WO2018130459A1 - Verfahren und vorrichtung zur beladungsdiagnose eines partikelfilters - Google Patents

Verfahren und vorrichtung zur beladungsdiagnose eines partikelfilters Download PDF

Info

Publication number
WO2018130459A1
WO2018130459A1 PCT/EP2018/050229 EP2018050229W WO2018130459A1 WO 2018130459 A1 WO2018130459 A1 WO 2018130459A1 EP 2018050229 W EP2018050229 W EP 2018050229W WO 2018130459 A1 WO2018130459 A1 WO 2018130459A1
Authority
WO
WIPO (PCT)
Prior art keywords
particulate filter
frequency
pressure
diagnosis
loading
Prior art date
Application number
PCT/EP2018/050229
Other languages
English (en)
French (fr)
Inventor
Rouven Ritter
Robert Kuenne
Simon Weissenmayer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2018130459A1 publication Critical patent/WO2018130459A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/08Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/08Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
    • F01N2430/085Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing at least a part of the injection taking place during expansion or exhaust stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0418Methods of control or diagnosing using integration or an accumulated value within an elapsed period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1406Exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1606Particle filter loading or soot amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/701Information about vehicle position, e.g. from navigation system or GPS signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method for loading diagnosis of a particulate filter as part of an exhaust gas purification system in the exhaust system of an internal combustion engine, wherein one or more pressure sensors are used to monitor the particulate filter, which also detect higher-frequency pressure fluctuations over a quasi-stationary pressure, and with which dynamic pressure curves are evaluated.
  • the invention further relates to a device, in particular a diagnostic unit, for carrying out the method according to the invention.
  • diagnostic limits are also specified, which must be displayed if an error is exceeded.
  • diagnostic functions are implemented in the vehicle which monitor the components and components installed during the vehicle operation during on-board diagnostics (OBD) during the vehicle operation and display a malfunction which leads to exceeding of the diagnostic limit values.
  • OBD on-board diagnostics
  • the soot particles emitted by an engine in particular a diesel engine, can be efficiently removed from the exhaust gas by means of a diesel particulate filter (DPF).
  • DPF diesel particulate filter
  • a so-called wall-flow diesel particulate filter is the state of the art. Through its closed channels and the porous filter material Soot separation of up to 99% is possible.
  • a disadvantage is that the filter must be thermally regenerated from time to time. In this case, a temperature increase is carried out by means of internal or external engine measures and thereby the accumulated soot burned in the filter, otherwise the exhaust back pressure would rise too much.
  • a condition of the particulate filter is usually continuously monitored during operation of the engine.
  • the monitoring of the particulate filter can be done by means of pressure sensors or a particle sensor.
  • particulate sensors are used to monitor diesel particulate filters.
  • a method and a device for diagnosing a particulate filter as part of an exhaust gas purification system in the exhaust system of an internal combustion engine is known, for monitoring the particulate filter, a differential pressure between input and output of the particulate filter measured and this is evaluated in a diagnostic unit , It is provided that the differential pressure across the particulate filter from two differential pressure measurements or two absolute pressure measurements is determined.
  • the on-board diagnosis can be improved and also detected when the particulate filter has been manipulated or even removed.
  • DE 10 2005 034 270 A1 discloses a method and a device for carrying out the method for diagnosing a differential pressure sensor arranged in an exhaust region of an internal combustion engine which detects the differential pressure occurring at an exhaust component, in particular at a particle filter and provides it as a differential pressure signal evaluating the dynamic behavior of the differential pressure signal due to a predetermined change in exhaust pressure upstream of the exhaust component.
  • DE 10347506 A1 discloses a particulate filter system for an exhaust system of a diesel internal combustion engine and a method for determining the loading state of the particulate filter, with at least one particulate filter arranged in an exhaust line and a sensor system for determining the loading state of the particulate filter Particulate filter, wherein the sensor system comprises at least one acoustically connected to the exhaust system mechanically or mechanically connected acoustic sensor for determining a particulate filter passing sound frequency, and that a control unit is electrically connected to the acoustic sensor.
  • Upcoming gasoline engines also need a particulate filter to meet the more stringent limits. Since for consumption reasons, the particle filter should produce the lowest possible exhaust back pressure and the gasoline engine, the filter effect must not be quite as strong as the diesel engine, very high demands are placed on the pressure sensors for exhaust pressure measurement.
  • a comparison of a frequency curve of the pressure in the flow direction of the exhaust gas downstream of the particle filter with a frequency curve of the pressure before the particle filter or compared with a model determined reference frequency profile and introduced measures for the regeneration of the particulate filter when exceeding certain deviation thresholds between the frequency characteristics become.
  • a particularly robust and cost-effective load diagnosis of the particulate filter can be realized. Since in each case dynamic pressure fluctuations are evaluated and in this evaluation drifts in the pressure sensors as a result of aging and / or temperature influences have a significantly lower effect on the accuracy of the diagnostic result, inexpensive pressure sensors can also be used.
  • the comparison of the frequency curves is carried out in particular with respect to the quasi-stationary pressure fluctuations at higher frequencies. Since high frequencies are attenuated by the particulate filter stronger than lower frequencies, a loading of the particulate filter can be easily detected in the evaluation of high frequencies, as in the evaluation of low frequencies or of quasi-static pressure differences.
  • Soot loading has a special influence on high frequencies, while modern engine management generally avoids these high frequencies. Therefore, it is advantageous that whenever a load measurement becomes necessary, during the diagnosis of the loading of the particulate filter, the internal combustion engine is deliberately set in such a way that it produces as intense as possible high frequency components in the exhaust gas system. High frequencies result from rapid combustion and exhaust gas flows. It may also be advantageous to increase the intensity of the high frequency components until a diagnosis is possible. In this case, regardless of the degree of load, the engine intervention always sounds the same at the exhaust, and is always just as loud as necessary, i. even with unloaded filter no louder than desired or allowed. Specifically, it is measured how much intervention is made, so that the characteristic frequency spectrum is clearly measurable. The stronger the engagement, the higher the loading of the filter.
