B2 (en) 2005-05-17
DE10117785A1 (de) 2002-10-17
WO2002083412A1 (de) 2002-10-24
MXPA03009192A (es) 2004-02-17
CN1501861A (zh) 2004-06-02
CA2443706A1 (en) 2002-10-24
IL158253A0 (en) 2004-05-12
BR0208740A (pt) 2004-07-20
CN100374293C (zh) 2008-03-12
ZA200307815B (en) 2004-10-07

Similar Documents

Publication Publication Date Title
EP1392505B1 (de) Wärmeabsorbierendes schichtsystem
EP1674512B1 (de) IR-absorbierende Zusammensetzungen
EP1261663B1 (de) Ir-absorbierende zusammensetzungen
EP2652026B1 (de) Polymer-zusammensetzung mit wärme-absorbierenden eigenschaften und hoher stabilität gegen bewitterung
EP2569353B1 (de) Polymer-zusammensetzung mit wärme-absorbierenden eigenschaften und verbesserten farbeigenschaften
EP2652030B1 (de) Polymer-zusammensetzung mit wärme-absorbierenden eigenschaften und hoher stabilität gegen bewitterung
EP2569354B1 (de) Polymer-zusammensetzung mit wärme-absorbierenden eigenschaften und verbesserten farbeigenschaften
EP1456029B1 (de) Ir-reflektierende, transparante mehrschicht-kunststofflaminate
EP1228129B1 (de) Formmassen
EP2632721B1 (de) Kunststoff-mehrschichtaufbau mit niedriger energietransmission
WO2011141368A1 (de) Polymer-zusammensetzung mit wärme-absorbierenden eigenschaften und hoher stabilität
DE102009058200A1 (de) Polymer-Zusammensetzung mit Wärme-absorbierenden Eigenschaften und hoher Stabilität
EP1379381A1 (de) Wärmeabsorbierendes schichtsystem
WO2011141365A1 (de) Stabilisatorzusammensetzungen
DE69912006T2 (de) Thermoplastische zusammensetzung für optische verwendungen mit geringer trübung
EP1266931A1 (de) Wärmeabsorbierende Polymer-Zusammensetzung
EP1290078A1 (de) Transparente thermoplastische zusammensetzung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20031110

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER MATERIALSCIENCE AG

17Q First examination report despatched

Effective date: 20070926

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080207