WO2018177897A1 - Verfahren und computerprogrammprodukt zur diagnose eines partikelfilters - Google Patents

Verfahren und computerprogrammprodukt zur diagnose eines partikelfilters Download PDF

Info

Publication number
WO2018177897A1
WO2018177897A1 PCT/EP2018/057356 EP2018057356W WO2018177897A1 WO 2018177897 A1 WO2018177897 A1 WO 2018177897A1 EP 2018057356 W EP2018057356 W EP 2018057356W WO 2018177897 A1 WO2018177897 A1 WO 2018177897A1
Authority
WO
WIPO (PCT)
Prior art keywords
differential pressure
particulate filter
expected
measured
correlation
Prior art date
Application number
PCT/EP2018/057356
Other languages
English (en)
French (fr)
Inventor
Thomas Baumann
Yunjie Lian
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201880022107.2A priority Critical patent/CN110462177B/zh
Priority to US16/498,221 priority patent/US11098630B2/en
Priority to KR1020197031789A priority patent/KR102517259B1/ko
Publication of WO2018177897A1 publication Critical patent/WO2018177897A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0084Filters or filtering processes specially modified for separating dispersed particles from gases or vapours provided with safety means
    • B01D46/0086Filter condition indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/446Auxiliary equipment or operation thereof controlling filtration by pressure measuring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/008Mounting or arrangement of exhaust sensors in or on exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/24Determining the presence or absence of an exhaust treating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method for detecting a developed or defective particulate filter in an exhaust aftertreatment system of an internal combustion engine, in particular a gasoline engine, wherein a differential pressure ⁇ between the input and the output of the particulate filter is measured and evaluated for monitoring the particulate filter.
  • the invention further relates to a computer program product for carrying out the method.
  • Emissions legislation especially in the US and Europe, sets limit values for the emission of particulate matter as well as the number and concentration of particulates for the operation of internal combustion engines.
  • diagnostic limit values are also specified, above which an error must be displayed.
  • diagnostic functions are implemented for this purpose, which monitor the components and components installed for the purpose of reducing emissions during vehicle operation as part of an on-board diagnosis (OBD) and display a malfunction which leads to exceeding the diagnostic limit values.
  • OBD on-board diagnosis
  • the method used in diesel systems for the diagnosis of the particle filter that is to say the measurement of the pressure increase over the particle filter by means of pressure sensors or the measurement of the particle mass behind the particle filter by means of a particle sensor.
  • the soot particles emitted by an engine, in particular a diesel engine can be efficiently removed from the exhaust gas by means of a diesel particulate filter (DPF).
  • DPF diesel particulate filter
  • DPF wall-flow diesel particulate filter Due to its closed channels and its porous filter material, soot separation of up to 99% is possible.
  • a disadvantage is that the filter must be thermally regenerated from time to time. It is carried out by means of internal or external engine measures a temperature increase and thereby the accumulated soot burned in the filter, otherwise the exhaust back pressure would increase too much.
  • a method and a device for diagnosing a particulate filter as part of an exhaust gas purification system in the exhaust system of an internal combustion engine is known, for monitoring the particulate filter, a differential pressure between input and output of the particulate filter measured and this is evaluated in a diagnostic unit , It is provided that the differential pressure across the particulate filter from two differential pressure measurements or two
  • Absolute pressure measurements is determined. This can improve the on-board diagnosis and also detect whether the particulate filter has been manipulated or even removed.
  • a problem with gasoline-powered engines is that a significantly lower differential pressure at the particulate filter drops, as is the case with diesel vehicles. The reason for this is the significantly lower exhaust gas mass flow in the gasoline engine and the different design of the particulate filter due to the lower soot mass emissions.
  • the raw emission of particulate matter is many times higher in diesel vehicles than in gasoline engines.
  • the currently valid emission limit values for the particle mass are generally undershot by gasoline vehicles and thus also the valid diagnostic limits. However, the limit values for the particle number for the new EU6c exhaust gas regulations are exceeded by some vehicle types if no additional measures are taken.
  • DE 10 2014 209 840 AI discloses the detection of a defective or removed particulate filter by the formation of a respective temporal gradient of the measured and an expected differential pressure across the particulate filter and the determination of
  • Correlation between the two gradients This can be done via cross-correlation.
  • the method is especially designed for gasoline-powered internal combustion engines.
  • it makes it possible to monitor particulate filters in exhaust aftertreatment systems of gasoline engines, over which only a small pressure difference builds up during operating phases of the gasoline engine.
  • a disadvantage of the method is that a certain dynamic excitation, which ultimately leads to a correspondingly rapid differential pressure change over the particulate filter, must be present in order to obtain evaluable gradients of the differential pressure.
  • a dynamic excitation can be caused for example by a rapid speed change of the internal combustion engine.
  • the object of the invention relating to the method is achieved in that, depending on operating parameters of the internal combustion engine and / or the exhaust aftertreatment system, a correlation of the measured differential pressure ⁇ over the particle filter to an expected differential pressure ⁇ * for an intact reference particle filter or a correlation of the temporal gradient d (Ap) of the measured differential pressure ⁇ to an expected time gradient d (Ap *) of the expected differential pressure ⁇ * for an intact reference particulate filter is determined and that at a high correlation to an existing and intact particulate filter and at a low correlation is closed on a developed or defective particle filter.
  • the monitoring of the particulate filter can thus take place both in operating parameters of the internal combustion engine and the exhaust aftertreatment system, which cause a safely evaluable differential pressure ⁇ over the particulate filter or high dynamic excitation and thus a reliable evaluable change in the differential pressure ⁇ .
  • d (p) of the differential pressure ⁇ * significantly more operating points are therefore available
  • ( ⁇ *) can be used to detect a defective or removed particle filter, while the direct evaluation of the correlation between the measured differential pressure ⁇ and the expected differential pressure ⁇ * is not possible due to the small pressure difference built up above the particle filter.
  • the method thus allows the detection of a defective or removed particulate filter during many different operating conditions and thus independent of the operation of the upstream internal combustion engine or the exhaust aftertreatment system.
  • the expected differential pressure ⁇ * of the reference particulate filter is determined as a function of at least one operating parameter of the internal combustion engine and / or the exhaust aftertreatment system.
  • the expected temporal Gradient d (Ap *) of the expected differential pressure ⁇ * can be determined directly from the expected differential pressure ⁇ *.
  • the methods for modeling the expected differential pressure ⁇ * are known and can be carried out, for example, in a superordinate engine control in which the required operating parameters of the internal combustion engine and / or the exhaust gas aftertreatment system are present.
  • the expected differential pressure ⁇ * or the expected time gradient d (Ap *) of the differential pressure ⁇ * is calculated at least from an exhaust gas volumetric flow and / or from the time gradient of the exhaust gas volumetric flow and a flow resistance of the intact reference particulate filter, and / or that in the calculation of the expected differential pressure ⁇ * or the expected time gradient d (Ap *) of the expected differential pressure ⁇ * a square portion of the volume flow is taken into account, which the compression and expansion of the exhaust gas when the exhaust gas flows into the particulate filter and
  • the flow resistance can be stored in the diagnostic unit as a fixed value or stored in a map memory unit of one or more parameters depending.
  • the expected differential pressure ⁇ can be calculated from the flow resistance A and the exhaust gas volume flow dVol:
  • This partial differential pressure is caused by the compression and expansion of the exhaust gas when the exhaust gas flows into the particulate filter or flows out of the particulate filter.
  • Disturbance-related signal fluctuations can be suppressed by the measured differential pressure ⁇ above the particulate filter and / or the expected differential pressure ⁇ * above the reference particle filter and / or the volume flow to determine the expected differential pressure ⁇ * are low-pass filtered.
  • the meaningfulness of the diagnosis can thus be increased.
  • a first cross-correlation factor KKFi to be formed from the measured differential pressure ⁇ and the expected differential pressure ⁇ * by cross-correlation, and / or for the temporal gradient d (Ap) to be determined.
  • a second cross-correlation factor KKF2 is formed.
  • the thus obtained normalized cross-correlation factors KKFi, KKF2 are independent of the absolute values of the evaluated measured and expected pressure differences ⁇ , ⁇ * or the measured and expected temporal gradients d (Ap), d (Ap *). They take low values for inadequate correlation and high values for good correlation and are therefore easy to evaluate.
  • the first cross correlation factor KKFi and / or the second cross correlation factor KKF2 each be compared with a predetermined threshold value and falls below the respective threshold detected a faulty or nonexistent particulate filter and upon reaching or exceeding the respective threshold a built-in and intact Particle filter is diagnosed.
  • the same threshold value can advantageously be used for both evaluations be provided.
  • a reliable determination of the measured differential pressure ⁇ and / or the temporal gradient d (Ap *) of the measured differential pressure ⁇ can be effected by the differential pressure ⁇ and / or the temporal gradient d (Ap) of the measured differential pressure ⁇ from the signal of one above the Particle filter arranged differential pressure sensor or from the signals of two differential pressure sensors or two absolute pressure sensors, which are arranged upstream and downstream of the particulate filter in the exhaust system, or from the difference between a measured absolute pressure at the entrance of the particulate filter and a modeled absolute pressure at the output of the particulate filter or from the difference between a measured Relative pressure on
  • Input of the particulate filter to the environment and a modeled relative pressure at the output of the particulate filter to the environment can be determined.
  • the method is thus based on the use already provided in modern exhaust aftertreatment systems components and can be implemented in accordance with cost.