  • an ignition angle is set so late that the combustion in the cylinder of the internal combustion engine has not decayed, although the cylinder outlet is already open, or the ignition angle is adjusted at an earlier point in time, whereby the engine begins to knock easily and arise during this phase correspondingly high-frequency pressure fluctuations in the exhaust system.
  • the combustion noise can be very loud by adjusting the operating parameters.
  • the frequency responses of the pressure before the particle filter and the pressure downstream of the particle filter are determined and the transmission function of the particle filter calculated therefrom and concluded by comparison with a reference transfer function of an unloaded particle filter on the loading state of the particle filter. This can be a robust load diagnosis can be achieved.
  • the loading of the particulate filter from an integral on the difference of the amplitude responses of the transfer function of the particulate filter and the reference transfer function between a start frequency and a upper limit frequency, which is derived from the cutoff frequency of an evaluation, is determined, with only positive differences are integrated. Due to the integral formation of interference signals are suppressed, which is advantageous on the one hand in terms of robustness and accuracy of the process.
  • the charge of the particle is calculated by means of integral formation on the difference of the amplitudes of the currently measured frequency response of the pressure to the particulate filter and a corresponding reference frequency response, which is determined as a model of speed and load of the internal combustion engine in which the integration between a start frequency and an upper limit frequency, which is derived from the limit frequency of an evaluation unit, is determined, with only positive differences being integrated.
  • a pressure sensor behind the particulate filter is needed, which brings cost advantages.
  • the diagnostic unit has devices for carrying out the method with the features described above and in particular comprises calculation units for difference formation and integral formation as well as functional units for determining frequency responses and comparator units for comparison with predefinable limit values.
  • the functionality can be implemented software-based in the diagnostic unit.
  • the diagnostic unit can be designed as a separate unit or as an integral part of a higher-level engine control.
  • FIG. 1 shows, by way of example, a schematic representation of a technical environment for the invention
  • Figure 2 shows a schematic representation of another variant of the technical environment in which the method can be applied.
  • FIG 1 shows schematically the technical environment in which the inventive method can be applied.
  • an internal combustion engine 10 which is designed as a gasoline engine, wherein the exhaust gas of the internal combustion engine is discharged via an exhaust line 11, in which an exhaust gas purification system is arranged, which is executed in several stages in the example shown.
  • a catalyst 12 is initially provided in the example shown, which may be designed as a three-way catalyst, which is a particle filter 13 downstream.
  • exhaust gas sensors and other sensors are usually arranged in the exhaust line 11, which are not shown in this schematic principle drawing, however, whose signals are fed to an engine control unit (Electronic Control Unit ECU).
  • ECU Electronic Control Unit
  • a pressure sensor 15 is provided in front of the article filter 13 and a further pressure sensor 16 downstream of the particulate filter 13, with which a pressure difference between the filter inlet and filter outlet of the particulate filter 13 can be determined.
  • the output signal of the pressure sensors 15, 16 is thereby supplied to a diagnostic unit 17, in which an on-board diagnostic (OBD) diagnosis of the particulate filter 13 can be performed.
  • OBD on-board diagnostic
  • This diagnostic unit 17 can be part of the higher-level engine control unit (ECU).
  • the catalyst 12 and the particulate filter 13 can also be summarized as a so-called four-way catalyst (FWC), which is a catalytically coated particulate filter 13.
  • FWC four-way catalyst
  • the quasi-static pressure difference from the differential pressure before and after the particle filter 13 is evaluated. Since high frequencies are attenuated by the particulate filter stronger than lower frequencies, a loading of the particulate filter 13 can be easily detected in the evaluation of high frequencies, as in the evaluation of low frequencies or of quasi-static pressure differences.
  • the pressure sensors 15, 16 are designed such that they may also be measurable pressure fluctuations with higher frequencies,
  • the electrical low-pass filter implemented as an RC element at the terminals of the pressure sensors 15, 16, is adapted for higher frequencies
  • the pressure sensors 15, 16 are connected to micro-controller pins that are suitable for the frequency measurement or the micro-controller is configured so that it can make the pressure measurement at shorter intervals.
  • the diagnostic unit 17 which is usually functionally integrated in the engine control unit, determines the frequency responses of the pressure ⁇ ⁇ ⁇ before the particle filter 13 and the pressure ⁇ ⁇ ⁇ ) downstream of the particle filter 13 and calculates the transfer function therefrom of the particulate filter 13.
  • more favorable pressure sensors 15, 16 may be used whose quasi-stationary absolute pressure measured values may drift as a result of temperature influence and / or aging, without the measurement result being falsified too much.
  • the diagnostic method is stored in an advantageous embodiment as software in the diagnostic unit 17 and can be used in particular in gasoline engines with future gasoline particulate filters, but in principle also in diesel engines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung, insbesondere eine Diagnoseeinheit zur Beladungsdiagnose eines Partikelfilters als Bestandteil einer Abgasreinigungsanlage im Abgasstrang einer Brennkraftmaschine. Dabei werden dynamische Druckverläufe vor und nach dem Partikelfilter ausgewertet. Es ist einerseits vorgesehen, eine Frequenzanalyse durchzuführen und insbesondere bei höheren Frequenzen einer Übertragungsfunktion des Partikelfilters im Vergleich mit einer Referenzübertragungsfunktion für einen unbeladenen Partikelfilter durch einen Vergleich mit hinterlegten Referenzwerten auf den Beladungszustand des Partikelfilters zu schließen. Alternativ kann auch bei nur einem Drucksensor aus dem Integral über die Differenz der Amplituden des aktuell gemessenen Frequenzgangs und eines Referenzfrequenzgangs eine Beladungsdiagnose durchgeführt werden. Damit können kostengünstige Drucksensoren eingesetzt werden, die trotz eines z.B. alterungsbedingten Driftes eine reproduzierbare Rußbeladungsdiagnose des Partikelfilters ermöglichen.

