JP2006071334A - 車両の温度検出装置 - Google Patents

車両の温度検出装置 Download PDF

Info

Publication number
JP2006071334A
JP2006071334A JP2004252269A JP2004252269A JP2006071334A JP 2006071334 A JP2006071334 A JP 2006071334A JP 2004252269 A JP2004252269 A JP 2004252269A JP 2004252269 A JP2004252269 A JP 2004252269A JP 2006071334 A JP2006071334 A JP 2006071334A
Authority
JP
Japan
Prior art keywords
temperature
vehicle
exhaust gas
temperature detection
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004252269A
Other languages
English (en)
Inventor
Kazumi Yamazaki
和美 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004252269A priority Critical patent/JP2006071334A/ja
Publication of JP2006071334A publication Critical patent/JP2006071334A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 検出温度範囲が広い温度検出手段の経時劣化などによる出力特性のずれを適切かつ安価に補償でき、それにより、検出精度を向上させることができる車両の温度検出装置を提供する。
【解決手段】 車両Vに設けられ、温度を検出する車両Vの温度検出装置1であって、第1温度TOAを検出するための第1温度検出手段21と、第1温度検出手段よりも広い温度範囲で第2温度TEXを検出するための第2温度検出手段26と、所定の条件が成立したときに、第1温度検出手段によって検出された第1温度に応じて、第2温度検出手段によって検出された第2温度を補正する温度補正手段2と、を備えている。
【選択図】 図2

