EP1360223B1 - Certain silicone polyethers, methods for making them and uses - Google Patents
Certain silicone polyethers, methods for making them and uses Download PDFInfo
- Publication number
- EP1360223B1 EP1360223B1 EP02701912.4A EP02701912A EP1360223B1 EP 1360223 B1 EP1360223 B1 EP 1360223B1 EP 02701912 A EP02701912 A EP 02701912A EP 1360223 B1 EP1360223 B1 EP 1360223B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- phenyl
- alkyl
- substituted
- less
- halogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920000570 polyether Polymers 0.000 title claims description 89
- 229920001296 polysiloxane Polymers 0.000 title claims description 56
- 238000000034 method Methods 0.000 title claims description 29
- 125000000217 alkyl group Chemical group 0.000 claims description 67
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 50
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 44
- 229910052736 halogen Inorganic materials 0.000 claims description 38
- 150000002367 halogens Chemical class 0.000 claims description 38
- 125000003277 amino group Chemical group 0.000 claims description 34
- 239000003054 catalyst Substances 0.000 claims description 26
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 26
- 229920000642 polymer Polymers 0.000 claims description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 21
- 229930194542 Keto Natural products 0.000 claims description 15
- 125000000468 ketone group Chemical group 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 15
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 14
- 150000002148 esters Chemical class 0.000 claims description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical group BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052794 bromium Chemical group 0.000 claims description 5
- 229910052801 chlorine Inorganic materials 0.000 claims description 5
- 239000000460 chlorine Substances 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical group [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 4
- 239000008199 coating composition Substances 0.000 claims description 4
- 239000000976 ink Substances 0.000 claims description 4
- 239000003973 paint Substances 0.000 claims description 4
- 239000004094 surface-active agent Substances 0.000 claims description 4
- 229920005830 Polyurethane Foam Polymers 0.000 claims description 3
- 239000011496 polyurethane foam Substances 0.000 claims description 3
- 238000011282 treatment Methods 0.000 claims description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical compound O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 claims 2
- 125000003172 aldehyde group Chemical group 0.000 claims 2
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 claims 2
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 2
- 229910003204 NH2 Inorganic materials 0.000 claims 1
- MDFFNEOEWAXZRQ-UHFFFAOYSA-N aminyl Chemical compound [NH2] MDFFNEOEWAXZRQ-UHFFFAOYSA-N 0.000 claims 1
- 125000001246 bromo group Chemical group Br* 0.000 claims 1
- 125000001309 chloro group Chemical group Cl* 0.000 claims 1
- 239000000047 product Substances 0.000 description 20
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 18
- -1 alkynyl alcohols Chemical class 0.000 description 15
- 239000003999 initiator Substances 0.000 description 15
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 14
- 238000005227 gel permeation chromatography Methods 0.000 description 14
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 11
- 150000001299 aldehydes Chemical class 0.000 description 9
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 238000006459 hydrosilylation reaction Methods 0.000 description 7
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 5
- HNVRRHSXBLFLIG-UHFFFAOYSA-N 3-hydroxy-3-methylbut-1-ene Chemical compound CC(C)(O)C=C HNVRRHSXBLFLIG-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 150000002430 hydrocarbons Chemical group 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 235000011056 potassium acetate Nutrition 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- BZAZNULYLRVMSW-UHFFFAOYSA-N 2-Methyl-2-buten-3-ol Natural products CC(C)=C(C)O BZAZNULYLRVMSW-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910021556 Chromium(III) chloride Inorganic materials 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- 229910002249 LaCl3 Inorganic materials 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 2
- 239000011636 chromium(III) chloride Substances 0.000 description 2