  • the method can preferably be used in a gasoline-fueled internal combustion engine in which the exhaust system has at least one separate catalyst and a particle filter or a catalyst / particle filter combination or a catalytically coated particle filter.
  • the object of the invention is further achieved by a computer program product which can be loaded directly into the internal memory of a digital computer and comprises software code sections with which the steps according to one of the claims 1 to 9 are executed when the product is run on a computer ,
  • the digital one
  • Computer is preferably part of a control unit, in particular a higher-level engine control, which comprises at least one processor, a computer-readable storage medium and input and output units.
  • the computer program product is formed by a corresponding computer program which is stored on the computer-readable storage medium and can be executed by the computer.
  • FIG. 1 shows by way of example a technical environment in which the invention can be used
  • FIG. 2 shows a schematic diagram of the differential pressure curves for a measured and a model-specific reference differential pressure for an intact particulate filter
  • FIG. 3 shows a schematic diagram of the differential pressure curves for the measured and model-specific reference differential pressure for a developed or defective particle filter
  • FIG. 4 is a schematic diagram of the gradients of the differential pressure profiles for the measured and model-specific reference differential pressure for a developed or defective particle filter.
  • FIG 1 shows schematically the technical environment in which the invention can be used.
  • Shown is an example of an internal combustion engine 10 with an exhaust aftertreatment system 16.
  • the internal combustion engine 10 is designed as a gasoline engine.
  • the exhaust gas of the internal combustion engine 10 is discharged via an exhaust line 11.
  • the exhaust aftertreatment system 16 is arranged, which is executed in several stages in the embodiment shown.
  • a catalyst 12 is initially provided, which is designed here as a three-way catalyst.
  • the catalytic converter 12 is followed by a particle filter 13.
  • the exhaust aftertreatment system 16 has further, not shown in the selected schematic representation components, such as exhaust gas sensors and other sensors, whose signals are supplied to a motor control (Electronic Control Unit ECU).
  • ECU Electric Control Unit
  • a differential pressure sensor 15 is provided, with which the pressure difference (differential pressure 19) between a filter input and a filter output of the particulate filter 13 can be determined.
  • the output signal of the differential pressure sensor 15 is supplied to a diagnostic unit 18, in which an on-board diagnostic (OBD) diagnosis can be made regarding a possibly broken, removed or clogged particulate filter 13.
  • OBD on-board diagnostic
  • This diagnostic unit 18 may be part of the higher-level engine control unit (ECU).
  • ECU engine control unit
  • the catalytic converter 12 and the particulate filter 13 can also be interconnected in the form of a four-way catalytic converter (FWC), that is to say a catalytically coated particulate filter 13.
  • FWC four-way catalytic converter
  • differential pressure 19 it is also conceivable to determine the differential pressure 19 by means of two absolute pressure sensors, which are arranged before and after the particle filter 13. It is also possible, in each case before and after the particle filter 13 to provide a differential pressure sensor, which in each case measure the pressure in the exhaust gas line 11 with respect to the ambient pressure.
  • the differential pressure can also be determined from the difference between a measured absolute pressure at the inlet of the particle filter 13 and a modeled absolute pressure at the outlet of the particle filter 13. It is also conceivable to form the differential pressure from the difference between a measured relative pressure at the inlet of the particle filter 13 with respect to the environment and a modeled relative pressure at the outlet of the particle filter 13 with respect to the environment.
  • the differential pressure signals 21 for differential pressure profiles 22, 23 for a measured differential pressure ⁇ (measured differential pressure profile 23) and a model-determined, expected differential pressure ⁇ * (expected differential pressure profile 22) are respectively schematically shown in a progression diagram 20 as a function of FIG Time 24 shown.
  • the measured differential pressure ⁇ and thus the measured differential pressure curve 23 are measured by means of the differential pressure sensor 15 shown in FIG.
  • FIG. 2 shows, by way of example, the differential pressure profiles 22, 23 for an intact and built-in particle filter 13. It is characteristic that only slight signal height differences and phase differences occur between the modeled differential pressure profile 22 and the measured differential pressure profile. Thus, there is a high correlation between the two differential pressure curves 22, 23. This applies both to the absolute values of the measured and expected differential pressure ⁇ , ⁇ * 19 and their time derivatives.
  • FIG. 3 shows in the further progression diagram 20 the differential pressure profiles 22, 23 for the measured differential pressure ⁇ 19 and the expected differential pressure ⁇ 19. th differential pressure ⁇ * at a developed or defective particulate filter 13. Between the differential pressure curves 22, 23 occur significant deviations in the signal level and / or in the phase. There is thus a slight correlation between the two differential pressure curves 22, 23. Of these, both the absolute values of the measured and expected differential pressure ⁇ , ⁇ * 19 and their temporal
  • the detection according to the invention of a developed or defective particulate filter 13, in particular gasoline particulate filter, is based on the determination of the correlation of the measured differential pressure ⁇ 19 or the time gradient d (p) of the measured differential pressure ⁇ 19 over the particulate filter 13 to the expected differential pressure ⁇ or the expected time gradient d (Ap *) of the expected differential pressure ⁇ over an intact particulate filter 13.
  • the expected differential pressure ⁇ * and the expected temporal gradient d (Ap *) of the expected differential pressure ⁇ * thereby become a model as a function of current operating variables the internal combustion engine 10 and / or the exhaust aftertreatment system 16 determined.
  • the particle filter 13 If the particle filter 13 is properly installed in the exhaust gas line 11, then either a good correlation between the differential pressure ⁇ measured in a current measurement and the expected differential pressure ⁇ * results or a good correlation between the measured temporal gradient d (p ) of the measured differential pressure ⁇ 19 from the current measurement and the expected time gradient d (Ap *) of the expected differential pressure ⁇ *.
  • the particle filter 13 is expanded or defective, there is a very weak correlation in each case. An expansion or defect of the particulate filter 13 can thus be uniquely detected.
  • One advantage of this method is that, on the one hand, it not only evaluates the absolute pressure difference across the particle filter 13, but also its temporal change, in comparison with known differential pressure-based methods. Thus, the detection of a developed or defective particulate filter 13 is possible even at very low absolute pressure differences 19.
  • the diagnostic procedure is robust against offset tolerances of the differential pressure sensor 15. These offset tolerances make all diagnostic nose methods based solely on the absolute differential pressure. At sufficiently large measured and expected differential pressures ⁇ , ⁇ * 19, in which the offset tolerances of the proposed differential pressure sensor 15 are negligible, the expansion or the defect of the particulate filter 13 by evaluating the correlation between the measured differential pressure ⁇ 19 and over one intact
  • Particle filter 13 expected differential pressure ⁇ * comparatively faster and more stable to be detected.
  • the measured differential pressure signal ⁇ ⁇ is first low-pass filtered to suppress the noise. Subsequently, the temporal gradient d (Ap ⁇ k)) / dk of the filtered differential pressure signal ⁇ ⁇ is determined, where k is the k-th measurement. In parallel, corresponding reference values for the expected differential pressure signal ⁇ * () and / or the expected time gradient d (Ap * ⁇ k)) / dk of the expected differential pressure signal ⁇ * () are determined.
  • a time profile of the expected differential pressure signal ⁇ * () or the time course of the expected time gradient d (Ap * ⁇ k)) / dk of the expected differential pressure signal ⁇ * ⁇ calculated via an intact and built-in particulate filter 13.
  • the expected values or the volumetric flow incoming in the determination of the expected values can optionally also be low-pass filtered.
  • This partial differential pressure is caused by the compression and expansion of the exhaust gas when the exhaust gas flows into the particulate filter or flows out of the particulate filter.
  • KKFi ⁇ ( ⁇ * ⁇ * ⁇ ) / ⁇ ( ⁇ * ( ⁇ > * ⁇ * ( ⁇ ) (1)
  • KKF 2 ⁇ (d (Ap ( k )) * d (Ap * ( k ))) / ⁇ (d (Ap * ( k) ) * d (Ap * (k ))) (2)
  • the respective output value of the normalized cross-correlation, the first cross-correlation factor KKFi or the second cross-correlation factor KKF2, with a predetermined and in the control unit or in the diagnostic unit 18th stored threshold value compared. If the result is below the threshold value, which corresponds to a low to nonexistent correlation, the particle filter 13 is removed or defective. If the result is above the threshold, which corresponds to a good correlation, the particulate filter 13 is present and intact.
  • FIG. 4 schematically shows the differential pressure gradient signals 25 as a function of the time 24 in a third progression diagram 20.
  • the differential pressure gradient curves 26, 27 are for the measured and the model-determined, expected Differential pressure ⁇ , ⁇ * 19 applied.
  • the measured differential pressure gradient curve 27, which is formed from the measured differential pressure ⁇ 19, deviates significantly from the expected differential pressure gradient curve 26, as it was determined for an intact particle filter 13.
  • the second cross-correlation factor KKF2 will result in small values which are below the predetermined threshold value. Therefore, in the case of signal curves according to FIG. 4, a defective or removed particle filter 13 can be assumed.
  • the evaluation of the absolute measured and expected differential pressures ⁇ , ⁇ * 19, ie on the first cross-correlation factor KKFi, is reliable when the absolute expected differential pressure ⁇ * over the intact particulate filter 13 exceeds a predetermined threshold.
  • the evaluation of the measured and expected temporal gradients d (Ap), d (Ap *) is reliable if there is some dynamic excitation, i. when the differential pressure gradients 26, 27 exceed a certain level. Therefore, an evaluation via the second cross-correlation factor KKF2 only takes place if certain dynamic criteria are met. For this, the gradients come from the exhaust gas mass flow, the exhaust gas volume flow, the speed or derived therefrom variables. Ideally, the
  • the diagnostic method is stored in an advantageous embodiment as software in the diagnostic unit 18 and can be used in particular in gasoline engines with future gasoline particulate filters, but in principle also in diesel engines with diesel particulate filters.