Description

本発明は、車両に設けられ、温度を検出する車両の温度検出装置に関する。
従来のこの種の車両の温度検出装置として、例えば特許文献1に開示されたものが知られている。この温度検出装置では、内燃機関に用いられる種々の温度センサ、例えば吸気温センサ、外気温センサ、エンジン水温センサ、触媒温度センサ、燃料温度センサおよび燃料タンク温度センサのうちの任意の2つの温度センサを、第1および第2の温度センサとして選択し、それらによって検出された2つの検出値の差を用いて、これらの温度センサの異常判定を行う。具体的には、内燃機関の始動時に、それまでの停止時間が所定時間以上で、かつ検出された第1および第2の温度センサの検出値間の偏差(差の絶対値)が所定値(例えば20°)よりも大きいときに、第1および第2の温度センサのいずれかに、経時劣化や検出値の固着などに起因する異常が生じていると判定する。
しかし、上述した従来の車両の温度検出装置では、第1および第2の温度センサの検出値間の偏差が所定値よりも大きいときに、第1または第2の温度センサに異常が生じていると判定するにすぎない。このため、第1または第2の温度センサの出力特性が経時劣化などによりずれている場合でも、それらの検出値間の偏差が所定値以下である限り、第1および第2の温度センサがいずれも正常であると判定されるため、これらの検出値が誤差を含んだまま制御に用いられてしまう。一般に、温度センサの検出原理が同じである場合、検出される温度範囲が広いほど、温度センサの検出精度が低くなる傾向にあるとともに、経時劣化などの影響を受けやすいため、誤差が大きくなりやすい。このため、上述した従来の温度検出装置では、検出温度範囲が広い温度センサを用いた場合、大きな誤差を含んだ検出値を用いて内燃機関が制御される結果、内燃機関の制御を適切に行えなくなるおそれがある。このような不具合を回避するために、広い温度範囲の温度を高い精度で検出することが可能な温度センサ、例えば熱電温度センサを用いることが考えられるが、そのような温度センサは一般に、非常に高価であるため、製造コストを押し上げてしまう。
本発明は、このような課題を解決するためになされたものであり、検出温度範囲が広い温度検出手段の経時劣化などによる出力特性のずれを適切かつ安価に補償でき、それにより、検出精度を維持することができる車両の温度検出装置を提供することを目的とする。
特開2003−286888号公報
この目的を達成するために、請求項1に係る発明は、車両Vに設けられ、温度を検出する車両Vの温度検出装置1であって、第1温度(実施形態における(以下、本項において同じ)外気温TOA)を検出するための第1温度検出手段(外気温センサ21)と、第1温度検出手段よりも広い温度範囲で第2温度(排ガス温度TEX)を検出するための第2温度検出手段(排ガス温度センサ26)と、所定の条件が成立したときに、第1温度検出手段によって検出された第1温度に応じて、第2温度検出手段によって検出された第2温度を補正する温度補正手段(ECU2、補正項X、図2のステップ5〜7、図4のステップ17〜19、図5のステップ35〜37)と、を備えていることを特徴とする。
この車両の温度検出装置によれば、第2温度検出手段は、第1温度検出手段よりも広い温度範囲で第2温度を検出するので、その検出精度が低いとともに、経時劣化などによる出力特性のずれにより誤差が大きくなりやすい。これに対して、第1温度検出手段は、第2温度検出手段よりも狭い温度範囲で第1温度を検出するので、その検出精度は高く、経時劣化などによる誤差は小さい。本発明によれば、所定の条件が成立したときに、温度補正手段により、第1温度検出手段で検出した第1温度に応じて、第2温度検出手段で検出した第2温度を補正する。このように、検出精度の高く、かつ誤差の小さい第1温度を基準として、検出精度の低く、かつ誤差の大きい第2温度を補正するので、経時劣化などによる第2温度検出手段の出力特性のずれを適切に補償でき、それにより、検出精度を維持することができる。また、精度が高くかつ検出する温度範囲が広い温度センサを必要としないので、安価に構成することができる。
請求項2に係る発明は、請求項1に記載の車両Vの温度検出装置1において、車両Vは、動力源として内燃機関3を有し、内燃機関3の停止後の経過時間(ソーク時間TMSOAK)を計時する停止後経過時間計時手段(TMSOAKタイマ2a)をさらに備え、所定の条件は、計時された停止後経過時間が所定時間TMJUD以上であることを特徴とする。
第1および第2の温度検出手段で検出される検出対象の実際の温度は、内燃機関の運転中においては、内燃機関の運転状態、第1および第2の温度検出手段の設置部位や検出対象に応じて異なる一方、内燃機関が停止された後には、一定時間が経過すれば、運転中の温度にかかわらず、外気温度相当に安定した状態で収束する。この構成によれば、計時した停止後経過時間が所定時間以上のときに、第1および第2の温度検出手段で検出される検出対象の実際の温度が、いずれも外気温度相当に収束し、所定の条件が成立したとして、温度補正手段による第2温度の補正を実行する。このように、第1および第2の温度検出手段によって検出される検出対象の実際の温度が、いずれも同じ外気温度相当に収束した状態において、検出された第1温度を用いて第2温度を補正するので、第2温度検出手段の出力特性のずれをより適切に補償でき、それにより、検出精度を維持することができる。