- 239000008139 complexing agent Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- ICAKDTKJOYSXGC-UHFFFAOYSA-K lanthanum(iii) chloride Chemical compound Cl[La](Cl)Cl ICAKDTKJOYSXGC-UHFFFAOYSA-K 0.000 description 2
- 239000011968 lewis acid catalyst Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000011592 zinc chloride Substances 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- PIBIHODWSMJTFG-UHFFFAOYSA-N 1-chloro-2-methylbut-3-yn-2-ol Chemical compound ClCC(O)(C)C#C PIBIHODWSMJTFG-UHFFFAOYSA-N 0.000 description 1
- CEBKHWWANWSNTI-UHFFFAOYSA-N 2-methylbut-3-yn-2-ol Chemical compound CC(C)(O)C#C CEBKHWWANWSNTI-UHFFFAOYSA-N 0.000 description 1
- BYDRTKVGBRTTIT-UHFFFAOYSA-N 2-methylprop-2-en-1-ol Chemical compound CC(=C)CO BYDRTKVGBRTTIT-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ACIAHEMYLLBZOI-ZZXKWVIFSA-N Unsaturated alcohol Chemical compound CC\C(CO)=C/C ACIAHEMYLLBZOI-ZZXKWVIFSA-N 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- AOJDZKCUAATBGE-UHFFFAOYSA-N bromomethane Chemical compound Br[CH2] AOJDZKCUAATBGE-UHFFFAOYSA-N 0.000 description 1
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 150000003509 tertiary alcohols Chemical class 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/42—Block-or graft-polymers containing polysiloxane sequences
- C08G77/46—Block-or graft-polymers containing polysiloxane sequences containing polyether sequences
Definitions
- This invention relates to certain novel silicone polyethers, and both methods for making and uses for them. More particularly, the invention relates to silicone polyethers based on novel polyethers initiated by certain non-isomerizing alkenyl or alkynyl alcohols, methods for making these silicone polyethers by hydrosilation, and their uses in personal care and other products.
- Silicone polyethers are used in many applications, notably as surfactants and in the preparation of personal care products, polyurethanes and paint, ink and coating formulations. They may be produced by hydrosilation of a polyether initiated by an aliphatically unsaturated alcohol with a silicone having a SiH functionality.
- the polyether used may be produced from various initiators and epoxides under the influence of a variety of catalysts. Selection of the exact starting materials and routes utilized is important in determining the properties of the final polymer with even small changes producing very dramatic differences at times. The synthesis chosen for the polyether may be the most critical choice.
- Alkynyl alcohol initiated polyethers are difficult if not impossible to make using a basic catalyst as there tends to be decomposition of the product, and there is also the issue of migration of the triple bond.
- Use of Lewis acids solves these problems to some extent, but results in formation of large amounts of difficult to remove byproducts and cyclization of the polyethers.
- An example in the art showing use of a Lewis acid catalyst in this context is U.S. Patent 3,644,535 to Batty et al. , while U.S. Patent 5,066,756 to Raleigh et al. mentions use of acid and basic catalysts.
- metal cyanide type catalysts instead of conventional basic or Lewis acid catalysts may improve the situation.
- Use of cyanide and acid catalysts are described by Burkhart et al. in U.S. Patent No. 5,391,679 for certain specific situations; the silicone was attached to the alcohol first to form the initiator.
- a similar initiator is described by Watabe et al. in EP 0485637 along with a metal cyanide catalyst, as well as fluorinated polyethers.
- Jorgenson et al. in U.S Patent Nos. 5,877,268 and 5,856,369 describe use of a metal cyanide catalyst focusing mostly on allyl and methallyl alcohol initiated polyethers; use of metal cyanide catalyst is criticized in some cases there, however.
- the invention relates to a silicone based polyether comprising a monovalent group, R, with R having an average formula: wherein,
- the invention relates to a polymer of average formula: wherein
- the invention relates to a method for making a silicone based polyether, the method comprising:
- Another object of the present invention is to provide uses for subject silicone based polyethers.
- the invention further relates to methods for reducing surface tension.
- the present invention also relates to surfactants and paint, ink and coating formulations, personal care products for treating hair, skin and underarms, as well as polyurethane foams that contain the subject silicone based polyethers.
