EP1370840A1 - Verfahren und vorrichtung zur überwachung eines sensors - Google Patents

Verfahren und vorrichtung zur überwachung eines sensors

Info

Publication number
EP1370840A1
EP1370840A1 EP02714070A EP02714070A EP1370840A1 EP 1370840 A1 EP1370840 A1 EP 1370840A1 EP 02714070 A EP02714070 A EP 02714070A EP 02714070 A EP02714070 A EP 02714070A EP 1370840 A1 EP1370840 A1 EP 1370840A1
Authority
EP
European Patent Office
Prior art keywords
temperature
sensor
signal
aftertreatment system
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02714070A
Other languages
German (de)
English (en)
French (fr)
Inventor
Holger Plote
Andreas Krautter
Michael Walter
Juergen Sojka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1370840A1 publication Critical patent/EP1370840A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method and a device for monitoring a sensor.
  • DE 199 06 287 discloses a method and a device for controlling an internal combustion engine with an exhaust gas aftertreatment system.
  • a particle filter is used that filters out particles contained in the exhaust gas.
  • the state of the exhaust gas aftertreatment system must be known for precise control of the internal combustion engine and of the exhaust gas aftertreatment system.
  • Sensors are used, among other things, to record the state of the exhaust gas aftertreatment system. In particular, sensors are used that provide temperature values that characterize the temperature before, after and / or in the exhaust gas aftertreatment system.
  • Method for monitoring a sensor of an exhaust gas aftertreatment system in particular one Temperature sensor.
  • a first signal of a first sensor to be monitored is compared with a second signal of a second sensor and an error is detected when at least the two signals differ from one another by more than a predeterminable value is simple and reliable monitoring possible from sensors of an exhaust gas aftertreatment system.
  • Temperature sensors are preferably monitored using the procedure. The procedure is also for other sensors that control the
  • Exhaust gas treatment system can be used. This preferably applies to sensors for detecting the state of the exhaust gas aftertreatment system and / or for pressure, temperature and / or air volume sensors.
  • the first signal characterizes the temperature of the exhaust gases upstream of an exhaust aftertreatment system, in an exhaust aftertreatment system and / or after one
  • these signals are compared with a second signal which characterizes the temperature of the gases which are fed to the internal combustion engine, the oxidation catalytic converter or the particle filter. These signals are particularly suitable, since in certain operating states this comparison signal assumes almost the same values as the signals to be monitored.
  • FIG. 1 shows a block diagram of the device according to the invention
  • FIG. 2 shows a flow diagram to illustrate the procedure according to the invention.
  • Example of a self-igniting internal combustion engine is shown, in which the fuel metering is controlled by a so-called common rail system.
  • the procedure according to the invention is not restricted to these systems. It can also be used in other internal combustion engines.
  • the exhaust gas aftertreatment means 110 is arranged in the exhaust gas line 104, from which the cleaned exhaust gases reach the surroundings via the line 106.
  • the exhaust gas aftertreatment means 110 essentially comprises a so-called pre-catalyst 112 and a filter 114 downstream Pre-catalytic converter 112 and the filter 114, a temperature sensor 124 is arranged, which provides a temperature signal TVF.
  • Sensors 120a and 120b are provided in front of the pre-catalytic converter 112 and after the filter 114. These sensors act as a differential pressure sensor 120 and set
  • Differential pressure signal DP ready which characterizes the differential pressure between the inlet and outlet of the exhaust gas aftertreatment agent.
  • a sensor 126 is arranged in the intake line 102, which detects a signal T1 which characterizes the temperature T1 of the fresh air supplied.
  • a sensor 125 supplies a signal TVO, which characterizes the temperature upstream of the exhaust gas aftertreatment system 110.
  • the internal combustion engine 100 is metered fuel via a fuel metering unit 140. This measures fuel via injectors 141, 142, 143 and 144 to the individual cylinders of internal combustion engine 100.
  • the fuel metering unit is preferably a so-called common rail system.
  • a high pressure pump delivers fuel to an accumulator. The fuel reaches the internal combustion engine via the injectors.
  • Various sensors 151 are arranged on the fuel metering unit 140, which provide signals that characterize the state of the fuel metering unit.
