JP2005048659A - 燃料温度推定装置 - Google Patents

燃料温度推定装置 Download PDF

Info

Publication number
JP2005048659A
JP2005048659A JP2003281274A JP2003281274A JP2005048659A JP 2005048659 A JP2005048659 A JP 2005048659A JP 2003281274 A JP2003281274 A JP 2003281274A JP 2003281274 A JP2003281274 A JP 2003281274A JP 2005048659 A JP2005048659 A JP 2005048659A
Authority
JP
Japan
Prior art keywords
fuel
fuel temperature
temperature
temperature estimation
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003281274A
Other languages
English (en)
Inventor
Masakazu Yamamoto
正和 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003281274A priority Critical patent/JP2005048659A/ja
Publication of JP2005048659A publication Critical patent/JP2005048659A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • F02D2200/0608Estimation of fuel temperature

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】 筒内噴射エンジンに噴射する燃料の温度を燃料温度センサを用いずに精度良く推定できるようにする。
【解決手段】 筒内噴射エンジンの燃料系に設けられた高圧ポンプのプランジャの1ストロークの燃料吐出量Qと、その吐出前後の燃料圧力変化量(Pt −Pi )を算出し(ステップ101、102)、次式により燃料の体積弾性係数Kを算出する(ステップ103)。 K=(Pt −Pi )×V/Q
ここで、Vは、高圧ポンプから燃料噴射弁までの燃料通路の容積である。この後、体積弾性係数Kに応じた燃料温度推定ベース値をマップ等により算出した後(ステップ104)、この燃料温度推定ベース値を燃料温度推定誤差の学習値で補正して最終的な燃料温度推定値を求める(ステップ105)。
【選択図】 図5

