JP3610894B2 - 内燃機関の高圧燃料供給システムの異常診断装置 - Google Patents

内燃機関の高圧燃料供給システムの異常診断装置 Download PDF

Info

Publication number
JP3610894B2
JP3610894B2 JP2000233159A JP2000233159A JP3610894B2 JP 3610894 B2 JP3610894 B2 JP 3610894B2 JP 2000233159 A JP2000233159 A JP 2000233159A JP 2000233159 A JP2000233159 A JP 2000233159A JP 3610894 B2 JP3610894 B2 JP 3610894B2
Authority
JP
Japan
Prior art keywords
fuel
fuel pressure
pressure
abnormality diagnosis
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000233159A
Other languages
English (en)
Other versions
JP2002047983A (ja
Inventor
修 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000233159A priority Critical patent/JP3610894B2/ja
Priority to DE10136706.6A priority patent/DE10136706B4/de
Publication of JP2002047983A publication Critical patent/JP2002047983A/ja
Application granted granted Critical
Publication of JP3610894B2 publication Critical patent/JP3610894B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料タンクから汲み上げられた燃料を高圧ポンプで高圧に加圧して燃料噴射弁に圧送する高圧燃料供給システムの異常の有無を判定する内燃機関の高圧燃料供給システムの異常診断装置に関するものである。
【0002】
【従来の技術】
例えば、気筒内に燃料を直接噴射する筒内噴射式エンジンは、燃焼性を確保するために、噴射圧力を高圧にして噴射燃料を微粒化する必要がある。そのため、筒内噴射エンジンでは、燃料タンクから低圧ポンプで汲み上げた燃料を高圧ポンプで高圧に加圧して燃料噴射弁へ圧送するようにしている。この高圧ポンプは、大きな駆動力を必要とするため、エンジンのカム軸に嵌着されたカムにより高圧ポンプのピストンを往復運動させることで燃料を圧送するようにしている。このような高圧燃料供給システムでは、燃料噴射弁に供給する燃料の圧力(以下「燃圧」と略記する)を燃圧センサで検出し、その検出燃圧に基づいて高圧ポンプの吐出量をフィードバック制御することで、燃圧を目標燃圧に制御するようにしている。尚、高圧ポンプの吐出量の制御は、高圧ポンプの吐出行程時に吸入口側の燃圧制御弁の閉弁時間を制御することで行うようにしたものが多い。
【0003】
このような高圧燃料供給システムにおいても、異常診断機能(ダイアグノーシス)を搭載したものがある。例えば、特許第2844881号公報では、高圧ポンプの吐出量指令値が正常時に越えることのない値よりも大きくなったときに、異常と判定するようにしている。
【0004】
また、特開平10−89135号公報では、噴射時期を挟まない2つの時期に燃圧を検出し、その燃圧の偏差と燃料圧送指令量とに基づいて高圧燃料供給システムの異常の有無を判定するようにしている。
【0005】
【発明が解決しようとする課題】
しかし、前者(特許第2844881号公報)の異常診断方法では、例えば、高圧ポンプの吐出量指令値が正常範囲の上限付近(又は下限付近)に張り付いた状態が長時間続いているにも拘らず、実燃圧が目標燃圧からずれた状態が長時間続くような異常が発生した場合でも、高圧ポンプの吐出量指令値が正常時に越えることのない値よりも大きくならない限り、異常を検出することができない。例えば、高圧燃料供給システムから燃料が少しずつ漏れる場合や、燃圧センサの経時劣化等により燃圧センサの検出精度が悪化した場合、或は、一部の気筒の燃料噴射弁が異常になった場合等は、高圧ポンプの吐出量指令値が正常時に越えることのない値よりも大きくなるとは限らないため、異常を検出できない可能性がある。
【0006】
また、後者(特開平10−89135号公報)の異常診断方法では、噴射時期を挟まない2つの時期の燃圧の偏差を異常診断パラメータとして用いるが、噴射時期を挟まない2つの時期の間隔は非常に短いため、例えば、燃料が少しずつ漏れても、それを燃圧の偏差として検出することができない可能性が高い。要するに、この異常診断方法では、短時間で燃圧が急激に変化するような異常しか検出することができない。
【0007】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、従来の異常診断方法では検出できなかった異常も検出することが可能となり、高圧燃料供給システムの異常診断の信頼性を向上させることができる内燃機関の高圧燃料供給システムの異常診断装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1の内燃機関の高圧燃料供給システムの異常診断装置は、所定期間の高圧ポンプの吐出量の指令値と燃料噴射量の指令値(要求噴射量)とをそれぞれ積算手段により積算し、高圧ポンプの吐出量積算値と燃料噴射量積算値との比較値と燃圧センサで検出した燃圧とに基づいて高圧燃料供給システムの異常の有無を異常診断手段により判定する。例えば、高圧ポンプの吐出量積算値と燃料噴射量積算値とが同一であれば、高圧ポンプから燃料噴射弁までの燃料配管内に流入する燃料量と流出する燃料量とが同一になるため、高圧ポンプの異常や燃料漏れ等の異常が無ければ、高圧ポンプの吐出側の燃料配管内の総燃料量が一定に保たれて燃圧も一定に保たれる。また、高圧ポンプの吐出量積算値が燃料噴射量積算値よりも多くなると、高圧ポンプの異常や燃料漏れ等の異常が無ければ、高圧ポンプの吐出側の燃料配管内の総燃料量が増加して燃圧が上昇する。反対に、高圧ポンプの吐出量積算値が燃料噴射量積算値よりも少なくなると、高圧ポンプの異常や燃料噴射弁の噴射不良等が無ければ、燃料配管内の総燃料量が減少して燃圧が低下する。従って、高圧ポンプの吐出量積算値と燃料噴射量積算値との比較値(大小関係)は、正常時の実燃圧の挙動を推定するパラメータとなるため、この比較値と燃圧センサの検出燃圧とを異常診断パラメータとして用いることで、従来の異常診断方法では検出できなかった様々な異常を精度良く検出することができ、高圧燃料供給システムの異常診断の信頼性を向上させることができる。
【0009】
ところで、内燃機関の停止中は、高圧ポンプも停止して、燃料配管内の燃圧を高圧に保つことができないため、内燃機関の停止中に燃圧が低下する。従って、始動時には、燃圧が低い状態から昇圧され、しかも、始動時には、機関回転速度(高圧ポンプの回転速度)が低く、単位時間当たりの燃料吐出量が少ないにも拘らず、燃料噴射量が比較的多いため、高圧燃料供給システムが正常な場合でも、始動時には燃圧(燃圧センサの検出燃圧)の変動が大きくなる。このため、始動時の高圧ポンプの吐出量積算値と燃料噴射量積算値との比較値から始動時の燃圧の挙動を精度良く推定することは困難である。また、加速時、高負荷時等には、燃料噴射量が多くなり、燃料噴射量積算値等の誤差が大きくなる。従って、始動時や燃料噴射量が多いときに、高圧燃料供給システムの異常診断を実施すると、燃圧の推定精度が低下して異常診断精度が低下するおそれがある。
【0010】
そこで、請求項2のように、内燃機関の始動時及び/又は燃料噴射量の指令値(要求噴射量)が所定値以上となる運転状態の時には、異常診断を異常診断禁止手段によって禁止するようにすると良い。このようにすれば、燃圧の推定精度が低下すると予想される運転状態の時に、高圧燃料供給システムの異常診断を禁止することができ、異常診断の信頼性を更に向上させることができる。
【0011】
前述したように、高圧ポンプの吐出量積算値と燃料噴射量積算値との大小関係(両者の差がプラス値かマイナス値か)によって正常時の燃圧の変化方向が分かり、両者の差の絶対値によって正常時の燃圧の変化幅を推定できる。この関係を利用して、請求項3のように、高圧ポンプの吐出量積算値と燃料噴射量積算値との差から燃圧を推定し、その推定燃圧が燃圧センサで検出した燃圧よりも所定値以上高い場合は高圧燃料供給システムの燃料漏れと判定するようにしても良い。つまり、高圧燃料供給システムが正常であれば、高圧ポンプの吐出量積算値と燃料噴射量積算値との差から推定した燃圧が実際の燃圧(実燃圧)とほぼ一致するが、推定燃圧が実燃圧よりも所定値(正常時の少なくとも最大誤差範囲)以上高ければ、実燃圧が何等かの原因で異常低下したものと判断でき、実燃圧が異常低下する原因としては、燃料漏れが考えられる。燃料漏れが発生すると、燃料配管内の総燃料量が減少して燃圧が低下するためである。