  • a common rail system is, for example, the pressure P in the pressure accumulator.
  • Sensors 152 which characterize the state of the internal combustion engine, are arranged on the internal combustion engine 100. This is, for example, a temperature sensor that provides a signal TW that characterizes the engine temperature.
  • the output signals of these sensors go to a controller 130, which acts as a first sub-controller 132 and a second partial control 134 is shown.
  • the two partial controls preferably form a structural unit.
  • the first sub-controller 132 preferably controls the fuel metering unit 140 with control signals AD that influence the fuel metering.
  • the first partial control 132 includes a fuel quantity control 136. This supplies a signal ME, which characterizes the quantity to be injected, to the second partial control 134.
  • the second sub-controller 134 preferably controls the exhaust gas aftertreatment system and detects the corresponding sensor signals for this purpose. Furthermore, the second sub-controller 134 exchanges signals, in particular via the injected fuel quantity ME, with the first sub-controller 132. Preferably use the two
  • the first partial control which is also referred to as motor control 132, controls depending on various conditions
  • the exhaust gas aftertreatment means 110 filter them out of the exhaust gas. Through this filtering process, 114 particles collect in the filter. These particles are then in certain operating states, loading states and / or after certain times or counter readings for Amount of fuel or distance burned to clean the filter. For this purpose, it is usually provided that the temperature in the exhaust gas aftertreatment means 110 is increased so that the particles burn in order to regenerate the filter 114.
  • the precatalyst 112 is provided for increasing the temperature.
  • the temperature is increased, for example, by increasing the proportion of unburned hydrocarbons in the exhaust gas. These unburned hydrocarbons then react in the pre-catalyst 112 and increase its temperature and the temperature of the exhaust gas.
  • This temperature increase of the pre-catalytic converter and the exhaust gas temperature requires an increased fuel consumption and should therefore only be carried out when this is necessary, i.e. the filter 114 is loaded with a certain proportion of particles.
  • One way of recognizing the loading condition is to determine the differential pressure DP between the inlet and outlet of the
  • a central function in the control of the exhaust gas aftertreatment system are the sensors used, in particular the temperature sensors, which are used for the correct control of the exhaust gas
  • Exhaust aftertreatment systems are essential. It is not sufficient to test the functionality of the sensors as part of maintenance or a technical check. This applies in particular against the background of the legal requirements for on-board diagnosis of emission-relevant systems.
  • the defect of a sensor must be recognized early in order to prevent the permissible emissions from being exceeded and to ensure the functionality of the exhaust gas aftertreatment system. The procedure described below enables a simple check, in particular of the temperature sensors in the exhaust system, and thus ensures the functionality of the
  • the procedure according to the invention is described below using the example of temperature sensors. In principle, this procedure can also be used with other sensors, in particular for sensors in the exhaust system. With the procedure according to the invention, all sensors that are based on the internal combustion engine, ie. H. between internal combustion engine and exhaust gas aftertreatment system, sensors in exhaust gas aftertreatment, d. H. between the oxidation catalytic converter and the particle filter and / or sensors after the particle filter. Furthermore, the procedure according to the invention is also possible with other arrangements of the catalysts and / or the particle filter.
  • the malfunction of the temperature sensor in the exhaust system is recognized by a
  • Control unit available so that no further sensors are necessary.
  • FIG. 2 shows an exemplary embodiment of the procedure according to the invention as a flow chart.
  • a first one Query 200 checks whether the last start was long enough ago.
  • a second query 205 checks whether the internal combustion engine has started to rotate.
  • Query 205 preferably checks whether speed N is greater than 0. If this is not the case, step 205 follows again. If the internal combustion engine rotates, a time counter Z is started in step 208 and a query 210 checks whether different temperature signals such as the cooling water temperature TW and / or the temperature of the fresh air quantity T 1 drawn in and / or the