Description

本発明は、燃料系のポンプから燃料噴射弁へ吐出される燃料の温度を推定する燃料温度推定装置に関するものである。
内燃機関の燃料は、燃料温度が高くなるほど、燃料が膨張して燃料密度が小さくなるという特性があるため、燃料噴射弁から同じ体積の燃料が噴射されても、燃料温度が異なれば、噴射した燃料の質量に差が生じ、空燃比にずれが生じる。このような問題に対処するために、特許文献1(特開平1−290945号公報)に示すように、燃料温度を燃料温度センサで検出して、燃料温度による燃料密度の変化に応じて燃料噴射量を補正するようにしたものがある。
しかし、この構成では、燃料温度センサが新たに必要となり、コストアップになるという欠点がある。
そこで、特許文献2(特開2001−12291号公報)に示すように、冷却水温と吸気温とエンジン運転状態とに基づいて燃料温度を推定するようにしたものがある。
特開平1−290945号公報(第1頁〜第2頁等) 特開2001−12291号公報(第1頁〜第2頁等)
上記特許文献2の燃料温度推定方法では、冷却水温と吸気温の他に、エンジン運転状態を考慮して、燃料温度を推定するようにしているが、例えば、エンジン停止中の放熱具合(エンジン停止時間)、走行速度(走行風の強さ)、燃料タンクの燃料残量等によっても燃料温度が変化するため、上記特許文献2のように、冷却水温と吸気温とエンジン運転状態に基づいて燃料温度を推定しても、燃料温度の推定誤差が大きくなるという欠点がある。
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、燃料温度センサを用いずに、燃料温度を精度良く推定することができる燃料温度推定装置を提供することにある。
上記目的を達成するために、本発明の請求項1の燃料温度推定装置は、燃料系のポンプから吐出される燃料の温度に依存する燃料物性値を物性値検出手段により検出し、この燃料物性値に基づいて燃料温度を燃料温度推定手段により推定するようにしたものである。このように、燃料物性値に基づいて燃料温度を推定すれば、エンジン停止中の放熱具合(エンジン停止時間)、エンジン運転状態、走行速度(走行風の強さ)、燃料タンクの燃料残量等の影響を受けずに、燃料温度を精度良く推定することができる。
この場合、請求項2のように、ポンプから燃料噴射弁までの燃料通路内の燃料量と燃料圧力との関係を示す燃料物性値を検出するようにすると良い。つまり、ポンプから燃料噴射弁までの燃料通路の容積は一定であるため、燃料温度が高くなって燃料が膨張するほど、燃料通路の燃料圧力が高くなるという関係がある。従って、燃料通路内の燃料量と燃料圧力との関係を示す燃料物性値も燃料温度に応じて変化するため、この燃料物性値から燃料温度を精度良く推定することができる。
また、請求項3のように、内燃機関の動力によって燃料を高圧に加圧して吐出する高圧ポンプを備えたシステムに本発明を適用する場合は、高圧ポンプのプランジャの1ストロークの燃料吐出量とその吐出前後の燃料圧力変化量とに基づいて燃料物性値として燃料の体積弾性係数を算出するようにすると良い。一般に、高圧ポンプを備えたシステムでは、燃料圧力(燃圧)を制御するために燃料圧力を検出する燃圧センサが搭載されているため、新たなセンサを設けなくても、高圧ポンプの1ストロークの吐出前後の燃料圧力変化量を検出することができる。また、高圧ポンプの1ストロークの燃料吐出量は、高圧ポンプの設計データ等から容易に計算することができる。高圧ポンプの燃料吐出行程中に燃料噴射弁から燃料が噴射されなければ、高圧ポンプから燃料噴射弁までの燃料通路内の燃料量が高圧ポンプの1ストロークの燃料吐出量に応じて増加するため、高圧ポンプの1ストロークの燃料吐出量に応じて燃料通路内の燃料圧力が上昇し、且つ、この燃料圧力は、燃料温度が高くなるほど高くなるという関係がある。従って、高圧ポンプの1ストロークの燃料吐出量とその吐出前後の燃料圧力変化量とに基づいて算出する燃料の体積弾性係数も燃料温度に応じて変化するという関係がある。これにより、この体積弾性係数から燃料温度を精度良く推定することができる(図7参照)。
ところで、燃料性状によって燃料の揮発性が変化して燃料圧力が変化するため、燃料通路内の燃料量と燃料圧力との関係を示す燃料物性値も燃料性状によって変化する。従って、燃料性状の違いが燃料温度推定誤差の要因となる。その他、高圧ポンプの1ストロークの燃料吐出量も、高圧ポンプの特性ばらつき(製造ばらつきや制御ばらつき等)による計算誤差が生じるため、これも燃料温度推定誤差の要因となる。
そこで、請求項4のように、燃料温度推定誤差を学習手段により学習し、燃料物性値(体積弾性係数)と燃料温度推定誤差の学習値とに基づいて燃料温度を推定するようにすると良い。このようにすれば、燃料性状や高圧ポンプの特性ばらつき等による燃料温度推定誤差を排除することができ、燃料温度の推定精度を更に高めることができる。
この場合、燃料温度推定値によって燃料系の制御量(例えば燃料噴射量、ポンプ吐出量、目標燃料圧力、目標空燃比等)を補正するシステムにおいては、燃料温度推定誤差は空燃比のずれ(燃料噴射量のずれ)として現れる。従って、空燃比のずれから燃料温度推定誤差を算出して学習するようにしても良い。
また、内燃機関の停止時間がある程度長くなって、内燃機関が十分に冷えた冷機状態になると、冷却水温や吸気温が燃料温度とほぼ一致する状態となる。この点に着目して、請求項5のように、内燃機関の始動時に冷却水温又は吸気温が燃料温度とほぼ一致する冷間始動時であるか否かを判定し、冷間始動時と判定したときに燃料温度推定値と当該冷間始動時の冷却水温又は吸気温との差を燃料温度推定誤差として学習するようにしても良い。このようにすれば、冷間始動毎に燃料温度推定誤差を精度良く学習することができる。
この場合、燃料温度推定誤差の学習値に応じて燃料物性値(体積弾性係数)と燃料温度との関係を補正して、燃料温度を推定するようにしても良いが、請求項6のように、燃料物性値に基づいて推定した燃料温度を燃料温度推定誤差の学習値で補正して最終的な燃料温度推定値を求めるようにしても良い。このようにすれば、学習値による燃料温度推定値の補正を簡単に行うことができる。
以下、本発明を筒内噴射式の内燃機関に適用した実施例1、2を図面に基づいて説明する。
本発明の実施例1を図1乃至図8に基づいて説明する。まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。筒内噴射式の内燃機関である筒内噴射式のエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、ステップモータ14によって駆動されるスロットルバルブ15が設けられている。このスロットルバルブ15の開度(スロットル開度)は、スロットル開度センサ17によって検出される。その他、吸気管12には、吸入空気量を検出するエアフローメータ8や、吸気温を検出する吸気温センサ9が設けられている。