【0012】
また、請求項4のように、高圧ポンプの吐出量積算値と燃料噴射量積算値との差から推定した燃圧が燃圧センサで検出した燃圧よりも所定値以上高い場合(つまり推定燃圧と燃圧センサの検出燃圧との関係から実燃圧が低下していると推定される場合)に、空燃比が目標空燃比よりもリッチ側にずれているときは、燃圧センサの出力(検出燃圧)の異常低下と判定するようにしても良い。つまり、燃料噴射量の指令値(要求噴射量)は、実燃圧が目標燃圧に制御されていることを前提にして決定されるため、実燃圧が低下すれば、その分、実際の燃料噴射量が不足して空燃比が目標空燃比よりもリーン側にずれるのが正常な状態である。従って、推定燃圧と燃圧センサの検出燃圧との関係から実燃圧が低下していると推定されるにも拘らず、空燃比が目標空燃比よりもリッチ側にずれるということは、実際には、実燃圧が上昇していることを意味する。このような状態は、実燃圧が上昇していることを検出できない状態、つまり燃圧センサの出力(検出燃圧)が異常低下している状態になっていることを意味する。従って、推定燃圧と燃圧センサの検出燃圧との関係から実燃圧が低下していると推定されるにも拘らず、空燃比が目標空燃比よりもリッチ側にずれるときは、燃圧センサの出力の異常低下と判定することができる。
【0013】
また、請求項5のように、高圧ポンプの吐出量積算値と燃料噴射量積算値との差から推定した燃圧が燃圧センサで検出した燃圧よりも所定値以上低い場合に、空燃比が目標空燃比よりもリーン側にずれているときは、燃圧センサの出力(検出燃圧)の異常上昇と判定するようにしても良い。つまり、推定燃圧が燃圧センサの検出燃圧よりも所定値以上低い場合は、実燃圧が上昇していると推定されるが、空燃比が目標空燃比よりもリーン側にずれるということは、実際には、実燃圧が低下していることを意味する。このような状態は、実燃圧が低下していることを検出できない状態、つまり燃圧センサの出力(検出燃圧)が異常上昇している状態になっていることを意味する。従って、推定燃圧と燃圧センサの検出燃圧との関係から実燃圧が上昇していると推定されるのに、空燃比が目標空燃比よりもリーン側にずれるときは、燃圧センサの出力の異常上昇と判定することができる。
【0014】
また、請求項6のように、高圧ポンプの吐出量積算値と燃料噴射量積算値との差から推定した燃圧が燃圧センサで検出した燃圧よりも所定値以上低い場合に、内燃機関のトルク変動量が所定値以上のときは、燃料噴射弁の異常と判定するようにしても良い。つまり、推定燃圧が燃圧センサの検出燃圧よりも所定値以上低い場合は、実燃圧が上昇していると推定されるが、実燃圧が上昇する原因の1つとして、燃料噴射弁の噴射不良によって実際の燃料噴射量が要求噴射量よりも少なくなっていることが考えられる。もし、一部の気筒の燃料噴射弁が異常になると、内燃機関のトルク変動量が大きくなる現象が発生するため、推定燃圧と燃圧センサの検出燃圧との関係から実燃圧が上昇していると推定される場合に、トルク変動量が大きいときは、燃料噴射弁の異常と判定することができる。
【0015】
また、請求項7のように、内燃機関の停止時間が所定時間以上経過してから内燃機関を始動する時に、燃圧センサの検出燃圧が所定範囲から外れている場合は、燃圧センサの異常と判定するようにしても良い。前述したように、内燃機関の停止中は、燃圧が時間の経過と共に燃圧が低下するため、内燃機関の停止時間がある程度長くなると、燃圧が大気圧付近まで低下する。従って、内燃機関の停止時間がある程度経過してから始動する場合は、始動時の燃圧が大気圧付近から上昇することになる。このような場合に、始動時の燃圧センサの検出燃圧が大気圧付近の所定範囲から外れている場合には、燃圧センサの異常と判定することができる。
【0016】
この場合、内燃機関の停止時間はタイマにより測定しても良いが、この場合は内燃機関の停止中にタイマを動作させるための電源を供給する必要がある。
そこで、請求項8のように、内燃機関の停止時間が所定時間以上経過したか否かを内燃機関の前回の停止時の冷却水温と今回の始動時の冷却水温との温度差に基づいて判定するようにしても良い。つまり、内燃機関の停止中は、時間の経過と共に冷却水温が放熱により低下するため、前回の停止時の冷却水温と今回の始動時の冷却水温との温度差を見れば、内燃機関の停止時間をタイマで測定しなくても、内燃機関の停止時間が所定時間以上経過したか否かを判定することができる。
【0017】
また、請求項9のように、今回の始動時の燃圧センサの検出燃圧が前回の停止時の検出燃圧よりも所定値以上高い場合は、燃圧センサの異常と判定するようにしても良い。前述したように、内燃機関の停止中は燃圧が低下するため、今回の始動時の実燃圧が前回の停止時の実燃圧より高くなることは起こり得ない。従って、今回の始動時の検出燃圧が前回の停止時の検出燃圧よりも所定値(少なくとも検出誤差)以上高い場合は、燃圧センサの異常と判定することができる。
【0018】
【発明の実施の形態】
[実施形態(1)]
以下、本発明を筒内噴射式内燃機関に適用した実施形態(1)を図1乃至図6に基づいて説明する。
【0019】
まず、図1に基づいてエンジン制御系システム全体の概略構成を説明する。筒内噴射式内燃機関である筒内噴射式エンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、ステップモータ14によって開度調節されるスロットルバルブ15が設けられている。ステップモータ14がエンジン電子制御回路(以下「エンジンECU」と表記する)16からの出力信号に基づいて駆動されることで、スロットルバルブ15の開度(スロットル開度)が制御され、そのスロットル開度に応じて各気筒ヘの吸入空気量が調節される。スロットルバルブ15の近傍には、スロットル開度を検出するスロットルセンサ17が設けられている。
【0020】
このスロットルバルブ15の下流側には、サージタンク19が設けられ、このサージタンク19に、エンジン11の各気筒に空気を導入する吸気マニホールド20が接続されている。各気筒の吸気マニホールド20内には、それぞれ第1吸気路21と第2吸気路22が仕切り形成され、これら第1吸気路21と第2吸気路22が、エンジン11の各気筒に形成された2つの吸気ポート23にそれぞれ連結されている。各気筒の第2吸気路22内には、スワールコントロール弁24が配置されている。各気筒のスワールコントロール弁24は、共通のシャフト25を介してステップモータ26に連結されている。このステップモータ26がECU16からの出力信号に基づいて駆動されることで、スワールコントロール弁24の開度が制御され、その開度に応じて各気筒内のスワール流強度が調整される。ステップモータ26には、スワールコントロール弁24の開度を検出するスワールコントロール弁センサ27が取り付けられている。
【0021】
また、エンジン11の各気筒の上部には、燃料を筒内に直接噴射する燃料噴射弁28が取り付けられている。各気筒の燃料噴射弁28には、後述する高圧燃料供給システム50によって高圧の燃料が供給される。
【0022】
更に、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ(図示せず)が取り付けられ、各点火プラグの点火によって燃焼室内の混合気が着火される。また、気筒判別センサ32は、特定気筒が吸気上死点に達した時に気筒判別信号パルスを出力し、クランク角センサ33は、エンジン11のクランクシャフトが所定クランク角(例えば30℃A)回転する毎にクランク角信号パルスを出力し、このクランク角信号の出力周波数によってエンジン回転速度Neが検出される。更に、このクランク角信号と気筒判別信号によって、クランク角の検出や気筒判別が行われる。
【0023】
一方、エンジン11の排気ポート35には、排気マニホールド36を介して排気管37が接続されている。この排気管37には、理論空燃比付近で排気を効率良く浄化する三元触媒38とNOx吸蔵型のリーンNOx触媒39とが直列に配置されている。このリーンNOx触媒39は、排気中の酸素濃度が高いリーン運転中に、排気中のNOxを吸着し、空燃比がリッチに切り換えられて排気中の酸素濃度が低下した時に、吸着したNOxを還元浄化して放出する。このリーンNOx触媒39の下流側には、リーンNOx触媒39から流出する排気中のNOx濃度を検出するNOx濃度センサ(図示せず)が設置され、排気中のNOx濃度から推定したリーンNOx触媒39のNOx吸着量が所定値より多くなった時に一時的に空燃比がリーンからリッチに切り換えられる。
【0024】
また、排気管37のうちの三元触媒38の上流側とサージタンク19との間には、排気の一部を還流させるEGR配管40が接続され、このEGR配管40の途中に、EGR量(排気還流量)を制御するEGR弁41が設けられている。また、アクセルペダル18には、アクセル開度を検出するアクセルセンサ42が設けられている。
【0025】
次に、各気筒の燃料噴射弁28に高圧の燃料を供給する高圧燃料供給システム50の構成を図2乃至図4に基づいて説明する。燃料を貯留する燃料タンク51内には、燃料を汲み上げる低圧ポンプ52が設置されている。この低圧ポンプ52は、バッテリ(図示せず)を電源とする電動モータ(図示せず)によって駆動される。この低圧ポンプ52から吐出される燃料は、燃料配管53を通して高圧ポンプ54に供給される。燃料配管53には、プレッシャレギュレータ55が接続され、このプレッシャレギュレータ55によって低圧ポンプ52の吐出圧(高圧ポンプ54への燃料供給圧力)が例えば0.3MPa程度に調圧され、その圧力を越える燃料の余剰分は燃料戻し管56により燃料タンク51内に戻される。