  • Ambient temperature which corresponds in a first approximation to the temperature Tl, is less than a threshold value SW. If not, i. H. if one of the temperatures is greater than the threshold value, it is recognized in step 295 that no check is possible. If the temperatures are lower than the threshold value, query 220 follows. In a simplified embodiment it can also be provided that only one of the temperature values is checked.
  • the query 220 checks whether the amount of the difference between these two temperature values is less than a threshold value SW2. If not, i. H. the
  • the query 230 checks whether the speed N is greater than a threshold value SN. If this is not the case, step 230 takes place again. If query 230 recognizes that the
  • query 240 follows. This query 240 checks whether the time Z since the first rotation of the internal combustion engine is less than a threshold value ST. If this is not the case, it is also recognized that no check is possible. Is the time since the first rotation of the internal combustion engine less than a threshold value, the actual checking of the temperature sensors takes place from step 250.
  • a first query 250 checks whether the amount of
  • step 280 Difference between the fresh air temperature Tl and the temperature TVO before the exhaust gas aftertreatment system is greater than a threshold value GW1. If this is the case, an error is recognized in step 280. If this is not the case, it is checked whether the amount of the difference between the ambient temperature T1 and the temperature in the exhaust gas aftertreatment system TVF is greater than a threshold value GW2. If this is the case, then an error is also detected in step 280. If this is not the case, query 270 checks whether the amount of the difference between the temperature signal TVO, the temperature in front of the exhaust gas aftertreatment system and the temperature TVF in the exhaust gas aftertreatment system is greater than a threshold value GW3. If this is the case, errors are also recognized in step 280. If this is not the case, then in step 290 it is recognized that there is no error and the sensors are working properly.
  • the procedure described shows the monitoring using the example of a temperature sensor 125 before
  • Exhaust gas aftertreatment system and a temperature sensor 124 in the exhaust gas aftertreatment system which is arranged between an oxidation catalyst and a particle filter.
  • the procedure described is not limited to this special arrangement of the sensors. It can also be used in other arrangements of sensors and / or catalysts and filters.
  • a temperature sensor in particular temperature sensor 125, can be replaced by a sensor in front of the NOx storage catalytic converter.
  • further sensors are arranged in the exhaust gas aftertreatment system, in which case these are checked for plausibility both with the ambient temperature and with one another.
  • a check is preferably only carried out when there is a cold start. This means that the check is only carried out if the engine has not been operated for a long time. For this purpose, it is checked whether the last start process was long enough ago. This is recognized by means of query 200. A check in this case is prevented because the
  • the measured temperatures have changed only slightly, which is due, among other things, to the inertia of the sensors. If the starting process takes too long, this can no longer be guaranteed. It is therefore checked in query 240 whether the start release speed was reached within a predeterminable maximum time. The plausibility check is preferably only carried out when all checks have been carried out. In simplified embodiments, it can also be provided that one or the other query does not take place. If the above conditions apply, the temperature differences between the temperature sensors to be monitored and the intake air temperature as well as the difference between the individual temperature signals to be monitored are formed. In the exemplary embodiment shown, the temperature sensors upstream of the catalytic converter and upstream of the filter are monitored. If the differences are larger than a limit value, an error is recognized. An error-free state is recognized when all temperature sensors display the value of a reference sensor. Instead of the intake air temperature, the ambient air temperature can also be used as a reference sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
EP02714070A 2001-03-14 2002-02-26 Verfahren und vorrichtung zur überwachung eines sensors Withdrawn EP1370840A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10112139A DE10112139A1 (de) 2001-03-14 2001-03-14 Verfahren und Vorrichtung zur Überwachung eines Sensors
DE10112139 2001-03-14
PCT/DE2002/000705 WO2002073146A1 (de) 2001-03-14 2002-02-26 Verfahren und vorrichtung zur überwachung eines sensors