- compositions according to the present invention include silicone based polyethers comprising a monovalent group, R, with R having an average formula: wherein,
- nullity as in "R3 is a nullity” should be taken to mean that group referred to is absent. For example, if R3 is a nullity in-CH2-R3-O-, then this structure is -CH2-O-.
- halogen should be taken to mean a member of the group consisting of fluorine, chlorine, bromine, iodine and others of this series with chlorine and bromine being preferred.
- amine group in this same context, should be taken to mean a monovalent group containing nitrogen bonded to at least one organic carbon such as -NHCH3 or -CH2-NH-CH3.
- Halogen and NO2 containing polymers according to this invention may be desirable for themselves or because they may be converted to NH2 containing polymers by methods such as simple exchange with ammonia or reduction, respectively.
- These functional groups along with aldehyde, keto and ester functionality can enhance the properties of the simpler polymers of this invention or provide reactive sites for various purposes. Even multifunctional polymers are possible and are often quite desirable in many applications.
- silicone based polyethers be fully liquid at "room temperature" (25 deg C and 760 mm Hg pressure) as even partial solidification can result in products that are unsightly messes.
- room temperature 25 deg C and 760 mm Hg pressure
- lower molecular weight polymers are preferred. In most cases, this translates to an weight average molecular weight for the overall polymer to be less than 10,000 and the equivalent, weight average molecular weight for the polyether/initiator portion to be less than 700.
- equivalent in this context is meant that this weight is based on the subject polymer side chains (polyether/initiator) as if they were separate molecules.
- the polydispersity of the overall polymers of the present invention not be very high. Practically speaking, this is usually determined by the polyether/initiator chains. Equivalent polydispersities of the these chains (determined as if these chains were separate molecules) should usually be less 1.6, preferably less than 1.4, more preferably less than 1.25 or less than 1.1 and most preferably less than 1.05 or lower (down to 1.0). These numerical ranges would apply to the polydispersity of the overall silicon based polyether as well.
- compositions according to the present invention that are of great interest include polymers of average formula: wherein
- the structural units designated with x' and y' are not necessarily intended as being in blocks as might be implied. That is, these units may be in any order in the chain (except at the ends) as long as there are x' and y' of each, respectively, on average.
- compositions according to the present invention that are of great interest include polymers of average formula: wherein
- the methods according to the present invention include those for making silicone based poly ethers, such methods including those comprising: hydrosilating U with a silicone containing an SiH group, where wherein,
- the hydrosilation reaction is well known in the art. It is usually carried out in the presence of a catalyst such as one based on platinum which are also well known in the art, some examples of which are described below.
- U be of high purity for hydrosilation.
- U should be greater than 85 weight percent, preferably U should be greater than 92 weight percent and most preferably U should be greater than 96 weight percent of the material containing U added to the hydrosilation reaction mixture.
- the initiators for the polyethers used in making the polymers according to the present invention are, at least for the most part, alcohols that contain unsaturated groups that do not (at least usually do not) isomerize. This results in lower odor polymers as it is less likely that smelly products like propionaldehyde will form from them. It is also very efficient to use 1:1 stoichiometric ratios for polyether:silicone in the present hydrosilations in many cases, particularly when using polyethers at lower polydispersities.
- polyether precursors of the silicone based polyethers of the present invention are believed to be novel and methods for their synthesis (including catalysts used) may be as well. Both are described, at least in part, in co-pending applications assigned or to be assigned to the Dow Chemical Company (and at least in some cases having some common inventors with the present application).
- Metal cyanide catalysts are suited for making the polyethers used to produce the silicone polyethers of the present invention as has been noted previously. This may be especially true when it is desired to have base sensitive groups in the polyether.
- DMC catalyst One form of these catalysts (referred to in this specification and the claims that follow as "DMC catalyst") is: M b[ M 1 (CN) r (X) t ] c [M 2 (X) 6 ] d •zL•nM 3 x A y ,
- DMC catalysts of interest include:
- catalysts may be insoluble in nonpolar solvents like n-hexane, while the polyethers may be soluble, thus this can be useful in removing the catalyst from the polyether product.