請求項3に係る発明は、請求項1に記載の車両Vの温度検出装置1において、車両Vは、動力源として内燃機関3を有し、内燃機関3の停止時から始動時までの停止時間(ソーク時間TMSOAK)を計時する停止時間計時手段(TMSOAKタイマ2a)をさらに備え、所定の条件は、内燃機関3が始動されたときに、計時された停止時間が所定時間TMJUD以上であることを特徴とする。
この構成によれば、内燃機関が始動され、かつ計時したそれまでの停止時間が所定時間以上のときに、第1および第2の温度検出手段で検出されるべき実際の温度が外気温度相当に収束し、所定の条件が成立したとして、温度補正手段による第2温度の補正を実行する。したがって、請求項2の場合と同様、第2温度検出手段の出力特性のずれをより適切に補償できる。
請求項4に係る発明は、請求項1に記載の車両Vの温度検出装置1において、第3温度(エンジン水温TW)を検出するための第3温度検出手段(水温センサ24)をさらに備え、所定の条件は、検出された第1、第2および第3の温度がいずれも所定温度TJUD以下であることを特徴とする。
この構成によれば、検出した第1、第2および第3の温度がいずれも所定温度以下のときに所定の条件が成立したとして、温度補正手段による第2温度の補正を実行する。このため、この所定温度を、例えば外気温度相当に設定することによって、各温度検出手段によって検出されるべき検出対象の実際の温度が外気温度付近まで確実に低下した状態で第2温度の補正を適切に行うことができる。また、第1および第2の温度に加えて、第3の温度が所定温度以下であることを所定の条件としているので、検出対象の実際の温度が外気温度付近まで確実に低下した状態で補正を行うことができる。
以下、図面を参照しながら、本発明の好ましい実施形態を、詳細に説明する。図1は、本発明の実施形態による温度検出装置1、およびこれを適用した内燃機関の概略構成を示している。この内燃機関(以下「エンジン」という)3は、車両Vに搭載された、例えば4気筒(1つのみ図示)のディーゼルエンジンである。
エンジン3のピストン3aとシリンダヘッド3bの間には、燃焼室3cが形成されている。シリンダヘッド3bには、吸気管4および排気管5が燃焼室3cに連通するように接続されるとともに、燃料噴射弁(以下「インジェクタ」という)6が燃焼室3cに臨むように取り付けられている。
インジェクタ6は、燃焼室3cの天壁中央部に配置されており、コモンレールを介して高圧ポンプ(いずれも図示せず)に接続されている。燃料タンク(図示せず)の燃料は、後述するECU2による制御により、高圧ポンプによって高圧に昇圧された後、コモンレールを介してインジェクタ6に送られ、インジェクタ6によって燃焼室3cに噴射される。インジェクタ6の開弁時間(燃料噴射量)および開弁タイミング(燃料噴射タイミング)は、ECU2からの駆動信号によって制御される。
また、エンジン3のクランクシャフト3dには、マグネットロータ20aが取り付けられている。このマグネットロータ20aとMREピックアップ20bによって、クランク角センサ20が構成されている。クランク角センサ20は、クランクシャフト3dの回転に伴い、パルス信号であるCRK信号およびTDC信号をECU2に出力する。
CRK信号は、所定のクランク角(例えば30゜)ごとに出力される。ECU2は、このCRK信号に基づき、エンジン3の回転数(以下「エンジン回転数」という)NEを求める。TDC信号は、各気筒のピストン3aが吸気行程開始時のTDC(上死点)付近の所定クランク角度位置にあることを表す信号であり、4気筒タイプの本例では、クランク角180゜ごとに出力される。
また、吸気管4には、スロットル弁7が設けられている。スロットル弁7には、例えば直流モータで構成されたアクチュエータ7aが接続されている。スロットル弁7の開度は、アクチュエータ7aに供給される電流のデューティ比をECU2で制御することによって、制御される。
また、吸気管4のスロットル弁7よりも上流側には、外気温センサ21が設けられている。外気温センサ21(第1温度検出手段)は、温度の変化に応じて抵抗値が変化するサーミスタ、例えば、温度が高いほど、その抵抗値が小さくなるNTCサーミスタで構成されている。この外気温センサ21は、例えば−40℃〜+100℃の範囲で温度を検出するように構成されている。外気温センサ21には一定電圧が印加されており、外気温センサ21は、外気温TOAに応じて変化する電流値を、外気温TOAを表す信号として、ECU2に出力する。ECU2は、この電流値と電圧値から抵抗値R1を求めるとともに、外気温TOAを、次式(1)の関係から算出する。
LnR1=B1・(1/TOA)+A1 ・・・・・(1)