【0026】
図3に示すように、高圧ポンプ54は、円筒状のポンプ室58内でピストン59を往復運動させて燃料を吸入/吐出するピストンポンプであり、ピストン59は、エンジン11のカム軸60に嵌着されたカム61の回転運動によって駆動され、該ピストン59のリフト量が図4に示すようにクランク角に応じて周期的に変化する。この高圧ポンプ54の吸入口63側には、電磁弁からなる燃圧制御弁62が設けられている。この燃圧制御弁62が開弁された状態で、ピストン59が下降すると、低圧ポンプ52から送られてくる燃料がポンプ室58内に吸入される。また、燃圧制御弁62が開弁された状態で、ピストン59が上昇すると、ポンプ室58内の燃料が低圧ポンプ52側に戻されるが、このようなピストン59の上昇中に、燃圧制御弁62が閉弁されると、ポンプ室58内の燃料が燃料配管45を通して燃料噴射弁28側に圧送される。従って、ピストン59の上昇中に、燃圧制御弁62の閉弁時間を制御することで、高圧ポンプ54から燃料噴射弁28側への燃料吐出量(図4中の斜線部分)を制御し、それによって、燃料噴射弁28に供給する燃料の圧力(燃圧)を制御する。この場合、燃圧を上昇させるときには燃圧制御弁62の閉弁時間を長くし、逆に、燃圧を低下させるときには燃圧制御弁62の閉弁時間を短くする。
【0027】
一方、高圧ポンプ54の吐出口64側には、吐出した燃料の逆流を防止する逆止弁65が設けられている。高圧ポンプ54から吐出された燃料は、燃料配管45を通してデリバリパイプ29に送られ、このデリバリパイプ29からエンジン11のシリンダヘッドに気筒毎に取り付けられた燃料噴射弁28に高圧の燃料が分配される。高圧ポンプ54の吐出口64側の燃料配管45には、燃圧を検出する燃圧センサ30が設けられ、この燃圧センサ30の出力信号(検出燃圧)がECU16に入力される。
【0028】
このECU16は、マイクロコンピュータを主体として構成され、内蔵のROM(記憶媒体)に記憶された燃圧制御プログラム(図示せず)を実行することで、燃圧センサ30の検出燃圧を目標燃圧に一致させるように高圧ポンプ54の燃圧制御弁62の閉弁時間(燃料噴射弁28への燃料吐出量)をフィードバック制御する燃圧制御手段として機能する。更に、ECU16は、エンジン回転速度、吸気管圧力(又は吸入空気量)、冷却水温等のエンジン運転状態を検出する前記各種センサの出力信号を読み込み、エンジン制御用の各種プログラム(図示せず)に従って、前述したステップモータ14,26、EGR弁41、燃料噴射弁28、点火プラグの動作を制御し、吸入空気量(スロットル開度)、スワール流強度(スワールコントロール弁24の開度)、EGR量(EGR弁41の開度)、燃料噴射量、噴射時期(燃焼モード)、点火時期等を制御する。
【0029】
例えば、低・中負荷運転時には、空燃比がリーンとなるように少量の燃料を圧縮行程で噴射し、点火プラグの近傍に成層混合気を形成して成層燃焼させることで、燃費を向上させる(成層燃焼モード)。また、高負荷運転時には、理論空燃比付近又はそれよりも若干リッチとなるように燃料噴射量を増量し、燃料を吸気行程で噴射して均質混合気を形成して均質燃焼させることで、エンジン出力を高める(均質燃焼モード)。
【0030】
更に、ECU16は、内蔵のROM(記憶媒体)に記憶された図5の異常診断プログラムを実行することで、高圧ポンプ54の吐出量積算値ΣQp と燃料噴射量積算値Qinj との差から燃圧DPRを推定し、その推定燃圧DPRと燃圧センサ30の検出燃圧PRとのずれ量に基づいて高圧燃料供給システム50の異常の有無を判定する。このECU16の異常診断機能が特許請求の範囲でいう異常診断手段に相当する役割を果たす。以下、図5の異常診断プログラムの処理内容を説明する。
【0031】
図5の異常診断プログラムは、イグニッションスイッチ66(図2参照)のオン後に、所定時間毎又は所定クランク角毎に繰り返し実行される。本プログラムが起動されると、まず、ステップ101で、始動時であるか否かを判定し、始動時であれば、ステップ112に進み、後述するポンプ吐出量積算値ΣQp と要求噴射量積算値ΣQinj を共に0にクリアして本プログラムを終了する。この処理により、始動時には、異常診断が禁止される。このようにする理由は、始動時には、燃圧が低い状態から昇圧され、しかも、始動時には、エンジン回転速度(高圧ポンプ54の回転速度)が低く、単位時間当たりの燃料吐出量が少ないにも拘らず、燃料噴射量(要求噴射量Qinj )が比較的多いため、高圧燃料供給システム50が正常な場合でも、始動時には燃圧(燃圧センサ30の検出燃圧PR)の変動が大きくなり、異常診断精度が低下するためである。
【0032】
一方、始動時でなければ、ステップ101からステップ102に進み、燃料噴射量の指令値である要求噴射量Qinj が所定値Aよりも多いか否かを判定し、要求噴射量Qinj が所定値Aよりも多ければ、ステップ112に進み、ポンプ吐出量積算値ΣQp と要求噴射量積算値ΣQinj を共に0にクリアして本プログラムを終了する。この処理により、始動時の場合と同じく、要求噴射量Qinj が所定値Aよりも多い場合も、異常診断が禁止される。このようにする理由は、要求噴射量Qinj が所定値Aよりも多い場合は、燃料噴射量が多いために、積算値ΣQp ,ΣQinj の誤差が大きくなり、燃圧の推定精度が低下するためである。尚、ステップ101,102,112の処理が特許請求の範囲でいう異常診断禁止手段としての役割を果たす。
【0033】
本実施形態(1)では、異常診断実行条件は、▲1▼始動時でないこと(ステップ101で「No」)、▲2▼要求噴射量Qinj が所定値A以下であること(ステップ102で「No」)であり、これら2つの条件▲1▼,▲2▼が満たされたときに、異常診断実行条件が成立して、ステップ103以降の異常診断処理を次のようにして実行する。
【0034】
まず、ステップ103で、高圧ポンプ54の今回の吐出量指令値Qp を前回までのポンプ吐出量積算値ΣQp に積算して、今回のポンプ吐出量積算値ΣQp を更新する。そして、次のステップ104で、今回の要求噴射量Qinj を前回までの要求噴射量積算値ΣQinj に積算して、今回の要求噴射量積算値ΣQinj を更新する。これらステップ103,104の処理が特許請求の範囲でいう積算手段としての役割を果たす。その後、ステップ105に進み、要求噴射量積算値ΣQinj が所定値Bを越えたか否かを判定し、越えていなければ、以降の処理を行うことなく、本プログラムを終了する。
【0035】
そして、要求噴射量積算値ΣQinj が所定値Bを越える毎に、ステップ106〜111の処理により、高圧燃料供給システム50の異常診断を次のようにして実行する。まず、ステップ106で、ポンプ吐出量積算値ΣQp と要求噴射量積算値ΣQinj との差DQを算出し、次のステップ107で、ポンプ吐出量積算値ΣQp と要求噴射量積算値ΣQinj との差DQに基づいて図6のマップから推定燃圧DPRを算出する。
【0036】
この場合、ポンプ吐出量積算値ΣQp が燃料噴射量積算値ΣQinj よりも多くなると、高圧ポンプ54の異常や燃料漏れ等の異常が無ければ、高圧ポンプ54の吐出側の燃料配管45,29内の総燃料量が増加して燃圧が上昇するという特性を考慮して、図6のマップの特性は、ポンプ吐出量積算値ΣQp と要求噴射量積算値ΣQinj との差DQが大きくなるほど(つまりポンプ吐出量積算値ΣQp が燃料噴射量積算値ΣQinj よりも多くなるほど)、推定燃圧DPRが高くなるように設定されている。
【0037】
推定燃圧DPRの算出後、ステップ108に進み、ポンプ吐出量積算値ΣQp と要求噴射量積算値ΣQinj を共にクリアし、次のステップ109で、推定燃圧DPRと燃圧センサ30の検出燃圧PRとの差の絶対値が高圧燃料供給システム50の正常時のばらつきの範囲に相当する所定範囲内(α1 <|DPR−PR|<α2 )であるか否かを判定し、所定範囲内であれば、高圧燃料供給システム50が正常であると判断して、ステップ111に進み、異常検出フラグを正常を意味する「0」にセットする。
【0038】
これに対し、推定燃圧DPRと燃圧センサ30の検出燃圧PRとの差の絶対値が所定範囲から外れている場合は、高圧燃料供給システム50の異常と判断してステップ112に進み、異常検出フラグを異常を意味する「1」にセットする。
【0039】
以上説明した本実施形態(1)によれば、ポンプ吐出量積算値ΣQp と要求噴射量積算値ΣQinj との差DQから推定燃圧DPRを算出し、この推定燃圧DPRと燃圧センサ30の検出燃圧PRとの差(ずれ量)から高圧燃料供給システム50の異常の有無を判定するようにしたので、従来の異常診断方法では検出できなかった異常も検出することが可能となり、高圧燃料供給システム50の異常診断の信頼性を向上させることができる。
【0040】