Description

Beschreibung Titel
Verfahren und Vorrichtung zur Beladungsdiagnose eines Partikelfilters Stand der Technik
Die Erfindung betrifft ein Verfahren zur Beladungsdiagnose eines Partikelfilters als Bestandteil einer Abgasreinigungsanlage im Abgasstrang einer Brennkraftmaschine, wobei zur Überwachung des Partikelfilters ein oder mehrere Drucksensoren eingesetzt werden, die über einen quasistationären Druck hinaus auch höherfrequente Druckschwankungen detektieren, und mit denen dynamische Druckverläufe ausgewertet werden.
Die Erfindung betrifft weiterhin eine Vorrichtung, insbesondere eine Diagnoseeinheit, zur Durchführung des erfindungsgemäßen Verfahrens.
Die Emissionsgesetzgebung insbesondere in den USA und in Europa setzt Grenzwerte für die Emission von Partikelmasse und auch Partikelanzahl bzw. -konzentration fest. Neben den Emissionsgrenzwerten werden ebenfalls Diagnosegrenzwerte angegeben, bei deren Überschreitung ein Fehler angezeigt werden muss. Im Fahrzeug werden hierzu Diagnosefunktionen implementiert, welche die zur Emissionsreduktion verbauten Bauteile und Komponenten während des Fahrzeugbetriebs im Rahmen dieser On- Board-Diagnose (OBD) überwachen und eine Fehlfunktion, welche zum Überschreiten der Diagnosegrenzwerte führen, zur Anzeige bringen.
Die von einem Motor, insbesondere einem Dieselmotor, emittierten Rußpartikel können mittels eines Dieselpartikelfilters (DPF) effizient aus dem Abgas entfernt werden.
Gegenwärtig ist ein so genannter Wall- Flow- Dieselpartikelfilter (DPF) der Stand der Technik. Durch seine einseitig verschlossenen Kanäle und des porösen Filtermaterials ist eine Rußabscheidung von bis zu 99 % möglich. Ein Nachteil ist, dass der Filter von Zeit zu Zeit thermisch regeneriert werden muss. Dabei wird mittels inner- oder außermotorischer Maßnahmen ein Temperaturhub vorgenommen und dadurch der angesammelte Ruß im Filter abgebrannt, da sonst der Abgasgegendruck zu stark ansteigen würde.
Zur Überprüfung der Funktionsfähigkeit des Partikelfilters wird üblicherweise ein Zustand des Partikelfilters während des Betriebs des Motors fortlaufend überwacht. Die Überwachung des Partikelfilters kann mittels Drucksensoren oder einem Partikelsensor erfolgen. Insbesondere für die strengeren US-Grenzwerte werden Partikelsensoren zur Überwachung der Dieselpartikelfilter eingesetzt.
Aus der DE 10 2010 002 691 A1 ist beispielsweise ein Verfahren und eine Vorrichtung zur Diagnose eines Partikelfilters als Bestandteil einer Abgasreinigungsanlage im Abgasstrang einer Brennkraftmaschine bekannt, wobei zur Überwachung des Partikelfilters ein Differenzdruck zwischen Eingang und Ausgang des Partikelfilters gemessen und dieser in einer Diagnoseeinheit ausgewertet wird. Dabei ist vorgesehen, dass der Differenzdruck über dem Partikelfilter aus zwei Differenzdruckmessungen oder zwei Absolutdruckmessungen bestimmt wird. Damit kann die On-Board-Diagnose verbessert und auch detektiert werden, wenn der Partikelfilter manipuliert oder gar ausgebaut wurde.
Aus der DE 10 2005 034 270 A1 ist ein Verfahren sowie eine Vorrichtung zur Durchführung des Verfahrens zur Diagnose eines in einem Abgasbereich einer Brennkraftmaschine angeordneten Differenzdrucksensors bekannt, der den an einem Abgasbauteil, insbesondere an einem Partikelfilter, auftretenden Differenzdruck erfasst und als Differenzdrucksignal bereitstellt, wobei das dynamische Verhalten des Differenzdrucksignals in Folge einer vorgegebenen Änderung des Abgasdrucks stromaufwärts vor dem Abgasbauteil bewertet wird.
Aus der DE 10347506 A1 ist ein Partikelfiltersystem für ein Abgassystem einer Dieselbrennkraftmaschine sowie ein Verfahren zur Bestimmung des Beladungszustandes des Partikelfilters bekannt, mit zumindest einem in einem Abgasstrang angeordneten Partikelfilter und einem Sensorsystem zur Ermittlung des Beladungszustandes des Partikelfilters, wobei das Sensorsystem zumindest einen mit dem Abgassystem strö- mungs- oder mechanisch verbundenen akustischen Sensor zur Ermittlung einer den Partikelfilter passierenden Schallfrequenz aufweist, und dass eine Steuereinheit elektrisch mit dem akustischen Sensor verbunden ist.
Kommende Benzinmotoren brauchen ebenfalls einen Partikelfilter, um die schärfer werdenden Grenzwerte einhalten zu können. Da aus Verbrauchsgründen der Partikelfilter einen möglichst geringeren Abgasgegendruck erzeugen soll und beim Benzinmotor die Filterwirkung nicht ganz so stark sein muss wie beim Diesel-Motor, werden sehr hohe Anforderungen an die Drucksensoren zur Abgasdruckmessung gestellt.