Publications (1)

Publication Number Publication Date
EP1370840A1 true EP1370840A1 (de) 2003-12-17

Family

ID=7677348

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02714070A Withdrawn EP1370840A1 (de) 2001-03-14 2002-02-26 Verfahren und vorrichtung zur überwachung eines sensors

Country Status (6)

Country Link
US (1) US6952953B2 (ko)
EP (1) EP1370840A1 (ko)
JP (1) JP2004526959A (ko)
KR (1) KR20030087014A (ko)
DE (1) DE10112139A1 (ko)
WO (1) WO2002073146A1 (ko)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10112138A1 (de) * 2001-03-14 2002-09-19 Bosch Gmbh Robert Verfahren und Vorrichtung zur Überwachung eines Signals
US7275425B2 (en) * 2002-10-23 2007-10-02 Robert Bosch Gmbh Method for testing at least three sensors, which detect a measurable variable for an internal combustion engine
DE10249411B3 (de) * 2002-10-23 2004-05-13 Honeywell B.V. Messanordnung und Verfahren zur Ermittlung einer Messgrösse wie der Temperatur
JP3851881B2 (ja) * 2003-02-20 2006-11-29 本田技研工業株式会社 内燃機関の冷却水の温度センサの故障を診断する装置
DE10329039B3 (de) * 2003-06-27 2005-01-05 Audi Ag Verfahren zur Überprüfung der Funktionsfähigkeit eines Temperatursensors
DE10329038B3 (de) * 2003-06-27 2005-02-24 Audi Ag Verfahren zur Überwachung der Funktionsfähigkeit eines Temperatursensors
DE102005003832B4 (de) * 2004-02-08 2007-06-28 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Vorrichtung zum Messen der Temperatur von strömenden Fluiden
FR2873163B1 (fr) * 2004-07-15 2008-06-27 Peugeot Citroen Automobiles Sa Systeme de controle du fonctionnement d'un moteur diesel de vehicule automobile associe a un catalyseur d'oxydation
JP2006071334A (ja) * 2004-08-31 2006-03-16 Honda Motor Co Ltd 車両の温度検出装置
JP4479465B2 (ja) * 2004-10-29 2010-06-09 トヨタ自動車株式会社 水温センサの異常診断装置
DE102004058714B4 (de) * 2004-12-06 2006-08-31 Siemens Ag Verfahren und Vorrichtung zum Überprüfen von Temperaturwerten eines Temperatursensors einer Brennkraftmaschine
US7546761B2 (en) * 2005-04-12 2009-06-16 Gm Global Technology Operations, Inc. Diesel oxidation catalyst (DOC) temperature sensor rationality diagnostic
DE102005023448A1 (de) * 2005-05-20 2006-11-23 BSH Bosch und Siemens Hausgeräte GmbH Messvorrichtung
JP4483715B2 (ja) * 2005-06-10 2010-06-16 トヨタ自動車株式会社 排気ガスセンサの故障検出装置
DE102005037717B3 (de) 2005-08-10 2006-12-21 Daimlerchrysler Ag Verfahren und Vorrichtung zur Diagnose eines Außentemperatursensors
KR100595701B1 (ko) * 2006-02-07 2006-06-30 김동환 이중 온도센서를 이용한 온도기록장치
JP4275154B2 (ja) 2006-07-06 2009-06-10 本田技研工業株式会社 排気温度センサ点検装置
JP4247843B2 (ja) * 2006-09-01 2009-04-02 本田技研工業株式会社 温度検出装置の異常判定装置
JP4963052B2 (ja) * 2006-09-22 2012-06-27 Udトラックス株式会社 排気温度センサの異常検出装置
JP4992373B2 (ja) * 2006-10-16 2012-08-08 日産自動車株式会社 温度検出手段の診断装置
JP4270290B2 (ja) * 2007-02-22 2009-05-27 トヨタ自動車株式会社 高圧タンク温度検出システム、高圧タンクシステム
JP4894569B2 (ja) * 2007-03-09 2012-03-14 日産自動車株式会社 温度センサの故障診断装置
US7815370B2 (en) * 2007-10-11 2010-10-19 Cummins Filtration Ip, Inc. Apparatus, system, and method for detecting temperature threshold events in an aftertreatment device
DE102008001919B4 (de) * 2008-05-21 2017-08-03 Robert Bosch Gmbh Verfahren zur Plausibilisierung eines Temperatursensors
US8515710B2 (en) 2009-03-16 2013-08-20 GM Global Technology Operations LLC On-board diagnostics of temperature sensors for selective catalyst reduction system
DE102009003091A1 (de) * 2009-05-14 2010-11-18 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung eines in einem Abgasbereich einer Brennkraftmaschine angeordneten Bauteils
JP5531776B2 (ja) * 2010-05-24 2014-06-25 日産自動車株式会社 温度センサの故障診断装置
US9797288B2 (en) 2010-07-08 2017-10-24 GM Global Technology Operations LLC Method of operating a vehicle under frozen diesel emission fluid conditions
US8608374B2 (en) 2010-08-27 2013-12-17 GM Global Technology Operations LLC Outside air temperature sensor diagnostic systems for a vehicle
DE102011083277A1 (de) * 2011-09-23 2013-03-28 Robert Bosch Gmbh Verfahren zum Überprüfen der Funktionsweise eines Temperaturfühlers
DE102014201138B4 (de) 2013-03-28 2015-10-15 Ford Global Technologies, Llc Verfahren zur Erkennung von fehlerhaften Sensoren in einem Abgasstrang eines Kraftfahrzeugs und Kraftfahrzeug geeignet zur Ausführung dieses Verfahrens
CN103698055A (zh) * 2013-12-24 2014-04-02 天津市中环电子计算机有限公司 水温传感器功能测试设备
US20160348618A1 (en) * 2015-05-26 2016-12-01 Amphenol Thermometrics, Inc. Intake Air Sensor and Sensing Method for Determining Air Filter Performance, Barometric Pressure, and Manifold Pressure of a Combustion Engine
AT521736B1 (de) * 2018-09-27 2022-04-15 Avl List Gmbh Verfahren zur Funktionsüberprüfung einer Temperatursensor-Anordnung
FR3095009B1 (fr) * 2019-04-09 2021-03-12 Psa Automobiles Sa Procede de correction d’une richesse de carburant lors d’un demarrage a froid
KR102432867B1 (ko) * 2020-07-22 2022-08-12 김학철 스마트팜 센서류 고장검출 시스템 및 방법
KR20230052767A (ko) * 2021-10-13 2023-04-20 엘에스오토모티브테크놀로지스 주식회사 배기 가스 후처리 장치
DE102022105077A1 (de) * 2022-03-03 2023-09-07 Volkswagen Aktiengesellschaft Verfahren zur Bestimmung eines Funktionskriteriums eines Messwertgebers eines Kraftfahrzeuges