しかも、本実施形態(1)では、始動時や要求噴射量Qinj が多い場合は、実燃圧(燃圧センサ30の検出燃圧PR)の変動が大きくなったり、積算値ΣQp ,ΣQinj の誤差が大きくなり、燃圧の推定精度が低下することを考慮して、始動時や要求噴射量Qinj が多い場合に、高圧燃料供給システム50の異常診断を禁止するようにしたので、燃圧の推定精度が高いときに高圧燃料供給システム50の異常診断を行うことができ、燃圧の推定精度の低下による診断精度の低下を回避することができる。
【0041】
[実施形態(2)]
本発明の実施形態(2)では、図7に示す異常診断プログラムを実行することで、ポンプ吐出量積算値ΣQp と要求噴射量積算値ΣQinj との差DQから算出した推定燃圧DPRと燃圧センサ30の検出燃圧PRとの差が所定値α2 よりも大きい場合、つまり、推定燃圧DPRが燃圧センサ30の検出燃圧PRよりも所定値α2 以上高い場合は、次の理由により高圧燃料供給システム50の燃料漏れと判定するところに特徴がある。すなわち、高圧燃料供給システム30が正常であれば、ポンプ吐出量積算値ΣQp と要求噴射量積算値ΣQinj との差DQから算出した推定燃圧DPRが実際の燃圧(実燃圧)とほぼ一致するが、推定燃圧DPRが実燃圧よりも所定値α2 (正常時の少なくとも最大誤差)以上高ければ、実燃圧が何等かの原因で異常低下したものと判断でき、実燃圧が異常低下する原因としては、燃料漏れが考えられる。燃料漏れが発生すると、燃料配管45,29内の総燃料量が減少して燃圧が低下するためである。
【0042】
図7の異常診断プログラムにおいても、前記実施形態(1)で説明した図5の異常診断プログラムのステップ101〜108、112と全く同じ処理を行い、ポンプ吐出量積算値ΣQp と要求噴射量積算値ΣQinj との差DQから推定燃圧DPRを算出する処理等を行う。
【0043】
その後、ステップ121に進み、推定燃圧DPRと燃圧センサ30の検出燃圧PRとの差が所定値α2 よりも大きいか否かを判定する。ここで、所定値α2 は推定燃圧DPRの推定誤差と検出燃圧PRの検出誤差とを考慮して、正常時の推定燃圧DPRと検出燃圧PRとのずれ量の最大値に相当する値又はそれよりも少し大きな値に設定されている。従って、推定燃圧DPRと検出燃圧PRとの差が所定値α2 以下であれば、高圧燃料供給システム50の燃料漏れが無いと判断して、ステップ123に進み、燃料漏れ検出フラグを燃料漏れ無しを意味する「0」にセットする。
【0044】
これに対し、推定燃圧DPRと燃圧センサ30の検出燃圧PRとの差が所定値α2 よりも大きい場合は、高圧燃料供給システム50の燃料漏れが有ると判断して、ステップ122に進み、燃料漏れ検出フラグを燃料漏れ有りを意味する「1」にセットする。
【0045】
以上説明した本実施形態(2)の異常診断処理の一例を図8のタイムチャートを用いて説明する。図8(a)は要求噴射量Qinj がほぼ一定に制御されている場合の正常時の挙動を示し、図8(b)は要求噴射量Qinj がほぼ一定に制御されている場合の燃料漏れ発生時の挙動を示している。エンジン運転中は、高圧ポンプ54の吐出量指令値Qp と要求噴射量Qinj を所定周期で積算し、要求噴射量積算値ΣQinj が所定値Bを越える毎に、ポンプ吐出量積算値ΣQp と要求噴射量積算値ΣQinj との差DQから推定燃圧DPRを算出し、この推定燃圧DPRと燃圧センサ30の検出燃圧PRとの差が所定値α2 よりも大きいか否かで、高圧燃料供給システム50の燃料漏れの有無を判定する。
【0046】
高圧燃料供給システム50が正常な場合には、図8(a)に示すように、要求噴射量Qinj がほぼ一定であれば、燃圧センサ30の検出燃圧PRが目標燃圧Fにほぼ一致しているときは、高圧ポンプ54の吐出量指令値Qp もほぼ一定となる。その結果、ポンプ吐出量積算値ΣQp と要求噴射量積算値ΣQinj との差DQから算出した推定燃圧DPRと燃圧センサ30の検出燃圧PRとの差が小さくなるため、燃料漏れ無しと判定され、燃料漏れ検出フラグが燃料漏れ無しを意味する「0」に維持される。
【0047】
一方、高圧燃料供給システム50の燃料漏れが発生すると、図8(b)に示すように、要求噴射量Qinj がほぼ一定であっても、燃料漏れにより実燃圧(検出燃圧PR)が低下するため、実燃圧を上昇させるべく高圧ポンプ54の吐出量指令値Qp が増加される。その結果、燃料漏れ発生時のポンプ吐出量積算値ΣQp は、正常時よりも大きくなるため、燃料漏れ発生時の推定燃圧DPRが正常時よりも高くなる。これにより、推定燃圧DPRと燃圧センサ30の検出燃圧PRとの差が所定値α2 よりも大きくなるため、燃料漏れ有りと判定され、燃料漏れ検出フラグが燃料漏れ有りを意味する「1」にセットされる。
【0048】
[実施形態(3)]
次に、図9乃至図13に基づいて本発明の実施形態(3)を説明する。本実施形態(3)では、ポンプ吐出量積算値ΣQp と要求噴射量積算値ΣQinj との差DQから算出した推定燃圧DPRが燃圧センサ30の検出燃圧PRよりも所定値α2 以上高い場合に、実空燃比が目標空燃比よりもリッチ側にずれているときは、次の理由により、燃圧センサ30の出力(検出燃圧PR)の異常低下と判定するところに特徴がある。
【0049】
つまり、要求噴射量Qinj は、実燃圧が目標燃圧に制御されていることを前提にして決定されるため、実燃圧が低下すれば、その分、実際の燃料噴射量が不足して実空燃比が目標空燃比よりもリーン側にずれるのが正常な状態である。従って、推定燃圧DPRと燃圧センサ30の検出燃圧PRとの関係から実燃圧が低下していると推定されるにも拘らず、実空燃比が目標空燃比よりもリッチ側にずれるということは、実際には、実燃圧が上昇していることを意味する。このような状態は、実燃圧が上昇していることを検出できない状態、つまり燃圧センサ30の出力(検出燃圧PR)が異常低下している状態になっていることを意味する。従って、推定燃圧DPRと燃圧センサ30の検出燃圧PRとの関係から実燃圧が低下していると推定されるにも拘らず、実空燃比が目標空燃比よりもリッチ側にずれるときは、燃圧センサ30の出力の異常低下と判定することができる。
【0050】
本実施形態(3)で実行する図9の異常診断プログラムにおいても、前記実施形態(1)で説明した図5の異常診断プログラムのステップ101〜108、112と全く同じ処理を行い、ポンプ吐出量積算値ΣQp と要求噴射量積算値ΣQinj との差DQから推定燃圧DPRを算出する処理等を行う。
【0051】
その後、ステップ131,132で、推定燃圧DPRと燃圧センサ30の検出燃圧PRとの関係から実燃圧が低下していると推定されるにも拘らず、実空燃比が目標空燃比よりも明らかにリッチ側にずれた状態になっているか否かを判定する。つまり、ステップ131で、推定燃圧DPRと燃圧センサ30の検出燃圧PRとの差が所定値α2 よりも大きいか否かで、実燃圧が低下していると推定されるか否かを判定する。ここで、所定値α2 は推定燃圧DPRの推定誤差と検出燃圧PRの検出誤差とを考慮して、正常時の推定燃圧DPRと検出燃圧PRとのずれ量の最大値に相当する値又はそれよりも少し大きな値に設定されている。従って、推定燃圧DPRと検出燃圧PRとの差が所定値α2 以下の場合(実燃圧が低下していないと推定される場合)は、燃圧センサ30の出力の異常低下が発生していないと判断して、ステップ134に進み、燃圧センサ出力異常低下フラグを「0」にセットする。
【0052】
これに対し、推定燃圧DPRと燃圧センサ30の検出燃圧PRとの差が所定値α2 よりも大きい場合(実燃圧が低下していると推定される場合)は、ステップ132に進み、排気管37の三元触媒38の上流側に設けた空燃比センサ(又は酸素センサ)で検出した実空燃比と目標空燃比とのずれ量が所定値β1 よりも小さいか否かで、実空燃比が目標空燃比よりも明らかにリッチ側にずれているか否かを判定し、実空燃比と目標空燃比とのずれ量が所定値β1 よりも小さい場合(実空燃比が目標空燃比よりも明らかにリッチ側にずれている場合)は、燃圧センサ30の出力の異常低下と判断して、ステップ133に進み、燃圧センサ出力異常低下フラグを「1」にセットする。尚、ステップ132で、「No」と判定された場合は、ステップ134に進み、燃圧センサ出力異常低下フラグを「0」にセットする。
【0053】
図10の目標空燃比算出プログラムは、エンジン運転中に所定時間毎又は所定クランク角毎に繰り返し起動される。本プログラムが起動されると、まず、ステップ201で、現在のエンジン回転速度Neと要求トルクを読み込み、次のステップ202で、現在のエンジン回転速度Neと要求トルクに応じてマップ等により目標空燃比を算出する。
【0054】
一方、図11の噴射時間算出プログラムは、エンジン運転中に所定時間毎又は所定クランク角毎に繰り返し起動される。本プログラムが起動されると、まず、ステップ301で、現在の燃圧センサ30の検出燃圧PRを読み込み、次のステップ302で、現在の要求噴射量Qinj を読み込む。この後、ステップ303に進み、現在の検出燃圧PRに応じて図12のマップから、要求噴射量Qinj に対する燃圧補正係数KPを算出する。この場合、噴射時間が同じであれば、実燃圧が高くなるほど、実際の燃料噴射量が増加するという特性を考慮して、図12のマップの特性は、燃圧補正係数KP=(目標燃圧/検出燃圧PR)1/2 となるように設定されている。従って、検出燃圧PRが目標燃圧と一致するときは、燃圧補正係数KPが1となり、検出燃圧PRが高くなるほど、燃圧補正係数KPが小さくなる。