ここで、B1は外気温センサ21のサーミスタ定数であり、A1は定数である。
また、吸気管4のスロットル弁7よりも下流側には、吸気温センサ22が設けられている。吸気温センサ22は、外気温センサ21と同様、例えば−40℃〜+100℃の範囲で温度を検出するサーミスタで構成されており、吸気管4内の吸気温TAを表す信号をECU2に出力する。
排気管5には、上流側から順に、触媒装置8およびフィルタ9が設けられている。触媒装置8は、NOx触媒と酸化触媒(いずれも図示せず)を組み合わせたものである。このNOx触媒は、エンジン3に供給される混合気の空燃比がリーンの場合には、排ガス中のNOxを吸収し、排ガスを浄化し、また、空燃比がリッチの場合には、吸収したNOxを還元するという特性を有する。上記酸化触媒は、排ガス中のHCおよびCOを酸化し、排ガスを浄化する。また、フィルタ9は、排ガス中の煤などのパティキュレートを捕集することによって、大気に排出されるパティキュレートの量を低減する。
また、排気管5の触媒装置8よりも上流側には、排ガス温度センサ26が設けられている。排ガス温度センサ26(第2温度検出手段)は、サーミスタで構成されており、外気温センサ21よりも広い温度範囲、例えば0℃〜+700℃の範囲で温度を検出するように構成されている。この排ガス温度センサ26は、排気管5内の排ガスの温度(以下「排ガス温度」という)TEXを表す信号をECU2に出力する。具体的には、排ガス温度センサ26には、一定電圧が印加されており、排ガス温度センサ26は、排ガス温度TEXに応じて変化する電流値を、排ガス温度TEXを表す信号として、ECU2に出力する。ECU2は、この電流値と電圧値から抵抗値R2を求めるとともに、排ガス温度TEXを、次式(2)の関係から算出する。
LnR2=B・(1/TEX)+A ・・・・・(2)
ここで、Bは排ガス温度センサ26のサーミスタ定数であり、Aは定数である。
また、吸気管4のスロットル弁7よりも下流側と、排気管5の触媒装置8よりも上流側との間には、EGR管10が接続されている。このEGR管10を介して、エンジン3の排ガスが吸気側に再循環されることによって、EGR動作が実行される。
EGR管10には、EGR制御弁11が取り付けられている。EGR制御弁11は、リニア電磁弁であり、供給される電流値に応じてそのバルブリフト量がリニアに変化する。ECU2は、エンジン3の運転状態に応じてEGR制御弁11のバルブリフト量を制御することにより、EGR量を制御する。
EGR管10のEGR制御弁11よりも上流側には、EGR温度センサ23が設けられている。EGR温度センサ23は、例えば0℃〜+600℃の範囲で温度を検出するサーミスタで構成されており、EGR管10内の排ガスの温度(以下「EGR温度」という)TEGRを表す信号をECU2に出力する。
エンジン3の本体には、水温センサ24が設けられている。水温センサ24(第3温度検出手段)は、外気温センサ21と同様、例えば−40℃〜+100℃の範囲で温度を検出するサーミスタで構成されており、エンジン3のシリンダブロック(図示せず)内を循環する冷却水の温度(以下「エンジン水温」という)TWを表す信号をECU2に出力する。さらに、ECU2には、アクセル開度センサ25から、アクセルペダル(図示せず)の操作量(以下「アクセル開度」という)APを表す検出信号が出力される。
ECU2は、本実施形態において、温度補正手段を構成するものである。ECU2は、I/Oインターフェース、CPU、RAMおよびROMなどからなるマイクロコンピュータで構成されており、さらに、エンジン3の停止後の経過時間(以下「ソーク時間」という)TMSOAKを計時するTMSOAKタイマ2a(停止後経過時間計時手段および停止時間計時手段)などを備えている。上述した各種センサ20〜26からの検出信号はそれぞれ、I/OインターフェースでA/D変換や整形がなされた後、CPUに入力される。
CPUは、これらの入力信号に応じ、ROMに記憶されたプログラムなどに従って、エンジン3の運転状態を判別し、その結果に応じて、インジェクタ6の燃料噴射量やEGR量などを含むエンジン3の制御を実行する。また、CPUは、排ガス温度センサ26で検出された排ガス温度TEXの補正処理を実行する。
図2は、この補正処理のフローチャートを示している。本処理は、エンジン3の停止状態において、所定時間(例えば60sec)ごとに実行される。同図に示すように、まず、ステップ1(「S1」と図示。以下同様)において、エンジン3が停止直後か否かを判別する。この判別結果がYESで、エンジン3が停止直後、すなわち今回がエンジン3が停止した後の最初のループのときには、アップカウント式のTMSOAKタイマ2aをスタートさせ(ステップ2)、本処理を終了する。
一方、前記ステップ1の判別結果がNOで、今回がエンジン3が停止した後の2回目以降のループのときには、TMSOAKタイマ2aで計時したソーク時間TMSOAK(停止後経過時間)が所定時間TMJUD(例えば4h)以上か否かを判別する(ステップ3)。この判別結果がNOで、ソーク時間TMSOAKが所定時間TMJUD未満のときには、実際の排ガス温度が外気温TOAに等しい温度に収束(低下)しておらず、補正の実行条件が成立していないとして、本処理を終了する。