- Other methods for catalyst removal have been previously described or noted.
- Another method according to the present invention is a method to reduce the surface tension of a system comprising adding a silicone based polyether of the present invention to the system or a component or components used to produce the system.
- compositions according to the present invention include those that are also manufactures that contain silicone based polyethers of the present invention.
- manufactures include surfactants (which could be made solely of a silicone based polyether), personal care products such as treatments for hair, skin or underarms and paint, ink or coating formulations that contain these silicone polyethers, as well as polyurethane foams containing such polyethers as a stabilizer or otherwise.
- Polydispersity was determined using GPC with a differential refractometer. Samples were prepared by dissolving them in tetrahydrofuran with analysis under the following conditions:
- a zinc hexacyanocobaltate/t-butanol/450 MW poly(propylene oxide) triol catalyst complex (3.40 g) and 216.40 g of 2-methyl-3-butyn-2-ol are charged to a 2 gallon (7.57 liter) reactor, taking care to transfer all of the catalyst complex into the reactor.
- the reactor is sealed and degassed/purged several times with nitrogen, with the pressure being maintained above atmospheric pressure at all times to prevent loss of initiator.
- the mixture is stirred and heated to 90°C.
- a portion of ethylene oxide (100 g) is added. After one hour, feed of ethylene oxide is started and is fed for 2.5 hours. A total of 845 g ethylene oxide is added.
- the yield is 1000 g of a light yellow liquid which became opaque (white) upon standing overnight but remained fluid.
- GPC gel permeation chromatography
- a polyether may be prepared using the same general procedure as described in Example 1 with 1-chloro-2-methyl-3-butyn-2-ol as the initiator. (Corresponding substituted or functionalized polyethers such as NO2 and NH2 containing or keto functionalized can be made similarly from corresponding initiators and a similar procedure.)
- the product was devolatilized to a condition of 105 °C at a pressure of 5 mm Hg (667 Pa) to give 74.1 g of copolymer; refractive index was 1.4480.
- Generation of a Gibb's Plot indicated a CMC (critical micelle concentration) of 4.64E-03 weight percent and a surface tension at CMC of 21.58 dynes/cm (0.0216 N/m).
- a polysiloxane hydride having the average structure HMe 2 Si(OSiMe 2 ) 13 OSiMe 2 H was combined with 50 g of a polyethyleneoxide having the average structure HC ⁇ CC(Me) 2 (OCH 2 CH 2 ) 6.60 OH (having a polydispersity of about 1.2 as determined by GPC), 0.05 g of sodium acetate and 34 g of isopropyl alcohol. This mixture was heated to 83 °C with enough chloroplatinic acid in isopropyl alcohol to give a level of 12 ppm of platinum metal.
- the copolymer was devolatilized at 100 °C at a pressure of 5 mm Hg (667 Pa) to give 70.1 g of product; refractive index was 1.4474.
- Generation of a Gibb's Plot indicated a CMC of 5.08E-03 weight percent and a surface tension at CMC of 21.89 dynes/cm (0.0219 N/m).
- Example 10 A Silicone Based Polyether With Halogenated Initiator
- H 2 C CHC(CH 2 Br) 2 (OCH 2 CH 2 ) 9.75 OH as the starting polyether.