【0055】
燃圧補正係数KPの算出後、ステップ304に進み、要求噴射量Qinj 、燃料噴射量を噴射時間に換算するための時間換算定数、無効噴射時間及び燃圧補正係数KPを次式に代入して、噴射時間TAU(噴射パルス幅)を算出する。
TAU=(Qinj ×時間換算定数+無効噴射時間)×KP
【0056】
以上説明した本実施形態(3)の異常診断処理の一例を図13のタイムチャートを用いて説明する。図13は、要求噴射量Qinj がほぼ一定に制御されているときに、燃圧センサ30の出力が一時的に異常低下した場合の挙動を示している。燃圧センサ30の出力(検出燃圧PR)が異常低下すると、ECU16は、実燃圧が目標燃圧よりも低下したと誤判定するため、高圧ポンプ54の吐出量指令値Qp を増加させる。その結果、実燃圧が目標燃圧よりも明らかに高くなるが、ECU16は、燃圧センサ30の出力低下により実燃圧が目標燃圧よりも低下したと誤判定しているため、燃圧補正係数KPを増大させて噴射時間TAUを増加させる。このため、実燃圧が目標燃圧よりも明らかに高くなっているにも拘らず、噴射時間TAUが増量補正されて、実際の燃料噴射量が増量される結果となり、実空燃比が目標空燃比よりもリッチ側に大きくずれる。
【0057】
そこで、本実施形態(3)では、推定燃圧DPRと燃圧センサ30の検出燃圧PRとの関係から実燃圧が低下していると推定されるにも拘らず、実空燃比が目標空燃比よりもリッチ側にずれるときは、燃圧センサ30の出力の異常低下と判定する。
【0058】
[実施形態(4)]
次に、図14及び図15に基づいて本発明の実施形態(4)を説明する。本実施形態(4)では、ポンプ吐出量積算値ΣQp と要求噴射量積算値ΣQinj との差DQから算出した推定燃圧DPRが燃圧センサ30の検出燃圧PRよりも所定値α3 以上低い場合に、実空燃比が目標空燃比よりもリーン側にずれているときは、次の理由により、燃圧センサ30の出力(検出燃圧PR)の異常上昇と判定するところに特徴がある。
【0059】
つまり、推定燃圧DPRが燃圧センサ30の検出燃圧PRよりも所定値α3 以上低い場合は、実燃圧が上昇していると推定されるが、実空燃比が目標空燃比よりもリーン側にずれるということは、実際には、実燃圧が低下していることを意味する。このような状態は、実燃圧が低下していることを検出できない状態、つまり燃圧センサ30の出力(検出燃圧PR)が異常上昇している状態になっていることを意味する。従って、推定燃圧DPRと燃圧センサ30の検出燃圧PRとの関係から実燃圧が上昇していると推定されるのに、実空燃比が目標空燃比よりもリーン側にずれるときは、燃圧センサ30の出力の異常上昇と判定することができる。
【0060】
本実施形態(4)で実行する図14の異常診断プログラムにおいても、前記実施形態(1)で説明した図5の異常診断プログラムのステップ101〜108、112と全く同じ処理を行い、ポンプ吐出量積算値ΣQp と要求噴射量積算値ΣQinj との差DQから推定燃圧DPRを算出する処理等を行う。
【0061】
その後、ステップ141,142で、推定燃圧DPRと燃圧センサ30の検出燃圧PRとの関係から実燃圧が上昇していると推定されるにも拘らず、実空燃比が目標空燃比よりも明らかにリーン側にずれた状態になっているか否かを判定する。つまり、ステップ141で、推定燃圧DPRと燃圧センサ30の検出燃圧PRとの差が所定値α3 よりも小さいか否かで、実燃圧が上昇していると推定されるか否かを判定する。ここで、所定値α3 は推定燃圧DPRの推定誤差と検出燃圧PRの検出誤差とを考慮して、正常時の推定燃圧DPRと検出燃圧PRとのずれ量の最大値に相当する値又はそれよりも少し大きな値に設定されている。従って、推定燃圧DPRと検出燃圧PRとの差が所定値α3 以上の場合(実燃圧が上昇していないと推定される場合)は、燃圧センサ30の出力の異常上昇が発生していないと判断して、ステップ144に進み、燃圧センサ出力異常上昇フラグを「0」にセットする。
【0062】
これに対し、推定燃圧DPRと燃圧センサ30の検出燃圧PRとの差が所定値α3 よりも小さい場合(実燃圧が上昇していると推定される場合)は、ステップ142に進み、排気管37の三元触媒38の上流側に設けた空燃比センサ(又は酸素センサ)で検出した実空燃比と目標空燃比とのずれ量が所定値β2 よりも大きいか否かで、実空燃比が目標空燃比よりも明らかにリーン側にずれているか否かを判定し、実空燃比と目標空燃比とのずれ量が所定値β2 よりも大きい場合(実空燃比が目標空燃比よりも明らかにリーン側にずれている場合)は、燃圧センサ30の出力の異常上昇と判断して、ステップ143に進み、燃圧センサ出力異常上昇フラグを「1」にセットする。尚、ステップ142で、「No」と判定された場合は、ステップ144に進み、燃圧センサ出力異常上昇フラグを「0」にセットする。
【0063】
以上説明した本実施形態(4)の異常診断処理の一例を図15のタイムチャートを用いて説明する。図15は、要求噴射量Qinj がほぼ一定に制御されているときに、燃圧センサ30の出力が一時的に異常上昇した場合の挙動を示している。燃圧センサ30の出力(検出燃圧PR)が異常上昇すると、ECU16は、実燃圧が目標燃圧よりも上昇したと誤判定するため、高圧ポンプ54の吐出量指令値Qp を減少させる。その結果、実燃圧が目標燃圧よりも明らかに低くなるが、ECU16は、燃圧センサ30の出力上昇により実燃圧が目標燃圧よりも上昇したと誤判定しているため、燃圧補正係数KPを小さくして噴射時間TAUを減少させる。このため、実燃圧が目標燃圧よりも明らかに低くなっているにも拘らず、噴射時間TAUが減量補正されて、実際の燃料噴射量が減量される結果となり、実空燃比が目標空燃比よりもリーン側に大きくずれる。
【0064】
そこで、本実施形態(4)では、推定燃圧DPRと燃圧センサ30の検出燃圧PRとの関係から実燃圧が上昇していると推定されるにも拘らず、実空燃比が目標空燃比よりもリーン側にずれるときは、燃圧センサ30の出力の異常上昇と判定する。
【0065】
[実施形態(5)]
次に、図16及び図17に基づいて本発明の実施形態(5)を説明する。本実施形態(5)では、ポンプ吐出量積算値ΣQp と要求噴射量積算値ΣQinj との差DQから算出した推定燃圧DPRが燃圧センサ30の検出燃圧PRよりも所定値α3 以上低い場合に、エンジン11のトルク変動量が所定値γ以上のときは、次の理由により、燃料噴射弁28の異常と判定するところに特徴がある。
【0066】
つまり、推定燃圧DPRが燃圧センサ30の検出燃圧PRよりも所定値α3 以上低い場合は、実燃圧が上昇していると推定されるが、実燃圧が上昇する原因の1つとして、燃料噴射弁28の噴射不良によって実際の燃料噴射量が要求噴射量Qinj よりも少なくなっていることが考えられる。もし、一部の気筒の燃料噴射弁28が異常になると、エンジン11のトルク変動量が大きくなる現象が発生するため、推定燃圧DPRが燃圧センサ30の検出燃圧PRとの関係から実燃圧が上昇していると推定される場合に、トルク変動量が大きいときは、燃料噴射弁28の異常と判定することができる。
【0067】
本実施形態(5)で実行する図16の異常診断プログラムにおいても、前記実施形態(1)で説明した図5の異常診断プログラムのステップ101〜108、112と全く同じ処理を行い、ポンプ吐出量積算値ΣQp と要求噴射量積算値ΣQinj との差DQから推定燃圧DPRを算出する処理等を行う。
【0068】
その後、ステップ151で、推定燃圧DPRと燃圧センサ30の検出燃圧PRとの差が所定値α3 よりも小さいか否かで、実燃圧が上昇していると推定されるか否かを判定し、推定燃圧DPRと検出燃圧PRとの差が所定値α3 以上の場合(実燃圧が上昇していないと推定される場合)は、燃料噴射弁28の異常が発生していないと判断して、ステップ154に進み、燃料噴射弁異常フラグを「0」にセットする。
【0069】
これに対し、推定燃圧DPRと燃圧センサ30の検出燃圧PRとの差が所定値α3 よりも小さい場合(実燃圧が上昇していると推定される場合)は、ステップ152に進み、エンジン11のトルク変動量が所定値γよりも大きいか否かを判定し、エンジン11のトルク変動量が所定値γよりも大きい場合は、燃料噴射弁28の異常と判断して、ステップ153に進み、燃料噴射弁異常フラグを「1」にセットする。
一方、ステップ142で、トルク変動量が所定値γ以下と判定された場合は、ステップ154に進み、燃料噴射弁異常フラグを「0」にセットする。
【0070】
以上説明した本実施形態(5)の異常診断処理の一例を図17のタイムチャートを用いて説明する。図15は、要求噴射量Qinj がほぼ一定に制御されているときに、一部の気筒の燃料噴射弁28が異常(噴射不能)になった場合の挙動を示している。エンジン運転中に、一部の気筒の燃料噴射弁28が異常になって燃料噴射が無くなると、燃料噴射弁28が異常になった気筒の噴射タイミング毎に実燃圧(検出燃圧PR)が一時的に上昇するため、実燃圧(検出燃圧PR)が上昇する毎に高圧ポンプ54の吐出量指令値Qp を一時的に減少させる。その結果、ポンプ吐出量積算値ΣQp が正常時よりも減少して、ポンプ吐出量積算値ΣQp と要求噴射量積算値ΣQinj との差DQから算出する推定燃圧DPRが目標燃圧Fよりも低下する。これにより、推定燃圧DPRが燃圧センサ30の検出燃圧PRよりも所定値α3 以上低くなり、且つ、エンジン11のトルク変動量が所定値γよりも大きくなるため、燃料噴射弁28の異常と判定される。