Abstract

Die Erfindung betrifft ein Verfahren und ein Computerprogrammprodukt zur Erkennung eines ausgebauten oder defekten Partikelfilters in einem Abgasnachbehandlungssystem einer Brennkraftmaschine, insbesondere eines Benzinmotors, wobei zur Überwachung des Partikelfilters ein Differenzdruck zwischen dem Eingang und dem Ausgang des Partikelfilters gemessen und ausgewertet wird. Dabei ist es vorgesehen, dass in Abhängigkeit von den Betriebsparametern der Brennkraftmaschine und/oder des Abgasnachbehandlungssystems eine Korrelation des gemessenen Differenzdrucks über dem Partikelfilter zu einem erwarteten Differenzdruck für einem intakten Referenz-Partikelfilter oder eine Korrelation des zeitlichen Gradienten des gemessenen Differenzdruckes zu einem erwarteten zeitlichen Gradienten des erwarteten Differenzdruck für einen intakten Referenz-Partikelfilter bestimmt wird und dass bei einer hohen Korrelation auf einen vorhandenen und intakten Partikelfilter und bei einer niedrigen Korrelation auf einen ausgebauten oder defekten Partikelfilter geschlossen wird. Das Verfahren ermöglicht unter vielen Betriebsbedingungen der Brennkraftmaschine auch bei sehr geringen absoluten Druckdifferenzen, wie dies insbesondere bei Benzin-Partikelfiltern der Fall ist, eine Erkennung eines ausgebauten oder defekten Partikelfilters.