一方、前記ステップ3の判別結果がYESで、ソーク時間TMSOAKが所定時間TMJUD以上のときには、エンジン3の停止後、十分な時間が経過することによって、実際の排ガス温度が外気温TOAに等しい温度に安定した状態で収束し、補正の実行条件が成立したとして、TMSOAKタイマ2aをリセットした(ステップ4)後、ステップ5〜7の処理を実行する。まず、ステップ5では、外気温センサ21の検出結果に応じ、前記式(1)に基づいて算出した外気温TOAを、第1温度T1としてセットする。次に、ステップ6では、排ガス温度センサ26の検出結果に応じ、前記式(2)に基づいて算出した排ガス温度TEXを、第2温度T2としてセットする。
次いで、ステップ7では、第1温度T1および第2温度T2などを用いて、排ガス温度TEXの補正項Xを次式(3)によって算出し、本処理を終了する。
X=B・[(1/T1)−(1/T2)] ・・・・・(3)
前記式(2)に示すように、排ガス温度センサ26の抵抗値R2の対数LnR2は、排ガス温度TEXの逆数1/TEXを変数とする一次式で表され、サーミスタ定数Bはこの一次式の傾きを、定数Aは切片をそれぞれ表す(図3参照)。排ガス温度センサ26に経時劣化などによる出力特性のずれが生じた場合、LnR2と1/TEXとの一次的な関係が維持され、傾き(サーミスタ定数)Bは変わらないと仮定し、そのときの切片のずれをXとすると、LnR2と1/TEXの関係は、次式(4)によって表される。
LnR2=B・(1/TEX)+(A−X) ・・・・・(4)
また、外気温センサ21の検出結果が正しいと仮定すると、このときの正しい実際の温度は第1温度T1(=TOA)であるので、図3に示すように、式(4)は、座標(1/T1,R2)を通る。したがって補正項(切片のずれ)Xは、図3から明らかなように、1/T1と1/T2との差と傾きBから、式(3)によって求めることができる。
そして、このように補正項Xを算出し、補正式(4)を求めた後には、排ガス温度センサ26で検出された電流値に応じて求めた抵抗値R2を補正式(4)に適用することによって、排ガス温度TEXを算出する。これにより、経時劣化などによる排ガス温度センサ26の出力特性のずれを適切に補償できる。
以上のように、本実施形態によれば、検出すべき温度範囲が狭い外気温センサ21で検出した外気温TOAに基づいて、検出すべき温度範囲の広い排ガス温度センサ26の補正項Xを算出し、この補正項Xを用いて排ガス温度TEXを補正する。また、この補正項Xの算出は、エンジン3の停止後のソーク時間TMSOAKが所定時間TMJUD以上のとき、すなわち排ガス温度センサ26によって検出される実際の排ガス温度が外気温TOAに等しい温度に安定して収束した状態において、実行される。したがって、経時劣化などによる排ガス温度センサ26の出力特性のずれを適切に補償でき、それにより、その検出精度を維持することができる。また、精度が高くかつ検出する温度範囲が広い温度センサを必要としないので、製造コストを増大させることなく、安価に構成することができる。
次に、図4を参照しながら、本発明の第2実施形態による補正処理について説明する。本処理は、所定時間(例えば60sec)ごとに実行される。同図に示すようにまず、ステップ11において、エンジン3が始動直後か否かを判別する。この判別結果がYESで、今回がエンジン3が始動した後の最初のループのときには、TMSOAKタイマ2aが計時していたソーク時間TMSOAK(停止時間)が、所定時間TMJUD以上か否かを判別する(ステップ12)。この判別結果がNOで、TMSOAK<TMJUDのときには、実際の排ガス温度が外気温TOAに等しい温度まで低下しておらず、補正の実行条件が成立していないとして、温度補正実行フラグF_DECTEMPを「0」にセットし(ステップ13)、本処理を終了する。一方、この判別結果がYESで、TMSOAK≧TMJUDのときには、実際の排ガス温度が外気温TOAに等しい温度に安定した状態で収束し、補正の実行条件が成立しているとして、温度補正実行フラグF_DECTEMPを「1」にセットし(ステップ14)、本処理を終了する。
前記ステップ11の判別結果がNOで、エンジン3が始動した後の2回目以降のループのときには、TMSOAKタイマ2aをリセットした(ステップ15)後、温度補正実行フラグF_DECTEMPが「1」であるか否かを判別する(ステップ16)。この判別結果がNOで、補正の実行条件が成立していないときには、本処理を終了する。
一方、ステップ16の判別結果がYESで、補正の実行条件が成立しているときには、図2に示した第1実施形態と同様、外気温センサ21で検出された外気温TOAを第1温度T1として、排ガス温度センサ26で検出された排ガス温度TEXを第2温度T2として、それぞれセットし(ステップ17,18)、これらの第1および第2の温度T1、T2を用い、式(3)によって補正項Xを算出する(ステップ19)。そして、温度補正実行フラグF_DECTEMPを「0」にセットし(ステップ20)、本処理を終了する。