スロットルバルブ15の下流側には、サージタンク19が設けられ、このサージタンク19に、エンジン11の各気筒に空気を導入する吸気マニホールド20が接続されている。各気筒の吸気マニホールド20内には、それぞれ第1吸気路21と第2吸気路22が仕切り形成され、これら第1吸気路21と第2吸気路22が、エンジン11の各気筒に形成された2つの吸気ポート23にそれぞれ連結されている。
また、各気筒の第2吸気路22内には、筒内のスワール流強度やタンブル流強度を制御する気流制御弁24が配置されている。各気筒の気流制御弁24は、共通のシャフト25を介してステップモータ26に連結され、このステップモータ26に、気流制御弁24の開度を検出する気流制御弁センサ27が取り付けられている。
エンジン11の各気筒の上部には、燃料を気筒内に直接噴射する燃料噴射弁28が取り付けられている。各気筒の燃料噴射弁28には、後述する燃料供給システム50によって高圧の燃料が供給される。
更に、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ(図示せず)が取り付けられ、各点火プラグの火花放電によって気筒内の混合気に着火される。また、気筒判別センサ32は、特定気筒(例えば第1気筒)が吸気上死点に達したときに出力パルスを発生し、クランク角センサ33は、エンジン11のクランクシャフトが一定クランク角(例えば30℃A)回転する毎に出力パルスを発生する。これらの出力パルスによって、クランク角やエンジン回転速度が検出され、気筒判別が行われる。その他、エンジン11には、冷却水温を検出する冷却水温センサ10が設けられている。
一方、エンジン11の各排気ポート35から排出される排出ガスが排気マニホールド36を介して1本の排気管37に合流する。この排気管37には、理論空燃比付近で排出ガス中のCO,HC,NOx等を浄化する三元触媒38とNOx吸蔵還元型のNOx触媒39とが直列に配置されている。このNOx触媒39は、排出ガス中の酸素濃度が高いリーン運転中に、排出ガス中のNOxを吸蔵し、空燃比がストイキ付近又はリッチに切り換えられて排出ガス中の酸素濃度が低下したときに、吸蔵したNOxを還元浄化して放出する特性を持っている。
また、排気管37のうちの三元触媒38の上流側とサージタンク19との間には、排出ガスの一部を吸気系に還流させるEGR配管40が接続され、このEGR配管40の途中に、EGR量(排出ガス還流量)を制御するEGR弁41が設けられている。また、アクセルペダル42には、アクセル開度を検出するアクセルセンサ43が設けられている。
上述した各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)16に入力される。このECU16は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁28の燃料噴射量や点火プラグの点火時期を制御する。
次に、図2及び図3を用いて燃料供給装置50の構成を説明する。燃料を貯溜する燃料タンク51内には、燃料を汲み上げる低圧ポンプ52が配置されている。この低圧ポンプ52は、バッテリ(図示せず)を電源とする電動モータ(図示せず)によって駆動される。この低圧ポンプ52から吐出される燃料は、燃料配管53を通して高圧ポンプ54に供給される。燃料配管53には、プレッシャレギュレータ55が接続され、このプレッシャレギュレータ55によって低圧ポンプ52の吐出圧(高圧ポンプ54への燃料供給圧力)が所定圧力(例えば0.3MPa程度)に調圧され、その圧力を越える燃料の余剰分は燃料戻し管56により燃料タンク51内に戻される。
図3に示すように、高圧ポンプ54は、円筒状のポンプ室58内でプランジャ59を往復運動させて燃料を吸入/吐出するプランジャポンプであり、プランジャ59は、エンジン11のカム軸60に嵌着されたカム61の回転運動によって駆動される。これにより、図4に示すように、クランク角に応じてプランジャ59のリフト量が周期的に変化する。図1乃至図3に示す4気筒エンジンでは、カム軸60の1回転当たり(クランク軸2回転当たり)、プランジャ59が2往復駆動される(360℃A毎に燃料が吐出される)。
また、図3に示すように、ポンプ室58の吸入口63側には、流量制御弁62が設けられている。この流量制御弁62は、常開型の電磁弁であり、吸入口63を開閉する弁体66と、弁体66を開弁方向に付勢するスプリング67と、弁体66を閉弁方向に電磁駆動するノレノイド68とから構成されている。ソレノイド68に駆動電流が通電されていないときには、スプリング67の付勢力により弁体66が開弁されて吸入口63が開放される。一方、ソレノイド68に駆動電流が通電されると、ソレノイド68の電磁駆動力により弁体66がスプリング67の付勢力に抗して閉弁されて吸入口63が閉塞される。
高圧ポンプ54の吸入行程(プランジャ59が上死点から下死点に移動する行程)で、流量制御弁62が開弁されてポンプ室58内に燃料が吸入され、吐出行程(プランジャ59が下死点から上死点に移動する行程)で、流量制御弁62の閉弁開始時期を制御することで、燃料吐出量を調節して燃料圧力(以下「燃圧」という)を制御する。例えば、燃圧を上昇させるときには、流量制御弁62の閉弁開始時期を例えば図4の実線から点線のタイミングに早めて、吐出行程終了までの閉弁期間を長くして燃料吐出量を増加させ、反対に、燃圧を低下させるときには、流量制御弁62の閉弁開始時期を例えば図4の点線から実線のタイミングに遅らせて、吐出行程終了までの閉弁期間を短くして燃料吐出量を減少させる。
一方、ポンプ室58の吐出口64側には、吐出した燃料の逆流を防止する逆止弁65が設けられている。図2に示すように、高圧ポンプ54から吐出された燃料は、燃料配管29を通してデリバリパイプ30に送られ、このデリバリパイプ30から各気筒の燃料噴射弁28に高圧の燃料が分配される。デリバリパイプ30には、燃圧を検出する燃圧センサ31(図1参照)が設けられ、この燃圧センサ31の出力信号がECU16に入力される。
ECU16は、ROM(記憶媒体)に記憶された燃料圧力制御プログラム(図示せず)を実行することで、エンジン運転中に燃圧センサ31で検出した燃圧が目標燃圧に一致するように流量制御弁62の閉弁開始時期(閉弁期間)をフィードバック制御して高圧ポンプ54の燃料吐出量をフィードバック制御する。尚、ECU16には、エンジン停止時間を計測するソークタイマ(図示せず)が設けられている。