Description

Beschreibung Titel
Verfahren und Computerprogrammprodukt zur Diagnose eines Partikelfilters
Stand der Technik
Die Erfindung betrifft ein Verfahren zur Erkennung eines ausgebauten oder defekten Partikelfilters in einem Abgasnachbehandlungssystem einer Brennkraftmaschine, ins- besondere eines Benzinmotors, wobei zur Überwachung des Partikelfilters ein Differenzdruck Δρ zwischen dem Eingang und dem Ausgang des Partikelfilters gemessen und ausgewertet wird.
Die Erfindung betrifft weiterhin ein Computerprogrammprodukt zur Durchführung des Verfahrens.
Die Emissionsgesetzgebung, insbesondere in den USA und in Europa, setzt für den Betrieb von Brennkraftmaschinen Grenzwerte für die Emission von Partikelmasse und auch Partikelanzahl bzw. -konzentration fest. Neben den Emissionsgrenzwerten wer- den ebenfalls Diagnosegrenzwerte angegeben, bei deren Überschreitung ein Fehler angezeigt werden muss. In einem von der Brennkraftmaschine angetriebenen Fahrzeug werden hierzu Diagnosefunktionen implementiert, welche die zur Emissionsreduktion verbauten Bauteile und Komponenten während des Fahrzeugbetriebs im Rahmen einer On-Board-Diagnose (OBD) überwachen und eine Fehlfunktion, welche zum Überschreiten der Diagnosegrenzwerte führen, zur Anzeige bringen.
Partikelfilter sind bei Benzinmotoren noch nicht im Serieneinsatz. Aufgrund der verschärften Emissionsgesetzgebung, insbesondere für Benzin-Direkteinspritzmotoren, werden sowohl innermotorische Maßnahmen als auch Maßnahmen der Abgasnachbe- handlung diskutiert. So werden bei Benzinsystemen Abgaskonfigurationen mit einem Drei-Wege-Katalysator in motornaher Einbauposition und nachgeschaltetem, unbeschichtetem Benzinpartikelfilter als auch beschichtete Partikelfilter (sogenannte 4- Wege-Katalysatoren = 3-Wege-Katalysator + Partikelfilter) in motornaher Einbauposition auf ihre Wirksamkeit und Wirtschaftlichkeit hin untersucht. Hierbei ist es nahelie- gend, die bei Diesel-Systemen eingesetzten Verfahren zur Diagnose des Partikelfilters heranzuziehen, also die Messung der Druckerhöhung über dem Partikelfilter mittels Drucksensoren oder die Messung der Partikelmasse hinter dem Partikelfilter mittels eines Partikelsensors. Die von einem Motor, insbesondere einem Dieselmotor, emittierten Rußpartikel können mittels eines Dieselpartikelfilters (DPF) effizient aus dem Abgas entfernt werden.
Gegenwärtig ist ein so genannter Wall-Flow-Dieselpartikelfilter (DPF) der Stand der Technik. Durch seine einseitig verschlossenen Kanäle und seinem porösen Filtermaterial ist eine Rußabscheidung von bis zu 99 % möglich. Ein Nachteil ist, dass der Filter von Zeit zu Zeit thermisch regeneriert werden muss. Dabei wird mittels inner- oder außermotorischer Maßnahmen ein Temperaturhub vorgenommen und dadurch der angesammelte Ruß im Filter abgebrannt, da ansonsten der Abgasgegendruck zu stark ansteigen würde. Aus der DE 10 2010 002 691 A1 ist beispielsweise ein Verfahren und eine Vorrichtung zur Diagnose eines Partikelfilters als Bestandteil einer Abgasreinigungsanlage im Abgasstrang einer Brennkraftmaschine bekannt, wobei zur Überwachung des Partikelfilters ein Differenzdruck zwischen Eingang und Ausgang des Partikelfilters gemessen und dieser in einer Diagnoseeinheit ausgewertet wird. Dabei ist vorgesehen, dass der Differenzdruck über dem Partikelfilter aus zwei Differenzdruckmessungen oder zwei
Absolutdruckmessungen bestimmt wird. Damit kann die On-Board-Diagnose verbessert und auch detektiert werden, ob der Partikelfilter manipuliert oder gar ausgebaut wurde. Problematisch bei benzinbetriebenen Motoren ist, dass ein deutlich geringerer Differenzdruck am Partikelfilter abfällt, als dies bei Dieselfahrzeugen der Fall ist. Ursache sind der deutlich geringere Abgasmassenstrom beim Benzinmotor und die aufgrund der geringeren Rußrohmassenemissionen andere Auslegung des Partikelfilters. Die Rohemission der Partikelmasse ist bei Dieselfahrzeugen um ein Vielfaches höher als bei Benzinmotoren. Die derzeit gültigen Emissionsgrenzwerte für die Partikelmasse werden von Benzinfahrzeugen in der Regel unterschritten und damit auch die gültigen Diagnosegrenzwerte. Die Grenzwerte für die Partikelanzahl für die neuen Abgasbe- Stimmungen nach EU6c werden allerdings von einigen Fahrzeugtypen überschritten, wenn keine Zusatzmaßnahmen ergriffen werden. Da es für die Partikelanzahl nach der Abgasbestimmung nach EU6b (2014) und EU6c (2017) nur einen Emissionsgrenzwert, aber keinen Diagnosegrenzwert gibt, wird erwartet, dass der Gesetzgeber analog zu Dieselfahrzeugen als Minimalanforderung die Ausbau- bzw. Komplettausfallerkennung eines Partikelfilters bei Überschreitung der Partikelmassen- und Partikelanzahl-Emissionsgrenzwerte fordert.
Die DE 10 2014 209 840 AI offenbart die Erkennung eines defekten oder ausgebauten Partikelfilters durch die Bildung jeweils eines zeitlichen Gradienten des gemessenen und eines erwarteten Differenzdruckes über dem Partikelfilter und der Bestimmung der
Korrelation zwischen den beiden Gradienten. Dies kann über eine Kreuzkorrelation erfolgen. Bei einer hohen Korrelation zwischen dem gemessenen und dem erwarteten Gradienten wird auf einen intakten bzw. vorhandenen Partikelfilter geschlossen, während einer niedrigen Korrelation ein defekter oder demontierter Partikelfilter zugeordnet wird. Das Verfahren ist insbesondere für benzinbetriebene Brennkraftmaschinen ausgelegt. Es ermöglicht insbesondere die Überwachung von Partikelfiltern in Abgasnachbehandlungsanlagen von Benzinmotoren, über denen sich bei Betriebsphasen des Benzinmotors nur eine geringe Druckdifferenz aufbaut. Nachteilig bei dem Verfahren ist, dass eine gewisse dynamische Anregung, welche letztendlich zu einer entsprechend schnellen Differenzdruckänderung über dem Partikelfilter führt, vorliegen muss, um auswertbare Gradienten des Differenzdrucks zu erhalten. Eine solche dynamische Anregung kann beispielsweise durch eine schnelle Drehzahländerung der Brennkraftmaschine hervorgerufen werden. In Abhängigkeit der Betriebsweise der Brennkraftmaschine, beispielsweise bedingt durch das Fahrverhalten eines Fahrers eines Kraftfahrzeugs, kann es vorkommen, dass Betriebsphasen mit ausreichend hoher dynamischer Anregung nicht oder nur sehr selten vorliegen. Damit kann eine durchgängige Überwachung des Partikelfilters nicht gewährleistet werden. Es ist daher Aufgabe der Erfindung, ein Verfahren bereitzustellen, mit dem ein defekter oder ein ausgebauter Partikelfilter unabhängig von der Betriebsweise der Brennkraftmaschine sicher nachgewiesen werden kann.
Es ist weiterhin Aufgabe der Erfindung, ein Computerprogrammprodukt zur Durchführung des Verfahrens bereitzustellen.
Offenbarung der Erfindung
Die das Verfahren betreffende Aufgabe der Erfindung wird dadurch gelöst, dass in Abhängigkeit von Betriebsparametern der Brennkraftmaschine und/oder des Abgasnachbehandlungssystems eine Korrelation des gemessenen Differenzdrucks Δρ über dem Partikelfilter zu einem erwarteten Differenzdruck Δρ* für einem intakten Referenz- Parti- kelfilter oder eine Korrelation des zeitlichen Gradienten d(Äp) des gemessenen Differenzdruckes Δρ zu einem erwarteten zeitlichen Gradienten d(Ap*) des erwarteten Differenzdrucks Δρ* für einen intakten Referenz- Partikelfilter bestimmt wird und dass bei einer hohen Korrelation auf einen vorhandenen und intakten Partikelfilter und bei einer niedrigen Korrelation auf einen ausgebauten oder defekten Partikelfilter geschlossen wird. Die Überwachung des Partikelfilters kann somit sowohl bei Betriebsparametern der Brennkraftmaschine bzw. des Abgasnachbehandlungssystems erfolgen, welche einen sicher auswertbaren Differenzdruck Δρ über dem Partikelfilter oder eine hohe dynamische Anregung und damit eine sichere auswertbare Änderung des Differenzdrucks Δρ bewirken. Es stehen somit gegenüber einer reinen Auswertung des zeitli- chen Gradienten d( p) des Differenzdrucks Δρ* deutlich mehr Betriebspunkte der
Brennkraftmaschine und des Abgasnachbehandlungssystems zur Verfügung, in denen eine Erkennung eines ausgebauten oder defekten Partikelfilters möglich ist. Beispielsweise kann bei langen Autobahnfahrten mit annähernd konstanter Geschwindigkeit die Korrelation des Differenzdrucks Δρ mit einem erwarteten Differenzdruck Δρ* direkt aus- gewertet werden, während der zeitliche Gradient d( p) des Differenzdrucks Δρ bei einer solchen Betriebsweise der Brennkraftmaschine aufgrund der geringen dynamischen Anregung für eine sichere Auswertung zu gering ist. Umgekehrt kann beispielsweise bei einer Stadtfahrt mit häufigen Geschwindigkeitsänderungen die Korrelation des gemessenen zeitlichen Gradienten d( p) zu dem erwarteten zeitlichen Gradienten α!(Δρ*) zu Erkennung eines defekten oder ausgebauten Partikelfilters verwendet werden, während die direkte Auswertung der Korrelation zwischen dem gemessenen Differenzdruck Δρ und dem erwarteten Differenzdruck Δρ* aufgrund der geringen, über dem Partikelfilter aufgebauten Druckdifferenz nicht möglich ist. Das Verfahren ermöglicht somit die Erkennung eines defekten oder ausgebauten Partikelfilters während vieler unterschiedlicher Betriebsbedingungen und damit unabhängig von der Betriebsweise der vorgeschalteten Brennkraftmaschine oder des Abgasnachbehandlungssystems.
Eine sichere Unterscheidung, wann die Korrelation der gemessenen und erwarteten Differenzdrücke Δρ, Δρ* und wann die Korrelation der gemessenen und erwarteten zeitlichen Gradienten d( p), d( p*) vorteilhaft auszuwerten ist kann dadurch erreicht werden, dass die Korrelation des gemessenen Differenzdrucks Δρ über dem Partikelfilter zu dem erwarteten Differenzdruck Δρ* zur Erkennung des ausgebauten oder defekten Partikelfilters ausgewertet wird, wenn der gemessene Differenzdruck Δρ und/oder der erwartete Differenzdruck Δρ* und/oder ein Abgasmassenstrom und/oder ein Abgasvolumenstrom und/oder eine Motordrehzahl und/oder eine weitere, mit dem Differenzdruck Δρ, Δρ* zusammenhängende Kenngröße eine jeweils vorgegebene erste Schwelle überschreitet und dass die Korrelation des zeitlichen Gradienten d(Ap) des gemessenen Differenzdruckes Δρ zu dem erwarteten zeitlichen Gradienten d(Ap*) des erwarteten Differenzdrucks Δρ* für einen intakten Referenz- Partikelfilter ausgewertet wird, wenn der Gradient des gemessenen Differenzdrucks Δρ und/oder des erwartete Differenzdruck Δρ* und/oder eines Abgasmassenstroms und/oder eines Abgasvolumenstroms und/oder einer Motordrehzahl und/oder einer weiteren, mit dem Differenzdruck Δρ, Δρ* zusammenhängenden Kenngröße eine jeweils vorgegebene zweite Schwelle überschreitet. Es können so eindeutig Betriebssituationen der Brennkraftmaschine oder des Abgasnachbehandlungssystems ermittelt werden, welche eine sichere Auswertung der Korrelation der gemessenen und erwarteten Differenzdrücke Δρ, Δρ* oder der gemessenen und erwarteten zeitlichen Gradienten d( p), d( p*) der Differenzdrücke Δρ, Δρ* ermöglichen.
Entsprechend einer bevorzugten Ausführungsvariante der Erfindung kann es vorgesehen sein, dass der erwartete Differenzdruck Δρ* des Referenz- Partikelfilters modellhaft in Abhängigkeit von zumindest einem Betriebsparameter der Brennkraftmaschine und/oder des Abgasnachbehandlungssystems ermittelt wird. Der erwartete zeitliche Gradiente d(Äp*) des erwarteten Differenzdrucks Δρ* kann unmittelbar aus dem erwarteten Differenzdruck Δρ* ermittelt werden. Die Methoden zur Modellierung des erwarteten Differenzdrucks Δρ* sind bekannt und können beispielsweise in einer übergeordneten Motorsteuerung erfolgen, in welcher der oder die erforderlichen Betriebsparameter der Brennkraftmaschine und/oder des Abgasnachbehandlungssystems vorliegen.
Dazu kann es vorgesehen sein, dass der erwartete Differenzdruck Δρ* oder der erwartete zeitliche Gradient d(Ap*) des Differenzdrucks Δρ* zumindest aus einem Abgasvolumenstrom und/ oder aus dem zeitlichen Gradienten des Abgasvolumenstroms und einem Strömungswiderstand des intakten Referenz- Partikelfilters berechnet wird und/oder dass bei der Berechnung des erwarteten Differenzdrucks Δρ* oder des erwarteten zeitlichen Gradienten d(Ap*) des erwarteten Differenzdrucks Δρ* ein quadratischer Anteil des Volumenstroms mit berücksichtigt wird, welcher die Verdichtung und Expansion des Abgases beim Einströmen des Abgases in den Partikelfilter und beim Ausströmen des Abgases aus dem Partikelfilter berücksichtigt.. Der Strömungswiderstand kann dabei in der Diagnoseeinheit als fester Wert gespeichert oder in einer Kennfeldspeichereinheit von einem oder mehreren Parametern abhängig hinterlegt sein.
Entsprechend eines einfachen Modells kann der erwartete Differenzdruck Δρ aus dem Strömungswiderstand A und dem Abgasvolumenstrom dVol berechnet werden:
Δρ = A * dVol
Um eine höhere Modellgenauigkeit zu erreichen ist es vorteilhaft, einen quadratischen Anteil b*dVol2 zu berücksichtigen. Dieser Teildifferenzdruck wird von der Verdichtung und Expansion des Abgases verursacht, wenn das Abgas in den Partikelfilter einströmt oder aus dem Partikelfilter ausströmt.
Δρ = A * d Vol + b * dVol 2
Störungsbedingte Signalschwankungen können dadurch unterdrückt werden, dass der gemessene Differenzdruck Δρ über dem Partikelfilter und/oder der erwartete Differenz- druck Δρ* über dem Referenz-Partikelfilter und/oder der Volumenstrom zur Bestimmung des erwarteten Differenzdruckes Δρ* tiefpassgefiltert werden. Die Aussagegüte der Diagnose kann so erhöht werden.
Entsprechend einer besonders bevorzugten Ausgestaltungsvariante der Erfindung kann es vorgesehen sein, dass zur Bestimmung der jeweiligen Korrelation aus dem gemessenen Differenzdruck Δρ und dem erwarteten Differenzdruck Δρ* mittels einer Kreuzkorrelation ein erster Kreuzkorrelationsfaktor KKFi gebildet wird und/oder dass aus dem zeitlichen Gradienten d(Ap) des gemessenen Differenzdruckes d(Ap) über dem Partikelfilter und dem erwarteten zeitlichen Gradienten d(Ap*) des erwarteten Differenzdruckes Δρ* über dem Referenz- Partikelfilter mittels einer Kreuzkorrelation ein zweiter Kreuzkorrelationsfaktor KKF2 gebildet wird. Die so gewonnenen, normierten Kreuzkorrelationsfaktoren KKFi, KKF2 sind unabhängig von den Absolutwerten der ausgewerteten gemessenen und erwarteten Druckdifferenzen Δρ, Δρ* oder der gemessenen und erwarteten zeitlichen Gradienten d(Ap), d(Ap*). Sie nehmen niedrige Werte für eine unzureichende Korrelation und hohe Werte für eine gute Korrelation ein und sind damit einfach auszuwerten.
Zur Auswertung kann es vorgesehen sein, dass der erste Kreuzkorrelationsfaktor KKFi und/oder der zweite Kreuzkorrelationsfaktor KKF2 jeweils mit einem vorgegebenen Schwellwert verglichen und bei Unterschreitung des jeweiligen Schwellwertes ein fehlerhafter oder nicht vorhandener Partikelfilter detektiert und bei Erreichen oder Überschreiten des jeweiligen Schwellwertes ein eingebauter und intakter Partikelfilter diagnostiziert wird. Bei einer durchgeführten normierten Kreuzkorrelation sowohl für die Auswertung der gemessenen und ermittelten Differenzdrücke Δρ, Δρ* als auch der gemessenen und ermittelten zeitlichen Gradienten d(Ap), d(Ap*) der Differenzdrücke Δρ, Δρ* kann vorteilhaft für beide Auswertungen der gleiche Schwellwert vorgesehen werden.
Eine sichere Bestimmung des gemessenen Differenzdrucks Δρ und/oder des zeitlichen Gradienten d(Ap*) des gemessenen Differenzdrucks Δρ kann dadurch erfolgen, dass der Differenzdruck Δρ und/oder der zeitliche Gradient d(Ap) des gemessenen Differenzdruckes Δρ aus dem Signal eines über dem Partikelfilter angeordneten Differenz- drucksensors oder aus den Signalen zweier Differenzdrucksensoren oder zweier Absolutdrucksensoren, welche stromauf- und stromabwärts des Partikelfilters im Abgasstrang angeordnet sind, oder aus der Differenz zwischen einem gemessenen Absolutdruck am Eingang des Partikelfilters und einem modellierten Absolutdruck am Ausgang des Partikelfilters oder aus der Differenz zwischen einem gemessenen Relativdruck am
Eingang des Partikelfilters gegenüber der Umgebung und einem modellierten Relativdruck am Ausgang des Partikelfilters gegenüber der Umgebung bestimmt werden. Das Verfahren basiert somit auf der Verwendung ohnehin in modernen Abgasnachbehandlungssystemen bereits vorgesehener Bauteile und kann entsprechend kostengünstig umgesetzt werden.
Das Verfahren lässt sich bevorzugt bei einer benzinbetriebenen Brennkraftmaschine, bei der die Abgasanlage mindestens einen separaten Katalysator und einen Partikelfilter oder eine Katalysator- Partikelfilter- Kombination oder einen katalytisch beschichte- ten Partikelfilter aufweist, anwenden.
Die Aufgabe der Erfindung wird weiterhin durch ein Computerprogrammprodukt gelöst, das direkt in den internen Speicher eines digitalen Computers geladen werden kann und Softwarecodeabschnitte umfasst, mit denen die Schritte gemäß einem der Ansprü- che 1 -9 ausgeführt werden, wenn das Produkt auf einem Computer läuft. Der digitale
Computer ist vorzugsweise Teil einer Steuereinheit, insbesondere einer übergeordneten Motorsteuerung, welche zumindest einen Prozessor, ein computerlesbares Speichermedium und Ein- und Ausgabeeinheiten umfasst. Das Computerprogrammprodukt ist durch ein entsprechendes Computerprogramm gebildet, welches auf dem computer- lesbaren Speichermedium gespeichert ist und von dem Computer ausgeführt werden kann.
Die Erfindung wird im Folgenden anhand eines in den Figuren dargestellten Ausführungsbeispiels näher erläutert. Es zeigt:
Figur 1 beispielhaft ein technisches Umfeld in dem die Erfindung eingesetzt werden kann, Figur 2 in einem ersten Verlaufsdiagramm schematisch die Differenzdruckverläufe für einen gemessenen und einen modellhaft bestimmten Referenz-Differenzdruck für einen intakten Partikelfilter,
Fig. 3 in einem zweiten Verlaufsdiagramm schematisch die Differenzdruckverläufe für den gemessenen und den modellhaft bestimmten Referenz- Differenzdruck für einen ausgebauten oder defekten Partikelfilter und
Figur 4 in einem dritten Verlaufsdiagramm schematisch die Gradienten der Differenzdruckverläufe für den gemessenen und den modellhaft bestimmten Referenz- Differenzdruck für einen ausgebauten oder defekten Partikelfilter.
Figur 1 zeigt schematisch das technische Umfeld, in dem die Erfindung eingesetzt werden kann. Dargestellt ist beispielhaft eine Brennkraftmaschine 10 mit einem Abgasnachbehandlungssystem 16. Die Brennkraftmaschine 10 ist als Benzinmotor ausgeführt. Das Abgas der Brennkraftmaschine 10 ist über einen Abgasstrang 11 abgeführt. Entlang des Abgasstrangs 11 ist das Abgasnachbehandlungssystem 16 angeordnet, welches im gezeigten Ausführungsbeispiel mehrstufig ausgeführt ist. In Strömungsrichtung des Abgases (Abgasstrom 14) ist zunächst ein Katalysator 12 vorgesehen, der vorliegend als Drei- Wege- Katalysator ausgeführt ist. Dem Katalysator 12 ist ein Partikelfilter 13 nachschaltet. Das Abgasnachbehandlungssystem 16 weist weitere, in der gewählten Prinzipdarstellung nicht gezeigte Komponenten, wie Abgassonden und weitere Sensoren, auf, deren Signale einer Motorsteuerung (Electronic Control Unit ECU) zugeführt werden.
Zur Diagnose des Partikelfilters 13 ist ein Differenzdrucksensor 15 vorgesehen, mit dem der Druckunterschied (Differenzdruck 19) zwischen einem Filtereingang und einem Filterausgang des Partikelfilters 13 bestimmt werden kann. Das Ausgangssignal des Differenzdrucksensors 15 ist einer Diagnoseeinheit 18 zugeführt, in der im Rahmen einer On-Bord-Diagnose (OBD) eine Diagnose hinsichtlich eines möglicherweise gebrochenen, entfernten oder verstopften Partikelfilters 13 durchgeführt werden kann. Diese Diagnoseeinheit 18 kann Bestandteil der übergeordneten Motorsteuerung (ECU) sein. Der Katalysator 12 und der Partikelfilter 13 können auch in Form eines Four-Way-Cata- lysts (FWC), also eines katalytisch beschichteten Partikelfilters 13, zusammengeschaltet sein. Ebenfalls denkbar ist es, den Differenzdruck 19 mittels zweier Absolutdrucksensoren, welche vor und nach dem Partikelfilter 13 angeordnet sind, zu bestimmen. Möglich ist es auch, jeweils vor und nach dem Partikelfilter 13 ein Differenzdrucksensor vorzusehen, welche jeweils den Druck im Abgasstrang 11 gegenüber dem Umgebungsdruck messen. Der Differenzdruck kann auch aus der Differenz zwischen einem gemessenen Absolutdruck am Eingang des Partikelfilters 13 und einem modellierten Absolutdruck am Ausgang des Partikelfilters 13 bestimmt werden. Ebenfalls denkbar ist es, den Differenzdruck aus der Differenz zwischen einem gemessenen Relativdruck am Eingang des Partikelfilters 13 gegenüber der Umgebung und einem modellierten Relativdruck am Ausgang des Partikelfilters 13 gegenüber der Umgebung zu bilden.