Es ist daher Aufgabe der Erfindung, ein Verfahren bereitzustellen, mit dem die Partikelbeladung eines Partikelfilters zum einen robust und zum anderen mit kostengünstigen Drucksensoren realisiert werden kann.
Es ist weiterhin Aufgabe der Erfindung, eine zur Durchführung des Verfahrens entsprechende Vorrichtung, insbesondere eine Diagnoseeinheit bereitzustellen.
Offenbarung der Erfindung
Die das Verfahren betreffende Aufgabe wird durch die Merkmale der Ansprüche 1 bis 10 gelöst.
Erfindungsgemäß ist bei dem Diagnoseverfahren vorgesehen, dass ein Vergleich eines Frequenzverlaufs des Druckes in Strömungsrichtung des Abgases hinter dem Partikelfilter mit einem Frequenzverlauf des Druckes vor dem Partikelfilter oder mit einem modellhaft ermittelten Referenzfrequenzverlauf verglichen und bei Überschreitung bestimmter Abweichungsschwellwerte zwischen den Frequenzverläufen Maßnahmen zur Regeneration des Partikelfilters eingeleitet werden. Damit kann eine besonders robuste als auch kostengünstige Beladungsdiagnose des Partikelfilters realisiert werden. Da hierbei jeweils dynamische Druckschwankungen ausgewertet werden und sich bei dieser Auswertung Drifts bei den Drucksensoren infolge Alterung und/ oder Temperatureinflüssen deutlich geringer auf die Genauigkeit des Diagnoseergebnisses auswirken, können auch preiswerte Drucksensoren eingesetzt werden. Hierbei ist vorgesehen, dass der Vergleich der Frequenzverläufe insbesondere gegenüber den quasistationären Druckschwankungen bei höheren Frequenzen durchgeführt wird. Da hohe Frequenzen durch den Partikelfilter stärker gedämpft werden als niedrigere Frequenzen, kann bei der Auswertung der hohen Frequenzen eine Beladung des Partikelfilters leichter erkannt werden, als bei der Auswertung der niedrigen Frequenzen bzw. von quasistatischen Druckunterschieden.
Die Beladung mit Ruß hat besonders Einfluss auf hohe Frequenzen, wobei durch modernes Motormanagement diese hohen Frequenzen generell vermieden werden. Da- her ist es von Vorteil, dass immer, wenn eine Beladungsmessung notwendig wird, während der Diagnose der Beladung des Partikelfilters die Brennkraftmaschine gezielt derart eingestellt wird, dass diese möglichst intensive hohe Frequenzanteile im Abgasstrang erzeugt. Hohe Frequenzen entstehen bei einer schnellen Verbrennung und bei Abgasströmen. Es kann auch von Vorteil sein, die Intensität der hohen Frequenzan- teile solange zu steigern, bis eine Diagnose möglich ist. In diesem Fall hört sich der motorische Eingriff unabhängig vom Beladungsgrad immer gleich am Auspuff an und ist immer gerade nur so laut wie notwendig, d.h. auch bei unbeladenen Filter nicht lauter als gewünscht bzw. erlaubt. Konkret wird gemessen, wie stark Eingegriffen wird, damit das charakteristische Frequenzspektrum eindeutig messbar wird. Je stärker der Eingriff umso höher ist die Beladung des Filters.
Um möglichst hohe Frequenzen zu erzeugen, wird bei als Ottomotoren ausgebildeten Brennkraftmaschinen ein Zündwinkel derart spät eingestellt, dass die Verbrennung im Zylinder der Brennkraftmaschine noch nicht abgeklungen ist, obwohl der Zylinderaus- lass bereits geöffnet ist, oder der Zündwinkel zu einem früheren Zeitpunkt verstellt wird, wodurch der Motor anfängt, leicht zu klopfen und während dieser Phase entsprechend hochfrequente Druckschwankungen im Abgasstrang entstehen.
Bei einer als Dieselmotor ausgebildeten Brennkraftmaschine wird eine Nacheinsprit- zung derart spät vorgenommen, dass die Verbrennung noch nicht abgeklungen ist obwohl der Zylinderauslass bereits geöffnet ist, oder es wird eine Voreinspritzung weggelassen und eine Haupteinspritzung zu einem früheren Zeitpunkt durchgeführt. Dabei fängt der Motor an, zu nageln, so dass auch hier entsprechend höherfrequente Druckschwankungen im Abgasstrang entstehen, die sich zur Beladungsdiagnose vorteilhaft auswerten lassen. Bei aufgeladenen Motoren werden durch Verstellen des Wastegate-Ventils oder des VTG-Stellers (VTG steht für variable Turbinengeometrie) der Ladedruck und damit die Verlustleistung erhöht. Ggf. werden durch eine späte Zündung bzw. Einspritzung zu- sätzliche Verluste erzeugt. Bei Motoren mit Abgasrückführung wird diese abgestellt, damit kein rückgeführtes Abgas die Verbrennung verlangsamen kann. Bei Hybridfahrzeugen wird gezielt die Last des Verbrennungsmotors erhöht.