以上のように、本実施形態によれば、エンジン3が始動され、かつそれまでのソーク時間TMSOAKが所定時間TMJUD以上のとき、すなわち排ガス温度センサ26で検出される実際の排ガス温度が外気温TOAに等しい温度に安定した状態で収束したときに、排ガス温度センサ26の補正項Xを算出する。したがって、第1実施形態と同様、排ガス温度センサ26の出力特性のずれを適切に補償できる。
次に、図5を参照しながら、本発明の第3実施形態による補正処理について説明する。本処理は、所定時間(例えば60sec)ごとに実行される。同図に示すように、まず、ステップ31において、エンジン3が始動直後か否かを判別する。この判別結果がNOで、今回がエンジン3が始動した後の2回目以降のループのときには、補正の実行条件が成立していないとして、本処理を終了する。一方、ステップ31の判別結果がYESで、今回がエンジン3が始動した後の最初のループのときには、外気温センサ21で検出された外気温TOA、排ガス温度センサ26で検出された排ガス温度TEX、および水温センサ24で検出されたエンジン水温TWが、所定温度TJUD(例えば+40℃)以下であるか否かをそれぞれ判別する(ステップ32〜34)。これらの判別結果のいずれかがNOで、TOA>TJUD、TEX>TJUDまたはTW>TJUDのときには、補正の実行条件が成立していないとして、本処理を終了する。
一方、前記ステップ32〜34の判別結果がいずれもYESで、TOA≦TJUD、TEX≦TJUD、かつTW≦TJUDのときには、排ガス温度TEXおよびエンジン水温TWがそれぞれ、外気温TOAに等しい温度まで低下し、補正の実行条件が成立しているとして、第1および第2実施形態と同様、外気温TOAを第1温度T1として、排ガス温度TEXを第2温度T2として、それぞれセットし(ステップ35,36)、これらの第1および第2の温度T1、T2を用い、式(3)によって補正項Xを算出し(ステップ37)、本処理を終了する。
以上のように、本実施形態によれば、外気温TOAおよび排ガス温度TEXがいずれも所定温度TJUD以下のとき、すなわち排ガス温度が外気温TOAに等しい温度まで実際に低下した状態で、補正項Xを適切に算出できる。また、外気温TOAおよび排ガス温度TEXに加えてエンジン水温TWが所定温度TJUD以下であることを条件としているので、実際の排ガス温度が外気温TOAに等しい温度まで確実に低下した状態で補正項Xの算出を行うことができる。
なお、本発明は、説明した実施形態に限定されることなく、種々の態様で実施することができる。例えば、実施形態では、補正項Xの算出する際の基準となる第1温度T1として、外気温TOAを用いているが、これに代えて、外気温センサ21と同様に検出温度範囲の狭い吸気温センサ22や水温センサ24で検出された吸気温TAやエンジン水温TWなどを用いてもよく、また、車両Vの室内の温度を検出する室内温度センサで検出された温度を用いてもよい。また、実施形態では、排ガス温度センサ26を対象として、検出温度の補正を行っているが、これに代えて、またはこれに加えて、より広い温度範囲で温度を検出する他の温度センサ、例えば、EGR温度TEGRを検出するEGR温度センサ23、触媒装置8の温度を検出する触媒温度センサや、フィルタ9の温度を検出するフィルタ温度センサなどを対象とし、同様に検出温度の補正を行ってもよい。さらに、実施形態では、排ガス温度センサ26を、触媒装置8の上流側に1つ設けているが、これに代えて、またはこれとともに触媒装置8の下流側に設けてもよい。
また、実施形態は、本発明をディーゼルエンジンに適用した例であるが、これに限らずガソリンエンジンに適用してもよい。さらに、実施形態は、本発明を内燃機関3を動力源とした車両Vに適用した例であるが、他の動力源、例えば電気モータを動力源とする車両に適用してもよい。その他、本発明の趣旨の範囲内で、細部の構成を適宜、変更することができる。
本発明の実施形態による温度検出装置、およびこれを適用した内燃機関の概略構成を示す図である。 図1の温度検出装置により実行される補正処理を示す図である。 排ガス温度センサの補正前および補正後の温度特性の一例を示す図である。 第2実施形態による補正処理を示す図である。 第3実施形態による補正処理を示す図である。
符号の説明
1 温度検出装置
2 ECU(温度補正手段)
2a TMSOAKタイマ(停止後経過時間計時手段および停止時間計時手段)
3 エンジン(内燃機関)
21 外気温センサ(第1温度検出手段)
24 水温センサ(第3温度検出手段)
26 排ガス温度センサ(第2温度検出手段)
V 車両
TOA 外気温(第1温度)
TEX 排ガス温度(第2温度)
TW エンジン水温(第3温度)
TMSOAK ソーク時間(停止後経過時間および停止時間)
TMJUD 所定時間
TJUD 所定温度
X 補正項