また、ECU16は、ROM(記憶媒体)に記憶された図5の燃料温度推定プログラムを実行することで、燃料物性値である燃料の体積弾性係数を検出し、この体積弾性係数に基づいて燃料温度を推定すると共に、図8の燃料温度推定誤差学習プログラムを実行して燃料温度推定値の誤差(燃料温度推定誤差)を学習し、この学習値で燃料温度推定値を補正して最終的な燃料温度推定値を求める。
ここで、燃料温度の推定方法を説明する。
高圧ポンプ54から燃料噴射弁28までの燃料通路(燃料配管29とデリバリパイプ30)の容積は一定であるため、燃料温度が高くなって燃料が膨張するほど、燃料通路の燃圧が高くなるという関係がある。従って、燃料通路内の燃料量と燃圧との関係を示す燃料物性値である燃料の体積弾性係数Kも燃料温度に応じて変化する。これにより、この体積弾性係数Kから燃料温度を精度良く推定することができる(図7参照)。
高圧ポンプ54のプランジャ59は、エンジン11のカム軸60によって駆動されるため、図1乃至図3に示す4気筒エンジンでは、カム軸60の1回転当たり(720℃A当たり)、プランジャ59が2往復駆動される(360℃A毎に燃料が吐出される)。また、カム軸60の1回転当たり(720℃A当たり)、各気筒の燃料噴射弁28からそれぞれ燃料が1回ずつ噴射されるため、4気筒エンジンでは、カム軸60の1回転当たり(720℃A当たり)、4回の燃料噴射が行われる。
図6は、高圧ポンプ54の燃料吐出と各気筒の燃料噴射弁28の燃料噴射とによって生じる燃圧変化の一例を示している。高圧ポンプ54の燃料吐出毎に燃圧が上昇し、各気筒の燃料噴射毎に燃圧が低下する。高圧ポンプ54の燃料吐出中に燃料噴射弁28から燃料が噴射されなければ、高圧ポンプ54から燃料噴射弁28までの燃料通路内の燃料量が高圧ポンプ54の1ストロークの燃料吐出量Qに応じて増加するため、高圧ポンプ54の1ストロークの燃料吐出量Qに応じて燃料通路内の燃圧が上昇し、且つ、この燃圧は、燃料温度が高くなるほど高くなるという関係がある。従って、高圧ポンプ54の1ストロークの燃料吐出量Qとその吐出前後の燃圧変化量(Pt −Pi )とに基づいて算出する燃料の体積弾性係数Kも燃料温度に応じて変化するという関係がある。これにより、この体積弾性係数Kから燃料温度を精度良く推定することができる。
高圧ポンプ54の1ストロークの燃料吐出量Q[mm3 ]とその吐出前後の燃圧変化量(Pt −Pi )[MPa]と、体積弾性係数Kとの間には次式の関係が成立する。
Pt −Pi =K×Q/V ……(1)
上式において、Vは、高圧ポンプ54から燃料噴射弁28までの燃料通路(燃料配管29とデリバリパイプ30)の容積である(以下、この容積を「デリバリ容積」という)。
上記(1)式を変形すると、次式が導き出される。
K=(Pt −Pi )×V/Q ……(2)
この(2)式において、デリバリ容積Vは、燃料系の設計データ等から容易に計算することができるため、高圧ポンプ54の1ストロークの燃料吐出量Qとその吐出前後の燃圧変化量(Pt −Pi )を検出すれば、上記(2)式を用いて体積弾性係数Kを算出することができる。ここで、高圧ポンプ54の1ストロークの燃料吐出量Qは、燃料吐出行程中の流量制御弁62の閉弁期間(図4の有効ストローク)の制御データを用いて算出すれば良い。具体的には、予め、高圧ポンプ54の設計データ等を用いて、高圧ポンプ54の1ストロークの燃料吐出量Qと流量制御弁62の閉弁期間(閉弁開始時期)との関係をマップ化又は数式化してECU16のROMに記憶しておき、このマップ又は数式を用いて、その時点の流量制御弁62の閉弁期間(閉弁開始時期)に応じた燃料吐出量Qを算出すれば良い。
また、上記(2)式において、吐出前後の燃圧変化量(Pt −Pi )は、燃圧センサ31の検出値から算出すれば良い。
この場合、上記(2)式を用いて1回の燃料吐出行程のみによって体積弾性係数Kを算出するようにしても良いが、体積弾性係数Kの精度を向上させるために、複数回の燃料吐出行程における平均的な体積弾性係数Kを次式により算出するようにしても良い。
K=∫(Pt −Pi )×V/∫Q ……(3)
(∫:積分記号)
この体積弾性係数Kと燃料温度との間には、図7に示すようなリニアな関係が成立するため、体積弾性係数Kと燃料温度との関係を予め実験や計算等で求めてマップ又は数式を作成しておけば、上記(2)式又は(3)式で算出した体積弾性係数Kから燃料温度を推定することができる。
ところで、燃料性状によって燃料の揮発性が変化して燃圧が変化するため、燃料通路内の燃料量と燃圧との関係を示す体積弾性係数Kも燃料性状によって変化する。従って、燃料性状の違いが燃料温度推定誤差の要因となる。その他、高圧ポンプ54の1ストロークの燃料吐出量Qも、高圧ポンプ54の特性ばらつき(製造ばらつきや制御ばらつき等)による計算誤差が生じるため、これも燃料温度推定誤差の要因となる。
そこで、この燃料温度推定誤差を次のようにして学習する。エンジン11の停止時間がある程度長くなって、エンジン11が十分に冷えた冷機状態になると、冷却水温や吸気温が燃料温度とほぼ一致する状態となる。この点に着目して、本実施例1では、図8の燃料温度推定誤差学習プログラムを実行することで、エンジン始動時に冷却水温又は吸気温が燃料温度とほぼ一致する冷間始動時であるか否かをエンジン始動前のエンジン停止時間に基づいて判定し、冷間始動時と判定したときに燃料温度推定値と当該冷間始動時の冷却水温又は吸気温との差を燃料温度推定誤差として学習する。そして、体積弾性係数Kに基づいて推定した燃料温度を燃料温度推定誤差の学習値で補正して最終的な燃料温度推定値を求める。
以上説明した燃料温度推定と燃料温度推定誤差の学習は、図5の燃料温度推定プログラムと図8の燃料温度推定誤差学習プログラムによって実行される。以下、これら各プログラムの処理内容を説明する。
図5の燃料温度推定プログラムは、エンジン運転中に所定周期で繰り返し実行される。本プログラムが起動されると、まずステップ101で、高圧ポンプ54の1ストロークの燃料吐出量Q[mm3 ]を、燃料吐出行程中の流量制御弁62の閉弁期間(有効ストローク)の制御データを用いてマップ又は数式により算出する。この際、燃料吐出量Qは、大気圧相当での体積[mm3 ]に換算して求める。
この後、ステップ102に進み、高圧ポンプ54の吐出開始直前の燃圧Pi [MPa]と吐出終了直後の燃圧Pt [MPa]を燃圧センサ31で検出して、その吐出前後の燃圧変化量(Pt −Pi )[MPa]を算出する。
この後、ステップ103に進み、次の(2)式又は(3)式を用いて、燃料の体積弾性係数Kを算出する。
K=(Pt −Pi )×V/Q ……(2)
K=∫(Pt −Pi )×V/∫Q ……(3)
ここで、デリバリ容積Vは、予め燃料系の設計データ等から計算して、その計算値をECU16のROMに記憶しておけば良い。上記ステップ101〜103の処理は、特許請求の範囲でいう物性値検出手段として機能する。