- Corresponding substituted or functionalized silicone based polyethers such as NO2 and NH2 containing or keto functionalized can be made similarly from corresponding polyethers and a similar procedure.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Silicon Polymers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
- Paints Or Removers (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Cosmetics (AREA)
- Polyethers (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/756,440 US20020091219A1 (en) | 2001-01-08 | 2001-01-08 | Certain silicone polyethers, methods for making them and uses |
US756440 | 2001-01-08 | ||
PCT/US2002/000393 WO2002053625A2 (en) | 2001-01-08 | 2002-01-07 | Certain silicone polyethers, methods for making them and uses |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1360223A2 EP1360223A2 (en) | 2003-11-12 |
EP1360223B1 true EP1360223B1 (en) | 2015-03-04 |
Family
ID=25043489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02701912.4A Expired - Lifetime EP1360223B1 (en) | 2001-01-08 | 2002-01-07 | Certain silicone polyethers, methods for making them and uses |
Country Status (6)
Country | Link |
---|---|
US (2) | US20020091219A1 (enrdf_load_stackoverflow) |
EP (1) | EP1360223B1 (enrdf_load_stackoverflow) |
JP (1) | JP2004525205A (enrdf_load_stackoverflow) |
CN (1) | CN1283696C (enrdf_load_stackoverflow) |
AU (1) | AU2002235312A1 (enrdf_load_stackoverflow) |
WO (1) | WO2002053625A2 (enrdf_load_stackoverflow) |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK1674545T3 (da) * | 2003-10-06 | 2010-05-17 | Kaneka Corp | Tryksensitiv klæbemiddelsammensætning |
US7329708B2 (en) | 2004-08-18 | 2008-02-12 | General Electric Company | Functionalized poly(arylene ether) composition and method |
ATE439390T1 (de) | 2006-03-31 | 2009-08-15 | Dow Corning | Herstellungsverfahren für silikonpolyether |
US20080145552A1 (en) * | 2006-12-15 | 2008-06-19 | Mia Genevieve Berrettini | Fluorochemical and polyoxyalkylene siloxane additive for coatings |
US7723414B2 (en) | 2006-12-22 | 2010-05-25 | E. I. Du Pont De Nemours And Company | Antistatic system for polymers |
EP2190406A1 (en) * | 2007-09-26 | 2010-06-02 | Dow Corning Corporation | Personal care compositions containing hydrophobic silicone-organic gel blends |
JP5576284B2 (ja) | 2007-10-29 | 2014-08-20 | ダウ コーニング コーポレーション | 極性のポリジメチルシロキサンの型、この型の製造方法、およびパターン転写のためのこの型の使用方法 |
DE102008043343A1 (de) * | 2008-10-31 | 2010-05-06 | Evonik Goldschmidt Gmbh | Silikonpolyetherblock-Copolymere mit definierter Polydispersität im Polyoxyalkylenteil und deren Verwendung als Stabilisatoren zur Herstellung von Polyurethanschäumen |
EP2352779B1 (de) | 2008-12-05 | 2017-10-18 | Evonik Degussa GmbH | Alkoxysilylgruppen tragende polyethersiloxane sowie verfahren zu deren herstellung |
WO2010080755A2 (en) | 2009-01-07 | 2010-07-15 | Dow Corning Corporation | Silicone paste compositions |
JP5898620B2 (ja) | 2009-09-03 | 2016-04-06 | ダウ コーニング コーポレーションDow Corning Corporation | 粘液性シリコーン流体を含むパーソナルケア組成物 |
CN101885916B (zh) * | 2010-06-30 | 2012-08-22 | 南京四新科技应用研究所有限公司 | 一种有机硅组合物及其制备方法 |
EP2593085B1 (en) | 2010-07-14 | 2014-04-02 | Dow Corning Corporation | Dual drug delivery using silicone gels |
DE102010063237A1 (de) | 2010-12-16 | 2012-06-21 | Evonik Goldschmidt Gmbh | Siliconstabilisatoren für Polyurethan- oder Polyisocyanurat-Hartschaumstoffe |
DE102010063241A1 (de) | 2010-12-16 | 2012-06-21 | Evonik Goldschmidt Gmbh | Siliconstabilisatoren für Polyurethan- oder Polyisocyanurat-Hartschaumstoffe |
DE102011078624A1 (de) | 2011-07-05 | 2013-01-10 | Evonik Goldschmidt Gmbh | Verwendung von hydrophilen organo modifizierten Siloxanen als Prozesshilfsmittel für die Schmelzengranulierung |
US8735524B2 (en) * | 2011-09-09 | 2014-05-27 | Air Products And Chemicals, Inc. | Silicone containing compositions and uses thereof |
WO2014104257A1 (ja) | 2012-12-28 | 2014-07-03 | 東レ・ダウコーニング株式会社 | 高純度有機ケイ素化合物の製造方法 |
WO2015101497A1 (de) | 2013-12-30 | 2015-07-09 | Evonik Degussa Gmbh | Zusammensetzung geeignet zur herstellung von polyurethan- oder polyisocyanurat-hartschaumstoffen |
WO2016014127A1 (en) | 2014-07-23 | 2016-01-28 | Dow Corning Corporation | Pituitous silicone fluid |
KR101987005B1 (ko) | 2015-04-08 | 2019-06-10 | 다우 실리콘즈 코포레이션 | 점액성 실리콘 에멀젼 |
KR20170133490A (ko) | 2015-04-08 | 2017-12-05 | 다우 코닝 코포레이션 | 유체 조성물 및 개인 케어 |
KR20170134648A (ko) | 2015-04-08 | 2017-12-06 | 다우 코닝 코포레이션 | 점액성 실리콘 유체 조성물 |
WO2018147979A1 (en) | 2017-02-09 | 2018-08-16 | Dow Silicones Corporation | A process for preparing silicone polyethers |
EP3778707A4 (en) * | 2018-03-30 | 2021-12-29 | Kaneka Corporation | Reactive silicon group-containing polymer and curable composition |
CA3097236A1 (en) | 2018-04-19 | 2019-10-24 | Evonik Operations Gmbh | Biocompatible siloxanes for formulation of microorganisms |
CN113454142A (zh) * | 2019-02-20 | 2021-09-28 | 株式会社钟化 | 具有水解性甲硅烷基的有机聚合物的制造方法 |
DK3965545T3 (da) | 2019-05-08 | 2022-10-31 | Evonik Operations Gmbh | Polyethermodificerede siloxaner som støvbindemiddel til såsæd |
JP2021055015A (ja) * | 2019-10-01 | 2021-04-08 | 株式会社カネカ | 硬化性組成物 |
JP2021055017A (ja) * | 2019-10-01 | 2021-04-08 | 株式会社カネカ | 硬化性組成物 |
JP2021055014A (ja) * | 2019-10-01 | 2021-04-08 | 株式会社カネカ | 硬化性組成物 |
JP2021055016A (ja) * | 2019-10-01 | 2021-04-08 | 株式会社カネカ | 硬化性組成物 |
MX2022007873A (es) * | 2019-12-23 | 2022-07-19 | Huntsman Int Llc | Poliuretanos terminados en sililo e intermediarios para su preparacion. |
BR112022025305A2 (pt) * | 2020-06-11 | 2023-01-03 | Dow Global Technologies Llc | Composições reativa ao isocianato e de formação de espuma, método para a preparação de uma espuma de poliuretano ou poli-isocianurato com a composição de formação de espuma, e, espuma de poliuretano/poli-isocianurato preparada a partir da composição reativa ao isocianato |
CN112280029B (zh) * | 2020-10-26 | 2022-03-25 | 上海麦豪新材料科技有限公司 | 一种炔基聚醚的制备方法 |
WO2023122364A1 (en) | 2021-12-20 | 2023-06-29 | Dow Silicones Corporation | Silicone polyethers |
CN116410630B (zh) * | 2022-11-30 | 2023-11-10 | 厦门斯福泽瑞科技有限公司 | 一种abs弹性漆水性脱漆剂组合物 |
WO2024260749A1 (de) | 2023-06-22 | 2024-12-26 | Evonik Operations Gmbh | Verwendung von polyethersiloxanen als prozesshilfsmittel für die schmelzgranulierung |
WO2025165684A1 (en) | 2024-01-29 | 2025-08-07 | Dow Global Technologies Llc | Polymer processing aids comprising silicone polyethers |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1245943A (en) | 1968-08-08 | 1971-09-15 | Ici Ltd | Polyoxyalkylene derivatives |
US4059605A (en) | 1971-03-30 | 1977-11-22 | Union Carbide Corporation | Non-isomerizable olefinic polyoxyalkylene polymers and siloxane-polyoxyalkylene copolymer derivatives thereof |
US3957843A (en) * | 1971-03-30 | 1976-05-18 | Union Carbide Corporation | Non-isomerizable olefinic polyoxyalkylene polymers and siloxane-polyoxyalkylene copolymer derivatives thereof |
US3879433A (en) | 1972-12-29 | 1975-04-22 | Union Carbide Corp | Hydroxyalkylsiloxane rigid urethane foam stabilizers |
US3933695A (en) | 1972-12-29 | 1976-01-20 | Union Carbide Corporation | Hydroxyalkenylsiloxane rigid poly urethane foam stabilizers |
US4039490A (en) | 1975-12-29 | 1977-08-02 | Union Carbide Corporation | High resilience foam |
US4877906A (en) | 1988-11-25 | 1989-10-31 | Arco Chemical Technology, Inc. | Purification of polyols prepared using double metal cyanide complex catalysts |
US5066756A (en) * | 1988-12-29 | 1991-11-19 | General Electric Company | Silicone surfactants |
JP2995568B2 (ja) | 1989-05-09 | 1999-12-27 | 旭硝子株式会社 | ポリアルキレンオキシド誘導体の製造法 |
DE69125789T2 (de) | 1990-05-11 | 1997-08-14 | Asahi Glass Co Ltd | Verfahren zur herstellung einer polyoxyalkylenverbindungen |
DE4219070A1 (de) | 1992-06-11 | 1993-12-16 | Goldschmidt Ag Th | Verfahren zur Herstellung von Polyethersiloxanen |
JPH08208426A (ja) * | 1995-02-03 | 1996-08-13 | Nippon Oil & Fats Co Ltd | 化粧品基材 |
US5856369A (en) | 1996-07-30 | 1999-01-05 | Osi Specialties, Inc. | Polyethers and polysiloxane copolymers manufactured with double metal cyanide catalysts |
DE19731961A1 (de) * | 1997-07-24 | 1999-01-28 | Wacker Chemie Gmbh | 1-Alkenyloxygruppen aufweisende Organosiliciumverbindungen, deren Herstellung und Verwendung |
US6372874B1 (en) * | 1998-12-04 | 2002-04-16 | Crompton Corporation | Process for the preparation of siloxane-oxyalkylene copolymers |
US6207717B1 (en) * | 1999-01-12 | 2001-03-27 | Dow Corning Corporation | Entrapment of vitamins with an elastomeric silicone polyether |
US6162888A (en) * | 1999-05-17 | 2000-12-19 | Dow Corning Corporation | Method of making silicone polyether copolymers having reduced odor |
CA2376034A1 (en) * | 1999-07-09 | 2001-01-18 | Louis L. Walker | Polymerization of alkylene oxides using metal cyanide catalysts and unsaturated initiator compounds |
-
2001
- 2001-01-08 US US09/756,440 patent/US20020091219A1/en not_active Abandoned
-
2002
- 2002-01-07 AU AU2002235312A patent/AU2002235312A1/en not_active Abandoned
- 2002-01-07 CN CNB02803516XA patent/CN1283696C/zh not_active Expired - Fee Related
- 2002-01-07 WO PCT/US2002/000393 patent/WO2002053625A2/en active Application Filing
- 2002-01-07 EP EP02701912.4A patent/EP1360223B1/en not_active Expired - Lifetime
- 2002-01-07 US US10/041,323 patent/US6987157B2/en not_active Expired - Lifetime
- 2002-01-07 JP JP2002555143A patent/JP2004525205A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
US6987157B2 (en) | 2006-01-17 |
US20020091219A1 (en) | 2002-07-11 |
US20020120087A1 (en) | 2002-08-29 |
AU2002235312A1 (en) | 2002-07-16 |
WO2002053625A3 (en) | 2003-02-27 |
CN1283696C (zh) | 2006-11-08 |
EP1360223A2 (en) | 2003-11-12 |
JP2004525205A (ja) | 2004-08-19 |
CN1582313A (zh) | 2005-02-16 |
WO2002053625A2 (en) | 2002-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1360223B1 (en) | Certain silicone polyethers, methods for making them and uses | |
US3418354A (en) | Process for producing graft copolymers | |
US20130345318A1 (en) | Silicone polyethers and preparation thereof from polyethers bearing methylidene groups | |
CN106459399A (zh) | 高活性双金属氰化物催化剂及其制备方法 | |
JP2003531231A (ja) | ケイ素結合ヒドロキシ基またはアルコキシ基を有する化合物の縮合方法 | |
JP2009249629A (ja) | 複合金属シアン化物(dmc)触媒でのエポキシ官能性(ポリ)オルガノシロキサンのアルコキシル化によるオルガノシロキサン基を有する新規ポリエーテルアルコールおよびその製造方法 | |
US7176264B2 (en) | Process for manufacture of a dendritic polyether | |
JP2739211B2 (ja) | オルガノシロキサン化合物 | |
Ścibiorek et al. | Controlled synthesis of amphiphilic siloxane-siloxane block copolymers with carboxyl functions | |
CN100497436C (zh) | 聚醚 | |
EP3719025A1 (en) | Siloxane compound and method for producing same | |
JP3661810B2 (ja) | ヒドロキシル基含有シロキサン化合物の製造方法 | |
EP1164156A1 (en) | Method of polymerizing silalkylenesiloxane | |
EP2528927B1 (en) | Silicon polyethers and method of producing the same | |
JP2000256465A (ja) | ジメチルシロキサン、高級アルキルシロキサン及びアミノアルキルシロキサンを含むシリコーンターポリマー | |
JPH10279692A (ja) | シロキサンブロックコポリマー及びその使用 | |
US4847332A (en) | Terminally unsaturated macromolecular monomers of polyformals and copolymers thereof | |
JP3527296B2 (ja) | 新規なオルガノポリシロキサン化合物およびその製造方法 | |
EP4410869A1 (en) | New functionalized organopolysiloxane compounds, manufacturing method, and uses thereof | |
JP3063498B2 (ja) | ポリエーテル−シロキサン共重合体及びその製造方法 | |
JPH10279691A (ja) | ブロックコポリマーおよびその使用 | |
KR20220123422A (ko) | 액체 실리케이트 수지 | |
JP7082024B2 (ja) | (メタ)アクリルグラフトシリコーン及びその製造方法 | |
JPH0826158B2 (ja) | ポリアミン−ポリシロキサンブロツク共重合体 | |
EP3334774B1 (en) | Bifunctional poly(alkyleneoxides) with aminoalkyl and unsaturated termini and derivatives thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030627 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17Q | First examination report despatched |
Effective date: 20040219 |
|
17Q | First examination report despatched |
Effective date: 20040219 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 60247006 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C08G0077460000 Ipc: C09D0183100000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C09D 183/10 20060101AFI20140709BHEP |
|
INTG | Intention to grant announced |
Effective date: 20140721 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20141105 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 713891 Country of ref document: AT Kind code of ref document: T Effective date: 20150415 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 60247006 Country of ref document: DE Effective date: 20150416 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 713891 Country of ref document: AT Kind code of ref document: T Effective date: 20150304 Ref country code: NL Ref legal event code: VDEP Effective date: 20150304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150706 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 60247006 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 |
|
26N | No opposition filed |
Effective date: 20151207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160107 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160131 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160131 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160107 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20181213 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190102 Year of fee payment: 18 Ref country code: DE Payment date: 20181228 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60247006 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200131 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200107 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200801 |