【0071】
[実施形態(6)]
本発明の実施形態(6)では、図18の異常診断プログラムを実行することで、エンジン停止時間が所定時間C以上経過してからエンジン11を始動する時に、燃圧センサ30の検出燃圧PRが所定範囲から外れている場合は、燃圧センサ30の異常と判定するところに特徴がある。つまり、エンジン停止中は、高圧ポンプ54も停止して、高圧ポンプ54の吐出側の燃料配管45,29内の燃圧を高圧に保つことができないため、エンジン停止時間の経過と共に燃圧が低下する。従って、エンジン停止時間がある程度長くなると、燃圧が大気圧付近まで低下するため、この状態で始動する場合は、始動時の燃圧が大気圧付近から上昇することになる。このような場合に、始動時の燃圧センサ30の検出燃圧PRが大気圧付近の所定範囲から外れている場合は、燃圧センサ30の異常と判定することができる。
【0072】
本実施形態(6)で実行する図18の異常診断プログラムでは、まずステップ401,402で、異常診断実行条件が成立しているか否かを判定する。ここで、異常診断実行条件は、▲1▼始動時であること(ステップ401)、▲2▼始動前のエンジン停止時間が所定時間Cを越えていること(ステップ402)であり、これら2つの条件▲1▼,▲2▼のいずれか一方でも満たさない条件があれば、異常診断実行条件が成立せず、以降の処理を行うことなく、本プログラムを終了する。
【0073】
一方、2つの条件▲1▼,▲2▼が共に満たされれば、異常診断実行条件が成立し、ステップ403に進み、燃圧センサ30の検出燃圧PRを読み込み、次のステップ404で、この検出燃圧PRが所定範囲内(ω1 <PR<ω2 )であるか否かを判定し、所定範囲内(ω1 <PR<ω2 )であれば、燃圧センサ30が正常であると判断して、ステップ406に進み、燃圧センサ異常フラグを「0」にセットする。もし、検出燃圧PRが所定範囲内(ω1 <PR<ω2 )でなければ、燃圧センサ30の異常と判断して、ステップ405に進み、燃圧センサ異常フラグを「1」にセットする。
【0074】
[実施形態(7)]
上記実施形態(6)では、エンジン停止時間をタイマ等により測定する必要があるため、エンジン停止中にタイマ等を動作させるための電源を供給する必要がある。
【0075】
そこで、本発明の実施形態(7)では、エンジン停止時間の計測を不要にするために、図19の異常診断プログラムを実行することで、エンジン停止時間が所定時間以上経過したか否かを前回のエンジン停止時の冷却水温THW0 と今回の始動時の冷却水温THWとの温度差に基づいて判定するようにしている。つまり、エンジン停止中は、時間の経過と共に冷却水温が放熱により低下するため、前回のエンジン停止時の冷却水温THW0 と今回の始動時の冷却水温THWとの温度差を見れば、エンジン停止時間をタイマで測定しなくても、エンジン停止時間が所定時間以上経過したか否かを判定することができる。
【0076】
図19の異常診断プログラムでは、まずステップ501〜503で、異常診断実行条件が成立しているか否かを判定する。すなわち、ステップ501で、始動時であるか否かを判定し、始動時であれば、ステップ502に進み、ECU16のバックアップRAMに記憶された前回のエンジン停止時の冷却水温THW0 を読み込み、今回の始動時の冷却水温THWと前回のエンジン停止時の冷却水温THW0 との温度差(THW−THW0 )が所定温度D1 (D1はマイナス温度)よりも小さいか否かを判定し、所定温度D1 以上であれば、エンジン停止時間が所定時間以上経過していないと判断して、以降の処理を行うことなく、本プログラムを終了する。
【0077】
一方、今回の始動時の冷却水温THWと前回のエンジン停止時の冷却水温THW0 との温度差(THW−THW0 )が所定温度D1 よりも小さい場合は、エンジン停止時間が所定時間以上経過していると判断して、ステップ504に進み、燃圧センサ30の検出燃圧PRを読み込み、次のステップ505で、この検出燃圧PRが所定範囲内(ω1 <PR<ω2 )であるか否かを判定し、所定範囲内(ω1 <PR<ω2 )であれば、燃圧センサ30が正常であると判断して、ステップ507に進み、燃圧センサ異常フラグを「0」にセットする。
【0078】
もし、検出燃圧PRが所定範囲内(ω1 <PR<ω2 )でなければ、燃圧センサ30の異常と判断して、ステップ506に進み、燃圧センサ異常フラグを「1」にセットする。
【0079】
[実施形態(8)]
本発明の実施形態(8)では、図20の異常診断プログラムを実行することで、今回の始動時の燃圧センサ30の検出燃圧PRが前回のエンジン停止時の検出燃圧PR0 よりも所定値C1 以上高いか否かで、燃圧センサ30の異常の有無と判定するところに特徴がある。つまり、エンジン停止中は時間の経過と共に実燃圧が低下するため、今回の始動時の実燃圧が前回のエンジン停止時の実燃圧より高くなることは起こり得ない。従って、今回の始動時の検出燃圧PRが前回のエンジン停止時の検出燃圧PR0 よりも所定値C1 (少なくとも検出誤差)以上高い場合は、燃圧センサ30の異常と判定することができる。
【0080】
図20の異常診断プログラムでは、ステップ601で、始動時であるか否かを判定し、始動時でなければ、以降の処理を行うことなく、本プログラムを終了する。一方、始動時であれば、ステップ602に進み、ECU16のバックアップRAMに記憶された前回のエンジン停止時の燃圧センサ30の検出燃圧PR0 を読み込み、次のステップ603で、今回の始動時の検出燃圧PRと前回のエンジン停止時の検出燃圧PR0 との圧力差(PR−PR0 )が所定値C1 よりも大きいか否かを判定し、圧力差(PR−PR0 )が所定値C1 よりも大きい場合、つまり、今回の始動時の燃圧センサ30の検出燃圧PRが前回のエンジン停止時の検出燃圧PR0 よりも所定値C1 以上高い場合は、燃圧センサ30の異常と判断して、ステップ604に進み、燃圧センサ異常フラグを「1」にセットする。
【0081】
これに対し、圧力差(PR−PR0 )が所定値C1 以下の場合は、燃圧センサ30が正常であると判断して、ステップ605に進み、燃圧センサ異常フラグを「0」にセットする。
【0082】
以上説明した各実施形態(1)〜(8)は適宜組み合わせて実施しても良いことは言うまでもない。
【図面の簡単な説明】
【図1】本発明の実施形態(1)におけるエンジン制御系システム全体の概略構成を示す図
【図2】高圧燃料供給システム全体の概略構成を示す図
【図3】高圧ポンプの概略構成を示す図
【図4】高圧ポンプの吸入・吐出動作を説明するためのタイムチャート
【図5】実施形態(1)の異常診断プログラムの処理の流れを示すフローチャート
【図6】ポンプ吐出量積算値ΣQp と要求噴射量積算値ΣQinj との差DQから推定燃圧DPRを算出するマップを概念的に示す図
【図7】実施形態(2)の異常診断プログラムの処理の流れを示すフローチャート
【図8】(a)は要求噴射量Qinj がほぼ一定である場合の正常時の挙動を示すタイムチャート、(b)は要求噴射量Qinj がほぼ一定である場合の燃料漏れ発生時の挙動を示すタイムチャート
【図9】実施形態(3)の異常診断プログラムの処理の流れを示すフローチャート
【図10】実施形態(3)の目標空燃比算出プログラムの処理の流れを示すフローチャート
【図11】実施形態(3)の噴射時間算出プログラムの処理の流れを示すフローチャート
【図12】燃圧センサ30の検出燃圧PRから燃圧補正係数KPを算出するマップを概念的に示す図
【図13】実施形態(3)の要求噴射量Qinj がほぼ一定に制御されているときに、燃圧センサの出力が一時的に異常低下した場合の挙動を示すタイムチャート
【図14】実施形態(4)の異常診断プログラムの処理の流れを示すフローチャート
【図15】実施形態(4)の要求噴射量Qinj がほぼ一定に制御されているときに、燃圧センサの出力が一時的に異常上昇した場合の挙動を示すタイムチャート
【図16】実施形態(5)の異常診断プログラムの処理の流れを示すフローチャート
【図17】実施形態(5)の要求噴射量Qinj がほぼ一定に制御されているときに、一部の気筒の燃料噴射弁が異常(噴射不能)になった場合の挙動を示すタイムチャート
【図18】実施形態(6)の異常診断プログラムの処理の流れを示すフローチャート
【図19】実施形態(7)の異常診断プログラムの処理の流れを示すフローチャート
【図20】実施形態(8)の異常診断プログラムの処理の流れを示すフローチャート
【符号の説明】
11…筒内噴射式エンジン(内燃機関)、12…吸気管、15…スロットルバルブ、16…ECU(燃圧制御手段,積算手段,異常診断手段,異常診断禁止手段)、24…スワールコントロール弁、28…燃料噴射弁、29…デリバリパイプ、30…燃圧センサ、37…排気管、38…三元触媒、39…リーンNOx触媒、41…EGR弁、45…燃料配管、50…高圧燃料供給システム、51…燃料タンク、52…低圧ポンプ、54…高圧ポンプ、55…プレッシャレギュレータ、59…ピストン、60…カム軸、61…カム、62…燃圧制御弁、65…逆止弁。