Claims (4)

  1. 車両に設けられ、温度を検出する車両の温度検出装置であって、
    第1温度を検出するための第1温度検出手段と、
    当該第1温度検出手段よりも広い温度範囲で第2温度を検出するための第2温度検出手段と、
    所定の条件が成立したときに、前記第1温度検出手段によって検出された第1温度に応じて、前記第2温度検出手段によって検出された第2温度を補正する温度補正手段と、
    を備えていることを特徴とする車両の温度検出装置。
  2. 前記車両は、動力源として内燃機関を有し、
    当該内燃機関の停止後の経過時間を計時する停止後経過時間計時手段をさらに備え、
    前記所定の条件は、前記計時された停止後経過時間が所定時間以上であることを特徴とする、請求項1に記載の車両の温度検出装置。
  3. 前記車両は、動力源として内燃機関を有し、
    当該内燃機関の停止時から始動時までの停止時間を計時する停止時間計時手段をさらに備え、
    前記所定の条件は、前記内燃機関が始動されたときに、前記計時された停止時間が所定時間以上であることを特徴とする、請求項1に記載の車両の温度検出装置。
  4. 第3温度を検出するための第3温度検出手段をさらに備え、
    前記所定の条件は、前記検出された第1、第2および第3の温度がいずれも所定温度以下であることを特徴とする、請求項1に記載の車両の温度検出装置。
JP2004252269A 2004-08-31 2004-08-31 車両の温度検出装置 Pending JP2006071334A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004252269A JP2006071334A (ja) 2004-08-31 2004-08-31 車両の温度検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004252269A JP2006071334A (ja) 2004-08-31 2004-08-31 車両の温度検出装置