In Figur 2 und in Figur 3 sind jeweils in einem Verlaufsdiagramm 20 schematisch die Differenzdrucksignale 21 für Differenzdruckverläufe 22, 23 für einen gemessenen Differenzdruck Δρ (gemessener Differenzdruckverlauf 23) und einen modellhaft bestimmten, erwarteten Differenzdruck Δρ* (erwarteter Differenzdruckverlauf 22) in Abhängigkeit von der Zeit 24 dargestellt. Der gemessene Differenzdruck Δρ und damit der gemessene Differenzdruckverlauf 23 sind mit Hilfe des in Figur 1 gezeigten Differenz- drucksensors 15 gemessen. Der erwartete Differenzdruck Δρ* und dessen zeitlicher
Verlauf sind aus dem Abgasvolumenstrom und dem Strömungswiderstand eines intakten Referenz- Partikelfilters berechnet.
Figur 2 zeigt beispielhaft die Differenzdruckverläufe 22, 23 für einen intakten und ein- gebauten Partikelfilter 13. Kennzeichnend hierbei ist, dass zwischen modelliertem Differenzdruckverlauf 22 und gemessenem Differenzdruckverlauf 23 lediglich geringe Signalhöhenunterschiede und Phasenunterschiede auftreten. Es besteht somit eine hohe Korrelation zwischen den beiden Differenzdruckverläufen 22, 23. Dies betrifft sowohl die absoluten Werte des gemessenen und erwarteten Differenzdrucks Δρ, Δρ* 19 als auch deren zeitliche Ableitungen.
Im Gegensatz zu Figur 2 zeigt Figur 3 in dem weiteren Verlaufsdiagramm 20 die Differenzdruckverläufe 22, 23 für den gemessenen Differenzdruck Δρ 19 und den erwarte- ten Differenzdruck Δρ* bei einem ausgebauten oder defekten Partikelfilter 13. Zwischen den Differenzdruckverläufen 22, 23 treten deutliche Abweichungen bei der Signalhöhe und/ oder bei der Phase auf. Es liegt somit eine geringe Korrelation zwischen den beiden Differenzdruckverläufen 22, 23 vor. Davon sind sowohl die absoluten Werte des gemessenen und erwarteten Differenzdrucks Δρ, Δρ* 19 als auch deren zeitliche
Ableitungen betroffen.
Die erfindungsgemäße Erkennung eines ausgebauten oder defekten Partikelfilters 13, insbesondere Benzin- Partikelfilters, basiert auf der Bestimmung der Korrelation des ge- messenen Differenzdrucks Δρ 19 oder des zeitlichen Gradienten d( p) des gemessenen Differenzdrucks Δρ 19 über den Partikelfilter 13 zu dem erwarteten Differenzdruck Δρ oder dem erwarteten zeitlichen Gradienten d(Ap*) des erwarteten Differenzdrucks Δρ über einen intakten Partikelfilter 13. Der erwartete Differenzdruck Δρ* und der erwartete zeitliche Gradient d(Ap*) des erwarteten Differenzdrucks Δρ* werden dabei aus einem Modell in Abhängigkeit von aktuellen Betriebsgrößen der Brennkraftmaschine 10 und/oder des Abgasnachbehandlungssystems 16 ermittelt.
Ist der Partikelfilter 13 ordnungsgemäß im Abgasstrang 11 verbaut, so ergibt sich entweder eine gute Korrelation zwischen dem in einer aktuellen Messung gemessenen Differenzdruck Δρ und dem erwarteten Differenzdruck Δρ* oder es ergibt sich bei dynamische Anregung eine gute Korrelation zwischen dem gemessenen zeitlichen Gradienten d( p) des gemessenen Differenzdrucks Δρ 19 aus der aktuellen Messung und dem erwarteten zeitlichen Gradienten d(Ap*) des erwarteten Differenzdrucks Δρ*. Ist der Partikelfilter 13 hingegen ausgebaut oder defekt, so liegt jeweils eine sehr schwache Korrelation vor. Ein Ausbau oder defekt des Partikelfilters 13 kann somit eindeutig de- tektiert werden.
Ein Vorteil dieses Verfahrens ist es, dass es einerseits im Vergleich zu bekannten diffe- renzdruckbasierten Verfahren nicht nur die absolute Druckdifferenz über den Partikelfil- ter 13, sondern auch deren zeitliche Änderung auswertet. Damit wird auch bei sehr geringen absoluten Druckdifferenzen 19 die Erkennung eines ausgebauten oder defekten Partikelfilters 13 möglich. Das Diagnoseverfahren ist dabei robust gegen Offset- Toleranzen des Differenzdrucksensors 15. Diese Offset- Toleranzen erschweren alle Diag- noseverfahren, die lediglich auf dem absoluten Differenzdruck basieren. Bei ausreichend großen gemessenen und erwarteten Differenzdrücken Δρ, Δρ* 19, bei denen die Offset- Toleranzen des vorgesehenen Differenzdrucksensors 15 vernachlässigbar sind, kann der Ausbau oder der Defekt des Partikelfilters 13 durch Auswertung der Korrela- tion zwischen dem gemessenen Differenzdruck Δρ 19 und dem über einem intakten
Partikelfilter 13 erwarteten Differenzdruck Δρ* vergleichsweise schneller und stabiler detektiert werden.
Das gemessene Differenzdrucksignal Δρ^ wird zunächst tiefpassgefiltert, um das Rau- chen zu unterdrücken. Anschließend wird der zeitliche Gradient d(Ap<k))/dk des gefilterten Differenzdrucksignal Δρ^ ermittelt, wobei k die k-te Messung bedeutet. Parallel dazu werden entsprechende Referenzwerte für das erwartete Differenzdrucksignal Δρ*( ) und/oder den erwarteten zeitlichen Gradienten d(Ap*<k))/dk des erwarteten Differenzdrucksignals Δρ*( ) ermittelt. Dazu wird aus einem Abgasvolumenstrom bzw. aus dessen zeitlichem Gradienten und dem Strömungswiderstand des intakten Partikelfilters 13, dem Referenzfilter, ein zeitlicher Verlauf des erwarteten Differenzdrucksignal Δρ*( ) bzw. der zeitliche Verlauf des erwarteten zeitlichen Gradienten d(Ap*<k))/dk des erwarteten Differenzdrucksignals Δρ*Μ über einen intakten und eingebauten Partikelfilter 13 berechnet. Die Erwartungswerte bzw. der bei der Bestimmung der Erwartungs- werte eingehende Volumenstrom können optional ebenfalls tiefpassgefiltert werden.
Der erwartete Differenzdruck Δρ kann aus dem Strömungswiderstand A des Partikelfilters 13 und dem Abgasvolumenstrom dVol berechnet werden: Ap = A * dVol
Um eine höhere Modellgenauigkeit zu erreichen ist es vorteilhaft, einen quadratischen Anteil b*dVol2 zu berücksichtigen. Dieser Teildifferenzdruck wird von der Verdichtung und Expansion des Abgases verursacht, wenn das Abgas in den Partikelfilter einströmt oder aus dem Partikelfilter ausströmt.
Δρ = A * d Vol + b * dVol 2 In einem nächsten Schritt wird jeweils über eine normierte Kreuzkorrelation bestimmt, inwieweit der Verlauf des gemessenen Differenzdrucksignals Ap<k) mit dem des erwarteten Differenzdrucksignals Ap*<k) übereinstimmt und inwieweit der Verlauf des gemessenen zeitlichen Gradienten d(Ap<k)) mit dem Verlauf des erwarteten zeitlichen Gradienten d(Ap*(k>) übereinstimmt. Dazu wird jeweils ein Kreuzkorrelationsfaktor KKF nach folgender Beziehung gebildet:
KKFi = Σ (Δροο * Δρ*ο ) / Σ (Δρ*(Κ> * Δρ*(ΐο) (1)
KKF2 = Σ (d(Ap(k)) * d(Ap*(k))) / Σ (d(Ap*(k)) * d(Ap*(k))) (2)
Dabei bedeuten
Δροο: Messwerte des gemessenen Differenzdrucks Ap 19
Δρ*(Κ>: Berechnete Werte des erwarteten Differenzdrucks Ap*
d(Ap(k)): Messwerte des gemessenen Gradienten d(Ap) des gemessene Differenzdrucks Ap 19
d(Ap*(k)): Berechnete Werte des erwarteten Gradienten d(Ap*) des erwarteten
Differenzdrucks Ap*
Zur Beurteilung, ob der Partikelfilter 13 ordnungsgemäß vorhanden bzw. verbaut ist bzw. ordnungsgemäß funktioniert, wird der jeweilige Ausgangswert der normierten Kreuzkorrelation, der erste Kreuzkorrelationsfaktor KKFi bzw. der zweite Kreuzkorrelationsfaktor KKF2, mit einem zuvor festgelegten und im Steuergerät bzw. in der Diagnoseeinheit 18 hinterlegten Schwellwert verglichen. Liegt das Ergebnis unterhalb des Schwellwertes, was einer nur geringen bis gar nicht vorhandenen Korrelation entspricht, ist der Partikelfilter 13 ausgebaut oder defekt. Liegt das Ergebnis oberhalb des Schwellwertes, was einer guten Korrelation entspricht, ist der Partikelfilter 13 vorhanden und intakt.
Figur 4 zeigt in einem dritten Verlaufsdiagramm 20 schematisch die Differenzdruckgra- dientensignale 25 in Abhängigkeit von der Zeit 24. Dazu sind die Differenzdruckgradi- entenverläufe 26, 27 für den gemessenen und den modellhaft bestimmten, erwarteten Differenzdruck Δρ, Δρ* 19 aufgetragen. Der gemessene Differenzdruckgradientenver- lauf 27, der aus dem gemessene Differenzdruck Δρ 19 gebildet ist, weicht deutlich von dem erwarteten Differenzdruckgradientenverlauf 26, wie er für einen intakten Partikelfilter 13 ermittelt wurde, ab. Dabei liegt eine hohe dynamische Anregung vor, was sich in Form der hohen Signalausschläge des erwarteten Differenzdruckgradientenverlaufs 26 zeigt. Der zweite Kreuzkorrelationsfaktor KKF2 wird entsprechend kleine Werte ergeben, die unterhalb des vorgegebenen Schwellwertes liegen. Daher kann bei Signalverläufen gemäß Figur 4 von einem defekten oder ausgebauten Partikelfilter 13 ausgegangen werden.
Die Auswertung über die absoluten gemessenen und erwarteten Differenzdrücke Δρ, Δρ* 19, also über den ersten Kreuzkorrelationsfaktor KKFi, erfolgt zuverlässig, wenn der absolute erwartete Differenzdruck Δρ* über den intakten Partikelfilter 13 eine vorgegebene Schwelle überschreitet. Die Auswertung über die gemessenen und erwarte- ten zeitlichen Gradienten d(Ap), d(Ap*) erfolgt zuverlässig, wenn eine gewisse dynamische Anregung vorhanden ist, d.h. wenn die Differenzdruckgradienten 26, 27 ein bestimmtes Maß überschreiten. Daher erfolgt eine Auswertung über den zweiten Kreuzkorrelationsfaktor KKF2 nur dann, wenn bestimmte Dynamikkriterien erfüllt sind. Infrage kommen dafür die Gradienten vom Abgasmassenstrom, vom Abgasvolumenstrom, von der Drehzahl oder von daraus abgeleiteten Größen. Idealerweise wird auch direkt der
Gradient des Differenzdruck- Referenzwertes verwendet. Die Auswertung über den ersten Kreuzkorrelationsfaktor KKFi erfolgt dann, wenn ausreichend große gemessene Differenzdrücke Δρ und/oder erwartete Differenzdrücke Δρ* über dem Partikelfilter 13 vorliegen. Somit kann sowohl bei hohen dynamischen Fahrsituationen als auch in Be- triebssituationen, welche hohe Abgasmassenströme und damit hohe Differenzdrücke
Δρ über dem Partikelfilter 13 verursachen, ein defekter oder ausgebauter Partikelfilter 13 sicher erkannt werden.
Das Diagnoseverfahren ist in vorteilhafter Ausgestaltung als Software in der Diagno- seeinheit 18 hinterlegt und kann insbesondere bei Benzinmotoren mit zukünftigen Benzin-Partikelfiltern, aber grundsätzlich auch bei Dieselmotoren mit Diesel- Partikelfiltern, eingesetzt werden.