Claims (9)

  1. 燃料タンクから汲み上げられた燃料を加圧して燃料噴射弁に圧送する高圧ポンプと、
    前記高圧ポンプの吐出側の燃料の圧力(以下「燃圧」と略記する)を検出する燃圧センサと、
    前記燃圧センサで検出した燃圧を目標燃圧に一致させるように前記高圧ポンプの吐出量をフィードバック制御する燃圧制御手段とを備えた内燃機関の高圧燃料供給システムにおいて、
    所定期間の前記高圧ポンプの吐出量の指令値と燃料噴射量の指令値とをそれぞれ積算する積算手段と、
    前記積算手段で積算した前記高圧ポンプの吐出量積算値と燃料噴射量積算値との比較値と前記燃圧センサで検出した燃圧とに基づいて高圧燃料供給システムの異常の有無を判定する異常診断手段と
    を備えていることを特徴とする内燃機関の高圧燃料供給システムの異常診断装置。
  2. 内燃機関の始動時及び/又は燃料噴射量の指令値が所定値以上となる運転状態の時に前記異常診断手段による高圧燃料供給システムの異常診断を禁止する異常診断禁止手段を備えていることを特徴とする請求項1に記載の内燃機関の高圧燃料供給システムの異常診断装置。
  3. 前記異常診断手段は、前記高圧ポンプの吐出量積算値と燃料噴射量積算値との差から燃圧を推定し、その推定燃圧が前記燃圧センサで検出した燃圧よりも所定値以上高い場合は高圧燃料供給システムの燃料漏れと判定することを特徴とする請求項1又は2に記載の内燃機関の高圧燃料供給システムの異常診断装置。
  4. 前記異常診断手段は、前記高圧ポンプの吐出量積算値と燃料噴射量積算値との差から推定した燃圧が前記燃圧センサで検出した燃圧よりも所定値以上高い場合に、空燃比が目標空燃比よりもリッチ側にずれているときは、前記燃圧センサの出力の異常低下と判定することを特徴とする請求項1乃至3のいずれかに記載の内燃機関の高圧燃料供給システムの異常診断装置。
  5. 前記異常診断手段は、前記高圧ポンプの吐出量積算値と燃料噴射量積算値との差から推定した燃圧が前記燃圧センサで検出した燃圧よりも所定値以上低い場合に、空燃比が目標空燃比よりもリーン側にずれているときは、前記燃圧センサの出力の異常上昇と判定することを特徴とする請求項1乃至4のいずれかに記載の内燃機関の高圧燃料供給システムの異常診断装置。
  6. 前記異常診断手段は、前記高圧ポンプの吐出量積算値と燃料噴射量積算値との差から推定した燃圧が前記燃圧センサで検出した燃圧よりも所定値以上低い場合に、内燃機関のトルク変動量が所定値以上のときは、燃料噴射弁の異常と判定することを特徴とする請求項1乃至5のいずれかに記載の内燃機関の高圧燃料供給システムの異常診断装置。
  7. 前記異常診断手段は、内燃機関の停止時間が所定時間以上経過してから内燃機関を始動する時に前記燃圧センサの検出燃圧が所定範囲から外れている場合は、前記燃圧センサの異常と判定することを特徴とする請求項1乃至6のいずれかに記載の内燃機関の高圧燃料供給システムの異常診断装置。
  8. 前記異常診断手段は、内燃機関の停止時間が所定時間以上経過したか否かを内燃機関の前回の停止時の冷却水温と今回の始動時の冷却水温との温度差に基づいて判定することを特徴とする請求項7に記載の内燃機関の高圧燃料供給システムの異常診断装置。
  9. 前記異常診断手段は、内燃機関の今回の始動時の前記燃圧センサの検出燃圧が前回の停止時の検出燃圧よりも所定値以上高い場合は、該燃圧センサの異常と判定することを特徴とする請求項1乃至8のいずれかに記載の内燃機関の高圧燃料供給システムの異常診断装置。
JP2000233159A 2000-07-28 2000-07-28 内燃機関の高圧燃料供給システムの異常診断装置 Expired - Fee Related JP3610894B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000233159A JP3610894B2 (ja) 2000-07-28 2000-07-28 内燃機関の高圧燃料供給システムの異常診断装置
DE10136706.6A DE10136706B4 (de) 2000-07-28 2001-07-27 Diagnosevorrichtung zur Ermittlung eines unnormalen Zustands für ein Hochdruck-Kraftstoffzufuhrsystem einer Brennkraftmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000233159A JP3610894B2 (ja) 2000-07-28 2000-07-28 内燃機関の高圧燃料供給システムの異常診断装置