体積弾性係数Kの算出後、ステップ104に進み、図7のマップを用いて、上記ステップ103で算出した体積弾性係数Kに対応する燃料温度推定ベース値を算出する。この後、ステップ105に進み、図8の燃料温度推定誤差学習プログラムによって学習された燃料温度推定誤差の学習値Gt を燃料温度推定ベース値に加算して最終的な燃料温度推定値Te を求める。これらステップ104、105の処理は、特許請求の範囲でいう燃料温度推定手段として機能する。
この後、ステップ106に進み、燃料温度推定値Te によって燃料系の制御量(例えば、燃料噴射量、ポンプ吐出量[流量制御弁62の閉弁期間]、目標燃料圧力、目標空燃比等)を補正する。
一方、図8の燃料温度推定誤差学習プログラムは、エンジン始動時に起動され、特許請求の範囲でいう学習手段として機能する。本プログラムが起動されると、エンジン始動前のエンジン停止時間(ソークタイマの計測時間)が所定時間よりも長いか否かで、エンジン始動時に冷却水温又は吸気温が燃料温度とほぼ一致する冷間始動時であるか否かを判定する。その結果、エンジン停止時間が所定時間よりも短い(冷間始動時ではない)と判定された場合には、燃料温度推定誤差の学習処理(ステップ202)を行わずに、本プログラムを終了する。
これに対して、上記ステップ201で、エンジン停止時間が所定時間よりも長い(冷間始動時である)と判定された場合には、ステップ202に進み、前記図5の燃料温度推定プログラムによって算出されたエンジン始動直後の燃料温度推定値Te と冷却水温センサ10(又は吸気温センサ9)で検出したエンジン始動時の冷却水温Tst(又は吸気温)との差を燃料温度推定誤差の学習値Gt として求める。
Gt =Tst−Te
この燃料温度推定誤差の学習値Gt は、ECU16のバックアップRAM(図示せず)に更新記憶される。これにより、エンジン運転中は、バックアップRAMに記憶された最新の学習値Gt を用いて燃料温度を推定する。この学習値Gt は、その後の始動時に更新されるまで、エンジン停止中もバックアップRAMに保持される。
以上説明した本実施例1では、高圧ポンプ54のプランジャ59の1ストロークの燃料吐出量とその吐出前後の燃料圧力変化量とに基づいて燃料の体積弾性係数を算出し、この体積弾性係数に基づいて燃料温度を推定するようにしたので、エンジン停止中の放熱具合(エンジン停止時間)、エンジン運転状態、走行速度(走行風の強さ)、燃料タンク51の燃料残量等の影響を受けずに、燃料温度を精度良く推定することができる。一般に、高圧ポンプ54を備えたシステムでは、燃圧を制御するために燃圧センサ31が搭載されているため、新たなセンサを設けなくても、高圧ポンプの1ストロークの吐出前後の燃料圧力変化量を検出することができる。また、高圧ポンプ54の1ストロークの燃料吐出量は、高圧ポンプ54の設計データ等から容易に計算することができる。
しかも、本実施例1では、エンジン停止時間がある程度長くなって、エンジン11が十分に冷えた冷機状態になると、冷却水温や吸気温が燃料温度とほぼ一致する状態となるという点に着目して、エンジン始動前のエンジン停止時間(ソークタイマの計測時間)が所定時間よりも長いか否かで、エンジン始動時に冷却水温又は吸気温が燃料温度とほぼ一致する冷間始動時であるか否かを判定し、冷間始動時と判定したときに燃料温度推定値と当該冷間始動時の冷却水温(又は吸気温)との差を燃料温度推定誤差として学習するようにしたので、燃料性状や高圧ポンプ54の特性ばらつき等による燃料温度推定誤差を排除することができ、燃料温度の推定精度を更に高めることができると共に、冷間始動毎に燃料温度推定誤差を精度良く学習することができる。
尚、本実施例1では、体積弾性係数に基づいて推定した燃料温度推定ベース値を燃料温度推定誤差の学習値で補正して最終的な燃料温度推定値を求めるようにしたが、燃料温度推定誤差の学習値に応じて体積弾性係数と燃料温度との関係(マップ又は数式)を補正して、燃料温度を推定するようにしても良い。
上記実施例1で説明した図8の燃料温度推定誤差学習プログラムでは、エンジン始動前のエンジン停止時間(ソークタイマの計測時間)が所定時間よりも長いか否かで、エンジン始動時に冷却水温又は吸気温が燃料温度とほぼ一致する冷間始動時であるか否かを判定するようにしたが、本発明の実施例2では、エンジン始動時に図9の燃料温度推定誤差学習プログラムを実行することで、最初のステップ301で、冷却水温と吸気温との差が所定値以内で、且つ、冷却水温が所定値以下であるか否かで、エンジン始動時に冷却水温又は吸気温が燃料温度とほぼ一致する冷間始動時であるか否かを判定する。尚、ステップ302の処理は、図8のステップ202の処理と同じである。
以上説明した本実施例2においても、前記実施例1と同じく、冷間始動毎に燃料温度推定誤差を精度良く学習することができる。
尚、外気温を検出する外気温センサを搭載した車両では、上記ステップ301において、吸気温の代わりに外気温を用いても良い。
また、燃料温度推定値によって燃料系の制御量(例えば、燃料噴射量、ポンプ吐出量、目標燃料圧力、目標空燃比等)を補正するシステムにおいては、燃料温度推定誤差が空燃比のずれ(燃料噴射量のずれ)として現れるため、空燃比のずれから燃料温度推定誤差を算出して学習するようにしても良い。
尚、本発明は、高圧ポンプを備えた筒内噴射式の内燃機関に限定されず、制御燃圧が低い吸気ポート噴射式の内燃機関にも適用して実施でき、また、体積弾性係数以外の燃料物性値を用いるようにしても良い等、種々変更して実施することができる。
本発明の実施例1におけるエンジン制御システム全体の概略構成図である。 燃料供給装置の概略構成図である。 高圧ポンプの構成図である。 流量制御弁、高圧ポンプの挙動を示すタイムチャートである。 実施例1の燃料温度推定プログラムの処理の流れを示すフローチャートである。 各気筒の燃料噴射と高圧ポンプの燃料吐出とによって生じる燃圧変化の一例を示すタイムチャートである。 燃料の体積弾性係数Kをパラメータとする燃料温度のマップを説明する図である。 実施例1の燃料温度推定誤差学習プログラムの処理の流れを示すフローチャートである。 実施例2の燃料温度推定誤差学習プログラムの処理の流れを示すフローチャートである。
符号の説明
11…エンジン(内燃機関)、16…ECU(物性値検出手段,燃料温度推定手段,学習手段)、28…燃料噴射弁、31…燃圧センサ、50…燃料供給装置、51…燃料タンク、52…低圧ポンプ、54…高圧ポンプ、58…ポンプ室、59…プランジャ、60…カム軸、61…カム、62…流量制御弁、63…吸入口、64…吐出口、65…逆止弁、66…弁体、67…スプリング、68…ノレノイド。

Claims (6)

  1. 燃料系のポンプから燃料噴射弁へ吐出される燃料の温度を推定する燃料温度推定装置において、
    前記ポンプから吐出される燃料の温度に依存する燃料物性値を検出する物性値検出手段と、
    前記物性値検出手段で検出した燃料物性値に基づいて燃料温度を推定する燃料温度推定手段と
    を備えていることを特徴とする燃料温度推定装置。
  2. 前記物性値検出手段は、前記ポンプから前記燃料噴射弁までの燃料通路内の燃料量と燃料圧力との関係を示す燃料物性値を検出することを特徴とする請求項1に記載の燃料温度推定装置。
  3. 前記ポンプは、内燃機関の動力によって駆動されて燃料を高圧に加圧して吐出する高圧ポンプであり、
    前記物性値検出手段は、前記高圧ポンプのプランジャの1ストロークの燃料吐出量とその吐出前後の燃料圧力変化量とに基づいて前記燃料物性値として燃料の体積弾性係数を算出することを特徴とする請求項1又は2に記載の燃料温度推定装置。
  4. 前記燃料温度推定手段で推定した燃料温度推定値の誤差(以下「燃料温度推定誤差」という)を学習する学習手段を備え、
    前記燃料温度推定手段は、前記物性値検出手段で検出した燃料物性値と前記燃料温度推定誤差の学習値とに基づいて燃料温度を推定することを特徴とする請求項1乃至3のいずれかに記載の燃料温度推定装置。
  5. 前記学習手段は、内燃機関の始動時に冷却水温又は吸気温が燃料温度とほぼ一致する冷間始動時であるか否かを判定し、冷間始動時と判定したときに前記燃料温度推定手段で推定した燃料温度推定値と当該冷間始動時の冷却水温又は吸気温との差を燃料温度推定誤差として学習することを特徴とする請求項4に記載の燃料温度推定装置。
  6. 前記燃料温度推定手段は、前記燃料物性値に基づいて推定した燃料温度を前記燃料温度推定誤差の学習値で補正して最終的な燃料温度推定値を求めることを特徴とする請求項4又は5に記載の燃料温度推定装置。
JP2003281274A 2003-07-28 2003-07-28 燃料温度推定装置 Pending JP2005048659A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003281274A JP2005048659A (ja) 2003-07-28 2003-07-28 燃料温度推定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003281274A JP2005048659A (ja) 2003-07-28 2003-07-28 燃料温度推定装置

Publications (1)

Publication Number Publication Date
JP2005048659A true JP2005048659A (ja) 2005-02-24

Family

ID=34266836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281274A Pending JP2005048659A (ja) 2003-07-28 2003-07-28 燃料温度推定装置

Country Status (1)

Country Link
JP (1) JP2005048659A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7401602B2 (en) * 2003-09-18 2008-07-22 Toyota Jidosha Kabushiki Kaisha Method of estimating state quantity or temperature of gas mixture for internal combustion engine
JP2008240532A (ja) * 2007-03-26 2008-10-09 Hitachi Ltd 高圧燃料系の制御装置
CN101929395A (zh) * 2009-06-19 2010-12-29 株式会社电装 数据存储装置
US20110100329A1 (en) * 2008-07-03 2011-05-05 Hui Li Method for determining a fuel temperature in an injection system
JP2011179512A (ja) * 2011-06-20 2011-09-15 Denso Corp 燃料温度検出装置
CN102345525A (zh) * 2010-07-22 2012-02-08 株式会社电装 燃料温度确定装置
JP2012255376A (ja) * 2011-06-08 2012-12-27 Mitsubishi Motors Corp 外気温推定装置
EP2930340A4 (en) * 2012-12-10 2016-07-27 Volvo Truck Corp DEVICE FOR ESTIMATING FUEL TEMPERATURE
KR20190094450A (ko) * 2016-12-19 2019-08-13 씨피티 그룹 게엠베하 연료의 검출을 행하는 내연 기관을 작동시키기 위한 방법
CN113700568A (zh) * 2020-05-21 2021-11-26 丰田自动车株式会社 燃温推定系统

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7401602B2 (en) * 2003-09-18 2008-07-22 Toyota Jidosha Kabushiki Kaisha Method of estimating state quantity or temperature of gas mixture for internal combustion engine
JP2008240532A (ja) * 2007-03-26 2008-10-09 Hitachi Ltd 高圧燃料系の制御装置
EP1975398B1 (en) * 2007-03-26 2017-08-16 Hitachi, Ltd. Control device for high-pressure fuel system
US20110100329A1 (en) * 2008-07-03 2011-05-05 Hui Li Method for determining a fuel temperature in an injection system
US8285471B2 (en) 2009-06-19 2012-10-09 Denso Corporation Data storage device
CN101929395A (zh) * 2009-06-19 2010-12-29 株式会社电装 数据存储装置
JP2011001917A (ja) * 2009-06-19 2011-01-06 Denso Corp データ記憶装置
JP2012026343A (ja) * 2010-07-22 2012-02-09 Denso Corp 燃料温度検出装置
CN102345525A (zh) * 2010-07-22 2012-02-08 株式会社电装 燃料温度确定装置
JP2012255376A (ja) * 2011-06-08 2012-12-27 Mitsubishi Motors Corp 外気温推定装置
JP2011179512A (ja) * 2011-06-20 2011-09-15 Denso Corp 燃料温度検出装置
EP2930340A4 (en) * 2012-12-10 2016-07-27 Volvo Truck Corp DEVICE FOR ESTIMATING FUEL TEMPERATURE
US9970827B2 (en) 2012-12-10 2018-05-15 Volvo Truck Corporation Fuel temperature estimation device
KR20190094450A (ko) * 2016-12-19 2019-08-13 씨피티 그룹 게엠베하 연료의 검출을 행하는 내연 기관을 작동시키기 위한 방법
CN110121589A (zh) * 2016-12-19 2019-08-13 世倍特集团有限责任公司 具有燃料识别功能的用于运行内燃机的方法
KR102197168B1 (ko) 2016-12-19 2020-12-31 씨피티 그룹 게엠베하 연료의 검출을 행하는 내연 기관을 작동시키기 위한 방법
US11053867B2 (en) 2016-12-19 2021-07-06 Vitesco Technologies GmbH Method for operating an internal combustion engine with a fuel detection
CN113700568A (zh) * 2020-05-21 2021-11-26 丰田自动车株式会社 燃温推定系统
CN113700568B (zh) * 2020-05-21 2023-09-26 丰田自动车株式会社 燃温推定系统

Similar Documents

Publication Publication Date Title
EP2151554B1 (en) Deterioration determination device and method for exhaust emission reduction device
JP4826560B2 (ja) 内燃機関の燃料性状検出装置
US7841316B2 (en) Controller for direct injection engine
US8512531B2 (en) Gas concentration detection apparatus
JP2007032333A (ja) 内燃機関の制御装置
JP2005307747A (ja) 内燃機関の燃料供給装置
US10316781B2 (en) Engine system and control method for engine system
US7971571B2 (en) Operation control method on the basis of ion current in internal combustion engine
JP2011052670A (ja) 内燃機関の燃料噴射装置
JP2010127257A (ja) セタン価判定装置
JP4815407B2 (ja) 内燃機関の運転制御装置
JP2005048659A (ja) 燃料温度推定装置
JP2009250075A (ja) 燃料噴射量制御装置及び燃料噴射システム
JP3610894B2 (ja) 内燃機関の高圧燃料供給システムの異常診断装置
JP2001207897A (ja) ディーゼルエンジンの燃料噴射量異常検出装置及び燃料噴射量補正装置
US6729305B2 (en) Fuel injection amount control apparatus and method for internal combustion engine
JP2007077892A (ja) 内燃機関の制御装置
JP3948294B2 (ja) 燃料噴射装置
JP4792453B2 (ja) 吸入空気量検出装置
JP4462032B2 (ja) 内燃機関の燃料噴射制御装置
JP2013253508A (ja) 筒内噴射式内燃機関の燃料供給装置
JP2014214676A (ja) 内燃機関の制御装置
JP4415506B2 (ja) 内燃機関の大気圧学習装置
JP4576884B2 (ja) 内燃機関の制御装置および制御方法
US11828244B2 (en) Fuel injection control method and device for internal combustion engine