Claims

Ansprüche
1. Verfahren zur Erkennung eines ausgebauten oder defekten Partikelfilters (13) in einem Abgasnachbehandlungssystem (16) einer Brennkraftmaschine (10), insbesondere eines Benzinmotors, wobei zur Überwachung des Partikelfilters (13) ein Differenzdruck Δρ (19) zwischen dem Eingang und dem Ausgang des Partikelfilters (13) gemessen und ausgewertet wird, dadurch gekennzeichnet, dass in Abhängigkeit von den Betriebsparametern der Brennkraftmaschine (10) und/oder des Abgasnachbehandlungssystems (16) eine Korrelation des gemessenen Differenzdrucks Δρ (19) über dem Partikelfilter (13) zu einem erwarteten Differenzdruck Δρ* für einem intakten Referenz- Partikelfilter oder eine Korrelation des zeitlichen Gradienten d(Ap) des gemessenen Differenzdruckes Δρ (19) zu einem erwarteten zeitlichen Gradienten d(Ap*) des erwarteten Differenzdruck Δρ* für einen intakten Referenz- Partikelfilter bestimmt wird und dass bei einer hohen Korrelation auf einen vorhandenen und intakten Partikelfilter (13) und bei einer niedrigen Korrelation auf einen ausgebauten oder defekten Partikelfilter (13) geschlossen wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Korrelation des gemessenen Differenzdrucks Δρ (19) über dem Partikelfilter (13) zu dem erwarteten Differenzdruck Δρ* zur Erkennung des ausgebauten oder defekten Partikelfilters (13) ausgewertet wird, wenn der gemessene Differenzdruck Δρ (19) und/oder der erwartete Differenzdruck Δρ* und/oder ein Abgasmassenstrom und/oder ein Abgasvolumenstrom und/oder eine Motordrehzahl und/oder eine weitere, mit dem Differenzdruck Δρ, Δρ* (19) zusammenhängende Kenngröße eine jeweils vorgegebene erste Schwelle überschreitet und dass die Korrelation des zeitlichen Gradienten d(Ap) des gemessenen Differenzdruckes Δρ (19) zu dem erwarteten zeitlichen Gradienten d(Ap*) des erwarteten Differenzdrucks Δρ* für einen intakten Referenz-Partikelfilter ausgewertet wird, wenn der Gradient des gemessenen Differenzdrucks Δρ (19) und/oder des erwartete Differenzdruck Δρ* und/oder eines Abgasmassen- Stroms und/oder eines Abgasvolumenstroms und/oder einer Motordrehzahl und/oder einer weiteren, mit dem Differenzdruck Δρ, Δρ* (19) zusammenhängenden Kenngröße eine jeweils vorgegebene zweite Schwelle überschreitet.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der erwartete Differenzdruck Δρ* des Referenz- Partikelfilters modellhaft in Abhängigkeit von zumindest einem Betriebsparameter der Brennkraftmaschine (10) und/oder des Abgasnachbehandlungssystems (16) ermittelt wird.
Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der erwartete Differenzdruck Δρ* oder der erwartete zeitliche Gradient d(Ap*) des erwarteten Differenzdrucks Δρ* zumindest aus einem Abgasvolumenstrom und/ oder aus dem zeitlichen Gradienten des Abgasvolumenstroms und einem Strömungswiderstand des intakten Referenz- Partikelfilters berechnet wird und/oder dass bei der Berechnung des erwarteten Differenzdrucks Δρ* oder des erwarteten zeitlichen Gradienten d(Ap*) des erwarteten Differenzdrucks Δρ* ein quadratischer Anteil des Volumenstroms mit berücksichtigt wird, welcher die Verdichtung und Expansion des Abgases beim Einströmen des Abgases in den Partikelfilter (13) und beim Ausströmen des Abgases aus dem Partikelfilter (13) berücksichtigt.
Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der gemessene Differenzdruck Δρ (19) über dem Partikelfilter (13) und/ oder der erwartete Differenzdruck Δρ* über dem Referenz-Partikelfilter und/ oder der Volumenstrom zur Bestimmung des erwarteten Differenzdruckes Δρ* tiefpassgefiltert werden.
Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zur Bestimmung der jeweiligen Korrelation aus dem gemessenen Differenzdruck Δρ (19) und dem erwarteten Differenzdruck Δρ* mittels einer Kreuzkorrelation ein erster Kreuzkorrelationsfaktor KKFi gebildet wird und/oder dass aus dem zeitlichen Gradienten d(Ap) des gemessenen Differenzdruckes d(Ap) (19) über dem Partikelfilter (13) und dem erwarteten zeitlichen Gradienten d(Ap*) des erwarteten Differenzdruckes Δρ* über dem Referenz- Partikelfilter mittels einer Kreuzkorrelation ein zweiter Kreuzkorrelationsfaktor KKF2 gebildet wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der erste Kreuzkorrelationsfaktor KKFi und/oder der zweite Kreuzkorrelationsfaktor KKF2 jeweils mit einem vorgegebenen Schwellwert verglichen und bei Unterschreitung des jeweiligen Schwellwertes ein fehlerhafter oder nicht vorhandener Partikelfilter (13) detektiert und bei Erreichen oder Überschreiten des jeweiligen Schwellwertes ein eingebauter und intakter Partikelfilter (13) diagnostiziert wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Differenzdruck Δρ (19) und/oder der zeitliche Gradient d(Äp) des gemessenen Differenzdruckes Δρ (19) aus dem Signal eines über dem Partikelfilter (13) angeordneten Differenzdrucksensors (15) oder aus den Signalen zweier Differenzdrucksensoren oder zweier Absolutdrucksensoren, welche stromauf- und stromabwärts des Partikelfilters (13) im Abgasstrang (11) angeordnet sind, oder aus der Differenz zwischen einem gemessenen Absolutdruck am Eingang des Partikelfilters (13) und einem modellierten Absolutdruck am Ausgang des Partikelfilters (13) oder aus der Differenz zwischen einem gemessenen Relativdruck am Eingang des Partikelfilters (13) gegenüber der Umgebung und einem modellierten Relativdruck am Ausgang des Partikelfilters (13) gegenüber der Umgebung bestimmt werden.
9. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 8 bei einer benzinbetriebenen Brennkraftmaschine (10), bei der die Abgasanlage mindestens einen separaten Katalysator (12) und einen Partikelfilter (13) oder eine Katalysator- Partikelfilter- Kombination oder einen katalytisch beschichteten Partikelfilter (13) aufweist.
10. Computerprogrammprodukt, das direkt in den internen Speicher eines digitalen Computers geladen werden kann und Softwarecodeabschnitte umfasst, mit denen die Schritte gemäß einem der Ansprüche 1 -9 ausgeführt werden, wenn das Produkt auf einem Computer läuft.
PCT/EP2018/057356 2017-03-29 2018-03-22 Verfahren und computerprogrammprodukt zur diagnose eines partikelfilters WO2018177897A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880022107.2A CN110462177B (zh) 2017-03-29 2018-03-22 用于诊断颗粒过滤器的方法和计算机程序产品
US16/498,221 US11098630B2 (en) 2017-03-29 2018-03-22 Method and computer program product for diagnosing a particle filter
KR1020197031789A KR102517259B1 (ko) 2017-03-29 2018-03-22 미립자 필터의 진단 방법 및 그 컴퓨터 프로그램 제품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017205361.5 2017-03-29
DE102017205361.5A DE102017205361A1 (de) 2017-03-29 2017-03-29 Verfahren und Computerprogrammprodukt zur Diagnose eines Partikelfilters