Publications (2)

Publication Number Publication Date
JP2002047983A JP2002047983A (ja) 2002-02-15
JP3610894B2 true JP3610894B2 (ja) 2005-01-19

Family

ID=18725723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000233159A Expired - Fee Related JP3610894B2 (ja) 2000-07-28 2000-07-28 内燃機関の高圧燃料供給システムの異常診断装置

Country Status (1)

Country Link
JP (1) JP3610894B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11078876B2 (en) 2017-04-24 2021-08-03 Denso Corporation Relief valve determination device for high-pressure fuel supply system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291755A (ja) * 2005-04-06 2006-10-26 Denso Corp 燃料噴射制御装置
JP4539503B2 (ja) * 2005-09-06 2010-09-08 スズキ株式会社 エンジンの高圧燃料系システムの故障診断装置
JP4504957B2 (ja) * 2006-08-03 2010-07-14 日立オートモティブシステムズ株式会社 内燃機関の燃料噴射制御装置および燃料噴射制御方法
JP5556572B2 (ja) * 2010-10-15 2014-07-23 いすゞ自動車株式会社 燃料圧力センサ診断装置
JP2013253560A (ja) * 2012-06-07 2013-12-19 Toyota Motor Corp 燃料供給装置
JP2015132171A (ja) * 2014-01-09 2015-07-23 株式会社デンソー 燃圧センサの異常判定装置
JP6737727B2 (ja) * 2017-03-03 2020-08-12 日立オートモティブシステムズ株式会社 内燃機関の燃料供給系診断装置
JP7294235B2 (ja) * 2020-05-21 2023-06-20 トヨタ自動車株式会社 燃圧推定システム、データ解析装置、燃料供給装置の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11078876B2 (en) 2017-04-24 2021-08-03 Denso Corporation Relief valve determination device for high-pressure fuel supply system

Also Published As

Publication number Publication date
JP2002047983A (ja) 2002-02-15

Similar Documents

Publication Publication Date Title
JP3680515B2 (ja) 内燃機関の燃料系診断装置
JP4096924B2 (ja) 内燃機関用噴射量制御装置
JP3966096B2 (ja) 内燃機関用噴射量制御装置
JP4424128B2 (ja) コモンレール式燃料噴射装置
JP4438712B2 (ja) 内燃機関の制御装置
JP4736058B2 (ja) 内燃機関の空燃比制御装置
JPH1089125A (ja) 直噴式ガソリン内燃機関における燃料噴射制御装置
US7913674B2 (en) Abnormality determination device and method for EGR device, and engine control unit
JP5176911B2 (ja) セタン価判定装置
US11326531B2 (en) Evaporative fuel processing device
JP3610894B2 (ja) 内燃機関の高圧燃料供給システムの異常診断装置
JP4815407B2 (ja) 内燃機関の運転制御装置
JP3913864B2 (ja) 内燃機関の筒内噴射式燃料制御装置
JP2013253560A (ja) 燃料供給装置
KR100214799B1 (ko) 내연 기관의 제어 장치
JP3846381B2 (ja) 排気還流装置の異常診断装置
JP2003343328A (ja) 内燃機関用燃料噴射制御装置
JP2019031918A (ja) エンジンの燃料システムの故障検出装置
JP2005048659A (ja) 燃料温度推定装置
JP4300582B2 (ja) 燃料供給装置
JP3714132B2 (ja) 内燃機関の高圧燃料供給システムの異常診断装置
JP2010138834A (ja) 内燃機関の吸気温センサ異常診断装置
JP2013253508A (ja) 筒内噴射式内燃機関の燃料供給装置
JP4826300B2 (ja) 内燃機関の制御装置及び制御方法
JP2004019539A (ja) 内燃機関用燃料噴射制御装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees