EP1373586B1 - Verfahren zur herstellung von hartmetallgranulat - Google Patents

Verfahren zur herstellung von hartmetallgranulat Download PDF

Info

Publication number
EP1373586B1
EP1373586B1 EP02703390A EP02703390A EP1373586B1 EP 1373586 B1 EP1373586 B1 EP 1373586B1 EP 02703390 A EP02703390 A EP 02703390A EP 02703390 A EP02703390 A EP 02703390A EP 1373586 B1 EP1373586 B1 EP 1373586B1
Authority
EP
European Patent Office
Prior art keywords
hard metal
producing
spray
wet slurry
spray tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02703390A
Other languages
English (en)
French (fr)
Other versions
EP1373586A2 (de
Inventor
Gerhard Knünz
Helmut Beirer
Andreas Lackner
Wolfgang GLÄTZLE
Erwin Hartlmayr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ceratizit Austria GmbH
Original Assignee
Ceratizit Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3485023&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1373586(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ceratizit Austria GmbH filed Critical Ceratizit Austria GmbH
Publication of EP1373586A2 publication Critical patent/EP1373586A2/de
Application granted granted Critical
Publication of EP1373586B1 publication Critical patent/EP1373586B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/026Spray drying of solutions or suspensions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a method for producing a hard metal granules by wet grinding the desired in the finished granules hard material and binder metal and forming a sprayable wet sludge using pure water as a liquid phase, wherein the wet sludge by spray drying in a gas stream with a gas inlet temperature in the range of about 160 to 220 ° C and a gas outlet temperature in the range of about 85 to 130 ° C in a spray tower in granular form, wherein the spray tower consists of a cylindrical portion and a conical portion.
  • Carbide-alloy shaped parts are produced by pressing and sintering the powdery starting materials.
  • the individual hard material and binding metal powders are first brought into the form of a wet sludge by grinding with the addition of liquid in finely disperse mixture.
  • this step is associated with a comminution of the starting powder, while in fine-grained starting powders mainly a homogenization of the wet sludge takes place.
  • the liquid is intended on the one hand to prevent the caking of the powder particles and on the other hand their oxidation during the grinding.
  • Attritors As a suitable grinding units today almost exclusively agitator ball mills so-called attritors are used in which the ground material is mixed in a cylindrical container together with carbide balls by a multi-bladed stirring in motion.
  • a pressing aid eg in the form of paraffin
  • the addition of a pressing aid is particularly necessary when the finished granules are compacted by die pressing and brought into the desired shape.
  • the pressing aid gives the granules in addition to the better compression during the pressing process also a better flowability, which facilitates the filling of the press dies.
  • the wet sludge is usually added no pressing aid.
  • the wet sludge is then brought to a sprayable consistency and dried in a spray drying plant and granulated at the same time.
  • the wet sludge is sprayed through a nozzle, which is located inside a spray tower.
  • a hot gas stream dries the sprayed droplets on the flight path and these are deposited in the lower conical part of the spray tower in the form of small pellets as granules, where it can then be removed.
  • the attritors and the spray-drying plant must be explosion-proof, which entails a high constructive effort and thus high investment costs.
  • the drying in the spray tower under a protective gas atmosphere, usually nitrogen, must be performed.
  • the spray towers of spray drying in the cemented carbide industry are designed with a cylindrical upper portion and a tapered, lower portion and work in countercurrent to the fountain principle, ie located in the lower portion of the spray tower is centrally arranged the spray lance the wet sludge from high pressure about 12 to 24 bar sprayed in the form of a fountain upwards.
  • the gas stream for drying the sprayed droplets is from above against the Spraying the droplets out and leaves the spray tower in the upper third of the tapered section below the spray lance. In this way, the droplets are first pushed upwards and then diverted downwards due to gravity and the oppositely directed gas flow. In the course of running this drying path, the droplets are converted into a compact granules with a low residual moisture, which then trickles after hitting the bottom of the spray tower by its tapered course automatically to the central discharge opening.
  • Spray towers operating countercurrently according to the fountain principle are in practice designed with a cylindrical section having a height in the range of about 2 to 9 meters with a height to diameter number ratio in the range of about 0.9 to 1.7 while Spray towers operating cocurrently with supply from above are designed with a cylindrical section having a height in the range of about 5 - 25 m with a numerical ratio of height to diameter in the range of about 1 to 5.
  • carbide includes, of course, so-called cermets, a special group of hard metals with usually nitrogen-containing hard materials.
  • the US 4,070,184 describes a process for the production of a cemented carbide granulate by milling and spray-drying, in which pure water is used instead of organic solvents for grinding and producing the sprayable wet sludge.
  • pure water as a liquid phase makes it possible to produce the attritors and the spray-drying plant in an open, no longer explosion-proof construction, which brings significant cost savings.
  • spray drying instead of inert gas, air can be used as the dry medium.
  • the complete replacement of organic solvents avoids any health hazard from solvent vapors.
  • a disadvantage is that such polyglycols show an unfavorable evaporation behavior during sintering of the pressed powder. It comes only at temperatures of about 250 to 300 ° C to a complete evaporation, which can cause bursting of the part or to form cracks especially for large parts due to the evaporation over a wide temperature range.
  • the object of the present invention is therefore to provide a method for producing a hard metal granules by grinding and spray drying using pure water as the liquid phase, in which also extremely fine-grained hard metal powder can be ground and sprayed and in which the disadvantages mentioned in the prior art are avoided during sintering.
  • this is inventively achieved in that the wet sludge is sprayed and dried without using a water-soluble, long-chain polyglycol in the spray tower and that the spray tower is designed and operated so that the numerical ratio of the supplied via the wet sludge amount of water in liters per hour , based on the tower volume in m 3 in the range between 0.5 and 1.8 and that a maximum of 0.17 kg wet sludge per m 3 supplied drying gas are atomized, wherein the wet sludge has a solids content in the range of 65 to 85 wt.% ,
  • the essence of the method according to the invention is to keep the amount of water supplied via the wet sludge in relation to the tower volume significantly smaller than is usual in spray towers and adjust the amount of air supplied to the sprayed wet sludge so that at least 1 m 3 air per 0.17 kg wet sludge is available.
  • a solids content of the wet sludge in the range from 70 to 80% by weight has proven to be particularly advantageous.
  • Oxidation of even extremely fine-grained starting powder is largely prevented under the process conditions mentioned, so that the waiver on polyglycols also in the granule production is associated with no disadvantages.
  • the carbon balance taking into account the chemical analysis of the starting powder used and the oxygen uptake during milling and spray drying is adjusted, possibly by adding carbon before milling, that with the hard metal granules the production of a finished sintered carbide without eta-phase and without free carbon is guaranteed.
  • the average particle size of the granules produced is generally between 90 and 250 microns and can be adjusted by the size of the spray nozzle opening, the viscosity of the wet sludge to be sprayed and the spray pressure.
  • the amount of wet sludge supplied via the spray nozzle is in turn regulated by the spray pressure and by the size of the swirl chamber and nozzle opening of the spray nozzle.
  • the method according to the invention is applicable both to spray-drying plants operating in the cocurrent principle and those operating in countercurrent flow, it has proven particularly useful in countercurrent systems using the fountain principle, whereby the spray-drying plant can be manufactured in a compact design.
  • a particular advantage of the method according to the invention is that air can be used as the drying gas, which in turn makes the method extremely cost-effective.
  • a single-substance nozzle for spraying the wet sludge.
  • single-substance nozzles in contrast to two-component nozzles where the wet sludge to be atomized is fed simultaneously with a gas stream to the nozzle, only the wet sludge is supplied under pressure, so that contact with a possibly oxidizing gas stream is further shortened.
  • the milling preferably takes place in the attritor with a viscosity of the wet sludge in the range from 2,500 to 8,000 mPas (measured in a rheometer of the RC20 type from Europhysics at a shear rate of 5.2 [1 / s ]) is carried out at least 4 to 8 times volume exchange per hour.
  • an antioxidant for example based on amine compounds, e.g. Add aminoxethylate or resorcinol, whereby even at longer meals and during subsequent spraying excessive oxidation of the particles can be prevented.
  • the process according to the invention is carried out using a countercurrent spray-drying plant according to the fountain principle, it is advantageous to determine the temperature of the incoming drying air at the upper end of the cylindrical section and the temperature of the exiting drying air in the region of the conical section of the spray tower within the stated ranges to agree that sets a temperature between about 70 and 120 ° C in the geometric center of gravity of the spray tower. Under these conditions, the lowest possible oxidation of the hard metal granules is achieved.
  • the cooling of the granules in the outlet region of the cooling tower is most expedient in that the conically tapered portion of the spray tower is double-walled and is cooled by a suitable cooling medium.
  • the rapid cooling to room temperature for example, take place in that the granules after removal from the spray tower passes through a cooling trough.
  • FIG. 1 shows the schematic diagram of a spray tower for carrying out the method according to the invention.
  • the spray tower -1- consists of a cylindrical portion -2- and an adjoining, tapered downwardly tapered section -3-.
  • the spray tower -1- works in countercurrent to the fountain principle, i. the gas stream for drying the granules is fed at the upper end -11- of the cylindrical portion -2- and blown down, while to be atomized wet sludge at the lower end of the cylindrical portion -2- via a spray lance -4- with a nozzle opening -5 - Is sprayed upward against the direction of the gas flow -6- on the principle of a fountain upwards.
  • the sprayed liquid droplets -7- are thus first directed upward and then change due to the opposite gas flow and due to gravity their direction and fall down. Before hitting the bottom of the spray tower -1-, the tapered portion -3-, the liquid droplets -7- must be converted into the dried granules.
  • the gas stream -6- has an inlet temperature in the range of 160 to 220 ° C and an exit temperature when leaving the spray tower through the outlet pipe -9- below the spray lance -4- in the upper third of the conical section -3-, ranging from 85 to 130 ° C.
  • the gas inlet and outlet gas temperature are advantageously coordinated so that sets a temperature between about 70 and 120 ° C in the geometric center of gravity -S- of the spray tower.
  • the amount of energy provided by the temperature conditions and the amount of the supplied drying gas which is sufficient for easy evaporation of the supplied via the wet sludge amount of water.
  • tapered portion -3- of the spray tower is double-walled for passing a cooling liquid, e.g. Water, running.
  • the granules are cooled in this area to at least 75 ° C.
  • tungsten carbide granulate having an average particle size of 135 ⁇ m, consisting of 6% by weight of cobalt, 0.4% by weight of vanadium carbide, remainder tungsten carbide, 36 kg of cobalt powder having an average particle size of about 0.63 ⁇ m FSSS and an oxygen content of 0.56 wt.%, 2.4 kg vanadium carbide powder with an average particle size of about 1.2 ⁇ m FSSS and an oxygen content of 0.25 wt.% And 563.5 kg tungsten carbide powder with a BET surface area of 1.78 m 2 / g, which corresponds to an average grain size of about 0.6 microns and an oxygen content of 0.28 wt.% Milled with 150 liters of water in an attritor for 5 hours.
  • a spray tower -1- was used with a cylindrical portion -2- with a height of 6 m and a diameter of 4 m and with a tapered portion -3- with a cone angle of 50 °, resulting in a Tower volume of 93 m 3 corresponds.
  • the spray tower was designed to operate in countercurrent to the fountain principle.
  • air was used, which was supplied to the spray tower at 4000 m 3 / h.
  • the slurry was fed to the spray tower through a spray lance 4 with a single fluid nozzle -5- with an outlet opening of 1.12 mm diameter at a pressure of 15 bar, resulting in a slurry feed of 0.08 kg wet sludge per m 3 of drying air revealed.
  • the air outlet temperature was set to a constant value of 85 ° C, which was achieved under the given conditions by an air inlet temperature of 145 ° C.
  • the atomization of 0.08 kg of wet sludge per m 3 of supplied drying air means that at an air feed of 4000 m 3 per hour 320 kg of wet sludge were sprayed per hour. Since the wet sludge was adjusted to 75 wt.% Solids content, the 320 kg wet sludge per hour correspond to an hourly supplied amount of water of 80 liters.
  • the ratio of the amount of water supplied in liters per hour, based on the tower volume, was therefore 80 l / h 0.86 1 . 93 m 3 m 3 .h
  • the oxygen content of the granules produced was 0.53 wt.%.
  • FIG. 2 shows an SEM image of the carbide granules produced according to the example with an average particle size of 135 microns in 100-fold magnification.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Glanulating (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Treatment Of Sludge (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines Hartmetallgranulates durch Nassmahlen und Sprühtrocknen in einem Sprühturm -1- unter Verwendung von reinem Wasser als Flüssigphase. Erfindungswesentlich dabei ist, dass der Sprühturm -1- so ausgelegt und betrieben wird, dass das Verhältnis der über den Nassschlamm zugeführten Wassermenge in Litern pro Stunde, bezogen auf das Turmvolumen in m3 im Bereich zwischen 0,5 und 1,8 liegt und dass maximal 0,17 kg Nassschlamm pro m3 Trocknungsgas zugeführt werden, wobei der Nassschlamm einen Feststoffgehalt im Bereich von 65 bis 85 Gew.% aufweist. Unter diesen Voraussetzungten kann die üblicherweise notwendige Zugabe eines wasserlöslichen, langkettigen Polyglykols zum Nassschlamm vor dem Versprühen, zur Verhinderung der Oxidation der Hartmetallgranulates, entfallen.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines Hartmetallgranulates durch Nassmahlen der im fertigen Granulat gewünschten Hartstoff- und Bindemetallanteile und Ausbildung eines sprühfähigen Nassschlammes unter Verwendung von reinem Wasser als Flüssigphase, wobei der Nassschlamm durch Sprühtrocknung in einem Gasstrom mit einer Gaseintrittstemperatur im Bereich von etwa 160 bis 220°C und einer Gasaustrittstemperatur im Bereich von etwa 85 bis 130°C in einem Sprühturm in Granulatform gebracht wird, wobei der Sprühturm aus einem zylindrischen Abschnitt und einem kegelförmigen Abschnitt besteht.
  • Formteile aus Hartmetalllegierungen werden durch Pressen und Sintern der pulverförmigen Ausgangsmaterialien hergestellt. Zur verbesserten Verarbeitbarkeit werden die feinteiligen Ausgangspulver der Hartmetalllegierungen mit einer mittleren Korngröße im Bereich von wenigen µm und vielfach noch darunter, in Granulatform, d.h. in möglichst ideale Kugelform mit einer mittleren Granulatkorngröße von mindestens etwa 90 µm, gebracht. Dazu werden die einzelnen Hartstoff- und Bindemetallpulver zunächst durch Mahlung unter Zusatz von Flüssigkeit in feinst disperse Gemenge in Form eines Nassschlammes gebracht. Bei Verwendung von grobkörnigeren Ausgangspulvern ist dieser Schritt mit einer Zerkleinerung der Ausgangspulver verbunden, während bei feinkörnigen Ausgangspulvern hauptsächlich eine Homogenisierung des Nassschlammes erfolgt. Die Flüssigkeit soll einerseits das Zusammenbacken der Pulverteilchen und andererseits ihre Oxidation während des Mahlens verhindern.
  • Als geeignete Mahlaggregate werden heute praktisch ausschließlich Rührwerkskugelmühlen sogenannte Attritoren verwendet, in denen das Mahlgut in einem zylindrischen Behälter zusammen mit Hartmetallkugeln durch einen mehrflügeligen Rührarm in Bewegung versetzt wird. In den durch die Mahlung unter Flüssigkeitszugabe entstehenden Nassschlamm wird wahlweise ein Presshilfsmittel, z.B. in Form von Paraffin zugegeben. Die Zugabe eines Presshilfsmittels ist insbesondere dann notwendig, wenn das fertige Granulat durch Matrizenpressen verdichtet und in die gewünschte Form gebracht wird.
  • Das Presshilfsmittel verleiht dem Granulat neben dem besseren Verdichten beim Pressvorgang auch eine bessere Rieselfähigkeit, die das Befüllen der Pressmatrizen erleichtert. Soll das fertige Hartmetallgranulat durch Strangpressen weiterverarbeitet werden, wird dem Nassschlamm in der Regel kein Presshilfsmittel zugesetzt. Der Nassschlamm wird dann auf sprühfähige Konsistenz gebracht und in einer Sprühtrocknungsanlage getrocknet und gleichzeitig granuliert. Dazu wird der Nassschlamm durch eine Düse, welche sich im Inneren eines Sprühturms befindet, versprüht. Ein heißer Gasstrom trocknet die versprühten Tröpfchen auf dem Flugweg und diese scheiden sich im unteren konischen Teil des Sprühturms in Form von kleinen Kügelchen als Granulat ab, wo es dann entnommen werden kann. In der Hartmetallindustrie werden bis heute als Lösungsmittel zum Mahlen und Ausbilden des Nassschlammes fast ausnahmslos nur organische Lösungsmittel wie Aceton, Alkohol, Hexan oder Heptan in konzentrierter oder bestenfalls nur geringfügig mit Wasser verdünnter Form verwendet.
  • Da alle diese Lösungsmittel leicht entflammbar und leicht verflüchtigbar sind, müssen die Attritoren und die Sprühtrocknungsanlage explosionsgeschützt ausgeführt sein, was einen hohen konstruktiven Aufwand und damit hohe Investitionskosten mit sich bringt. Zudem muss die Trocknung im Sprühturm unter Schutzgasatmosphäre, in der Regel Stickstoff, durchgeführt werden.
  • Alle genannten Lösungsmittel sind darüber hinaus umweltbelastend und führen aufgrund ihrer leichten Verflüchtigbarkeit trotz Durchführung von Recyclingmaßnahmen zu hohen Verdampfungsverlusten.
  • Die Sprühtürme von Sprühtrocknungsanlagen in der Hartmetallindustrie sind mit einem zylindrischen oberen Abschnitt und einem kegelförmig zulaufenden, unteren Abschnitt ausgeführt und arbeiten in der Regel im Gegenstrom nach dem Fontänenprinzip, d.h. im unteren Abschnitt des Sprühturmes befindet sich zentral angeordnet die Sprühlanze die den Nassschlamm mit Hochdruck von etwa 12 bis 24 bar in Form einer Fontäne nach oben versprüht. Der Gasstrom zum Trocknen der versprühten Tröpfchen wird von oben gegen die Sprührichtung der Tröpfchen geführt und verlässt den Sprühturm im oberen Drittel des kegelförmig zulaufenden Abschnittes unterhalb der Sprühlanze. Auf diese Weise werden die Tröpfchen zuerst nach oben gedrückt und dann aufgrund der Schwerkraft und der entgegengesetzt gerichteten Gasströmung nach unten umgeleitet. Im Zuge des Durchlaufens dieses Trocknungsweges werden die Tröpfchen in ein kompaktes Granulat mit einer geringen Restfeuchte umgewandelt, welches dann nach Auftreffen auf dem Boden des Sprühturmes durch dessen kegelförmig zulaufenden Verlauf automatisch zur zentralen Entnahmeöffnung rieselt.
  • Dadurch, dass die Flugbahn der versprühten Tröpfchen zuerst nach oben und dann nach unten verläuft, wird im Vergleich zu Sprühtürmen, die im Gleichstrom arbeiten, wo sowohl die Versprühung des Nassschlammes, als auch der Strom der Trocknungsluft vom oberen Ende des Sprühturmes aus nach unten gerichtet ist, der gleiche Trocknungsweg für die Trocknung der Tröpfchen mit nahezu der halben Sprühturmhöhe erreicht, wodurch sich eine kompakte Bauweise ergibt.
  • Sprühtürme, die im Gegenstrom nach dem Fontänenprinzip arbeiten, sind in der Praxis mit einem zylindrischen Abschnitt mit einer Höhe im Bereich von etwa 2 bis 9 m bei einem Zahlenverhältnis von Höhe zu Durchmesser im Bereich von etwa 0,9 bis 1,7 ausgeführt, während Sprühtürme, die im Gleichstrom mit Zufuhr von oben arbeiten, mit einem zylindrischen Abschnitt mit einer Höhe im Bereich von etwa 5 - 25 m bei einem Zahlenverhältnis von Höhe zu Durchmesser im Bereich von etwa 1 bis 5 ausgeführt sind.
  • Zur Klarstellung sei hier insbesondere noch darauf hingewiesen, dass der allgemeine Begriff Hartmetall selbstverständlich auch sogenannte Cermets, eine spezielle Gruppe von Hartmetallen mit in der Regel stickstoffhaltigen Hartstoffen mit einschließt.
  • Die US 4 070 184 beschreibt ein Verfahren zur Herstellung eines Hartmetallgranulats durch Mahlen und Sprühtrocknen, bei dem an Stelle von organischen Lösungsmitteln reines Wasser für die Mahlung und Herstellung des versprühbaren Nassschlammes verwendet wird. Durch die Verwendung von reinem Wasser als Flüssigphase wird es ermöglicht, die Attritoren und die Sprühtrocknungsanlage in offener, nicht mehr explosionsgeschützter Bauweise herzustellen, was bedeutende Kosteneinsparungen mit sich bringt. Beim Sprühtrocknen kann an Stelle von Schutzgas Luft als Trockenmedium verwendet werden. Darüber hinaus wird durch den vollständigen Ersatz von organischen Lösungsmitteln jegliche Gesundheitsgefährdung durch Lösungsmitteldämpfe vermieden.
  • Der große Nachteil bei diesem Verfahren ist, dass es durch die Verwendung von reinem Wasser und Luft zu einer starken Beeinträchtigung der Pulver durch Oxidation kommt. Extrem feinkörnige Hartmetallpulver mit einer mittleren Korngröße zwischen 0,5 - 0,6 µm, was nach der BET-Messung einer Oberfläche von 1,6 - 3,2 m2/g entspricht, wie sie heute für viele Hartmetallsorten eingesetzt werden, sind aufgrund ihrer großen Oberfläche besonders oxidationsempfindlich und sind durch dieses Verfahren nicht herstellbar. Selbst bei Hartmetallpulvern mit einer größeren, mittleren Korngröße von 1 µm und knapp darunter und einer damit wesentlich kleineren Oberfläche, was zum Zeitpunkt der Anmeldung des US-Patentes die kleinsten üblichen Korngrößen waren, war man gezwungen, die Oxidationsanfälligkeit durch die Zugabe eines langkettigen Polyglykols in den Nassschlamm unmittelbar vor der Sprühtrocknung in Grenzen zu halten. Die Polyglykole, die auch eine verbesserte Verpressbarkeit der Granulate mit sich bringen, umhüllen die Pulverteilchen vollständig und verhindern damit weitgehend eine Oxidation der Pulverteilchen während der Sprühtrocknung.
  • Nachteilig dabei ist, dass derartige Polyglykole beim Sintern der verpressten Pulver ein ungünstiges Ausdampfverhalten zeigen. Es kommt erst bei Temperaturen von etwa 250 bis 300°C zu einem vollständigen Ausdampfen, wodurch es insbesondere bei großen Teilen aufgrund des Ausdampfens über einen breiten Temperaturbereich zu einem Zerplatzen des Teiles oder zur Ausbildung von Rissen kommen kann.
  • Die Aufgabe der vorliegenden Erfindung ist es daher ein Verfahren zur Herstellung eines Hartmetallgranulates durch Mahlen und Sprühtrocknung unter Verwendung von reinem Wasser als Flüssigphase zu schaffen, bei dem auch extrem feinkörnige Hartmetallpulver gemahlen und gesprüht werden können und bei dem die zum Stand der Technik angeführten Nachteile bei der Sinterung vermieden werden.
  • Entsprechend dem eingangs genannten Verfahren wird dies erfindungsgemäß dadurch erreicht, dass der Nassschlamm ohne Verwendung eines wasserlöslichen, langkettigen Polyglykols im Sprühturm versprüht und getrocknet wird und dass der Sprühturm so ausgelegt und betrieben wird, dass das Zahlenverhältnis der über den Nassschlamm zugeführten Wassermenge in Litern pro Stunde, bezogen auf das Turmvolumen in m3 im Bereich zwischen 0,5 und 1,8 liegt und dass maximal 0,17 kg Nassschlamm pro m3 zugeführtem Trocknungsgas zerstäubt werden, wobei der Nassschlamm einen Feststoffgehalt im Bereich von 65 bis 85 Gew.% aufweist.
  • Es ist selbstverständlich dabei, dass die zur Verfügung stehende Energiemenge resultierend aus Menge und Temperatur des zugeführten Gasstromes ausreichend sein muss, um die zugeführte Wassermenge problemlos zu verdampfen.
  • Das Wesentliche des erfindungsgemäßen Verfahrens ist es also, die Menge des über den Nassschlamm zugeführten Wassers im Verhältnis zum Turmvolumen deutlich kleiner zu halten als es bei Sprühtürmen normalerweise üblich ist und die zugeführte Luftmenge so auf den versprühten Nassschlamm abzustimmen, dass mindestens 1 m3 Luft pro 0,17 kg Nassschlamm zur Verfügung steht. Dadurch wird unter den herrschenden Bedingungen einerseits eine schonende Trocknung und andererseits eine maximale Restfeuchte von 0,3 Gew.%, bezogen auf das fertige Granulatkom erreicht.
  • Als besonders vorteilhaft hat sich dabei ein Feststoffgehalt des Nassschlammes im Bereich von 70 bis 80 Gew.% bewährt.
  • Eine Oxidation auch extrem feinkörniger Ausgangspulver wird unter den genannten Verfahrensbedingungen weitgehend verhindert, womit der Verzicht auf Polyglykole auch bei der Granulatherstellung mit keinerlei Nachteilen verbunden ist.
  • Selbstverständlich wird bei diesem Verfahren, wie bei der Herstellung von Hartmetallgranulat generell üblich, die Kohlenstoffbilanz, unter Berücksichtigung der chemischen Analyse der verwendeten Ausgangspulver und der Sauerstoffaufnahme beim Mahlen und Sprühtrocknen so eingestellt, unter Umständen durch Zugabe von Kohlenstoff vor dem Mahlen, dass mit dem Hartmetallgranulat die Herstellung eines fertiggesinterten Hartmetalles ohne eta-Phase und ohne freien Kohlenstoff gewährleistet ist.
  • Die mittlere Korngröße des hergestellten Granulats liegt im Regelfall zwischen 90 und 250 µm und kann durch die Größe der Sprühdüsenöffnung, die Viskosität des zu versprühenden Nassschlammes sowie den Sprühdruck eingestellt werden. Die mittlere Korngröße ist umso kleiner, je kleiner die Düsenöffnung, je niedriger die Viskosität und je höher der Sprühdruck ist. Die Menge des über die Sprühdüse zugeführten Nassschlammes wird wiederum über den Sprühdruck sowie über die Größe der Wirbelkammer und Düsenöffnung der Sprühdüse geregelt.
  • Obwohl das erfindungsgemäße Verfahren sowohl bei Sprühtrocknungsanlagen, die im Gleichstromprinzip als auch bei solchen, die im Gegenstromprinzip arbeiten, anwendbar ist, hat es sich insbesondere bei Anlagen die im Gegenstrom nach dem Fontänenprinzip arbeiten bewährt, wodurch die Sprühtrocknungsanlage in einer kompakten Bauweise hergestellt werden kann.
  • Dabei ist es von Vorteil, den zylindrischen, oberen Abschnitt des Sprühturmes mit etwa 6 m Höhe und etwa 4 - 5 m Durchmesser auszuführen. Für den daran anschließenden, kegelförmigen unteren Abschnitt hat sich ein Kegelwinkel von etwa 45° - 50° bewährt.
  • Ein besonderer Vorteil des erfindungsgemäßen Verfahrens ist es, dass als Trocknungsgas Luft verwendet werden kann, was das Verfahren wiederum äußerst kostengünstig macht.
  • Um die Oxidation der Teilchen beim Sprühtrocknen möglichst gering zu halten ist es vorteilhaft, zum Versprühen des Nassschlammes eine Einstoffdüse zu verwenden. Bei Einstoffdüsen wird - im Unterschied zu Zweistoffdüsen wo der zu zerstäubende Nassschlamm gleichzeitig mit einem Gasstrom der Düse zugeführt wird - ausschließlich der Nassschlamm unter Druck zugeführt, so dass der Kontakt mit einem eventuell oxidierenden Gasstrom weiter verkürzt wird.
  • Besonders vorteilhaft zur Herstellung des erfindungsgemäßen Hartmetallgranulates ist es, wenn das Mahlen vorzugsweise im Attritor mit einer Viskosität des Nassschlammes im Bereich zwischen 2.500 bis 8.000 mPas (gemessen in einem Rheometer der Type RC20 der Firma Europhysics bei einer Schergeschwindigkeit von 5,2 [1/s]) bei einem mindestens 4- bis 8- maligen Volumsaustausch pro Stunde ausgeführt wird.
  • Auf diese Weise werden auch bei der Herstellung eines Nassschlammes mit Hartstoff- und Bindemetallteilchen sehr kleiner Korngrößen in der Größenordnung von deutlich weniger als 1 µm so kurze Mahlzeiten erreicht, dass eine zu starke Oxidation der Teilchen vermieden wird.
  • Sollten in Extremfällen innerhalb des speziellen Viskositätsbereiches zur Herstellung kleiner Korngrößen längere Mahlzeiten erforderlich sein, ist es von Vorteil, dem Wasser vor dem Mahlen und/oder Sprühtrocknen ein Antioxidationsmittel, beispielsweise auf Basis von Aminverbindungen, z.B. Aminoxethylat oder Resorcin zuzugeben, wodurch auch bei längeren Mahlzeiten und beim nachfolgenden Sprühen eine zu starke Oxidation der Teilchen verhindert werden kann.
  • Wenn das erfindungsgemäße Verfahren unter Verwendung einer Sprühtrocknungsanlage im Gegenstrom nach dem Fontänenprinzip durchgeführt wird ist es von Vorteil, die Temperatur der eintretenden Trocknungsluft am oberen Ende des zylindrischen Abschnittes und die Temperatur der austretenden Trocknungsluft im Bereich des kegelförmigen Abschnittes des Sprühturmes innerhalb der angegebenen Bereiche so abzustimmen, dass sich im geometrischen Schwerpunkt des Sprühturmes eine Temperatur zwischen etwa 70 und 120°C einstellt. Unter diesen Bedingungen wird eine möglichst geringe Oxidation des Hartmetallgranulates erreicht.
  • Weiters ist es von Vorteil, das erfindungsgemäße Verfahren derart durchzuführen, dass das Granulat im Austrittsbereich des Sprühturmes auf eine Temperatur von maximal 75°C abgekühlt wird und unmittelbar nach Entnahme aus dem Kühlturm rasch auf Raumtemperatur abgekühlt wird. Durch diese rasche Abkühlung des fertigen Hartmetallgranulates auf Raumtemperatur wird ebenfalls eine weitere Oxidation des Granulates stark eingeschränkt.
  • Die Kühlung des Granulates im Austrittsbereich des Kühlturmes erfolgt am zweckmäßigsten dadurch, dass der kegelförmig zulaufende Abschnitt des Sprühturmes doppelwandig ausgeführt ist und durch ein geeignetes Kühlmedium gekühlt wird. Die rasche Kühlung auf Raumtemperatur kann beispielsweise dadurch erfolgen, dass das Granulat nach der Entnahme aus dem Sprühturm eine Kühlrinne durchläuft.
  • Im folgenden wird die Erfindung an Hand einer Zeichnung und an Hand eines Herstellungsbeispieles näher erläutert.
  • Figur 1 zeigt die Prinzipdarstellung eines Sprühturmes zur Durchführung des erfindungsgemäßen Verfahrens.
  • Der Sprühturm -1- besteht aus einem zylindrischen Abschnitt -2- sowie einem daran anschließenden, kegelförmig nach untern zulaufenden Abschnitt -3-. Der Sprühturm -1- arbeitet im Gegenstrom nach dem Fontänenprinzip, d.h. der Gasstrom zum Trocknen des Granulates wird am oberen Ende -11- des zylindrischen Abschnittes -2- zugeführt und nach unten geblasen, während der zu zerstäubende Nassschlamm am unteren Ende des zylindrischen Abschnittes -2- über eine Sprühlanze -4- mit einer Düsenöffnung -5- nach dem Prinzip einer Fontäne nach oben gegen die Richtung des Gasstromes -6- versprüht wird.
  • Die versprühten Flüssigkeitströpfchen -7- sind also zuerst nach oben gerichtet und ändern dann aufgrund des entgegengerichteten Gasstromes und aufgrund der Schwerkraft ihre Richtung und fallen nach unten. Vor dem Auftreffen auf den Boden des Sprühturmes -1-, den kegelförmig zulaufende Abschnitt -3-, müssen die Flüssigkeitströpfchen -7- in das getrocknete Granulat umgewandelt sein.
  • Durch den kegelförmig zulaufenden Abschnitt -3- des Sprühturmes wird das Granulat zur Entnahmeöffnung -8- geleitet. Der Gasstrom -6- hat eine Eintrittstemperatur im Bereich von 160 bis 220°C und eine Austrittstemperatur beim Verlassen des Sprühturmes durch das Austrittsrohr -9- unterhalb der Sprühlanze -4- im oberen Drittel des kegelförmigen Abschnittes -3-, im Bereich von 85 bis 130°C. Die Gaseintritts- und Gasaustrittstemperatur werden vorteilhafterweise so aufeinander abgestimmt, dass sich im geometrischen Schwerpunkt -S- des Sprühturmes eine Temperatur zwischen etwa 70 und 120°C einstellt. Wichtig dabei ist, dass das Verhältnis der über den Nassschlamm zugeführten Wassermenge in Litern pro Stunde, bezogen auf das Turmvolumen in m3 im Bereich zwischen 0,5 und 1,8 liegt und dass pro m3 zugeführtem Trocknungsgas maximal 0,17 kg Nassschlamm zerstäubt werden., wobei der Nassschlamm einen Feststoffgehalt im Bereich von 65 bis 85 Gew.% aufweist. Dabei muss natürlich gewährleistet sein, dass durch die Temperaturverhältnisse und die Menge des zugeführten Trocknungsgases die Energiemenge zur Verfügung gestellt wird, die zur problemlosen Verdampfung der über den Nassschlamm zugeführten Wassermenge ausreichend ist.
  • Von Vorteil ist es, wenn der kegelförmig zulaufende Abschnitt -3- des Sprühturmes doppelwandig zum Durchleiten einer Kühlflüssigkeit, z.B. Wasser, ausgeführt wird.
  • Mit dieser Maßnahme wird das Granulat in diesem Bereich auf mindestens 75°C abgekühlt.
  • Nach dem Verlassen des Sprühturmes -1- durch die Auslassöffnung -8- gelangt das Granulat auf eine Kühlrinne -10- wo es dann bis auf Raumtemperatur abgekühlt wird.
  • Im folgenden wird die Erfindung an Hand eines Herstellungsbeispieles näher erläutert.
  • Beispiel
  • Zur Herstellung eines Hartmetallgranulates mit einer mittleren Korngröße von 135 µm, bestehend aus 6 Gew.% Kobalt, 0,4 Gew.% Vanadiumkarbid, Rest Wolframkarbid, wurden 36 kg Kobaltpulver mit einer mittleren Korngröße von etwa 0,63 µm FSSS und einem Sauerstoffgehalt von 0,56 Gew.%, 2,4 kg Vanadiumkarbidpuiver mit einer mittleren Korngröße von etwa 1,2 µm FSSS und einem Sauerstoffgehalt von 0,25 Gew.% sowie 563,5 kg Wolframkarbidpulver mit einer BET-Oberfläche von 1,78 m2/g, was einer mittleren Korngröße von etwa 0,6 µm entspricht und einem Sauerstoffgehalt von 0,28 Gew.% mit 150 Liter Wasser in einem Attritor 5 Stunden lang gemahlen. Als Mahlkörper wurden 2000 kg Hartmetallkugeln mit 9 mm Durchmesser verwendet, die Attritordrehzahl betrug 78 U/min, die Umpumpleistung des Nassschlammes 1000 Liter / Stunde. Die Temperatur des Nassschlammes während der Mahlung wurde konstant auf etwa 40°C gehalten. Der fertig gemahlene Nassschlamm wurde durch weitere Wasserzugabe auf einen Feststoffgehalt von 75 Gew.% mit einer Viskosität von 3000 mPas eingestellt.
  • Zum Granulieren des derart hergestellten Nassschlammes wurde ein Sprühturm -1- mit einem zylindrischen Abschnitt -2- mit einer Höhe von 6 m und einem Durchmesser von 4 m und mit einem kegelförmig zulaufenden Abschnitt -3- mit einem Kegelwinkel von 50° verwendet, was einem Turmvolumen von 93 m3 entspricht. Der Sprühturm war auf eine Arbeitsweise im Gegenstrom nach dem Fontänenprinzip ausgelegt. Als Gas zum Trocknen des Nassschlammes wurde Luft verwendet, die dem Sprühturm mit 4000 m3/h zugeführt wurde.
  • Der Nassschlamm wurde dem Sprühturm über eine Sprühlanze -4-, mit einer Einstoffdüse -5- mit einer Austrittsöffnung von 1,12 mm Durchmesser, mit einem Druck von 15 bar zugeführt, wodurch sich eine Nassschlammbeschickung von 0,08 kg Nassschlamm pro m3 Trocknungsluft ergab. Die Luftaustrittstemperatur wurde auf einen konstanten Wert von 85°C eingestellt, was unter den gegebenen Verhältnissen durch eine Lufteingangstemperatur von 145°C erreicht wurde. Die Zerstäubung von 0,08 kg Nassschlamm pro m3 zugeführter Trocknungsluft bedeutet, dass bei einer Luftzufuhr von 4000 m3 pro Stunde 320 kg Nassschlamm pro Stunde versprüht wurden. Da der Nassschlamm auf 75 Gew.% Feststoffgehalt eingestellt wurde, entsprechen die 320 kg Nassschlamm pro Stunde einer stündlich zugeführten Wassermenge von 80 Litern.
  • Das Verhältnis der zugeführten Wassermenge in Litern pro Stunde, bezogen auf das Turmvolumen, lag daher bei 80 l/h = 0,86 1 . 93 m3 m3.h
  • Der Sauerstoffgehalt des hergestellten Granulates lag bei 0,53 Gew.%.
  • Figur 2 zeigt eine REM-Aufnahme des nach dem Beispiel hergestellten Hartmetallgranulates mit einer mittleren Korngröße von 135 µm in 100-facher Vergrößerung.

Claims (9)

  1. Verfahren zur Herstellung eines Hartmetallgranulates durch Nassmahlen der im fertigen Granulat gewünschten Hartstoff- und Bindemetallanteile und Ausbildung eines sprühfähigen Nassschlammes unter Verwendung von reinem Wasser als Flüssigphase, wobei der Nassschlamm durch Sprühtrocknung in einem Gasstrom mit einer Gaseintrittstemperatur im Bereich von etwa 160 bis 220°C und einer Gasaustrittstemperatur im Bereich von etwa 85 bis 130°C in einem Sprühturm -1- in Granulatform gebracht wird, wobei der Sprühturm -1- aus einem zylindrischen Abschnitt -2- und einem kegelförmigen Abschnitt -3- besteht,
    dadurch gekennzeichnet,
    dass der Nassschlamm ohne Verwendung eines wasserlöslichen, langkettigen Polyglykols im Sprühturm -1- versprüht und getrocknet wird und dass der Sprühturm -1- so ausgelegt und betrieben wird, dass das Zahlenverhältnis der über den Nassschlamm zugeführten Wassermenge in Litern pro Stunde zum Turmvolumen in m3 im Bereich zwischen 0,5 und 1,8 liegt und dass maximal 0,17 kg Nassschlamm pro m3 zugeführtem Trocknungsgas zerstäubt werden, wobei der Nassschlamm einen Feststoffgehalt im Bereich von 65 bis 85 Gew.% aufweist.
  2. Verfahren zur Herstellung eines Hartmetallgranulates nach Anspruch 1,
    dadurch gekennzeichnet, dass der Nassschlamm einen Feststoffgehalt im Bereich von 70 bis 80 Gew.% aufweist.
  3. Verfahren zur Herstellung eines Hartmetallgranulates nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Sprühtrocknen im Gegenstrom nach dem Fontänenprinzip erfolgt.
  4. Verfahren zur Herstellung eines Hartmetallgranulates nach Anspruch 3, dadurch gekennzeichnet, dass die Gaseintritts- und Gasaustrittstemperatur so aufeinander abgestimmt werden, dass sich im geometrischen Schwerpunkt -S- des Sprühturmes -1- eine Temperatur zwischen etwa 70 und 120°C einstellt.
  5. Verfahren zur Herstellung eines Hartmetallgranulates nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass als Gas Luft verwendet wird.
  6. Verfahren zur Herstellung eines Hartmetallgranulates nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zum Versprühen des Nassschlammes eine Einstoffdüse verwendet wird.
  7. Verfahren zur Herstellung eines Hartmetallgranulates nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Mahlen vorzugsweise im Attritor mit einer Viskosität des Nassschlammes im Bereich zwischen 2.500 bis 8.000 mPas bei einem mindestens 4- bis 8-maligen Volumsaustausch pro Stunde ausgeführt wird.
  8. Verfahren zur Herstellung eines Hartmetallgranulates nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass dem Wasser vor dem Nassmahlen und/oder Sprühtrocknen ein Antioxidationsmittel auf Basis von Aminverbindungen zugegeben wird.
  9. Verfahren zur Herstellung eines Hartmetallgranulates nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Granulat im Austrittsbereich -3- des Sprühturmes -1- auf eine Temperatur von maximal 75°C abgekühlt wird und unmittelbar nach Entnahme aus dem Kühlturm rasch auf Raumtemperatur abgekühlt wird.
EP02703390A 2001-03-29 2002-03-08 Verfahren zur herstellung von hartmetallgranulat Expired - Lifetime EP1373586B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT2312001 2001-03-29
AT0023101U AT4929U1 (de) 2001-03-29 2001-03-29 Verfahren zur herstellung von hartmetallgranulat
PCT/AT2002/000077 WO2002079532A2 (de) 2001-03-29 2002-03-08 Verfahren zur herstellung von hartmetallgranulat

Publications (2)

Publication Number Publication Date
EP1373586A2 EP1373586A2 (de) 2004-01-02
EP1373586B1 true EP1373586B1 (de) 2010-08-11

Family

ID=3485023

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02703390A Expired - Lifetime EP1373586B1 (de) 2001-03-29 2002-03-08 Verfahren zur herstellung von hartmetallgranulat

Country Status (12)

Country Link
US (1) US6852274B2 (de)
EP (1) EP1373586B1 (de)
JP (1) JP3697242B2 (de)
KR (1) KR100898842B1 (de)
AT (2) AT4929U1 (de)
CA (1) CA2406372C (de)
CZ (1) CZ304422B6 (de)
DE (1) DE50214577D1 (de)
ES (1) ES2346190T3 (de)
IL (1) IL152968A (de)
RU (1) RU2281835C2 (de)
WO (1) WO2002079532A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102601378A (zh) * 2011-07-18 2012-07-25 厦门虹鹭钨钼工业有限公司 一种低温燃烧法制备超细钨铜复合粉末的方法
EP2857124A1 (de) 2013-10-03 2015-04-08 Kennametal Inc. Wässriger Schlamm zur Herstellung eines Pulvers aus hartem Material
EP2860274A2 (de) 2013-10-04 2015-04-15 Kennametal India Limited Hartmaterial und Verfahren zur Herstellung desselben aus einem Hartmaterialenthaldenen wässrigen Schlamm aus einem Mahlprozess

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT6486U1 (de) * 2003-02-10 2003-11-25 Plansee Tizit Ag Verfahren zur herstellung eines hartmetallansatzes
DE102004053221B3 (de) * 2004-11-04 2006-02-02 Zschimmer & Schwarz Gmbh & Co. Kg Chemische Fabriken Flüssigkeit und deren Verwendung zur Aufbereitung von Hartmetallen
DE102006043581B4 (de) * 2006-09-12 2011-11-03 Artur Wiegand Verfahren und Vorrichtung zur Herstellung einer Hartmetall- oder Cermetmischung
US20080289495A1 (en) 2007-05-21 2008-11-27 Peter Eisenberger System and Method for Removing Carbon Dioxide From an Atmosphere and Global Thermostat Using the Same
US20140130670A1 (en) 2012-11-14 2014-05-15 Peter Eisenberger System and method for removing carbon dioxide from an atmosphere and global thermostat using the same
US8163066B2 (en) * 2007-05-21 2012-04-24 Peter Eisenberger Carbon dioxide capture/regeneration structures and techniques
US8500857B2 (en) 2007-05-21 2013-08-06 Peter Eisenberger Carbon dioxide capture/regeneration method using gas mixture
DE102007024818A1 (de) 2007-05-29 2008-12-04 Dorst Technologies Gmbh & Co. Kg Verfahren und Anordnung zum Herstellen eines Metallgranulats
CA3061094C (en) 2010-04-30 2023-10-24 Peter Eisenberger System and method for carbon dioxide capture and sequestration
US9028592B2 (en) 2010-04-30 2015-05-12 Peter Eisenberger System and method for carbon dioxide capture and sequestration from relatively high concentration CO2 mixtures
US20130095999A1 (en) 2011-10-13 2013-04-18 Georgia Tech Research Corporation Methods of making the supported polyamines and structures including supported polyamines
US11059024B2 (en) 2012-10-25 2021-07-13 Georgia Tech Research Corporation Supported poly(allyl)amine and derivatives for CO2 capture from flue gas or ultra-dilute gas streams such as ambient air or admixtures thereof
CN106163636B (zh) 2013-12-31 2020-01-10 彼得·艾森伯格尔 用于从大气中除去co2的旋转多整料床移动系统
CZ2014766A3 (cs) * 2014-11-07 2016-02-10 Vysoká škola chemicko- technologická v Praze Výroba nanostrukturovaných prášků slitin kobaltu dvoustupňovým mechanickým legováním
CN107699283B (zh) * 2017-11-03 2020-11-06 河源富马硬质合金股份有限公司 一种高蜡比硬质合金石蜡原料的制备方法
CN112692294B (zh) * 2020-12-22 2022-12-09 厦门钨业股份有限公司 一种高比重钨合金粉末及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE299858C (de)
US4070184A (en) * 1976-09-24 1978-01-24 Gte Sylvania Incorporated Process for producing refractory carbide grade powder
US4397889A (en) * 1982-04-05 1983-08-09 Gte Products Corporation Process for producing refractory powder
IT1262947B (it) * 1992-06-17 1996-07-22 Bayer Italia Spa Granulati, processo per la loro preparazione e loro impiego
SE9500473D0 (sv) 1995-02-09 1995-02-09 Sandvik Ab Method of making metal composite materials
US5841045A (en) * 1995-08-23 1998-11-24 Nanodyne Incorporated Cemented carbide articles and master alloy composition
US5922978A (en) * 1998-03-27 1999-07-13 Omg Americas, Inc. Method of preparing pressable powders of a transition metal carbide, iron group metal or mixtures thereof
GB9814622D0 (en) * 1998-07-06 1998-09-02 Biotica Tech Ltd Polyketides,their preparation,and materials for use therein

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102601378A (zh) * 2011-07-18 2012-07-25 厦门虹鹭钨钼工业有限公司 一种低温燃烧法制备超细钨铜复合粉末的方法
EP2857124A1 (de) 2013-10-03 2015-04-08 Kennametal Inc. Wässriger Schlamm zur Herstellung eines Pulvers aus hartem Material
US9475945B2 (en) 2013-10-03 2016-10-25 Kennametal Inc. Aqueous slurry for making a powder of hard material
US9796633B2 (en) 2013-10-03 2017-10-24 Kennametal Inc. Aqueous slurry for making a powder of hard material
EP2860274A2 (de) 2013-10-04 2015-04-15 Kennametal India Limited Hartmaterial und Verfahren zur Herstellung desselben aus einem Hartmaterialenthaldenen wässrigen Schlamm aus einem Mahlprozess
US10538829B2 (en) 2013-10-04 2020-01-21 Kennametal India Limited Hard material and method of making the same from an aqueous hard material milling slurry

Also Published As

Publication number Publication date
IL152968A0 (en) 2003-06-24
JP2004518825A (ja) 2004-06-24
ATE477342T1 (de) 2010-08-15
US6852274B2 (en) 2005-02-08
RU2003131683A (ru) 2005-02-10
AT4929U1 (de) 2002-01-25
JP3697242B2 (ja) 2005-09-21
CA2406372A1 (en) 2002-10-16
IL152968A (en) 2007-10-31
WO2002079532A3 (de) 2003-02-27
EP1373586A2 (de) 2004-01-02
WO2002079532A2 (de) 2002-10-10
KR20030007549A (ko) 2003-01-23
CZ304422B6 (cs) 2014-04-30
ES2346190T3 (es) 2010-10-13
DE50214577D1 (de) 2010-09-23
KR100898842B1 (ko) 2009-05-21
CA2406372C (en) 2010-09-14
US20030061906A1 (en) 2003-04-03
RU2281835C2 (ru) 2006-08-20

Similar Documents

Publication Publication Date Title
EP1373585B1 (de) Verfahren zur herstellung eines hartmetallansatzes
EP1373586B1 (de) Verfahren zur herstellung von hartmetallgranulat
DE2813865C2 (de) Mischvorrichtung zum kontinuierlichen Mischen von Pulvermaterialien mit einer Flüssigkeit
EP0087039B1 (de) Verfahren zum gleichzeitigen Sichten und geregelten, kontinuierlichen Austrag von körnigem Gut aus Wirbelbettreaktoren
DE60204861T2 (de) Vorrichtung zur wirbelschichtgranulation
IL152756A (en) Biometric identification and authentication method
DE2435181A1 (de) Mit stroemungsenergie arbeitende muehle zum zerkleinern von feinpulvrigem mahlgut
DE1667217C3 (de) Vorrichtung zum Fließbettgranulieren
EP1126017B1 (de) Verfahren zur Herstellung von Vollwaschmitteln und Vollwaschmittelkomponenten
DE10205897A1 (de) Verfahren zur Herstellung von partikelförmigem Material
EP1592817B1 (de) Verfahren zur herstellung eines hartmetallansatzes
DE10132177A1 (de) Verfahren zur Herstellung von Granulaten in einer zirkulierenden Wirbelschicht, Vorrichtung zur Durchführung dieses Verfahrens und nach diesem Verfahren erhaltene Granulate
DE3844457A1 (de) Feinkoerniges polyetherketonpulver, verfahren zu dessen herstellung und dessen verwendung
WO1991013183A1 (de) Halbzeug aus kupfer oder einer kupferlegierung mit kohlenstoffzusatz
DE10241447A1 (de) Feinstteilig aufgetrocknetes Feststoffgut mit mittleren Korngrössen im Nano- und/oder Mikro-Bereich und Verfahren zu seiner Herstellung
DE3007292A1 (de) Verfahren zur gewinnung des trockensubstanzgehaltes von loesungen und/oder suspensionen in form von granulaten in mit gas fluidisierten schichten, sowie anlage zur verwirklichung des verfahrens
DE19522460C2 (de) Verfahren zur Herstellung von Schaumglas-Granulat
AT404098B (de) Verfahren zur herstellung von granuliertem stranggiesspulver
WO2008067868A1 (de) Verfahren zur herstellung von partikeln aus fliessfähigem material und verdüsungsanlage dafür
EP2658929B1 (de) Öl- und wachshaltige mittel in stückiger form für die asphalt- und bitumeneinfärbung
WO2008145100A2 (de) Verfahren und anordnung zum herstellen eines metallgranulats
DD209612B1 (de) Wirbelschichtverfahren zur herstellung kalzinierter und staubfreier pottaschegranulate
DE1767563A1 (de) Verfahren und Vorrichtung zur Herstellung von granuliertem Schlackenduenger
DE3310272A1 (de) Verfahren und anlage zur herstellung von alkalipolyphosphaten
DD272430A1 (de) Vorrichtung zur herstellung von pulver aus einer metallhaltigen schmelze

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030915

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CERATIZIT AUSTRIA GESELLSCHAFT M.B.H.

17Q First examination report despatched

Effective date: 20091002

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50214577

Country of ref document: DE

Date of ref document: 20100923

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2346190

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101213

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SANDVIK INTELLECTUAL PROPERTY AB

Effective date: 20110511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 50214577

Country of ref document: DE

Effective date: 20110511

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110308

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 50214577

Country of ref document: DE

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20141005

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 50214577

Country of ref document: DE

Effective date: 20141005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150327

Year of fee payment: 14

Ref country code: NL

Payment date: 20150319

Year of fee payment: 14

Ref country code: DK

Payment date: 20150319

Year of fee payment: 14

Ref country code: ES

Payment date: 20150326

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20150223

Year of fee payment: 14

Ref country code: AT

Payment date: 20150320

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20150319

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20160331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 477342

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160308

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160308

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160308

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160309

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210323

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20210319

Year of fee payment: 20

Ref country code: DE

Payment date: 20210319

Year of fee payment: 20

Ref country code: GB

Payment date: 20210324

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50214577

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20220307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220307

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160308