Publications (1)

Publication Number Publication Date
JP2006071334A true JP2006071334A (ja) 2006-03-16

Family

ID=36152141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004252269A Pending JP2006071334A (ja) 2004-08-31 2004-08-31 車両の温度検出装置

Country Status (1)

Country Link
JP (1) JP2006071334A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101743A (ja) * 2008-10-23 2010-05-06 Nikon Corp 温度測定装置、気体供給装置及び露光装置
JP2010266207A (ja) * 2009-05-12 2010-11-25 Toyota Motor Corp 温度検出器および温度検出器を備えた水素充填システム
JP2010266206A (ja) * 2009-05-12 2010-11-25 Toyota Motor Corp 温度検出器および温度検出器を備えた水素充填システム
JP2014134516A (ja) * 2013-01-11 2014-07-24 Denso Corp 補正回路、及び、その製造方法
JP2021116729A (ja) * 2020-01-24 2021-08-10 トヨタ自動車株式会社 内燃機関制御システム
CN113483918A (zh) * 2021-05-26 2021-10-08 孝感华工高理电子有限公司 Ntc汽车温度传感器对温度响应速率的测试方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180536A (ja) * 1993-12-22 1995-07-18 Nissan Motor Co Ltd 触媒の劣化検出装置
JPH0828337A (ja) * 1994-07-19 1996-01-30 Unisia Jecs Corp 内燃機関の燃料温度検出装置における自己診断装置
JP2001349864A (ja) * 2000-06-07 2001-12-21 Mitsubishi Electric Corp 排気ガスセンサ用温度検出装置
JP2002070628A (ja) * 2000-08-29 2002-03-08 Unisia Jecs Corp 内燃機関の排気温度推定装置
WO2002073146A1 (de) * 2001-03-14 2002-09-19 Robert Bosch Gmbh Verfahren und vorrichtung zur überwachung eines sensors
JP2003286888A (ja) * 2002-03-27 2003-10-10 Honda Motor Co Ltd 温度センサの異常を検出する車両の制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180536A (ja) * 1993-12-22 1995-07-18 Nissan Motor Co Ltd 触媒の劣化検出装置
JPH0828337A (ja) * 1994-07-19 1996-01-30 Unisia Jecs Corp 内燃機関の燃料温度検出装置における自己診断装置
JP2001349864A (ja) * 2000-06-07 2001-12-21 Mitsubishi Electric Corp 排気ガスセンサ用温度検出装置
JP2002070628A (ja) * 2000-08-29 2002-03-08 Unisia Jecs Corp 内燃機関の排気温度推定装置
WO2002073146A1 (de) * 2001-03-14 2002-09-19 Robert Bosch Gmbh Verfahren und vorrichtung zur überwachung eines sensors
JP2004526959A (ja) * 2001-03-14 2004-09-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング センサを監視する方法および装置
JP2003286888A (ja) * 2002-03-27 2003-10-10 Honda Motor Co Ltd 温度センサの異常を検出する車両の制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101743A (ja) * 2008-10-23 2010-05-06 Nikon Corp 温度測定装置、気体供給装置及び露光装置
JP2010266207A (ja) * 2009-05-12 2010-11-25 Toyota Motor Corp 温度検出器および温度検出器を備えた水素充填システム
JP2010266206A (ja) * 2009-05-12 2010-11-25 Toyota Motor Corp 温度検出器および温度検出器を備えた水素充填システム
JP2014134516A (ja) * 2013-01-11 2014-07-24 Denso Corp 補正回路、及び、その製造方法
JP2021116729A (ja) * 2020-01-24 2021-08-10 トヨタ自動車株式会社 内燃機関制御システム
JP7243648B2 (ja) 2020-01-24 2023-03-22 トヨタ自動車株式会社 内燃機関制御システム
CN113483918A (zh) * 2021-05-26 2021-10-08 孝感华工高理电子有限公司 Ntc汽车温度传感器对温度响应速率的测试方法及系统
CN113483918B (zh) * 2021-05-26 2023-06-23 孝感华工高理电子有限公司 Ntc汽车温度传感器对温度响应速率的测试方法及系统

Similar Documents

Publication Publication Date Title
US7650225B2 (en) Engine controller
EP2151554B1 (en) Deterioration determination device and method for exhaust emission reduction device
JP4240132B2 (ja) 内燃機関の制御装置
JP4130800B2 (ja) エンジンの制御装置
US7096861B1 (en) Control system for internal combustion engine
JP4538363B2 (ja) 内燃機関のegr装置
US9175627B2 (en) Fuel injection control apparatus for an internal combustion engine
JP5505447B2 (ja) 内燃機関の制御装置
US20110290217A1 (en) Engine system control device
US10443519B2 (en) Catalyst deterioration determination system
JP2008267231A (ja) 内燃機関の制御装置
US9309859B2 (en) Method for controlling an ignition system of an internal combustion engine and an ignition system
JP4393726B2 (ja) 内燃機関の排気還流制御装置
JP2006071334A (ja) 車両の温度検出装置
JP5273060B2 (ja) 内燃機関の空燃比ばらつき検出装置
JP2008180225A (ja) エンジンの制御装置
JP2005048659A (ja) 燃料温度推定装置
JP4610404B2 (ja) ディーゼルエンジンの制御装置
JP4792453B2 (ja) 吸入空気量検出装置
US6302091B1 (en) Air-fuel ratio feedback control for engines having feedback delay time compensation
US10072593B2 (en) Control device of internal combustion engine
JP2017020417A (ja) 内燃機関の制御装置
JP4340577B2 (ja) 筒内圧センサの温度検知装置、ならびにこれを用いた筒内圧の検出装置および内燃機関の制御装置
JPH11200934A (ja) ディーゼルエンジンの制御装置
JP5282744B2 (ja) 内燃機関の空燃比検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110927