Generell hat sich als vorteilhaft herausgestellt, die Beladungsmessung in einer eigens dafür reservierten Motorbetriebsart durchzuführen, bei der garantiert wird, dass keine anderen Diagnosefunktionen weitere Motorbetriebsparameter verstellen. Dadurch ist gewährleistet, dass die Messung unverfälscht und reproduzierbar vorgenommen werden kann. Zum Beispiel eignen sich der Leerlauf und der Motorstart, sowie der Übergang von Voll-Last in den Schub für eine Verstellung der Betriebsparameter für die Be- ladungsmessung.
Je nachdem welche Maßnahme gewählt wird, kann durch die Verstellung der Betriebsparameter das Verbrennungsgeräusch sehr laut werden. Um Lärmbelästigungen zu vermeiden, ist es vorteilhaft, die Diagnose bevorzugt in unbewohnten Gegenden durch- zuführen. Das Fahrzeug gewinnt die Info, ob es sich außerhalb von Ortschaften befindet, entweder indirekt über die Geschwindigkeitsdaten des Fahrzeuges (diese sollte über 60 bis 70 km/h liegen), oder es verwendet die aktuelle GPS-Position zusammen mit elektronischem Kartenmaterial. In einer besonders bevorzugten Verfahrensvariante ist vorgesehen, dass zur Beladungsdiagnose die Frequenzgänge des Druckes vor dem Partikelfilter und des Druckes nach dem Partikelfilter ermittelt und daraus die Übertragungsfunktion des Partikelfilters berechnet und durch Vergleich mit einer Referenzübertragungsfunktion eines unbeladenen Partikelfilters auf den Beladungszustand des Partikelfilters geschlossen wird. Hiermit kann eine robuste Beladungsdiagnose erzielt werden.
Dabei kann in vorteilhafter Ausgestaltung der Verfahrensvariante, wie sie zuvor beschrieben wurde, vorgesehen sein, dass die Beladung des Partikelfilters aus einem Integral über die Differenz der Amplitudengänge der Übertragungsfunktion des Partikel- filters und der Referenzübertragungsfunktion zwischen einer Startfrequenz und einer oberen Grenzfrequenz, welche aus der Grenzfrequenz einer Auswerteeinheit abgeleitet wird, bestimmt wird, wobei nur positive Differenzen integriert werden. Durch die Integralbildung werden Störsignale unterdrückt, was einerseits hinsichtlich der Robustheit und der Genauigkeit des Verfahrens vorteilhaft ist.
In einer alternativen, aber ebenfalls vorteilhaften Verfahrensvariante ist vorgesehen, dass die Beladung des Partikels mittels Integralbildung über die Differenz der Amplituden des aktuell gemessenen Frequenzganges des Druckes nach dem Partikelfilter und einem entsprechenden Referenzfrequenzgang, welcher modellhaft aus Drehzahl und Last der Brennkraftmaschine bestimmt wird, berechnet wird, wobei die Integration zwischen einer Startfrequenz und einer oberen Grenzfrequenz, welche aus der Grenzfrequenz einer Auswerteeinheit abgeleitet wird, bestimmt wird, wobei nur positive Differenzen integriert werden. Bei dieser Variante wird lediglich ein Drucksensor hinter dem Partikelfilter benötigt, was Kostenvorteile mit sich bringt.
Die die Vorrichtung betreffende Aufgabe wird dadurch gelöst, dass die Diagnoseeinheit Einrichtungen zur Durchführung des Verfahrens mit den zuvor beschriebenen Merkmalen aufweist und insbesondere Berechnungseinheiten zur Differenzbildung und Integralbildung sowie Funktionseinheiten zur Bestimmung von Frequenzgängen und Kom- paratoreinheiten zum Vergleich mit vorgebbaren Grenzwerten umfasst. Die Funktionalität kann dabei Software-basiert in der Diagnoseeinheit umgesetzt sein. Die Diagnoseeinheit kann dabei als separate Einheit oder als integraler Bestandteil einer übergeordneten Motorsteuerung ausgeführt sein.
Die Erfindung wird im Folgenden anhand eines in den Figuren dargestellten Ausführungsbeispiels näher erläutert. Es zeigt:
Figur 1 beispielhaft in schematischer Darstellung ein technisches Umfeld für die Erfindung,
Figur 2 in schematischer Darstellung eine weitere Variante des technischen Umfeldes, in der das Verfahren angewendet werden kann.
Figur 1 zeigt schematisch das technische Umfeld, in dem das erfindungsgemäße Verfahren angewendet werden kann. Dargestellt ist beispielhaft eine Brennkraftmaschine 10, die als Benzinmotor ausgeführt ist, wobei das Abgas der Brennkraftmaschine über einen Abgasstrang 11 abgeführt wird, in dem eine Abgasreinigungsanlage angeordnet ist, welche im gezeigten Beispiel mehrstufig ausgeführt ist. In Strömungsrichtung des Abgases (Abgasstrom 14) ist im gezeigten Beispiel zunächst ein Katalysator 12 vorgesehen, der als Drei- Wege- Katalysator ausgeführt sein kann, dem ein Partikelfilter 13 nachgelagert ist. Weiterhin sind üblicherweise im Abgasstrang 11 Abgassonden sowie weitere Sensoren angeordnet, die allerdings in dieser schematischen Prinzipzeichnung nicht dargestellt sind, deren Signale einer Motorsteuerung (Electronic Control Unit ECU) zugeführt werden.
Zur Diagnose des Partikelfilters 13 ist ein Drucksensor 15 vor dem Artikelfilter 13 sowie ein weiterer Drucksensor 16 nach dem Partikelfilter 13 vorgesehen, mit dem ein Druckunterschied zwischen Filtereingang und Filterausgang des Partikelfilters 13 bestimmt werden kann. Das Ausgangssignal der Drucksensoren 15, 16 wird dabei einer Diagnoseeinheit 17 zugeführt, in der im Rahmen einer On-Bord-Diagnose (OBD) eine Diagnose des Partikelfilters 13 durchgeführt werden kann. Diese Diagnoseeinheit 17 kann dabei Bestandteil der übergeordneten Motorsteuerung (ECU) sein.
Der Katalysator 12 und der Partikelfilter 13 können auch als sogenannte Four-Way-Ca- talyst (FWC) zusammengefasst sein, bei dem es sich um einen katalytisch beschichteten Partikelfilter 13 handelt.
Erfindungsgemäß wird nicht nur der quasistatische Druckunterschied aus dem Differenzdruck vor und nach dem Partikelfilter 13 sondern auch die dynamischen Druckverläufe vor und nach dem Partikelfilter 13 ausgewertet. Da hohe Frequenzen durch den Partikelfilter stärker gedämpft werden als niedrigere Frequenzen, kann bei der Auswertung der hohen Frequenzen eine Beladung des Partikelfilters 13 leichter erkannt werden, als bei der Auswertung der niedrigen Frequenzen bzw. von quasistatischen Druckunterschieden. Man macht sich dabei den Effekt zu Nutze, dass sich der Motor bei beladenem Partikelfilter 13 dumpfer und leiser anhört als bei regeneriertem Partikelfilter 13.
Dazu sind folgende Änderungen am System vorgesehen, die eine derartige Auswertung unterstützt: Die Drucksensoren 15, 16 sind derart ausgelegt, dass diese ggf. auch Druckschwankungen mit höheren Frequenzen messbar sind,
Der elektrische Tiefpassfilter, realisiert als RC-Glied an den Anschlüssen der Drucksensoren 15, 16, ist für höhere Frequenzen angepasst,
Die Drucksensoren 15, 16 sind an Micro-Controller-Pins angeschlossen, die für die Frequenzmessung geeignet sind bzw. der Micro-Controller ist derart konfiguriert, dass er die Druckmessung in kürzeren Intervallen vornehmen kann.
Die üblicherweise im Motorsteuergerät funktionell integrierte Diagnoseeinheit 17 ermittelt die Frequenzgänge des Druckes υ<ω) vor dem Partikelfilter 13 und des Druckes Υ<ω) nach dem Partikelfilter 13 und berechnet daraus die Übertragungsfunktion
Figure imgf000010_0001
des Partikelfilters 13.
Wenn sich die aktuelle Übertragungsfunktion des Partikelfilters 13 G(U) von einer Referenzübertragungsfunktion Go(W) des unbeladenen Partikelfilters 13 zu sehr unterscheidet, kann in diesem Fall auf einen beladenen Partikelfilter 13 geschlossen werden. Konkret kann die Beladung b als Integral über die Differenz der Amplitudengänge beider Übertragungsfunktionen wie folgt berechnet werden: b = r max(|G(w) | - |GO(w) |; 0) d<ü (2) wobei 00g die Grenzfrequenz des RC-Tiefpassfilters in der Diagnoseeinheit 17 darstellt und mit ω0 eine Startfrequenz im Bereich 0 < ω0 < oog gewählt wird. Es werden nur positive Differenzen integriert. Überschreitet der Beladungszustand x, berechnet aus dem Beladungszustand bmax bei vollem Partikelfilter 13 mit x = b / b ',max (3) die Grenze von 100%, wird eine Partikelfilterregeneration angestoßen. Alternativ kann nur mit einem Drucksensor 16 nach dem Partikelfilter 13 eine Beladungsdiagnose durchgeführt werden. Eine entsprechende Anordnung ist schematisch in Figur 2 dargestellt.
Die Beladung b wird dann aus dem Integral über der Differenz der Amplituden des aktuell gemessenen Frequenzgangs Υ<ω) und des Referenzfrequenzgangs Υ0(ω) nach dem Partikelfilter 13 berechnet, wobei der Referenzfrequenzgang Υ0<ω) über ein Modell aus Drehzahl und Last des Motors berechnet wird: b = Co max(|y(<u) | - \Υο ω) \; 0) άω (4) wobei 00g die Grenzfrequenz des RC-Tiefpassfilters in der Diagnoseeinheit 17 darstellt und mit ω0 eine Startfrequenz im Bereich 0 < ω0 < ωδ gewählt wird. Auch hierbei werden nur positive Differenzen integriert.
Mit diesem Diagnoseverfahren für die Partikelbeladung können günstigere Drucksensoren 15, 16 eingesetzt werden, deren quasistationäre Absolutdruckmesswerte infolge von Temperatureinfluss und/ oder Alterung driften dürfen, ohne dass das Messergebnis zu sehr verfälscht wird.
Das Diagnoseverfahren ist in vorteilhafter Ausgestaltung als Software in der Diagnoseeinheit 17 hinterlegt und kann insbesondere bei Benzinmotoren mit zukünftigen Benzin-Partikelfiltern, aber grundsätzlich auch bei Dieselmotoren, eingesetzt werden.

Claims

Ansprüche
1. Verfahren zur Beladungsdiagnose eines Partikelfilters (13) als Bestandteil einer Abgasreinigungsanlage im Abgasstrang (11) einer Brennkraftmaschine (10), wobei zur Überwachung des Partikelfilters (13) ein oder mehrere Drucksensoren (15, 16) eingesetzt werden, die über einen quasistationären Druck hinaus auch höherfre- quente Druckschwankungen detektieren, und mit denen dynamische Druckverläufe ausgewertet werden, dadurch gekennzeichnet, dass ein Vergleich eines Frequenzverlaufs des Druckes in Strömungsrichtung des Abgases hinter dem Partikelfilter (13) mit einem Frequenzverlauf des Druckes vor dem Partikelfilter (13) oder mit einem modellhaft ermittelten Referenzfrequenzverlauf verglichen und bei Überschreitung bestimmter Abweichungsschwellwerte zwischen den Frequenzverläufen Maßnahmen zur Regeneration des Partikelfilters (13) eingeleitet werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Vergleich der Frequenzverläufe insbesondere gegenüber den quasistationären Druckschwankungen bei höheren Frequenzen durchgeführt wird.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass während der Diagnose der Beladung des Partikelfilters (13) die Brennkraftmaschine (10) gezielt derart eingestellt wird, dass diese möglichst hohe Frequenzanteile im Abgasstrang (11) erzeugt, wobei die Intensität dieser Frequenzanteile groß genug gewählt wird, dass eine Diagnose der Beladung möglich ist oder wobei die Intensität solange gesteigert wird, bis eine Diagnose möglich ist.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass bei als Ottomotoren ausgebildeten Brennkraftmaschinen (10) ein Zündwinkel derart spät eingestellt wird, dass die Verbrennung im Zylinder der Brennkraftmaschine (10) noch nicht abgeklungen ist, obwohl der Zylinderauslass bereits geöffnet ist, oder der Zündwinkel zu einem früheren Zeitpunkt verstellt wird.
5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass bei einer als Dieselmotor ausgebildeten Brennkraftmaschine (10) eine Nacheinspritzung derart spät vorgenommen wird, dass die Verbrennung noch nicht abgeklungen ist obwohl der Zy- linderauslass bereits geöffnet ist, oder eine Voreinspritzung weggelassen und eine Haupteinspritzung zu einem früheren Zeitpunkt durchgeführt wird.
6. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass die Diagnose der Beladung des Partikelfilters (13) in eigens dafür reservierten Motorbetriebsarten durchgeführt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Diagnose bevorzugt in unbewohnten Gebieten durchgeführt wird und dazu GPS- Daten oder Geschwindigkeitsdaten des Fahrzeugs ausgewertet werden.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass zur Beladungsdiagnose die Frequenzgänge des Druckes vor dem Partikelfilter (13) und des Druckes nach dem Partikelfilter (13) ermittelt und daraus die Übertragungsfunktion des Partikelfilters (13) berechnet und durch Vergleich mit einer Referenzübertragungsfunktion eines unbeladenen Partikelfilters (13) auf den Beladungszustand des Partikelfilters (13) geschlossen wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Beladung des Partikelfilters (13) aus einem Integral über die Differenz der Amplitudengänge der Übertragungsfunktion des Partikelfilters (13) und der Referenzübertragungsfunktion zwischen einer Startfrequenz und einer oberen Grenzfrequenz, welche aus der Grenzfrequenz einer Auswerteeinheit abgeleitet wird, bestimmt wird, wobei nur positive Differenzen integriert werden.
10. Verfahren nach einem dem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Beladung des Partikels mittels Integralbildung über die Differenz der Amplituden des aktuell gemessenen Frequenzganges des Druckes nach dem Partikelfilter (13) und einem entsprechenden Referenzfrequenzgang, welcher modellhaft aus Drehzahl und Last der Brennkraftmaschine (10) bestimmt wird, berechnet wird, wobei die Integration zwischen einer Startfrequenz und einer oberen Grenzfrequenz, welche aus der Grenzfrequenz einer Auswerteeinheit abgeleitet wird, bestimmt wird, wobei nur positive Differenzen integriert werden.
11. Vorrichtung, insbesondere eine Diagnoseeinheit (17), zur Beladungsdiagnose eines Partikelfilters (13) als Bestandteil einer Abgasreinigungsanlage im Abgasstrang (11) einer Brennkraftmaschine (10), wobei zur Überwachung des Partikelfilters (13) ein oder mehrere Drucksensoren (15, 16) vorgesehen sind, mit denen über einen quasistationären Druck hinaus auch höherfrequente Druckschwankungen detektier- bar sind, und mit denen dynamische Druckverläufe auswertbar sind, dadurch gekennzeichnet, dass die Diagnoseeinheit (17) Einrichtungen zur Durchführung des Verfahrens nach den Ansprüchen 1 bis 10 aufweist und insbesondere Berechnungseinheiten zur Differenzbildung und Integralbildung sowie Funktionseinheiten zur Bestimmung von Frequenzgängen und Komparatoreinheiten zum Vergleich mit vorgebbaren Grenzwerten umfasst.
PCT/EP2018/050229 2017-01-13 2018-01-05 Verfahren und vorrichtung zur beladungsdiagnose eines partikelfilters WO2018130459A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017200539.4 2017-01-13
DE102017200539.4A DE102017200539A1 (de) 2017-01-13 2017-01-13 Verfahren und Vorrichtung zur Beladungsdiagnose eines Partikelfilters

Publications (1)

Publication Number Publication Date
WO2018130459A1 true WO2018130459A1 (de) 2018-07-19

Family

ID=60935890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/050229 WO2018130459A1 (de) 2017-01-13 2018-01-05 Verfahren und vorrichtung zur beladungsdiagnose eines partikelfilters

Country Status (3)

Country Link
DE (1) DE102017200539A1 (de)
FR (1) FR3061931A1 (de)
WO (1) WO2018130459A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11821347B2 (en) 2020-06-11 2023-11-21 Vitesco Technologies GmbH Particle filter diagnostic device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020214285A1 (de) 2020-11-13 2022-05-19 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren, Recheneinheit und Computerprogramm zum Ermitteln eines Füllstands von Rußpartikeln in einem Rußpartikelfilter
DE102022209450A1 (de) * 2022-09-09 2024-03-14 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung und Verfahren zur Diagnose einer Manipulation einer Abgasstrecke eines Verbrennungsmotors

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10347506A1 (de) 2003-10-13 2005-05-25 Avl List Gmbh Partikelfiltersystem für ein Abgassystem einer Dieselbrennkraftmaschine
US20050247131A1 (en) * 2002-09-12 2005-11-10 Norbert Breuer Device and method for determining the state of a particle filter
DE102005034270A1 (de) 2005-07-22 2007-01-25 Robert Bosch Gmbh Verfahren zur Diagnose eines im Abgasbereich einer Brennkraftmaschine angeordneten Differenzdrucksensors und Vorrichtung zur Durchführung des Verfahrens
US20070157609A1 (en) * 2006-01-12 2007-07-12 Arvinmeritor Emissions Technologies Gmbh Method and apparatus for determining loading of an emissions trap by use of transfer function analysis
US20070251221A1 (en) * 2006-04-28 2007-11-01 Lueschow Kevin J System and method for monitoring a filter
EP1950385A1 (de) * 2005-11-11 2008-07-30 Yanmar Co., Ltd. Abgasreinigungsvorrichtung
DE102010002691A1 (de) 2010-03-09 2011-09-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
US20140223998A1 (en) * 2011-07-06 2014-08-14 Ibiden Co., Ltd. Particulate collection filter state detection device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050247131A1 (en) * 2002-09-12 2005-11-10 Norbert Breuer Device and method for determining the state of a particle filter
DE10347506A1 (de) 2003-10-13 2005-05-25 Avl List Gmbh Partikelfiltersystem für ein Abgassystem einer Dieselbrennkraftmaschine
DE102005034270A1 (de) 2005-07-22 2007-01-25 Robert Bosch Gmbh Verfahren zur Diagnose eines im Abgasbereich einer Brennkraftmaschine angeordneten Differenzdrucksensors und Vorrichtung zur Durchführung des Verfahrens
EP1950385A1 (de) * 2005-11-11 2008-07-30 Yanmar Co., Ltd. Abgasreinigungsvorrichtung
US20070157609A1 (en) * 2006-01-12 2007-07-12 Arvinmeritor Emissions Technologies Gmbh Method and apparatus for determining loading of an emissions trap by use of transfer function analysis
US20070251221A1 (en) * 2006-04-28 2007-11-01 Lueschow Kevin J System and method for monitoring a filter
DE102010002691A1 (de) 2010-03-09 2011-09-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
US20140223998A1 (en) * 2011-07-06 2014-08-14 Ibiden Co., Ltd. Particulate collection filter state detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11821347B2 (en) 2020-06-11 2023-11-21 Vitesco Technologies GmbH Particle filter diagnostic device

Also Published As

Publication number Publication date
DE102017200539A1 (de) 2018-07-19
FR3061931A1 (fr) 2018-07-20

Similar Documents

Publication Publication Date Title
DE102014209840A1 (de) Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
EP2791493B1 (de) Verfahren und vorrichtung zur dynamiküberwachung von gas-sensoren
EP2828510B1 (de) Verfahren und vorrichtung zur überwachung von gas-sensoren
DE102007059523B4 (de) Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
WO2018177897A1 (de) Verfahren und computerprogrammprodukt zur diagnose eines partikelfilters
DE102013203495A1 (de) Verfahren und Vorrichtung zur Überwachung eines Stickoxid-Speicherkatalysators
DE102014209810A1 (de) Verfahren und Vorrichtung zur Erkennung einer Ruß- und Aschebeladung eines Partikelfilters
DE102014209718A1 (de) Verfahren und Diagnoseeinheit zur Diagnose eines Differenzdrucksensors
WO2011095466A1 (de) Diagnoseverfahren eines russsensors
DE102014209794A1 (de) Verfahren und Vorrichtung zur Diagnose eines Ausbaus einer Komponente einer Abgasreinigungsanlage
DE102009055082A1 (de) Verfahren zur Überwachung einer Schadstoff-Konvertierungsfähigkeit in einem Abgasnachbehandlungssystem
DE102010002691A1 (de) Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
DE102010040678A1 (de) Verfahren zur Überwachung der Schadstoff-Konvertierungsfähigkeit in einem Abgasnachbehandlungssystem
DE102015213825A1 (de) Verfahren und Vorrichtung zur Dynamiküberwachung eines Luftfüllungssystems einer Brennkraftmaschine
WO2018130459A1 (de) Verfahren und vorrichtung zur beladungsdiagnose eines partikelfilters
DE10014224A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine mit einem Abgasnachbehandlungssytem
DE102011077097A1 (de) Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
DE102010028852B4 (de) Verfahren und Vorrichtung zur Diagnose eines Abgasreinigungssystems für eine Brennkraftmaschine
WO2012123490A1 (de) Verfahren und vorrichtung zur bestimmung eines startzeitpunkts eines regenerationsprozesses zur regenerierung eines dieselpartikelfilters
EP1180210B2 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine mit einem abgasnachbehandlungssystem
DE102011122165B4 (de) Verfahren zur Bestimmung einer Rußpartikelfiltereffizienz eines Rußpartikelfilters
WO2011117108A1 (de) Verfahren zum prüfen der funktionalität eines abgasrückführventils einer brennkraftmaschine
DE102013218900A1 (de) Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
DE102016211712B4 (de) Verfahren zum Überprüfen der Funktionstüchtigkeit eines Partikelsensors
DE102010003198A1 (de) Verfahren und Vorrichtung zur Überwachung eines Abgassensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18700064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18700064

Country of ref document: EP

Kind code of ref document: A1