Publications (1)

Publication Number Publication Date
WO2018177897A1 true WO2018177897A1 (de) 2018-10-04

Family

ID=61800513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/057356 WO2018177897A1 (de) 2017-03-29 2018-03-22 Verfahren und computerprogrammprodukt zur diagnose eines partikelfilters

Country Status (5)

Country Link
US (1) US11098630B2 (de)
KR (1) KR102517259B1 (de)
CN (1) CN110462177B (de)
DE (1) DE102017205361A1 (de)
WO (1) WO2018177897A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200076625A (ko) * 2018-12-19 2020-06-29 비테스코 테크놀로지스 게엠베하 가솔린 작동식 내연기관의 배기가스 시스템에 배열된 입자 필터를 진단하는 방법 및 장치
FR3097589A1 (fr) * 2019-06-18 2020-12-25 Psa Automobiles Sa Procede de diagnostic de l'absence d'un filtre a particules dans une ligne d'echappement
US11821347B2 (en) 2020-06-11 2023-11-21 Vitesco Technologies GmbH Particle filter diagnostic device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018218209A1 (de) * 2018-10-24 2020-04-30 Robert Bosch Gmbh Verfahren zur Überwachung eines Abgasnachbehandlungssystems einer Brennkraftmaschine
DE102019206682A1 (de) 2019-05-09 2020-11-12 Robert Bosch Gmbh Verfahren zum Betrieb eines Partikelfilters in einem Abgasnachbehandlungssystem einer Brennkraftmaschine
WO2021162437A1 (ko) * 2020-02-13 2021-08-19 두산인프라코어 주식회사 배기가스 후처리 시스템
KR102323970B1 (ko) * 2020-04-07 2021-11-09 주식회사 현대케피코 기계 학습을 이용한 배기가스 후처리 장치 진단 방법
CN112211705B (zh) * 2020-09-10 2021-10-08 潍柴动力股份有限公司 监控dpf移除的方法、装置及系统
DE102020211731B4 (de) * 2020-09-18 2022-08-18 Vitesco Technologies GmbH Verfahren und Vorrichtung zur Diagnose eines beschichteten Ottopartikelfilters eines Abgastrakts einer Brennkraftmaschine
DE102022208086A1 (de) 2022-08-03 2024-02-08 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Diagnose eines Partikelfilters für einen Verbrennungsmotor
CN114991923B (zh) * 2022-08-03 2022-11-29 潍柴动力股份有限公司 颗粒捕集器压差确定方法、装置、设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007042420A1 (de) * 2007-09-06 2009-01-29 Daimler Ag Verfahren zur Überwachung eines Partikelfilters, insbesondere eines Dieselpartikelfilters
DE102010002691A1 (de) 2010-03-09 2011-09-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
DE102014209840A1 (de) 2014-05-23 2015-11-26 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose eines Partikelfilters

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270675A (ja) 2009-05-21 2010-12-02 Toyota Motor Corp 内燃機関の排気浄化システム
JP5556388B2 (ja) 2010-06-01 2014-07-23 トヨタ自動車株式会社 パティキュレートフィルタの診断装置
DE102013221598A1 (de) 2013-10-24 2015-05-13 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung eines Partikelfilters
DE102014209794A1 (de) * 2014-05-22 2015-11-26 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose eines Ausbaus einer Komponente einer Abgasreinigungsanlage
DE102014209718A1 (de) * 2014-05-22 2015-11-26 Robert Bosch Gmbh Verfahren und Diagnoseeinheit zur Diagnose eines Differenzdrucksensors
DE102014209810A1 (de) * 2014-05-22 2015-11-26 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung einer Ruß- und Aschebeladung eines Partikelfilters
GB2538735B (en) * 2015-05-26 2019-06-12 Jaguar Land Rover Ltd Variable sensitivity pressure differential detection in a vehicle aftertreatment system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007042420A1 (de) * 2007-09-06 2009-01-29 Daimler Ag Verfahren zur Überwachung eines Partikelfilters, insbesondere eines Dieselpartikelfilters
DE102010002691A1 (de) 2010-03-09 2011-09-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
DE102014209840A1 (de) 2014-05-23 2015-11-26 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose eines Partikelfilters

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200076625A (ko) * 2018-12-19 2020-06-29 비테스코 테크놀로지스 게엠베하 가솔린 작동식 내연기관의 배기가스 시스템에 배열된 입자 필터를 진단하는 방법 및 장치
KR102324288B1 (ko) 2018-12-19 2021-11-09 비테스코 테크놀로지스 게엠베하 가솔린 작동식 내연기관의 배기가스 시스템에 배열된 입자 필터를 진단하는 방법 및 장치
FR3097589A1 (fr) * 2019-06-18 2020-12-25 Psa Automobiles Sa Procede de diagnostic de l'absence d'un filtre a particules dans une ligne d'echappement
US11821347B2 (en) 2020-06-11 2023-11-21 Vitesco Technologies GmbH Particle filter diagnostic device

Also Published As

Publication number Publication date
CN110462177B (zh) 2022-01-25
CN110462177A (zh) 2019-11-15
KR20190131103A (ko) 2019-11-25
US11098630B2 (en) 2021-08-24
US20210102487A1 (en) 2021-04-08
DE102017205361A1 (de) 2018-10-04
KR102517259B1 (ko) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2018177897A1 (de) Verfahren und computerprogrammprodukt zur diagnose eines partikelfilters
DE102014209840A1 (de) Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
EP1992935B1 (de) Verfahren zum Betreiben eines stromabwärts nach einem Partikelfilter angeordneten Partikelsensors und Vorrichtung zur Durchführung des Verfahrens
EP2791493B1 (de) Verfahren und vorrichtung zur dynamiküberwachung von gas-sensoren
EP1370751B1 (de) Verfahren und vorrichtung zur überwachung eines signals
DE102014209810A1 (de) Verfahren und Vorrichtung zur Erkennung einer Ruß- und Aschebeladung eines Partikelfilters
DE102007059523B4 (de) Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
EP2807362B1 (de) Verfahren zur bestimmung einer totzeit eines abgassensors einer brennkraftmaschine
DE10056035A1 (de) Verfahren und Vorrichtung zur Steuerung eines Abgasnachbehandlungssystems
DE102014209794A1 (de) Verfahren und Vorrichtung zur Diagnose eines Ausbaus einer Komponente einer Abgasreinigungsanlage
DE102014209718A1 (de) Verfahren und Diagnoseeinheit zur Diagnose eines Differenzdrucksensors
WO2004040104A1 (de) Verfahren zur überprüfung wenigstens dreier sensoren, die eine messgrösse im bereich einer brennkraftmaschine erfassen
DE102006029990A1 (de) Verfahren zur Diagnose eines Partikelfilters und Vorrichtung zur Durchführung des Verfahrens
DE102010002691A1 (de) Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
DE102013203495A1 (de) Verfahren und Vorrichtung zur Überwachung eines Stickoxid-Speicherkatalysators
DE102017006400A1 (de) Verfahren zum Beurteilen eines Zustands eines Partikelfilters und Abgasanlage für einen Kraftwagen
DE102010046523A1 (de) Verfahren zur Diagnose eines Brennkraftmaschinenabgassystems mit einem Partikelfilter
DE102005034270A1 (de) Verfahren zur Diagnose eines im Abgasbereich einer Brennkraftmaschine angeordneten Differenzdrucksensors und Vorrichtung zur Durchführung des Verfahrens
DE112017003110B4 (de) Diagnoseverfahren für eine Einrichtung zur Abgasreinigung mit Filterfunktion
DE102016225758B4 (de) Verfahren und Vorrichtung zur Überwachung eines im Abgassystem einer Brennkraftmaschine angeordneten Partikelfilters und eines Sekundärluftsystems
WO2018130459A1 (de) Verfahren und vorrichtung zur beladungsdiagnose eines partikelfilters
DE102011122165B4 (de) Verfahren zur Bestimmung einer Rußpartikelfiltereffizienz eines Rußpartikelfilters
EP1180210B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine mit einem abgasnachbehandlungssystem
DE102010028852A1 (de) Verfahren und Vorrichtung zur Diagnose eines Abgasreinigungssystems für eine Brennkraftmaschine
EP2982841B1 (de) Verfahren zur zustandsüberwachung eines partikelfilters, abgasanlage und messvorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18713626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197031789

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18713626

Country of ref document: EP

Kind code of ref document: A1