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2712695B1 (fr) 1993-11-18 1996-04-12 Siemens Automotive Sa Procédé et dispositif de mesure de la température d'un pot catalytique placé dans la ligne des gaz d'échappement d'un moteur à combustion interne.
DE19612455C2 (de) * 1996-03-28 1999-11-11 Siemens Ag Verfahren zum Ermitteln eines Solldrehmoments an der Kupplung eines Kraftfahrzeugs
DE19823280C1 (de) * 1998-05-25 1999-11-11 Siemens Ag Verfahren zum Betreiben einer direkteinspritzenden Brennkraftmaschine während des Starts
DE19906287A1 (de) 1999-02-15 2000-08-17 Bosch Gmbh Robert Verfahren und Steuerung einer Brennkraftmaschine mit einem Abgasnachbehandlungssystems
FR2800801B1 (fr) * 1999-11-10 2002-03-01 Siemens Automotive Sa Procede de commande du demarrage d'un moteur a combustion interne et a injection directe
DE50108310D1 (de) * 2000-03-31 2006-01-12 Siemens Ag Verfahren zum starten einer brennkraftmaschine und starteinrichtung für eine brennkraftmaschine
JP3818099B2 (ja) * 2001-08-23 2006-09-06 トヨタ自動車株式会社 内燃機関の失火検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02073146A1 *

Also Published As

Publication number Publication date
KR20030087014A (ko) 2003-11-12
DE10112139A1 (de) 2002-09-19
US6952953B2 (en) 2005-10-11
WO2002073146A1 (de) 2002-09-19
JP2004526959A (ja) 2004-09-02
US20040129065A1 (en) 2004-07-08

Similar Documents

Publication Publication Date Title
EP1370840A1 (de) Verfahren und vorrichtung zur überwachung eines sensors
EP1373693B1 (de) Verfahren und vorrichtung zur überwachung eines abgasnachbehandlungssystems
EP1336039B1 (de) Verfahren und vorrichtung zur steuerung eines abgasnachbehandlungssystems
EP1370751B1 (de) Verfahren und vorrichtung zur überwachung eines signals
DE102007059523B4 (de) Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
DE102016122849A1 (de) Rußbeladungsschätzung während der Leerlaufleistung oder Niedriglast
DE102014209840A1 (de) Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
EP1192340B1 (de) Verfahren zum überprüfen eines dreiwege-abgaskatalysators einer brennkraftmaschine
WO2018177897A1 (de) Verfahren und computerprogrammprodukt zur diagnose eines partikelfilters
EP0689640B1 (de) Verfahren zur überprüfung der konvertierungsfähigkeit eines katalysators
DE102014209810A1 (de) Verfahren und Vorrichtung zur Erkennung einer Ruß- und Aschebeladung eines Partikelfilters
DE102008000691A1 (de) Verfahren und Vorrichtung zur Überwachung eines Zuluftsystems einer Brennkraftmaschine
DE102014209794A1 (de) Verfahren und Vorrichtung zur Diagnose eines Ausbaus einer Komponente einer Abgasreinigungsanlage
DE102011000153A1 (de) Verfahren zur Diagnose einer Abgasnachbehandlung
DE102011086118B4 (de) Verfahren und System für einen Abgaspartikelfilter
DE102007000001A1 (de) Verfahren zur Erfassung einer übermäßigen Verbrennung
DE102009014809B3 (de) Verfahren und Vorrichtung zum Überprüfen einer Eindüsvorrichtung in einem Abgasnachbehandlungssystem einer Brennkraftmaschine
DE10014224A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine mit einem Abgasnachbehandlungssytem
DE102007003547A1 (de) Verfahren zur Diagnose eines eine Abgasbehandlungsvorrichtung enthaltenden Abgasbereichs einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
EP1180210B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine mit einem abgasnachbehandlungssystem
DE10145863A1 (de) Verfahren/Vorrichtung zur Überwachung eines Drucksignals
AT501503B1 (de) Verfahren zur diagnose eines abgasnachbehandlungssystems
DE102010003324A1 (de) Verfahren zur Funktionsüberwachung eines Partikelfilters
DE102013200623A1 (de) Verfahren und Vorrichtung zur Überwachung eines Partikelfilters
DE102004018676A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031014

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WALTER, MICHAEL

Inventor name: PLOTE, HOLGER

Inventor name: SOJKA, JUERGEN

Inventor name: KRAUTTER, ANDREAS

17Q First examination report despatched

Effective date: 20070521

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100901